xref: /openbmc/linux/drivers/net/wan/farsync.c (revision b04b4f78)
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/if.h>
25 #include <linux/hdlc.h>
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
28 
29 #include "farsync.h"
30 
31 /*
32  *      Module info
33  */
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
37 
38 /*      Driver configuration and global parameters
39  *      ==========================================
40  */
41 
42 /*      Number of ports (per card) and cards supported
43  */
44 #define FST_MAX_PORTS           4
45 #define FST_MAX_CARDS           32
46 
47 /*      Default parameters for the link
48  */
49 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
50 					 * useful */
51 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
52 					 * of frames on the way down to the card
53 					 * so that we can keep the card busy
54 					 * and maximise throughput
55 					 */
56 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
57 					 * network layer */
58 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
59 					 * control from network layer */
60 #define FST_MAX_MTU             8000	/* Huge but possible */
61 #define FST_DEF_MTU             1500	/* Common sane value */
62 
63 #define FST_TX_TIMEOUT          (2*HZ)
64 
65 #ifdef ARPHRD_RAWHDLC
66 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
67 #else
68 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
69 #endif
70 
71 /*
72  * Modules parameters and associated variables
73  */
74 static int fst_txq_low = FST_LOW_WATER_MARK;
75 static int fst_txq_high = FST_HIGH_WATER_MARK;
76 static int fst_max_reads = 7;
77 static int fst_excluded_cards = 0;
78 static int fst_excluded_list[FST_MAX_CARDS];
79 
80 module_param(fst_txq_low, int, 0);
81 module_param(fst_txq_high, int, 0);
82 module_param(fst_max_reads, int, 0);
83 module_param(fst_excluded_cards, int, 0);
84 module_param_array(fst_excluded_list, int, NULL, 0);
85 
86 /*      Card shared memory layout
87  *      =========================
88  */
89 #pragma pack(1)
90 
91 /*      This information is derived in part from the FarSite FarSync Smc.h
92  *      file. Unfortunately various name clashes and the non-portability of the
93  *      bit field declarations in that file have meant that I have chosen to
94  *      recreate the information here.
95  *
96  *      The SMC (Shared Memory Configuration) has a version number that is
97  *      incremented every time there is a significant change. This number can
98  *      be used to check that we have not got out of step with the firmware
99  *      contained in the .CDE files.
100  */
101 #define SMC_VERSION 24
102 
103 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
104 
105 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
106 				 * configuration structure */
107 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
108 				 * buffers */
109 
110 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
111 #define LEN_RX_BUFFER 8192
112 
113 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
114 #define LEN_SMALL_RX_BUFFER 256
115 
116 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
117 #define NUM_RX_BUFFER 8
118 
119 /* Interrupt retry time in milliseconds */
120 #define INT_RETRY_TIME 2
121 
122 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
123  *      of buffer descriptors. The structure is almost identical to that used
124  *      in the LANCE Ethernet controllers. Details available as PDF from the
125  *      AMD web site: http://www.amd.com/products/epd/processors/\
126  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
127  */
128 struct txdesc {			/* Transmit descriptor */
129 	volatile u16 ladr;	/* Low order address of packet. This is a
130 				 * linear address in the Am186 memory space
131 				 */
132 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
133 				 * bits must be zero
134 				 */
135 	volatile u8 bits;	/* Status and config */
136 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
137 				 * Transmit terminal count interrupt enable in
138 				 * top bit.
139 				 */
140 	u16 unused;		/* Not used in Tx */
141 };
142 
143 struct rxdesc {			/* Receive descriptor */
144 	volatile u16 ladr;	/* Low order address of packet */
145 	volatile u8 hadr;	/* High order address */
146 	volatile u8 bits;	/* Status and config */
147 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
148 				 * Receive terminal count interrupt enable in
149 				 * top bit.
150 				 */
151 	volatile u16 mcnt;	/* Message byte count (15 bits) */
152 };
153 
154 /* Convert a length into the 15 bit 2's complement */
155 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
156 /* Since we need to set the high bit to enable the completion interrupt this
157  * can be made a lot simpler
158  */
159 #define cnv_bcnt(len)   (-(len))
160 
161 /* Status and config bits for the above */
162 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
163 #define TX_STP          0x02	/* Tx: start of packet */
164 #define TX_ENP          0x01	/* Tx: end of packet */
165 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
166 #define RX_FRAM         0x20	/* Rx: framing error */
167 #define RX_OFLO         0x10	/* Rx: overflow error */
168 #define RX_CRC          0x08	/* Rx: CRC error */
169 #define RX_HBUF         0x04	/* Rx: buffer error */
170 #define RX_STP          0x02	/* Rx: start of packet */
171 #define RX_ENP          0x01	/* Rx: end of packet */
172 
173 /* Interrupts from the card are caused by various events which are presented
174  * in a circular buffer as several events may be processed on one physical int
175  */
176 #define MAX_CIRBUFF     32
177 
178 struct cirbuff {
179 	u8 rdindex;		/* read, then increment and wrap */
180 	u8 wrindex;		/* write, then increment and wrap */
181 	u8 evntbuff[MAX_CIRBUFF];
182 };
183 
184 /* Interrupt event codes.
185  * Where appropriate the two low order bits indicate the port number
186  */
187 #define CTLA_CHG        0x18	/* Control signal changed */
188 #define CTLB_CHG        0x19
189 #define CTLC_CHG        0x1A
190 #define CTLD_CHG        0x1B
191 
192 #define INIT_CPLT       0x20	/* Initialisation complete */
193 #define INIT_FAIL       0x21	/* Initialisation failed */
194 
195 #define ABTA_SENT       0x24	/* Abort sent */
196 #define ABTB_SENT       0x25
197 #define ABTC_SENT       0x26
198 #define ABTD_SENT       0x27
199 
200 #define TXA_UNDF        0x28	/* Transmission underflow */
201 #define TXB_UNDF        0x29
202 #define TXC_UNDF        0x2A
203 #define TXD_UNDF        0x2B
204 
205 #define F56_INT         0x2C
206 #define M32_INT         0x2D
207 
208 #define TE1_ALMA        0x30
209 
210 /* Port physical configuration. See farsync.h for field values */
211 struct port_cfg {
212 	u16 lineInterface;	/* Physical interface type */
213 	u8 x25op;		/* Unused at present */
214 	u8 internalClock;	/* 1 => internal clock, 0 => external */
215 	u8 transparentMode;	/* 1 => on, 0 => off */
216 	u8 invertClock;		/* 0 => normal, 1 => inverted */
217 	u8 padBytes[6];		/* Padding */
218 	u32 lineSpeed;		/* Speed in bps */
219 };
220 
221 /* TE1 port physical configuration */
222 struct su_config {
223 	u32 dataRate;
224 	u8 clocking;
225 	u8 framing;
226 	u8 structure;
227 	u8 interface;
228 	u8 coding;
229 	u8 lineBuildOut;
230 	u8 equalizer;
231 	u8 transparentMode;
232 	u8 loopMode;
233 	u8 range;
234 	u8 txBufferMode;
235 	u8 rxBufferMode;
236 	u8 startingSlot;
237 	u8 losThreshold;
238 	u8 enableIdleCode;
239 	u8 idleCode;
240 	u8 spare[44];
241 };
242 
243 /* TE1 Status */
244 struct su_status {
245 	u32 receiveBufferDelay;
246 	u32 framingErrorCount;
247 	u32 codeViolationCount;
248 	u32 crcErrorCount;
249 	u32 lineAttenuation;
250 	u8 portStarted;
251 	u8 lossOfSignal;
252 	u8 receiveRemoteAlarm;
253 	u8 alarmIndicationSignal;
254 	u8 spare[40];
255 };
256 
257 /* Finally sling all the above together into the shared memory structure.
258  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
259  * evolving under NT for some time so I guess we're stuck with it.
260  * The structure starts at offset SMC_BASE.
261  * See farsync.h for some field values.
262  */
263 struct fst_shared {
264 	/* DMA descriptor rings */
265 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
266 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
267 
268 	/* Obsolete small buffers */
269 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
270 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
271 
272 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
273 				 * 0xFF => halted
274 				 */
275 
276 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
277 				 * set to 0xEE by host to acknowledge interrupt
278 				 */
279 
280 	u16 smcVersion;		/* Must match SMC_VERSION */
281 
282 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
283 				 * version, RR = revision and BB = build
284 				 */
285 
286 	u16 txa_done;		/* Obsolete completion flags */
287 	u16 rxa_done;
288 	u16 txb_done;
289 	u16 rxb_done;
290 	u16 txc_done;
291 	u16 rxc_done;
292 	u16 txd_done;
293 	u16 rxd_done;
294 
295 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
296 
297 	struct cirbuff interruptEvent;	/* interrupt causes */
298 
299 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
300 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
301 
302 	struct port_cfg portConfig[FST_MAX_PORTS];
303 
304 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
305 
306 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
307 
308 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
309 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
310 
311 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
312 	u16 cardMailbox[4];	/* Not used */
313 
314 	/* Number of times the card thinks the host has
315 	 * missed an interrupt by not acknowledging
316 	 * within 2mS (I guess NT has problems)
317 	 */
318 	u32 interruptRetryCount;
319 
320 	/* Driver private data used as an ID. We'll not
321 	 * use this as I'd rather keep such things
322 	 * in main memory rather than on the PCI bus
323 	 */
324 	u32 portHandle[FST_MAX_PORTS];
325 
326 	/* Count of Tx underflows for stats */
327 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
328 
329 	/* Debounced V.24 control input status */
330 	u32 v24DebouncedSts[FST_MAX_PORTS];
331 
332 	/* Adapter debounce timers. Don't touch */
333 	u32 ctsTimer[FST_MAX_PORTS];
334 	u32 ctsTimerRun[FST_MAX_PORTS];
335 	u32 dcdTimer[FST_MAX_PORTS];
336 	u32 dcdTimerRun[FST_MAX_PORTS];
337 
338 	u32 numberOfPorts;	/* Number of ports detected at startup */
339 
340 	u16 _reserved[64];
341 
342 	u16 cardMode;		/* Bit-mask to enable features:
343 				 * Bit 0: 1 enables LED identify mode
344 				 */
345 
346 	u16 portScheduleOffset;
347 
348 	struct su_config suConfig;	/* TE1 Bits */
349 	struct su_status suStatus;
350 
351 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
352 				 * the structure and marks the end of shared
353 				 * memory. Adapter code initializes it as
354 				 * END_SIG.
355 				 */
356 };
357 
358 /* endOfSmcSignature value */
359 #define END_SIG                 0x12345678
360 
361 /* Mailbox values. (portMailbox) */
362 #define NOP             0	/* No operation */
363 #define ACK             1	/* Positive acknowledgement to PC driver */
364 #define NAK             2	/* Negative acknowledgement to PC driver */
365 #define STARTPORT       3	/* Start an HDLC port */
366 #define STOPPORT        4	/* Stop an HDLC port */
367 #define ABORTTX         5	/* Abort the transmitter for a port */
368 #define SETV24O         6	/* Set V24 outputs */
369 
370 /* PLX Chip Register Offsets */
371 #define CNTRL_9052      0x50	/* Control Register */
372 #define CNTRL_9054      0x6c	/* Control Register */
373 
374 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
375 #define INTCSR_9054     0x68	/* Interrupt control/status register */
376 
377 /* 9054 DMA Registers */
378 /*
379  * Note that we will be using DMA Channel 0 for copying rx data
380  * and Channel 1 for copying tx data
381  */
382 #define DMAMODE0        0x80
383 #define DMAPADR0        0x84
384 #define DMALADR0        0x88
385 #define DMASIZ0         0x8c
386 #define DMADPR0         0x90
387 #define DMAMODE1        0x94
388 #define DMAPADR1        0x98
389 #define DMALADR1        0x9c
390 #define DMASIZ1         0xa0
391 #define DMADPR1         0xa4
392 #define DMACSR0         0xa8
393 #define DMACSR1         0xa9
394 #define DMAARB          0xac
395 #define DMATHR          0xb0
396 #define DMADAC0         0xb4
397 #define DMADAC1         0xb8
398 #define DMAMARBR        0xac
399 
400 #define FST_MIN_DMA_LEN 64
401 #define FST_RX_DMA_INT  0x01
402 #define FST_TX_DMA_INT  0x02
403 #define FST_CARD_INT    0x04
404 
405 /* Larger buffers are positioned in memory at offset BFM_BASE */
406 struct buf_window {
407 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
408 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
409 };
410 
411 /* Calculate offset of a buffer object within the shared memory window */
412 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
413 
414 #pragma pack()
415 
416 /*      Device driver private information
417  *      =================================
418  */
419 /*      Per port (line or channel) information
420  */
421 struct fst_port_info {
422         struct net_device *dev; /* Device struct - must be first */
423 	struct fst_card_info *card;	/* Card we're associated with */
424 	int index;		/* Port index on the card */
425 	int hwif;		/* Line hardware (lineInterface copy) */
426 	int run;		/* Port is running */
427 	int mode;		/* Normal or FarSync raw */
428 	int rxpos;		/* Next Rx buffer to use */
429 	int txpos;		/* Next Tx buffer to use */
430 	int txipos;		/* Next Tx buffer to check for free */
431 	int start;		/* Indication of start/stop to network */
432 	/*
433 	 * A sixteen entry transmit queue
434 	 */
435 	int txqs;		/* index to get next buffer to tx */
436 	int txqe;		/* index to queue next packet */
437 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
438 	int rxqdepth;
439 };
440 
441 /*      Per card information
442  */
443 struct fst_card_info {
444 	char __iomem *mem;	/* Card memory mapped to kernel space */
445 	char __iomem *ctlmem;	/* Control memory for PCI cards */
446 	unsigned int phys_mem;	/* Physical memory window address */
447 	unsigned int phys_ctlmem;	/* Physical control memory address */
448 	unsigned int irq;	/* Interrupt request line number */
449 	unsigned int nports;	/* Number of serial ports */
450 	unsigned int type;	/* Type index of card */
451 	unsigned int state;	/* State of card */
452 	spinlock_t card_lock;	/* Lock for SMP access */
453 	unsigned short pci_conf;	/* PCI card config in I/O space */
454 	/* Per port info */
455 	struct fst_port_info ports[FST_MAX_PORTS];
456 	struct pci_dev *device;	/* Information about the pci device */
457 	int card_no;		/* Inst of the card on the system */
458 	int family;		/* TxP or TxU */
459 	int dmarx_in_progress;
460 	int dmatx_in_progress;
461 	unsigned long int_count;
462 	unsigned long int_time_ave;
463 	void *rx_dma_handle_host;
464 	dma_addr_t rx_dma_handle_card;
465 	void *tx_dma_handle_host;
466 	dma_addr_t tx_dma_handle_card;
467 	struct sk_buff *dma_skb_rx;
468 	struct fst_port_info *dma_port_rx;
469 	struct fst_port_info *dma_port_tx;
470 	int dma_len_rx;
471 	int dma_len_tx;
472 	int dma_txpos;
473 	int dma_rxpos;
474 };
475 
476 /* Convert an HDLC device pointer into a port info pointer and similar */
477 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
478 #define port_to_dev(P)  ((P)->dev)
479 
480 
481 /*
482  *      Shared memory window access macros
483  *
484  *      We have a nice memory based structure above, which could be directly
485  *      mapped on i386 but might not work on other architectures unless we use
486  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487  *      physical offsets so we have to convert. The only saving grace is that
488  *      this should all collapse back to a simple indirection eventually.
489  */
490 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
491 
492 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
493 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
494 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
495 
496 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
497 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
498 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
499 
500 /*
501  *      Debug support
502  */
503 #if FST_DEBUG
504 
505 static int fst_debug_mask = { FST_DEBUG };
506 
507 /* Most common debug activity is to print something if the corresponding bit
508  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
509  * support variable numbers of macro parameters. The inverted if prevents us
510  * eating someone else's else clause.
511  */
512 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
513                                 ; \
514                         else \
515                                 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
516 
517 #else
518 #define dbg(X...)		/* NOP */
519 #endif
520 
521 /*      Printing short cuts
522  */
523 #define printk_err(fmt,A...)    printk ( KERN_ERR     FST_NAME ": " fmt, ## A )
524 #define printk_warn(fmt,A...)   printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
525 #define printk_info(fmt,A...)   printk ( KERN_INFO    FST_NAME ": " fmt, ## A )
526 
527 /*
528  *      PCI ID lookup table
529  */
530 static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
531 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
532 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
533 
534 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
535 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
536 
537 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
538 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
539 
540 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
541 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
542 
543 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
544 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
545 
546 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
547 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
548 
549 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
550 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 	{0,}			/* End */
552 };
553 
554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
555 
556 /*
557  *      Device Driver Work Queues
558  *
559  *      So that we don't spend too much time processing events in the
560  *      Interrupt Service routine, we will declare a work queue per Card
561  *      and make the ISR schedule a task in the queue for later execution.
562  *      In the 2.4 Kernel we used to use the immediate queue for BH's
563  *      Now that they are gone, tasklets seem to be much better than work
564  *      queues.
565  */
566 
567 static void do_bottom_half_tx(struct fst_card_info *card);
568 static void do_bottom_half_rx(struct fst_card_info *card);
569 static void fst_process_tx_work_q(unsigned long work_q);
570 static void fst_process_int_work_q(unsigned long work_q);
571 
572 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
573 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
574 
575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
576 static spinlock_t fst_work_q_lock;
577 static u64 fst_work_txq;
578 static u64 fst_work_intq;
579 
580 static void
581 fst_q_work_item(u64 * queue, int card_index)
582 {
583 	unsigned long flags;
584 	u64 mask;
585 
586 	/*
587 	 * Grab the queue exclusively
588 	 */
589 	spin_lock_irqsave(&fst_work_q_lock, flags);
590 
591 	/*
592 	 * Making an entry in the queue is simply a matter of setting
593 	 * a bit for the card indicating that there is work to do in the
594 	 * bottom half for the card.  Note the limitation of 64 cards.
595 	 * That ought to be enough
596 	 */
597 	mask = 1 << card_index;
598 	*queue |= mask;
599 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
600 }
601 
602 static void
603 fst_process_tx_work_q(unsigned long /*void **/work_q)
604 {
605 	unsigned long flags;
606 	u64 work_txq;
607 	int i;
608 
609 	/*
610 	 * Grab the queue exclusively
611 	 */
612 	dbg(DBG_TX, "fst_process_tx_work_q\n");
613 	spin_lock_irqsave(&fst_work_q_lock, flags);
614 	work_txq = fst_work_txq;
615 	fst_work_txq = 0;
616 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
617 
618 	/*
619 	 * Call the bottom half for each card with work waiting
620 	 */
621 	for (i = 0; i < FST_MAX_CARDS; i++) {
622 		if (work_txq & 0x01) {
623 			if (fst_card_array[i] != NULL) {
624 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
625 				do_bottom_half_tx(fst_card_array[i]);
626 			}
627 		}
628 		work_txq = work_txq >> 1;
629 	}
630 }
631 
632 static void
633 fst_process_int_work_q(unsigned long /*void **/work_q)
634 {
635 	unsigned long flags;
636 	u64 work_intq;
637 	int i;
638 
639 	/*
640 	 * Grab the queue exclusively
641 	 */
642 	dbg(DBG_INTR, "fst_process_int_work_q\n");
643 	spin_lock_irqsave(&fst_work_q_lock, flags);
644 	work_intq = fst_work_intq;
645 	fst_work_intq = 0;
646 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
647 
648 	/*
649 	 * Call the bottom half for each card with work waiting
650 	 */
651 	for (i = 0; i < FST_MAX_CARDS; i++) {
652 		if (work_intq & 0x01) {
653 			if (fst_card_array[i] != NULL) {
654 				dbg(DBG_INTR,
655 				    "Calling rx & tx bh for card %d\n", i);
656 				do_bottom_half_rx(fst_card_array[i]);
657 				do_bottom_half_tx(fst_card_array[i]);
658 			}
659 		}
660 		work_intq = work_intq >> 1;
661 	}
662 }
663 
664 /*      Card control functions
665  *      ======================
666  */
667 /*      Place the processor in reset state
668  *
669  * Used to be a simple write to card control space but a glitch in the latest
670  * AMD Am186CH processor means that we now have to do it by asserting and de-
671  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
672  * at offset 9052_CNTRL.  Note the updates for the TXU.
673  */
674 static inline void
675 fst_cpureset(struct fst_card_info *card)
676 {
677 	unsigned char interrupt_line_register;
678 	unsigned long j = jiffies + 1;
679 	unsigned int regval;
680 
681 	if (card->family == FST_FAMILY_TXU) {
682 		if (pci_read_config_byte
683 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
684 			dbg(DBG_ASS,
685 			    "Error in reading interrupt line register\n");
686 		}
687 		/*
688 		 * Assert PLX software reset and Am186 hardware reset
689 		 * and then deassert the PLX software reset but 186 still in reset
690 		 */
691 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
692 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
693 		/*
694 		 * We are delaying here to allow the 9054 to reset itself
695 		 */
696 		j = jiffies + 1;
697 		while (jiffies < j)
698 			/* Do nothing */ ;
699 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
700 		/*
701 		 * We are delaying here to allow the 9054 to reload its eeprom
702 		 */
703 		j = jiffies + 1;
704 		while (jiffies < j)
705 			/* Do nothing */ ;
706 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
707 
708 		if (pci_write_config_byte
709 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
710 			dbg(DBG_ASS,
711 			    "Error in writing interrupt line register\n");
712 		}
713 
714 	} else {
715 		regval = inl(card->pci_conf + CNTRL_9052);
716 
717 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
718 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
719 	}
720 }
721 
722 /*      Release the processor from reset
723  */
724 static inline void
725 fst_cpurelease(struct fst_card_info *card)
726 {
727 	if (card->family == FST_FAMILY_TXU) {
728 		/*
729 		 * Force posted writes to complete
730 		 */
731 		(void) readb(card->mem);
732 
733 		/*
734 		 * Release LRESET DO = 1
735 		 * Then release Local Hold, DO = 1
736 		 */
737 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
738 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
739 	} else {
740 		(void) readb(card->ctlmem);
741 	}
742 }
743 
744 /*      Clear the cards interrupt flag
745  */
746 static inline void
747 fst_clear_intr(struct fst_card_info *card)
748 {
749 	if (card->family == FST_FAMILY_TXU) {
750 		(void) readb(card->ctlmem);
751 	} else {
752 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
753 		 */
754 		outw(0x0543, card->pci_conf + INTCSR_9052);
755 	}
756 }
757 
758 /*      Enable card interrupts
759  */
760 static inline void
761 fst_enable_intr(struct fst_card_info *card)
762 {
763 	if (card->family == FST_FAMILY_TXU) {
764 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
765 	} else {
766 		outw(0x0543, card->pci_conf + INTCSR_9052);
767 	}
768 }
769 
770 /*      Disable card interrupts
771  */
772 static inline void
773 fst_disable_intr(struct fst_card_info *card)
774 {
775 	if (card->family == FST_FAMILY_TXU) {
776 		outl(0x00000000, card->pci_conf + INTCSR_9054);
777 	} else {
778 		outw(0x0000, card->pci_conf + INTCSR_9052);
779 	}
780 }
781 
782 /*      Process the result of trying to pass a received frame up the stack
783  */
784 static void
785 fst_process_rx_status(int rx_status, char *name)
786 {
787 	switch (rx_status) {
788 	case NET_RX_SUCCESS:
789 		{
790 			/*
791 			 * Nothing to do here
792 			 */
793 			break;
794 		}
795 
796 	case NET_RX_CN_LOW:
797 		{
798 			dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
799 			break;
800 		}
801 
802 	case NET_RX_CN_MOD:
803 		{
804 			dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
805 			break;
806 		}
807 
808 	case NET_RX_CN_HIGH:
809 		{
810 			dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
811 			break;
812 		}
813 
814 	case NET_RX_DROP:
815 		{
816 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
817 			break;
818 		}
819 	}
820 }
821 
822 /*      Initilaise DMA for PLX 9054
823  */
824 static inline void
825 fst_init_dma(struct fst_card_info *card)
826 {
827 	/*
828 	 * This is only required for the PLX 9054
829 	 */
830 	if (card->family == FST_FAMILY_TXU) {
831 	        pci_set_master(card->device);
832 		outl(0x00020441, card->pci_conf + DMAMODE0);
833 		outl(0x00020441, card->pci_conf + DMAMODE1);
834 		outl(0x0, card->pci_conf + DMATHR);
835 	}
836 }
837 
838 /*      Tx dma complete interrupt
839  */
840 static void
841 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
842 		    int len, int txpos)
843 {
844 	struct net_device *dev = port_to_dev(port);
845 
846 	/*
847 	 * Everything is now set, just tell the card to go
848 	 */
849 	dbg(DBG_TX, "fst_tx_dma_complete\n");
850 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
851 		DMA_OWN | TX_STP | TX_ENP);
852 	dev->stats.tx_packets++;
853 	dev->stats.tx_bytes += len;
854 	dev->trans_start = jiffies;
855 }
856 
857 /*
858  * Mark it for our own raw sockets interface
859  */
860 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
861 {
862 	skb->dev = dev;
863 	skb_reset_mac_header(skb);
864 	skb->pkt_type = PACKET_HOST;
865 	return htons(ETH_P_CUST);
866 }
867 
868 /*      Rx dma complete interrupt
869  */
870 static void
871 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
872 		    int len, struct sk_buff *skb, int rxp)
873 {
874 	struct net_device *dev = port_to_dev(port);
875 	int pi;
876 	int rx_status;
877 
878 	dbg(DBG_TX, "fst_rx_dma_complete\n");
879 	pi = port->index;
880 	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
881 
882 	/* Reset buffer descriptor */
883 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
884 
885 	/* Update stats */
886 	dev->stats.rx_packets++;
887 	dev->stats.rx_bytes += len;
888 
889 	/* Push upstream */
890 	dbg(DBG_RX, "Pushing the frame up the stack\n");
891 	if (port->mode == FST_RAW)
892 		skb->protocol = farsync_type_trans(skb, dev);
893 	else
894 		skb->protocol = hdlc_type_trans(skb, dev);
895 	rx_status = netif_rx(skb);
896 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
897 	if (rx_status == NET_RX_DROP)
898 		dev->stats.rx_dropped++;
899 }
900 
901 /*
902  *      Receive a frame through the DMA
903  */
904 static inline void
905 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
906 	   unsigned char *mem, int len)
907 {
908 	/*
909 	 * This routine will setup the DMA and start it
910 	 */
911 
912 	dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
913 	if (card->dmarx_in_progress) {
914 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
915 	}
916 
917 	outl((unsigned long) skb, card->pci_conf + DMAPADR0);	/* Copy to here */
918 	outl((unsigned long) mem, card->pci_conf + DMALADR0);	/* from here */
919 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
920 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
921 
922 	/*
923 	 * We use the dmarx_in_progress flag to flag the channel as busy
924 	 */
925 	card->dmarx_in_progress = 1;
926 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
927 }
928 
929 /*
930  *      Send a frame through the DMA
931  */
932 static inline void
933 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
934 	   unsigned char *mem, int len)
935 {
936 	/*
937 	 * This routine will setup the DMA and start it.
938 	 */
939 
940 	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
941 	if (card->dmatx_in_progress) {
942 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
943 	}
944 
945 	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
946 	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
947 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
948 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
949 
950 	/*
951 	 * We use the dmatx_in_progress to flag the channel as busy
952 	 */
953 	card->dmatx_in_progress = 1;
954 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
955 }
956 
957 /*      Issue a Mailbox command for a port.
958  *      Note we issue them on a fire and forget basis, not expecting to see an
959  *      error and not waiting for completion.
960  */
961 static void
962 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
963 {
964 	struct fst_card_info *card;
965 	unsigned short mbval;
966 	unsigned long flags;
967 	int safety;
968 
969 	card = port->card;
970 	spin_lock_irqsave(&card->card_lock, flags);
971 	mbval = FST_RDW(card, portMailbox[port->index][0]);
972 
973 	safety = 0;
974 	/* Wait for any previous command to complete */
975 	while (mbval > NAK) {
976 		spin_unlock_irqrestore(&card->card_lock, flags);
977 		schedule_timeout_uninterruptible(1);
978 		spin_lock_irqsave(&card->card_lock, flags);
979 
980 		if (++safety > 2000) {
981 			printk_err("Mailbox safety timeout\n");
982 			break;
983 		}
984 
985 		mbval = FST_RDW(card, portMailbox[port->index][0]);
986 	}
987 	if (safety > 0) {
988 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
989 	}
990 	if (mbval == NAK) {
991 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
992 	}
993 
994 	FST_WRW(card, portMailbox[port->index][0], cmd);
995 
996 	if (cmd == ABORTTX || cmd == STARTPORT) {
997 		port->txpos = 0;
998 		port->txipos = 0;
999 		port->start = 0;
1000 	}
1001 
1002 	spin_unlock_irqrestore(&card->card_lock, flags);
1003 }
1004 
1005 /*      Port output signals control
1006  */
1007 static inline void
1008 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1009 {
1010 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1011 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1012 
1013 	if (port->run)
1014 		fst_issue_cmd(port, SETV24O);
1015 }
1016 
1017 static inline void
1018 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1019 {
1020 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1021 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1022 
1023 	if (port->run)
1024 		fst_issue_cmd(port, SETV24O);
1025 }
1026 
1027 /*
1028  *      Setup port Rx buffers
1029  */
1030 static void
1031 fst_rx_config(struct fst_port_info *port)
1032 {
1033 	int i;
1034 	int pi;
1035 	unsigned int offset;
1036 	unsigned long flags;
1037 	struct fst_card_info *card;
1038 
1039 	pi = port->index;
1040 	card = port->card;
1041 	spin_lock_irqsave(&card->card_lock, flags);
1042 	for (i = 0; i < NUM_RX_BUFFER; i++) {
1043 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1044 
1045 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1046 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1047 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1048 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1049 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1050 	}
1051 	port->rxpos = 0;
1052 	spin_unlock_irqrestore(&card->card_lock, flags);
1053 }
1054 
1055 /*
1056  *      Setup port Tx buffers
1057  */
1058 static void
1059 fst_tx_config(struct fst_port_info *port)
1060 {
1061 	int i;
1062 	int pi;
1063 	unsigned int offset;
1064 	unsigned long flags;
1065 	struct fst_card_info *card;
1066 
1067 	pi = port->index;
1068 	card = port->card;
1069 	spin_lock_irqsave(&card->card_lock, flags);
1070 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1071 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1072 
1073 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1074 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1075 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1076 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1077 	}
1078 	port->txpos = 0;
1079 	port->txipos = 0;
1080 	port->start = 0;
1081 	spin_unlock_irqrestore(&card->card_lock, flags);
1082 }
1083 
1084 /*      TE1 Alarm change interrupt event
1085  */
1086 static void
1087 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1088 {
1089 	u8 los;
1090 	u8 rra;
1091 	u8 ais;
1092 
1093 	los = FST_RDB(card, suStatus.lossOfSignal);
1094 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1095 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1096 
1097 	if (los) {
1098 		/*
1099 		 * Lost the link
1100 		 */
1101 		if (netif_carrier_ok(port_to_dev(port))) {
1102 			dbg(DBG_INTR, "Net carrier off\n");
1103 			netif_carrier_off(port_to_dev(port));
1104 		}
1105 	} else {
1106 		/*
1107 		 * Link available
1108 		 */
1109 		if (!netif_carrier_ok(port_to_dev(port))) {
1110 			dbg(DBG_INTR, "Net carrier on\n");
1111 			netif_carrier_on(port_to_dev(port));
1112 		}
1113 	}
1114 
1115 	if (los)
1116 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1117 	else
1118 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1119 	if (rra)
1120 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1121 	else
1122 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1123 
1124 	if (ais)
1125 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1126 	else
1127 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1128 }
1129 
1130 /*      Control signal change interrupt event
1131  */
1132 static void
1133 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1134 {
1135 	int signals;
1136 
1137 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1138 
1139 	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1140 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1141 		if (!netif_carrier_ok(port_to_dev(port))) {
1142 			dbg(DBG_INTR, "DCD active\n");
1143 			netif_carrier_on(port_to_dev(port));
1144 		}
1145 	} else {
1146 		if (netif_carrier_ok(port_to_dev(port))) {
1147 			dbg(DBG_INTR, "DCD lost\n");
1148 			netif_carrier_off(port_to_dev(port));
1149 		}
1150 	}
1151 }
1152 
1153 /*      Log Rx Errors
1154  */
1155 static void
1156 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1157 		 unsigned char dmabits, int rxp, unsigned short len)
1158 {
1159 	struct net_device *dev = port_to_dev(port);
1160 
1161 	/*
1162 	 * Increment the appropriate error counter
1163 	 */
1164 	dev->stats.rx_errors++;
1165 	if (dmabits & RX_OFLO) {
1166 		dev->stats.rx_fifo_errors++;
1167 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1168 		    card->card_no, port->index, rxp);
1169 	}
1170 	if (dmabits & RX_CRC) {
1171 		dev->stats.rx_crc_errors++;
1172 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1173 		    card->card_no, port->index);
1174 	}
1175 	if (dmabits & RX_FRAM) {
1176 		dev->stats.rx_frame_errors++;
1177 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1178 		    card->card_no, port->index);
1179 	}
1180 	if (dmabits == (RX_STP | RX_ENP)) {
1181 		dev->stats.rx_length_errors++;
1182 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1183 		    len, card->card_no, port->index);
1184 	}
1185 }
1186 
1187 /*      Rx Error Recovery
1188  */
1189 static void
1190 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1191 		     unsigned char dmabits, int rxp, unsigned short len)
1192 {
1193 	int i;
1194 	int pi;
1195 
1196 	pi = port->index;
1197 	/*
1198 	 * Discard buffer descriptors until we see the start of the
1199 	 * next frame.  Note that for long frames this could be in
1200 	 * a subsequent interrupt.
1201 	 */
1202 	i = 0;
1203 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1204 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1205 		rxp = (rxp+1) % NUM_RX_BUFFER;
1206 		if (++i > NUM_RX_BUFFER) {
1207 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1208 			    " than we have\n");
1209 			break;
1210 		}
1211 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1212 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1213 	}
1214 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1215 
1216 	/* Discard the terminal buffer */
1217 	if (!(dmabits & DMA_OWN)) {
1218 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1219 		rxp = (rxp+1) % NUM_RX_BUFFER;
1220 	}
1221 	port->rxpos = rxp;
1222 	return;
1223 
1224 }
1225 
1226 /*      Rx complete interrupt
1227  */
1228 static void
1229 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1230 {
1231 	unsigned char dmabits;
1232 	int pi;
1233 	int rxp;
1234 	int rx_status;
1235 	unsigned short len;
1236 	struct sk_buff *skb;
1237 	struct net_device *dev = port_to_dev(port);
1238 
1239 	/* Check we have a buffer to process */
1240 	pi = port->index;
1241 	rxp = port->rxpos;
1242 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1243 	if (dmabits & DMA_OWN) {
1244 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1245 		    pi, rxp);
1246 		return;
1247 	}
1248 	if (card->dmarx_in_progress) {
1249 		return;
1250 	}
1251 
1252 	/* Get buffer length */
1253 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1254 	/* Discard the CRC */
1255 	len -= 2;
1256 	if (len == 0) {
1257 		/*
1258 		 * This seems to happen on the TE1 interface sometimes
1259 		 * so throw the frame away and log the event.
1260 		 */
1261 		printk_err("Frame received with 0 length. Card %d Port %d\n",
1262 			   card->card_no, port->index);
1263 		/* Return descriptor to card */
1264 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1265 
1266 		rxp = (rxp+1) % NUM_RX_BUFFER;
1267 		port->rxpos = rxp;
1268 		return;
1269 	}
1270 
1271 	/* Check buffer length and for other errors. We insist on one packet
1272 	 * in one buffer. This simplifies things greatly and since we've
1273 	 * allocated 8K it shouldn't be a real world limitation
1274 	 */
1275 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1276 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1277 		fst_log_rx_error(card, port, dmabits, rxp, len);
1278 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1279 		return;
1280 	}
1281 
1282 	/* Allocate SKB */
1283 	if ((skb = dev_alloc_skb(len)) == NULL) {
1284 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1285 
1286 		dev->stats.rx_dropped++;
1287 
1288 		/* Return descriptor to card */
1289 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1290 
1291 		rxp = (rxp+1) % NUM_RX_BUFFER;
1292 		port->rxpos = rxp;
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * We know the length we need to receive, len.
1298 	 * It's not worth using the DMA for reads of less than
1299 	 * FST_MIN_DMA_LEN
1300 	 */
1301 
1302 	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1303 		memcpy_fromio(skb_put(skb, len),
1304 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1305 			      len);
1306 
1307 		/* Reset buffer descriptor */
1308 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1309 
1310 		/* Update stats */
1311 		dev->stats.rx_packets++;
1312 		dev->stats.rx_bytes += len;
1313 
1314 		/* Push upstream */
1315 		dbg(DBG_RX, "Pushing frame up the stack\n");
1316 		if (port->mode == FST_RAW)
1317 			skb->protocol = farsync_type_trans(skb, dev);
1318 		else
1319 			skb->protocol = hdlc_type_trans(skb, dev);
1320 		rx_status = netif_rx(skb);
1321 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1322 		if (rx_status == NET_RX_DROP)
1323 			dev->stats.rx_dropped++;
1324 	} else {
1325 		card->dma_skb_rx = skb;
1326 		card->dma_port_rx = port;
1327 		card->dma_len_rx = len;
1328 		card->dma_rxpos = rxp;
1329 		fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1330 			   (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1331 	}
1332 	if (rxp != port->rxpos) {
1333 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1334 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1335 	}
1336 	rxp = (rxp+1) % NUM_RX_BUFFER;
1337 	port->rxpos = rxp;
1338 }
1339 
1340 /*
1341  *      The bottom halfs to the ISR
1342  *
1343  */
1344 
1345 static void
1346 do_bottom_half_tx(struct fst_card_info *card)
1347 {
1348 	struct fst_port_info *port;
1349 	int pi;
1350 	int txq_length;
1351 	struct sk_buff *skb;
1352 	unsigned long flags;
1353 	struct net_device *dev;
1354 
1355 	/*
1356 	 *  Find a free buffer for the transmit
1357 	 *  Step through each port on this card
1358 	 */
1359 
1360 	dbg(DBG_TX, "do_bottom_half_tx\n");
1361 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1362 		if (!port->run)
1363 			continue;
1364 
1365 		dev = port_to_dev(port);
1366 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1367 			 DMA_OWN)
1368 		       && !(card->dmatx_in_progress)) {
1369 			/*
1370 			 * There doesn't seem to be a txdone event per-se
1371 			 * We seem to have to deduce it, by checking the DMA_OWN
1372 			 * bit on the next buffer we think we can use
1373 			 */
1374 			spin_lock_irqsave(&card->card_lock, flags);
1375 			if ((txq_length = port->txqe - port->txqs) < 0) {
1376 				/*
1377 				 * This is the case where one has wrapped and the
1378 				 * maths gives us a negative number
1379 				 */
1380 				txq_length = txq_length + FST_TXQ_DEPTH;
1381 			}
1382 			spin_unlock_irqrestore(&card->card_lock, flags);
1383 			if (txq_length > 0) {
1384 				/*
1385 				 * There is something to send
1386 				 */
1387 				spin_lock_irqsave(&card->card_lock, flags);
1388 				skb = port->txq[port->txqs];
1389 				port->txqs++;
1390 				if (port->txqs == FST_TXQ_DEPTH) {
1391 					port->txqs = 0;
1392 				}
1393 				spin_unlock_irqrestore(&card->card_lock, flags);
1394 				/*
1395 				 * copy the data and set the required indicators on the
1396 				 * card.
1397 				 */
1398 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1399 					cnv_bcnt(skb->len));
1400 				if ((skb->len < FST_MIN_DMA_LEN)
1401 				    || (card->family == FST_FAMILY_TXP)) {
1402 					/* Enqueue the packet with normal io */
1403 					memcpy_toio(card->mem +
1404 						    BUF_OFFSET(txBuffer[pi]
1405 							       [port->
1406 								txpos][0]),
1407 						    skb->data, skb->len);
1408 					FST_WRB(card,
1409 						txDescrRing[pi][port->txpos].
1410 						bits,
1411 						DMA_OWN | TX_STP | TX_ENP);
1412 					dev->stats.tx_packets++;
1413 					dev->stats.tx_bytes += skb->len;
1414 					dev->trans_start = jiffies;
1415 				} else {
1416 					/* Or do it through dma */
1417 					memcpy(card->tx_dma_handle_host,
1418 					       skb->data, skb->len);
1419 					card->dma_port_tx = port;
1420 					card->dma_len_tx = skb->len;
1421 					card->dma_txpos = port->txpos;
1422 					fst_tx_dma(card,
1423 						   (char *) card->
1424 						   tx_dma_handle_card,
1425 						   (char *)
1426 						   BUF_OFFSET(txBuffer[pi]
1427 							      [port->txpos][0]),
1428 						   skb->len);
1429 				}
1430 				if (++port->txpos >= NUM_TX_BUFFER)
1431 					port->txpos = 0;
1432 				/*
1433 				 * If we have flow control on, can we now release it?
1434 				 */
1435 				if (port->start) {
1436 					if (txq_length < fst_txq_low) {
1437 						netif_wake_queue(port_to_dev
1438 								 (port));
1439 						port->start = 0;
1440 					}
1441 				}
1442 				dev_kfree_skb(skb);
1443 			} else {
1444 				/*
1445 				 * Nothing to send so break out of the while loop
1446 				 */
1447 				break;
1448 			}
1449 		}
1450 	}
1451 }
1452 
1453 static void
1454 do_bottom_half_rx(struct fst_card_info *card)
1455 {
1456 	struct fst_port_info *port;
1457 	int pi;
1458 	int rx_count = 0;
1459 
1460 	/* Check for rx completions on all ports on this card */
1461 	dbg(DBG_RX, "do_bottom_half_rx\n");
1462 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1463 		if (!port->run)
1464 			continue;
1465 
1466 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1467 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1468 			if (rx_count > fst_max_reads) {
1469 				/*
1470 				 * Don't spend forever in receive processing
1471 				 * Schedule another event
1472 				 */
1473 				fst_q_work_item(&fst_work_intq, card->card_no);
1474 				tasklet_schedule(&fst_int_task);
1475 				break;	/* Leave the loop */
1476 			}
1477 			fst_intr_rx(card, port);
1478 			rx_count++;
1479 		}
1480 	}
1481 }
1482 
1483 /*
1484  *      The interrupt service routine
1485  *      Dev_id is our fst_card_info pointer
1486  */
1487 static irqreturn_t
1488 fst_intr(int dummy, void *dev_id)
1489 {
1490 	struct fst_card_info *card = dev_id;
1491 	struct fst_port_info *port;
1492 	int rdidx;		/* Event buffer indices */
1493 	int wridx;
1494 	int event;		/* Actual event for processing */
1495 	unsigned int dma_intcsr = 0;
1496 	unsigned int do_card_interrupt;
1497 	unsigned int int_retry_count;
1498 
1499 	/*
1500 	 * Check to see if the interrupt was for this card
1501 	 * return if not
1502 	 * Note that the call to clear the interrupt is important
1503 	 */
1504 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1505 	if (card->state != FST_RUNNING) {
1506 		printk_err
1507 		    ("Interrupt received for card %d in a non running state (%d)\n",
1508 		     card->card_no, card->state);
1509 
1510 		/*
1511 		 * It is possible to really be running, i.e. we have re-loaded
1512 		 * a running card
1513 		 * Clear and reprime the interrupt source
1514 		 */
1515 		fst_clear_intr(card);
1516 		return IRQ_HANDLED;
1517 	}
1518 
1519 	/* Clear and reprime the interrupt source */
1520 	fst_clear_intr(card);
1521 
1522 	/*
1523 	 * Is the interrupt for this card (handshake == 1)
1524 	 */
1525 	do_card_interrupt = 0;
1526 	if (FST_RDB(card, interruptHandshake) == 1) {
1527 		do_card_interrupt += FST_CARD_INT;
1528 		/* Set the software acknowledge */
1529 		FST_WRB(card, interruptHandshake, 0xEE);
1530 	}
1531 	if (card->family == FST_FAMILY_TXU) {
1532 		/*
1533 		 * Is it a DMA Interrupt
1534 		 */
1535 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1536 		if (dma_intcsr & 0x00200000) {
1537 			/*
1538 			 * DMA Channel 0 (Rx transfer complete)
1539 			 */
1540 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1541 			outb(0x8, card->pci_conf + DMACSR0);
1542 			fst_rx_dma_complete(card, card->dma_port_rx,
1543 					    card->dma_len_rx, card->dma_skb_rx,
1544 					    card->dma_rxpos);
1545 			card->dmarx_in_progress = 0;
1546 			do_card_interrupt += FST_RX_DMA_INT;
1547 		}
1548 		if (dma_intcsr & 0x00400000) {
1549 			/*
1550 			 * DMA Channel 1 (Tx transfer complete)
1551 			 */
1552 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1553 			outb(0x8, card->pci_conf + DMACSR1);
1554 			fst_tx_dma_complete(card, card->dma_port_tx,
1555 					    card->dma_len_tx, card->dma_txpos);
1556 			card->dmatx_in_progress = 0;
1557 			do_card_interrupt += FST_TX_DMA_INT;
1558 		}
1559 	}
1560 
1561 	/*
1562 	 * Have we been missing Interrupts
1563 	 */
1564 	int_retry_count = FST_RDL(card, interruptRetryCount);
1565 	if (int_retry_count) {
1566 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1567 		    card->card_no, int_retry_count);
1568 		FST_WRL(card, interruptRetryCount, 0);
1569 	}
1570 
1571 	if (!do_card_interrupt) {
1572 		return IRQ_HANDLED;
1573 	}
1574 
1575 	/* Scehdule the bottom half of the ISR */
1576 	fst_q_work_item(&fst_work_intq, card->card_no);
1577 	tasklet_schedule(&fst_int_task);
1578 
1579 	/* Drain the event queue */
1580 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1581 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1582 	while (rdidx != wridx) {
1583 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1584 		port = &card->ports[event & 0x03];
1585 
1586 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1587 
1588 		switch (event) {
1589 		case TE1_ALMA:
1590 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1591 			if (port->run)
1592 				fst_intr_te1_alarm(card, port);
1593 			break;
1594 
1595 		case CTLA_CHG:
1596 		case CTLB_CHG:
1597 		case CTLC_CHG:
1598 		case CTLD_CHG:
1599 			if (port->run)
1600 				fst_intr_ctlchg(card, port);
1601 			break;
1602 
1603 		case ABTA_SENT:
1604 		case ABTB_SENT:
1605 		case ABTC_SENT:
1606 		case ABTD_SENT:
1607 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1608 			break;
1609 
1610 		case TXA_UNDF:
1611 		case TXB_UNDF:
1612 		case TXC_UNDF:
1613 		case TXD_UNDF:
1614 			/* Difficult to see how we'd get this given that we
1615 			 * always load up the entire packet for DMA.
1616 			 */
1617 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1618 			port_to_dev(port)->stats.tx_errors++;
1619 			port_to_dev(port)->stats.tx_fifo_errors++;
1620 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1621 			    card->card_no, port->index);
1622 			break;
1623 
1624 		case INIT_CPLT:
1625 			dbg(DBG_INIT, "Card init OK intr\n");
1626 			break;
1627 
1628 		case INIT_FAIL:
1629 			dbg(DBG_INIT, "Card init FAILED intr\n");
1630 			card->state = FST_IFAILED;
1631 			break;
1632 
1633 		default:
1634 			printk_err("intr: unknown card event %d. ignored\n",
1635 				   event);
1636 			break;
1637 		}
1638 
1639 		/* Bump and wrap the index */
1640 		if (++rdidx >= MAX_CIRBUFF)
1641 			rdidx = 0;
1642 	}
1643 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1644         return IRQ_HANDLED;
1645 }
1646 
1647 /*      Check that the shared memory configuration is one that we can handle
1648  *      and that some basic parameters are correct
1649  */
1650 static void
1651 check_started_ok(struct fst_card_info *card)
1652 {
1653 	int i;
1654 
1655 	/* Check structure version and end marker */
1656 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1657 		printk_err("Bad shared memory version %d expected %d\n",
1658 			   FST_RDW(card, smcVersion), SMC_VERSION);
1659 		card->state = FST_BADVERSION;
1660 		return;
1661 	}
1662 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1663 		printk_err("Missing shared memory signature\n");
1664 		card->state = FST_BADVERSION;
1665 		return;
1666 	}
1667 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1668 	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1669 		card->state = FST_RUNNING;
1670 	} else if (i == 0xFF) {
1671 		printk_err("Firmware initialisation failed. Card halted\n");
1672 		card->state = FST_HALTED;
1673 		return;
1674 	} else if (i != 0x00) {
1675 		printk_err("Unknown firmware status 0x%x\n", i);
1676 		card->state = FST_HALTED;
1677 		return;
1678 	}
1679 
1680 	/* Finally check the number of ports reported by firmware against the
1681 	 * number we assumed at card detection. Should never happen with
1682 	 * existing firmware etc so we just report it for the moment.
1683 	 */
1684 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1685 		printk_warn("Port count mismatch on card %d."
1686 			    " Firmware thinks %d we say %d\n", card->card_no,
1687 			    FST_RDL(card, numberOfPorts), card->nports);
1688 	}
1689 }
1690 
1691 static int
1692 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1693 		   struct fstioc_info *info)
1694 {
1695 	int err;
1696 	unsigned char my_framing;
1697 
1698 	/* Set things according to the user set valid flags
1699 	 * Several of the old options have been invalidated/replaced by the
1700 	 * generic hdlc package.
1701 	 */
1702 	err = 0;
1703 	if (info->valid & FSTVAL_PROTO) {
1704 		if (info->proto == FST_RAW)
1705 			port->mode = FST_RAW;
1706 		else
1707 			port->mode = FST_GEN_HDLC;
1708 	}
1709 
1710 	if (info->valid & FSTVAL_CABLE)
1711 		err = -EINVAL;
1712 
1713 	if (info->valid & FSTVAL_SPEED)
1714 		err = -EINVAL;
1715 
1716 	if (info->valid & FSTVAL_PHASE)
1717 		FST_WRB(card, portConfig[port->index].invertClock,
1718 			info->invertClock);
1719 	if (info->valid & FSTVAL_MODE)
1720 		FST_WRW(card, cardMode, info->cardMode);
1721 	if (info->valid & FSTVAL_TE1) {
1722 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1723 		FST_WRB(card, suConfig.clocking, info->clockSource);
1724 		my_framing = FRAMING_E1;
1725 		if (info->framing == E1)
1726 			my_framing = FRAMING_E1;
1727 		if (info->framing == T1)
1728 			my_framing = FRAMING_T1;
1729 		if (info->framing == J1)
1730 			my_framing = FRAMING_J1;
1731 		FST_WRB(card, suConfig.framing, my_framing);
1732 		FST_WRB(card, suConfig.structure, info->structure);
1733 		FST_WRB(card, suConfig.interface, info->interface);
1734 		FST_WRB(card, suConfig.coding, info->coding);
1735 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1736 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1737 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1738 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1739 		FST_WRB(card, suConfig.range, info->range);
1740 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1741 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1742 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1743 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1744 		if (info->idleCode)
1745 			FST_WRB(card, suConfig.enableIdleCode, 1);
1746 		else
1747 			FST_WRB(card, suConfig.enableIdleCode, 0);
1748 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1749 #if FST_DEBUG
1750 		if (info->valid & FSTVAL_TE1) {
1751 			printk("Setting TE1 data\n");
1752 			printk("Line Speed = %d\n", info->lineSpeed);
1753 			printk("Start slot = %d\n", info->startingSlot);
1754 			printk("Clock source = %d\n", info->clockSource);
1755 			printk("Framing = %d\n", my_framing);
1756 			printk("Structure = %d\n", info->structure);
1757 			printk("interface = %d\n", info->interface);
1758 			printk("Coding = %d\n", info->coding);
1759 			printk("Line build out = %d\n", info->lineBuildOut);
1760 			printk("Equaliser = %d\n", info->equalizer);
1761 			printk("Transparent mode = %d\n",
1762 			       info->transparentMode);
1763 			printk("Loop mode = %d\n", info->loopMode);
1764 			printk("Range = %d\n", info->range);
1765 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1766 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1767 			printk("LOS Threshold = %d\n", info->losThreshold);
1768 			printk("Idle Code = %d\n", info->idleCode);
1769 		}
1770 #endif
1771 	}
1772 #if FST_DEBUG
1773 	if (info->valid & FSTVAL_DEBUG) {
1774 		fst_debug_mask = info->debug;
1775 	}
1776 #endif
1777 
1778 	return err;
1779 }
1780 
1781 static void
1782 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1783 		 struct fstioc_info *info)
1784 {
1785 	int i;
1786 
1787 	memset(info, 0, sizeof (struct fstioc_info));
1788 
1789 	i = port->index;
1790 	info->kernelVersion = LINUX_VERSION_CODE;
1791 	info->nports = card->nports;
1792 	info->type = card->type;
1793 	info->state = card->state;
1794 	info->proto = FST_GEN_HDLC;
1795 	info->index = i;
1796 #if FST_DEBUG
1797 	info->debug = fst_debug_mask;
1798 #endif
1799 
1800 	/* Only mark information as valid if card is running.
1801 	 * Copy the data anyway in case it is useful for diagnostics
1802 	 */
1803 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1804 #if FST_DEBUG
1805 	    | FSTVAL_DEBUG
1806 #endif
1807 	    ;
1808 
1809 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1810 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1811 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1812 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1813 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1814 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1815 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1816 	info->cableStatus = FST_RDW(card, cableStatus);
1817 	info->cardMode = FST_RDW(card, cardMode);
1818 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1819 
1820 	/*
1821 	 * The T2U can report cable presence for both A or B
1822 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1823 	 * do the mapping.
1824 	 */
1825 	if (card->family == FST_FAMILY_TXU) {
1826 		if (port->index == 0) {
1827 			/*
1828 			 * Port A
1829 			 */
1830 			info->cableStatus = info->cableStatus & 1;
1831 		} else {
1832 			/*
1833 			 * Port B
1834 			 */
1835 			info->cableStatus = info->cableStatus >> 1;
1836 			info->cableStatus = info->cableStatus & 1;
1837 		}
1838 	}
1839 	/*
1840 	 * Some additional bits if we are TE1
1841 	 */
1842 	if (card->type == FST_TYPE_TE1) {
1843 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1844 		info->clockSource = FST_RDB(card, suConfig.clocking);
1845 		info->framing = FST_RDB(card, suConfig.framing);
1846 		info->structure = FST_RDB(card, suConfig.structure);
1847 		info->interface = FST_RDB(card, suConfig.interface);
1848 		info->coding = FST_RDB(card, suConfig.coding);
1849 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1850 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1851 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1852 		info->range = FST_RDB(card, suConfig.range);
1853 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1854 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1855 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1856 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1857 		if (FST_RDB(card, suConfig.enableIdleCode))
1858 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1859 		else
1860 			info->idleCode = 0;
1861 		info->receiveBufferDelay =
1862 		    FST_RDL(card, suStatus.receiveBufferDelay);
1863 		info->framingErrorCount =
1864 		    FST_RDL(card, suStatus.framingErrorCount);
1865 		info->codeViolationCount =
1866 		    FST_RDL(card, suStatus.codeViolationCount);
1867 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1868 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1869 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1870 		info->receiveRemoteAlarm =
1871 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1872 		info->alarmIndicationSignal =
1873 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1874 	}
1875 }
1876 
1877 static int
1878 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1879 	      struct ifreq *ifr)
1880 {
1881 	sync_serial_settings sync;
1882 	int i;
1883 
1884 	if (ifr->ifr_settings.size != sizeof (sync)) {
1885 		return -ENOMEM;
1886 	}
1887 
1888 	if (copy_from_user
1889 	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1890 		return -EFAULT;
1891 	}
1892 
1893 	if (sync.loopback)
1894 		return -EINVAL;
1895 
1896 	i = port->index;
1897 
1898 	switch (ifr->ifr_settings.type) {
1899 	case IF_IFACE_V35:
1900 		FST_WRW(card, portConfig[i].lineInterface, V35);
1901 		port->hwif = V35;
1902 		break;
1903 
1904 	case IF_IFACE_V24:
1905 		FST_WRW(card, portConfig[i].lineInterface, V24);
1906 		port->hwif = V24;
1907 		break;
1908 
1909 	case IF_IFACE_X21:
1910 		FST_WRW(card, portConfig[i].lineInterface, X21);
1911 		port->hwif = X21;
1912 		break;
1913 
1914 	case IF_IFACE_X21D:
1915 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1916 		port->hwif = X21D;
1917 		break;
1918 
1919 	case IF_IFACE_T1:
1920 		FST_WRW(card, portConfig[i].lineInterface, T1);
1921 		port->hwif = T1;
1922 		break;
1923 
1924 	case IF_IFACE_E1:
1925 		FST_WRW(card, portConfig[i].lineInterface, E1);
1926 		port->hwif = E1;
1927 		break;
1928 
1929 	case IF_IFACE_SYNC_SERIAL:
1930 		break;
1931 
1932 	default:
1933 		return -EINVAL;
1934 	}
1935 
1936 	switch (sync.clock_type) {
1937 	case CLOCK_EXT:
1938 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1939 		break;
1940 
1941 	case CLOCK_INT:
1942 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1943 		break;
1944 
1945 	default:
1946 		return -EINVAL;
1947 	}
1948 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1949 	return 0;
1950 }
1951 
1952 static int
1953 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1954 	      struct ifreq *ifr)
1955 {
1956 	sync_serial_settings sync;
1957 	int i;
1958 
1959 	/* First check what line type is set, we'll default to reporting X.21
1960 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1961 	 * changed
1962 	 */
1963 	switch (port->hwif) {
1964 	case E1:
1965 		ifr->ifr_settings.type = IF_IFACE_E1;
1966 		break;
1967 	case T1:
1968 		ifr->ifr_settings.type = IF_IFACE_T1;
1969 		break;
1970 	case V35:
1971 		ifr->ifr_settings.type = IF_IFACE_V35;
1972 		break;
1973 	case V24:
1974 		ifr->ifr_settings.type = IF_IFACE_V24;
1975 		break;
1976 	case X21D:
1977 		ifr->ifr_settings.type = IF_IFACE_X21D;
1978 		break;
1979 	case X21:
1980 	default:
1981 		ifr->ifr_settings.type = IF_IFACE_X21;
1982 		break;
1983 	}
1984 	if (ifr->ifr_settings.size == 0) {
1985 		return 0;	/* only type requested */
1986 	}
1987 	if (ifr->ifr_settings.size < sizeof (sync)) {
1988 		return -ENOMEM;
1989 	}
1990 
1991 	i = port->index;
1992 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1993 	/* Lucky card and linux use same encoding here */
1994 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1995 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1996 	sync.loopback = 0;
1997 
1998 	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1999 		return -EFAULT;
2000 	}
2001 
2002 	ifr->ifr_settings.size = sizeof (sync);
2003 	return 0;
2004 }
2005 
2006 static int
2007 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2008 {
2009 	struct fst_card_info *card;
2010 	struct fst_port_info *port;
2011 	struct fstioc_write wrthdr;
2012 	struct fstioc_info info;
2013 	unsigned long flags;
2014 	void *buf;
2015 
2016 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2017 
2018 	port = dev_to_port(dev);
2019 	card = port->card;
2020 
2021 	if (!capable(CAP_NET_ADMIN))
2022 		return -EPERM;
2023 
2024 	switch (cmd) {
2025 	case FSTCPURESET:
2026 		fst_cpureset(card);
2027 		card->state = FST_RESET;
2028 		return 0;
2029 
2030 	case FSTCPURELEASE:
2031 		fst_cpurelease(card);
2032 		card->state = FST_STARTING;
2033 		return 0;
2034 
2035 	case FSTWRITE:		/* Code write (download) */
2036 
2037 		/* First copy in the header with the length and offset of data
2038 		 * to write
2039 		 */
2040 		if (ifr->ifr_data == NULL) {
2041 			return -EINVAL;
2042 		}
2043 		if (copy_from_user(&wrthdr, ifr->ifr_data,
2044 				   sizeof (struct fstioc_write))) {
2045 			return -EFAULT;
2046 		}
2047 
2048 		/* Sanity check the parameters. We don't support partial writes
2049 		 * when going over the top
2050 		 */
2051 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2052 		    || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2053 			return -ENXIO;
2054 		}
2055 
2056 		/* Now copy the data to the card. */
2057 
2058 		buf = kmalloc(wrthdr.size, GFP_KERNEL);
2059 		if (!buf)
2060 			return -ENOMEM;
2061 
2062 		if (copy_from_user(buf,
2063 				   ifr->ifr_data + sizeof (struct fstioc_write),
2064 				   wrthdr.size)) {
2065 			kfree(buf);
2066 			return -EFAULT;
2067 		}
2068 
2069 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2070 		kfree(buf);
2071 
2072 		/* Writes to the memory of a card in the reset state constitute
2073 		 * a download
2074 		 */
2075 		if (card->state == FST_RESET) {
2076 			card->state = FST_DOWNLOAD;
2077 		}
2078 		return 0;
2079 
2080 	case FSTGETCONF:
2081 
2082 		/* If card has just been started check the shared memory config
2083 		 * version and marker
2084 		 */
2085 		if (card->state == FST_STARTING) {
2086 			check_started_ok(card);
2087 
2088 			/* If everything checked out enable card interrupts */
2089 			if (card->state == FST_RUNNING) {
2090 				spin_lock_irqsave(&card->card_lock, flags);
2091 				fst_enable_intr(card);
2092 				FST_WRB(card, interruptHandshake, 0xEE);
2093 				spin_unlock_irqrestore(&card->card_lock, flags);
2094 			}
2095 		}
2096 
2097 		if (ifr->ifr_data == NULL) {
2098 			return -EINVAL;
2099 		}
2100 
2101 		gather_conf_info(card, port, &info);
2102 
2103 		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2104 			return -EFAULT;
2105 		}
2106 		return 0;
2107 
2108 	case FSTSETCONF:
2109 
2110 		/*
2111 		 * Most of the settings have been moved to the generic ioctls
2112 		 * this just covers debug and board ident now
2113 		 */
2114 
2115 		if (card->state != FST_RUNNING) {
2116 			printk_err
2117 			    ("Attempt to configure card %d in non-running state (%d)\n",
2118 			     card->card_no, card->state);
2119 			return -EIO;
2120 		}
2121 		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2122 			return -EFAULT;
2123 		}
2124 
2125 		return set_conf_from_info(card, port, &info);
2126 
2127 	case SIOCWANDEV:
2128 		switch (ifr->ifr_settings.type) {
2129 		case IF_GET_IFACE:
2130 			return fst_get_iface(card, port, ifr);
2131 
2132 		case IF_IFACE_SYNC_SERIAL:
2133 		case IF_IFACE_V35:
2134 		case IF_IFACE_V24:
2135 		case IF_IFACE_X21:
2136 		case IF_IFACE_X21D:
2137 		case IF_IFACE_T1:
2138 		case IF_IFACE_E1:
2139 			return fst_set_iface(card, port, ifr);
2140 
2141 		case IF_PROTO_RAW:
2142 			port->mode = FST_RAW;
2143 			return 0;
2144 
2145 		case IF_GET_PROTO:
2146 			if (port->mode == FST_RAW) {
2147 				ifr->ifr_settings.type = IF_PROTO_RAW;
2148 				return 0;
2149 			}
2150 			return hdlc_ioctl(dev, ifr, cmd);
2151 
2152 		default:
2153 			port->mode = FST_GEN_HDLC;
2154 			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2155 			    ifr->ifr_settings.type);
2156 			return hdlc_ioctl(dev, ifr, cmd);
2157 		}
2158 
2159 	default:
2160 		/* Not one of ours. Pass through to HDLC package */
2161 		return hdlc_ioctl(dev, ifr, cmd);
2162 	}
2163 }
2164 
2165 static void
2166 fst_openport(struct fst_port_info *port)
2167 {
2168 	int signals;
2169 	int txq_length;
2170 
2171 	/* Only init things if card is actually running. This allows open to
2172 	 * succeed for downloads etc.
2173 	 */
2174 	if (port->card->state == FST_RUNNING) {
2175 		if (port->run) {
2176 			dbg(DBG_OPEN, "open: found port already running\n");
2177 
2178 			fst_issue_cmd(port, STOPPORT);
2179 			port->run = 0;
2180 		}
2181 
2182 		fst_rx_config(port);
2183 		fst_tx_config(port);
2184 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2185 
2186 		fst_issue_cmd(port, STARTPORT);
2187 		port->run = 1;
2188 
2189 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2190 		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2191 			       ? IPSTS_INDICATE : IPSTS_DCD))
2192 			netif_carrier_on(port_to_dev(port));
2193 		else
2194 			netif_carrier_off(port_to_dev(port));
2195 
2196 		txq_length = port->txqe - port->txqs;
2197 		port->txqe = 0;
2198 		port->txqs = 0;
2199 	}
2200 
2201 }
2202 
2203 static void
2204 fst_closeport(struct fst_port_info *port)
2205 {
2206 	if (port->card->state == FST_RUNNING) {
2207 		if (port->run) {
2208 			port->run = 0;
2209 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2210 
2211 			fst_issue_cmd(port, STOPPORT);
2212 		} else {
2213 			dbg(DBG_OPEN, "close: port not running\n");
2214 		}
2215 	}
2216 }
2217 
2218 static int
2219 fst_open(struct net_device *dev)
2220 {
2221 	int err;
2222 	struct fst_port_info *port;
2223 
2224 	port = dev_to_port(dev);
2225 	if (!try_module_get(THIS_MODULE))
2226           return -EBUSY;
2227 
2228 	if (port->mode != FST_RAW) {
2229 		err = hdlc_open(dev);
2230 		if (err)
2231 			return err;
2232 	}
2233 
2234 	fst_openport(port);
2235 	netif_wake_queue(dev);
2236 	return 0;
2237 }
2238 
2239 static int
2240 fst_close(struct net_device *dev)
2241 {
2242 	struct fst_port_info *port;
2243 	struct fst_card_info *card;
2244 	unsigned char tx_dma_done;
2245 	unsigned char rx_dma_done;
2246 
2247 	port = dev_to_port(dev);
2248 	card = port->card;
2249 
2250 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2251 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2252 	dbg(DBG_OPEN,
2253 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2254 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2255 	    rx_dma_done);
2256 
2257 	netif_stop_queue(dev);
2258 	fst_closeport(dev_to_port(dev));
2259 	if (port->mode != FST_RAW) {
2260 		hdlc_close(dev);
2261 	}
2262 	module_put(THIS_MODULE);
2263 	return 0;
2264 }
2265 
2266 static int
2267 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2268 {
2269 	/*
2270 	 * Setting currently fixed in FarSync card so we check and forget
2271 	 */
2272 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2273 		return -EINVAL;
2274 	return 0;
2275 }
2276 
2277 static void
2278 fst_tx_timeout(struct net_device *dev)
2279 {
2280 	struct fst_port_info *port;
2281 	struct fst_card_info *card;
2282 
2283 	port = dev_to_port(dev);
2284 	card = port->card;
2285 	dev->stats.tx_errors++;
2286 	dev->stats.tx_aborted_errors++;
2287 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2288 	    card->card_no, port->index);
2289 	fst_issue_cmd(port, ABORTTX);
2290 
2291 	dev->trans_start = jiffies;
2292 	netif_wake_queue(dev);
2293 	port->start = 0;
2294 }
2295 
2296 static int
2297 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2298 {
2299 	struct fst_card_info *card;
2300 	struct fst_port_info *port;
2301 	unsigned long flags;
2302 	int txq_length;
2303 
2304 	port = dev_to_port(dev);
2305 	card = port->card;
2306 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2307 
2308 	/* Drop packet with error if we don't have carrier */
2309 	if (!netif_carrier_ok(dev)) {
2310 		dev_kfree_skb(skb);
2311 		dev->stats.tx_errors++;
2312 		dev->stats.tx_carrier_errors++;
2313 		dbg(DBG_ASS,
2314 		    "Tried to transmit but no carrier on card %d port %d\n",
2315 		    card->card_no, port->index);
2316 		return 0;
2317 	}
2318 
2319 	/* Drop it if it's too big! MTU failure ? */
2320 	if (skb->len > LEN_TX_BUFFER) {
2321 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2322 		    LEN_TX_BUFFER);
2323 		dev_kfree_skb(skb);
2324 		dev->stats.tx_errors++;
2325 		return 0;
2326 	}
2327 
2328 	/*
2329 	 * We are always going to queue the packet
2330 	 * so that the bottom half is the only place we tx from
2331 	 * Check there is room in the port txq
2332 	 */
2333 	spin_lock_irqsave(&card->card_lock, flags);
2334 	if ((txq_length = port->txqe - port->txqs) < 0) {
2335 		/*
2336 		 * This is the case where the next free has wrapped but the
2337 		 * last used hasn't
2338 		 */
2339 		txq_length = txq_length + FST_TXQ_DEPTH;
2340 	}
2341 	spin_unlock_irqrestore(&card->card_lock, flags);
2342 	if (txq_length > fst_txq_high) {
2343 		/*
2344 		 * We have got enough buffers in the pipeline.  Ask the network
2345 		 * layer to stop sending frames down
2346 		 */
2347 		netif_stop_queue(dev);
2348 		port->start = 1;	/* I'm using this to signal stop sent up */
2349 	}
2350 
2351 	if (txq_length == FST_TXQ_DEPTH - 1) {
2352 		/*
2353 		 * This shouldn't have happened but such is life
2354 		 */
2355 		dev_kfree_skb(skb);
2356 		dev->stats.tx_errors++;
2357 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2358 		    card->card_no, port->index);
2359 		return 0;
2360 	}
2361 
2362 	/*
2363 	 * queue the buffer
2364 	 */
2365 	spin_lock_irqsave(&card->card_lock, flags);
2366 	port->txq[port->txqe] = skb;
2367 	port->txqe++;
2368 	if (port->txqe == FST_TXQ_DEPTH)
2369 		port->txqe = 0;
2370 	spin_unlock_irqrestore(&card->card_lock, flags);
2371 
2372 	/* Scehdule the bottom half which now does transmit processing */
2373 	fst_q_work_item(&fst_work_txq, card->card_no);
2374 	tasklet_schedule(&fst_tx_task);
2375 
2376 	return 0;
2377 }
2378 
2379 /*
2380  *      Card setup having checked hardware resources.
2381  *      Should be pretty bizarre if we get an error here (kernel memory
2382  *      exhaustion is one possibility). If we do see a problem we report it
2383  *      via a printk and leave the corresponding interface and all that follow
2384  *      disabled.
2385  */
2386 static char *type_strings[] __devinitdata = {
2387 	"no hardware",		/* Should never be seen */
2388 	"FarSync T2P",
2389 	"FarSync T4P",
2390 	"FarSync T1U",
2391 	"FarSync T2U",
2392 	"FarSync T4U",
2393 	"FarSync TE1"
2394 };
2395 
2396 static void __devinit
2397 fst_init_card(struct fst_card_info *card)
2398 {
2399 	int i;
2400 	int err;
2401 
2402 	/* We're working on a number of ports based on the card ID. If the
2403 	 * firmware detects something different later (should never happen)
2404 	 * we'll have to revise it in some way then.
2405 	 */
2406 	for (i = 0; i < card->nports; i++) {
2407                 err = register_hdlc_device(card->ports[i].dev);
2408                 if (err < 0) {
2409 			int j;
2410                         printk_err ("Cannot register HDLC device for port %d"
2411                                     " (errno %d)\n", i, -err );
2412 			for (j = i; j < card->nports; j++) {
2413 				free_netdev(card->ports[j].dev);
2414 				card->ports[j].dev = NULL;
2415 			}
2416                         card->nports = i;
2417                         break;
2418                 }
2419 	}
2420 
2421 	printk_info("%s-%s: %s IRQ%d, %d ports\n",
2422 	       port_to_dev(&card->ports[0])->name,
2423 	       port_to_dev(&card->ports[card->nports - 1])->name,
2424 	       type_strings[card->type], card->irq, card->nports);
2425 }
2426 
2427 static const struct net_device_ops fst_ops = {
2428 	.ndo_open       = fst_open,
2429 	.ndo_stop       = fst_close,
2430 	.ndo_change_mtu = hdlc_change_mtu,
2431 	.ndo_start_xmit = hdlc_start_xmit,
2432 	.ndo_do_ioctl   = fst_ioctl,
2433 	.ndo_tx_timeout = fst_tx_timeout,
2434 };
2435 
2436 /*
2437  *      Initialise card when detected.
2438  *      Returns 0 to indicate success, or errno otherwise.
2439  */
2440 static int __devinit
2441 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2442 {
2443 	static int firsttime_done = 0;
2444 	static int no_of_cards_added = 0;
2445 	struct fst_card_info *card;
2446 	int err = 0;
2447 	int i;
2448 
2449 	if (!firsttime_done) {
2450 		printk_info("FarSync WAN driver " FST_USER_VERSION
2451 		       " (c) 2001-2004 FarSite Communications Ltd.\n");
2452 		firsttime_done = 1;
2453 		dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2454 	}
2455 
2456 	/*
2457 	 * We are going to be clever and allow certain cards not to be
2458 	 * configured.  An exclude list can be provided in /etc/modules.conf
2459 	 */
2460 	if (fst_excluded_cards != 0) {
2461 		/*
2462 		 * There are cards to exclude
2463 		 *
2464 		 */
2465 		for (i = 0; i < fst_excluded_cards; i++) {
2466 			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2467 				printk_info("FarSync PCI device %d not assigned\n",
2468 				       (pdev->devfn) >> 3);
2469 				return -EBUSY;
2470 			}
2471 		}
2472 	}
2473 
2474 	/* Allocate driver private data */
2475 	card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2476 	if (card == NULL) {
2477 		printk_err("FarSync card found but insufficient memory for"
2478 			   " driver storage\n");
2479 		return -ENOMEM;
2480 	}
2481 
2482 	/* Try to enable the device */
2483 	if ((err = pci_enable_device(pdev)) != 0) {
2484 		printk_err("Failed to enable card. Err %d\n", -err);
2485 		kfree(card);
2486 		return err;
2487 	}
2488 
2489 	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2490 	        printk_err("Failed to allocate regions. Err %d\n", -err);
2491 		pci_disable_device(pdev);
2492 		kfree(card);
2493 	        return err;
2494 	}
2495 
2496 	/* Get virtual addresses of memory regions */
2497 	card->pci_conf = pci_resource_start(pdev, 1);
2498 	card->phys_mem = pci_resource_start(pdev, 2);
2499 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2500 	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2501 		printk_err("Physical memory remap failed\n");
2502 		pci_release_regions(pdev);
2503 		pci_disable_device(pdev);
2504 		kfree(card);
2505 		return -ENODEV;
2506 	}
2507 	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2508 		printk_err("Control memory remap failed\n");
2509 		pci_release_regions(pdev);
2510 		pci_disable_device(pdev);
2511 		kfree(card);
2512 		return -ENODEV;
2513 	}
2514 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2515 
2516 	/* Register the interrupt handler */
2517 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2518 		printk_err("Unable to register interrupt %d\n", card->irq);
2519 		pci_release_regions(pdev);
2520 		pci_disable_device(pdev);
2521 		iounmap(card->ctlmem);
2522 		iounmap(card->mem);
2523 		kfree(card);
2524 		return -ENODEV;
2525 	}
2526 
2527 	/* Record info we need */
2528 	card->irq = pdev->irq;
2529 	card->type = ent->driver_data;
2530 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2531 			(ent->driver_data == FST_TYPE_T4P))
2532 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2533 	if ((ent->driver_data == FST_TYPE_T1U) ||
2534 	    (ent->driver_data == FST_TYPE_TE1))
2535 		card->nports = 1;
2536 	else
2537 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2538 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2539 
2540 	card->state = FST_UNINIT;
2541         spin_lock_init ( &card->card_lock );
2542 
2543         for ( i = 0 ; i < card->nports ; i++ ) {
2544 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2545 		hdlc_device *hdlc;
2546 		if (!dev) {
2547 			while (i--)
2548 				free_netdev(card->ports[i].dev);
2549 			printk_err ("FarSync: out of memory\n");
2550                         free_irq(card->irq, card);
2551                         pci_release_regions(pdev);
2552                         pci_disable_device(pdev);
2553                         iounmap(card->ctlmem);
2554                         iounmap(card->mem);
2555                         kfree(card);
2556                         return -ENODEV;
2557 		}
2558 		card->ports[i].dev    = dev;
2559                 card->ports[i].card   = card;
2560                 card->ports[i].index  = i;
2561                 card->ports[i].run    = 0;
2562 
2563 		hdlc = dev_to_hdlc(dev);
2564 
2565                 /* Fill in the net device info */
2566 		/* Since this is a PCI setup this is purely
2567 		 * informational. Give them the buffer addresses
2568 		 * and basic card I/O.
2569 		 */
2570                 dev->mem_start   = card->phys_mem
2571                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2572                 dev->mem_end     = card->phys_mem
2573                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2574                 dev->base_addr   = card->pci_conf;
2575                 dev->irq         = card->irq;
2576 
2577 		dev->netdev_ops = &fst_ops;
2578 		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2579 		dev->watchdog_timeo = FST_TX_TIMEOUT;
2580                 hdlc->attach = fst_attach;
2581                 hdlc->xmit   = fst_start_xmit;
2582 	}
2583 
2584 	card->device = pdev;
2585 
2586 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2587 	    card->nports, card->irq);
2588 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2589 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2590 
2591 	/* Reset the card's processor */
2592 	fst_cpureset(card);
2593 	card->state = FST_RESET;
2594 
2595 	/* Initialise DMA (if required) */
2596 	fst_init_dma(card);
2597 
2598 	/* Record driver data for later use */
2599 	pci_set_drvdata(pdev, card);
2600 
2601 	/* Remainder of card setup */
2602 	fst_card_array[no_of_cards_added] = card;
2603 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2604 	fst_init_card(card);
2605 	if (card->family == FST_FAMILY_TXU) {
2606 		/*
2607 		 * Allocate a dma buffer for transmit and receives
2608 		 */
2609 		card->rx_dma_handle_host =
2610 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2611 					 &card->rx_dma_handle_card);
2612 		if (card->rx_dma_handle_host == NULL) {
2613 			printk_err("Could not allocate rx dma buffer\n");
2614 			fst_disable_intr(card);
2615 			pci_release_regions(pdev);
2616 			pci_disable_device(pdev);
2617 			iounmap(card->ctlmem);
2618 			iounmap(card->mem);
2619 			kfree(card);
2620 			return -ENOMEM;
2621 		}
2622 		card->tx_dma_handle_host =
2623 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2624 					 &card->tx_dma_handle_card);
2625 		if (card->tx_dma_handle_host == NULL) {
2626 			printk_err("Could not allocate tx dma buffer\n");
2627 			fst_disable_intr(card);
2628 			pci_release_regions(pdev);
2629 			pci_disable_device(pdev);
2630 			iounmap(card->ctlmem);
2631 			iounmap(card->mem);
2632 			kfree(card);
2633 			return -ENOMEM;
2634 		}
2635 	}
2636 	return 0;		/* Success */
2637 }
2638 
2639 /*
2640  *      Cleanup and close down a card
2641  */
2642 static void __devexit
2643 fst_remove_one(struct pci_dev *pdev)
2644 {
2645 	struct fst_card_info *card;
2646 	int i;
2647 
2648 	card = pci_get_drvdata(pdev);
2649 
2650 	for (i = 0; i < card->nports; i++) {
2651 		struct net_device *dev = port_to_dev(&card->ports[i]);
2652 		unregister_hdlc_device(dev);
2653 	}
2654 
2655 	fst_disable_intr(card);
2656 	free_irq(card->irq, card);
2657 
2658 	iounmap(card->ctlmem);
2659 	iounmap(card->mem);
2660 	pci_release_regions(pdev);
2661 	if (card->family == FST_FAMILY_TXU) {
2662 		/*
2663 		 * Free dma buffers
2664 		 */
2665 		pci_free_consistent(card->device, FST_MAX_MTU,
2666 				    card->rx_dma_handle_host,
2667 				    card->rx_dma_handle_card);
2668 		pci_free_consistent(card->device, FST_MAX_MTU,
2669 				    card->tx_dma_handle_host,
2670 				    card->tx_dma_handle_card);
2671 	}
2672 	fst_card_array[card->card_no] = NULL;
2673 }
2674 
2675 static struct pci_driver fst_driver = {
2676         .name		= FST_NAME,
2677         .id_table	= fst_pci_dev_id,
2678         .probe		= fst_add_one,
2679         .remove	= __devexit_p(fst_remove_one),
2680         .suspend	= NULL,
2681         .resume	= NULL,
2682 };
2683 
2684 static int __init
2685 fst_init(void)
2686 {
2687 	int i;
2688 
2689 	for (i = 0; i < FST_MAX_CARDS; i++)
2690 		fst_card_array[i] = NULL;
2691 	spin_lock_init(&fst_work_q_lock);
2692 	return pci_register_driver(&fst_driver);
2693 }
2694 
2695 static void __exit
2696 fst_cleanup_module(void)
2697 {
2698 	printk_info("FarSync WAN driver unloading\n");
2699 	pci_unregister_driver(&fst_driver);
2700 }
2701 
2702 module_init(fst_init);
2703 module_exit(fst_cleanup_module);
2704