1 /* 2 * FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 * 14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/version.h> 21 #include <linux/pci.h> 22 #include <linux/ioport.h> 23 #include <linux/init.h> 24 #include <linux/if.h> 25 #include <linux/hdlc.h> 26 #include <asm/io.h> 27 #include <asm/uaccess.h> 28 29 #include "farsync.h" 30 31 /* 32 * Module info 33 */ 34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 36 MODULE_LICENSE("GPL"); 37 38 /* Driver configuration and global parameters 39 * ========================================== 40 */ 41 42 /* Number of ports (per card) and cards supported 43 */ 44 #define FST_MAX_PORTS 4 45 #define FST_MAX_CARDS 32 46 47 /* Default parameters for the link 48 */ 49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 50 * useful */ 51 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 52 * of frames on the way down to the card 53 * so that we can keep the card busy 54 * and maximise throughput 55 */ 56 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 57 * network layer */ 58 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 59 * control from network layer */ 60 #define FST_MAX_MTU 8000 /* Huge but possible */ 61 #define FST_DEF_MTU 1500 /* Common sane value */ 62 63 #define FST_TX_TIMEOUT (2*HZ) 64 65 #ifdef ARPHRD_RAWHDLC 66 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 67 #else 68 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 69 #endif 70 71 /* 72 * Modules parameters and associated variables 73 */ 74 static int fst_txq_low = FST_LOW_WATER_MARK; 75 static int fst_txq_high = FST_HIGH_WATER_MARK; 76 static int fst_max_reads = 7; 77 static int fst_excluded_cards = 0; 78 static int fst_excluded_list[FST_MAX_CARDS]; 79 80 module_param(fst_txq_low, int, 0); 81 module_param(fst_txq_high, int, 0); 82 module_param(fst_max_reads, int, 0); 83 module_param(fst_excluded_cards, int, 0); 84 module_param_array(fst_excluded_list, int, NULL, 0); 85 86 /* Card shared memory layout 87 * ========================= 88 */ 89 #pragma pack(1) 90 91 /* This information is derived in part from the FarSite FarSync Smc.h 92 * file. Unfortunately various name clashes and the non-portability of the 93 * bit field declarations in that file have meant that I have chosen to 94 * recreate the information here. 95 * 96 * The SMC (Shared Memory Configuration) has a version number that is 97 * incremented every time there is a significant change. This number can 98 * be used to check that we have not got out of step with the firmware 99 * contained in the .CDE files. 100 */ 101 #define SMC_VERSION 24 102 103 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 104 105 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 106 * configuration structure */ 107 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 108 * buffers */ 109 110 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 111 #define LEN_RX_BUFFER 8192 112 113 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 114 #define LEN_SMALL_RX_BUFFER 256 115 116 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 117 #define NUM_RX_BUFFER 8 118 119 /* Interrupt retry time in milliseconds */ 120 #define INT_RETRY_TIME 2 121 122 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 123 * of buffer descriptors. The structure is almost identical to that used 124 * in the LANCE Ethernet controllers. Details available as PDF from the 125 * AMD web site: http://www.amd.com/products/epd/processors/\ 126 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 127 */ 128 struct txdesc { /* Transmit descriptor */ 129 volatile u16 ladr; /* Low order address of packet. This is a 130 * linear address in the Am186 memory space 131 */ 132 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 133 * bits must be zero 134 */ 135 volatile u8 bits; /* Status and config */ 136 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 137 * Transmit terminal count interrupt enable in 138 * top bit. 139 */ 140 u16 unused; /* Not used in Tx */ 141 }; 142 143 struct rxdesc { /* Receive descriptor */ 144 volatile u16 ladr; /* Low order address of packet */ 145 volatile u8 hadr; /* High order address */ 146 volatile u8 bits; /* Status and config */ 147 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 148 * Receive terminal count interrupt enable in 149 * top bit. 150 */ 151 volatile u16 mcnt; /* Message byte count (15 bits) */ 152 }; 153 154 /* Convert a length into the 15 bit 2's complement */ 155 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 156 /* Since we need to set the high bit to enable the completion interrupt this 157 * can be made a lot simpler 158 */ 159 #define cnv_bcnt(len) (-(len)) 160 161 /* Status and config bits for the above */ 162 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 163 #define TX_STP 0x02 /* Tx: start of packet */ 164 #define TX_ENP 0x01 /* Tx: end of packet */ 165 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 166 #define RX_FRAM 0x20 /* Rx: framing error */ 167 #define RX_OFLO 0x10 /* Rx: overflow error */ 168 #define RX_CRC 0x08 /* Rx: CRC error */ 169 #define RX_HBUF 0x04 /* Rx: buffer error */ 170 #define RX_STP 0x02 /* Rx: start of packet */ 171 #define RX_ENP 0x01 /* Rx: end of packet */ 172 173 /* Interrupts from the card are caused by various events which are presented 174 * in a circular buffer as several events may be processed on one physical int 175 */ 176 #define MAX_CIRBUFF 32 177 178 struct cirbuff { 179 u8 rdindex; /* read, then increment and wrap */ 180 u8 wrindex; /* write, then increment and wrap */ 181 u8 evntbuff[MAX_CIRBUFF]; 182 }; 183 184 /* Interrupt event codes. 185 * Where appropriate the two low order bits indicate the port number 186 */ 187 #define CTLA_CHG 0x18 /* Control signal changed */ 188 #define CTLB_CHG 0x19 189 #define CTLC_CHG 0x1A 190 #define CTLD_CHG 0x1B 191 192 #define INIT_CPLT 0x20 /* Initialisation complete */ 193 #define INIT_FAIL 0x21 /* Initialisation failed */ 194 195 #define ABTA_SENT 0x24 /* Abort sent */ 196 #define ABTB_SENT 0x25 197 #define ABTC_SENT 0x26 198 #define ABTD_SENT 0x27 199 200 #define TXA_UNDF 0x28 /* Transmission underflow */ 201 #define TXB_UNDF 0x29 202 #define TXC_UNDF 0x2A 203 #define TXD_UNDF 0x2B 204 205 #define F56_INT 0x2C 206 #define M32_INT 0x2D 207 208 #define TE1_ALMA 0x30 209 210 /* Port physical configuration. See farsync.h for field values */ 211 struct port_cfg { 212 u16 lineInterface; /* Physical interface type */ 213 u8 x25op; /* Unused at present */ 214 u8 internalClock; /* 1 => internal clock, 0 => external */ 215 u8 transparentMode; /* 1 => on, 0 => off */ 216 u8 invertClock; /* 0 => normal, 1 => inverted */ 217 u8 padBytes[6]; /* Padding */ 218 u32 lineSpeed; /* Speed in bps */ 219 }; 220 221 /* TE1 port physical configuration */ 222 struct su_config { 223 u32 dataRate; 224 u8 clocking; 225 u8 framing; 226 u8 structure; 227 u8 interface; 228 u8 coding; 229 u8 lineBuildOut; 230 u8 equalizer; 231 u8 transparentMode; 232 u8 loopMode; 233 u8 range; 234 u8 txBufferMode; 235 u8 rxBufferMode; 236 u8 startingSlot; 237 u8 losThreshold; 238 u8 enableIdleCode; 239 u8 idleCode; 240 u8 spare[44]; 241 }; 242 243 /* TE1 Status */ 244 struct su_status { 245 u32 receiveBufferDelay; 246 u32 framingErrorCount; 247 u32 codeViolationCount; 248 u32 crcErrorCount; 249 u32 lineAttenuation; 250 u8 portStarted; 251 u8 lossOfSignal; 252 u8 receiveRemoteAlarm; 253 u8 alarmIndicationSignal; 254 u8 spare[40]; 255 }; 256 257 /* Finally sling all the above together into the shared memory structure. 258 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 259 * evolving under NT for some time so I guess we're stuck with it. 260 * The structure starts at offset SMC_BASE. 261 * See farsync.h for some field values. 262 */ 263 struct fst_shared { 264 /* DMA descriptor rings */ 265 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 266 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 267 268 /* Obsolete small buffers */ 269 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 270 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 271 272 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 273 * 0xFF => halted 274 */ 275 276 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 277 * set to 0xEE by host to acknowledge interrupt 278 */ 279 280 u16 smcVersion; /* Must match SMC_VERSION */ 281 282 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 283 * version, RR = revision and BB = build 284 */ 285 286 u16 txa_done; /* Obsolete completion flags */ 287 u16 rxa_done; 288 u16 txb_done; 289 u16 rxb_done; 290 u16 txc_done; 291 u16 rxc_done; 292 u16 txd_done; 293 u16 rxd_done; 294 295 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 296 297 struct cirbuff interruptEvent; /* interrupt causes */ 298 299 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 300 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 301 302 struct port_cfg portConfig[FST_MAX_PORTS]; 303 304 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 305 306 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 307 308 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 309 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 310 311 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 312 u16 cardMailbox[4]; /* Not used */ 313 314 /* Number of times the card thinks the host has 315 * missed an interrupt by not acknowledging 316 * within 2mS (I guess NT has problems) 317 */ 318 u32 interruptRetryCount; 319 320 /* Driver private data used as an ID. We'll not 321 * use this as I'd rather keep such things 322 * in main memory rather than on the PCI bus 323 */ 324 u32 portHandle[FST_MAX_PORTS]; 325 326 /* Count of Tx underflows for stats */ 327 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 328 329 /* Debounced V.24 control input status */ 330 u32 v24DebouncedSts[FST_MAX_PORTS]; 331 332 /* Adapter debounce timers. Don't touch */ 333 u32 ctsTimer[FST_MAX_PORTS]; 334 u32 ctsTimerRun[FST_MAX_PORTS]; 335 u32 dcdTimer[FST_MAX_PORTS]; 336 u32 dcdTimerRun[FST_MAX_PORTS]; 337 338 u32 numberOfPorts; /* Number of ports detected at startup */ 339 340 u16 _reserved[64]; 341 342 u16 cardMode; /* Bit-mask to enable features: 343 * Bit 0: 1 enables LED identify mode 344 */ 345 346 u16 portScheduleOffset; 347 348 struct su_config suConfig; /* TE1 Bits */ 349 struct su_status suStatus; 350 351 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 352 * the structure and marks the end of shared 353 * memory. Adapter code initializes it as 354 * END_SIG. 355 */ 356 }; 357 358 /* endOfSmcSignature value */ 359 #define END_SIG 0x12345678 360 361 /* Mailbox values. (portMailbox) */ 362 #define NOP 0 /* No operation */ 363 #define ACK 1 /* Positive acknowledgement to PC driver */ 364 #define NAK 2 /* Negative acknowledgement to PC driver */ 365 #define STARTPORT 3 /* Start an HDLC port */ 366 #define STOPPORT 4 /* Stop an HDLC port */ 367 #define ABORTTX 5 /* Abort the transmitter for a port */ 368 #define SETV24O 6 /* Set V24 outputs */ 369 370 /* PLX Chip Register Offsets */ 371 #define CNTRL_9052 0x50 /* Control Register */ 372 #define CNTRL_9054 0x6c /* Control Register */ 373 374 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 375 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 376 377 /* 9054 DMA Registers */ 378 /* 379 * Note that we will be using DMA Channel 0 for copying rx data 380 * and Channel 1 for copying tx data 381 */ 382 #define DMAMODE0 0x80 383 #define DMAPADR0 0x84 384 #define DMALADR0 0x88 385 #define DMASIZ0 0x8c 386 #define DMADPR0 0x90 387 #define DMAMODE1 0x94 388 #define DMAPADR1 0x98 389 #define DMALADR1 0x9c 390 #define DMASIZ1 0xa0 391 #define DMADPR1 0xa4 392 #define DMACSR0 0xa8 393 #define DMACSR1 0xa9 394 #define DMAARB 0xac 395 #define DMATHR 0xb0 396 #define DMADAC0 0xb4 397 #define DMADAC1 0xb8 398 #define DMAMARBR 0xac 399 400 #define FST_MIN_DMA_LEN 64 401 #define FST_RX_DMA_INT 0x01 402 #define FST_TX_DMA_INT 0x02 403 #define FST_CARD_INT 0x04 404 405 /* Larger buffers are positioned in memory at offset BFM_BASE */ 406 struct buf_window { 407 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 408 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 409 }; 410 411 /* Calculate offset of a buffer object within the shared memory window */ 412 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 413 414 #pragma pack() 415 416 /* Device driver private information 417 * ================================= 418 */ 419 /* Per port (line or channel) information 420 */ 421 struct fst_port_info { 422 struct net_device *dev; /* Device struct - must be first */ 423 struct fst_card_info *card; /* Card we're associated with */ 424 int index; /* Port index on the card */ 425 int hwif; /* Line hardware (lineInterface copy) */ 426 int run; /* Port is running */ 427 int mode; /* Normal or FarSync raw */ 428 int rxpos; /* Next Rx buffer to use */ 429 int txpos; /* Next Tx buffer to use */ 430 int txipos; /* Next Tx buffer to check for free */ 431 int start; /* Indication of start/stop to network */ 432 /* 433 * A sixteen entry transmit queue 434 */ 435 int txqs; /* index to get next buffer to tx */ 436 int txqe; /* index to queue next packet */ 437 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 438 int rxqdepth; 439 }; 440 441 /* Per card information 442 */ 443 struct fst_card_info { 444 char __iomem *mem; /* Card memory mapped to kernel space */ 445 char __iomem *ctlmem; /* Control memory for PCI cards */ 446 unsigned int phys_mem; /* Physical memory window address */ 447 unsigned int phys_ctlmem; /* Physical control memory address */ 448 unsigned int irq; /* Interrupt request line number */ 449 unsigned int nports; /* Number of serial ports */ 450 unsigned int type; /* Type index of card */ 451 unsigned int state; /* State of card */ 452 spinlock_t card_lock; /* Lock for SMP access */ 453 unsigned short pci_conf; /* PCI card config in I/O space */ 454 /* Per port info */ 455 struct fst_port_info ports[FST_MAX_PORTS]; 456 struct pci_dev *device; /* Information about the pci device */ 457 int card_no; /* Inst of the card on the system */ 458 int family; /* TxP or TxU */ 459 int dmarx_in_progress; 460 int dmatx_in_progress; 461 unsigned long int_count; 462 unsigned long int_time_ave; 463 void *rx_dma_handle_host; 464 dma_addr_t rx_dma_handle_card; 465 void *tx_dma_handle_host; 466 dma_addr_t tx_dma_handle_card; 467 struct sk_buff *dma_skb_rx; 468 struct fst_port_info *dma_port_rx; 469 struct fst_port_info *dma_port_tx; 470 int dma_len_rx; 471 int dma_len_tx; 472 int dma_txpos; 473 int dma_rxpos; 474 }; 475 476 /* Convert an HDLC device pointer into a port info pointer and similar */ 477 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 478 #define port_to_dev(P) ((P)->dev) 479 480 481 /* 482 * Shared memory window access macros 483 * 484 * We have a nice memory based structure above, which could be directly 485 * mapped on i386 but might not work on other architectures unless we use 486 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 487 * physical offsets so we have to convert. The only saving grace is that 488 * this should all collapse back to a simple indirection eventually. 489 */ 490 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 491 492 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) 493 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) 494 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) 495 496 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) 497 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) 498 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) 499 500 /* 501 * Debug support 502 */ 503 #if FST_DEBUG 504 505 static int fst_debug_mask = { FST_DEBUG }; 506 507 /* Most common debug activity is to print something if the corresponding bit 508 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 509 * support variable numbers of macro parameters. The inverted if prevents us 510 * eating someone else's else clause. 511 */ 512 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \ 513 ; \ 514 else \ 515 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) 516 517 #else 518 #define dbg(X...) /* NOP */ 519 #endif 520 521 /* Printing short cuts 522 */ 523 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) 524 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) 525 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) 526 527 /* 528 * PCI ID lookup table 529 */ 530 static struct pci_device_id fst_pci_dev_id[] __devinitdata = { 531 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 532 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 533 534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 535 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 536 537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 538 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 539 540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 541 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 542 543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 544 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 545 546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 547 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 548 549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 551 {0,} /* End */ 552 }; 553 554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 555 556 /* 557 * Device Driver Work Queues 558 * 559 * So that we don't spend too much time processing events in the 560 * Interrupt Service routine, we will declare a work queue per Card 561 * and make the ISR schedule a task in the queue for later execution. 562 * In the 2.4 Kernel we used to use the immediate queue for BH's 563 * Now that they are gone, tasklets seem to be much better than work 564 * queues. 565 */ 566 567 static void do_bottom_half_tx(struct fst_card_info *card); 568 static void do_bottom_half_rx(struct fst_card_info *card); 569 static void fst_process_tx_work_q(unsigned long work_q); 570 static void fst_process_int_work_q(unsigned long work_q); 571 572 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); 573 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); 574 575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 576 static spinlock_t fst_work_q_lock; 577 static u64 fst_work_txq; 578 static u64 fst_work_intq; 579 580 static void 581 fst_q_work_item(u64 * queue, int card_index) 582 { 583 unsigned long flags; 584 u64 mask; 585 586 /* 587 * Grab the queue exclusively 588 */ 589 spin_lock_irqsave(&fst_work_q_lock, flags); 590 591 /* 592 * Making an entry in the queue is simply a matter of setting 593 * a bit for the card indicating that there is work to do in the 594 * bottom half for the card. Note the limitation of 64 cards. 595 * That ought to be enough 596 */ 597 mask = 1 << card_index; 598 *queue |= mask; 599 spin_unlock_irqrestore(&fst_work_q_lock, flags); 600 } 601 602 static void 603 fst_process_tx_work_q(unsigned long /*void **/work_q) 604 { 605 unsigned long flags; 606 u64 work_txq; 607 int i; 608 609 /* 610 * Grab the queue exclusively 611 */ 612 dbg(DBG_TX, "fst_process_tx_work_q\n"); 613 spin_lock_irqsave(&fst_work_q_lock, flags); 614 work_txq = fst_work_txq; 615 fst_work_txq = 0; 616 spin_unlock_irqrestore(&fst_work_q_lock, flags); 617 618 /* 619 * Call the bottom half for each card with work waiting 620 */ 621 for (i = 0; i < FST_MAX_CARDS; i++) { 622 if (work_txq & 0x01) { 623 if (fst_card_array[i] != NULL) { 624 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 625 do_bottom_half_tx(fst_card_array[i]); 626 } 627 } 628 work_txq = work_txq >> 1; 629 } 630 } 631 632 static void 633 fst_process_int_work_q(unsigned long /*void **/work_q) 634 { 635 unsigned long flags; 636 u64 work_intq; 637 int i; 638 639 /* 640 * Grab the queue exclusively 641 */ 642 dbg(DBG_INTR, "fst_process_int_work_q\n"); 643 spin_lock_irqsave(&fst_work_q_lock, flags); 644 work_intq = fst_work_intq; 645 fst_work_intq = 0; 646 spin_unlock_irqrestore(&fst_work_q_lock, flags); 647 648 /* 649 * Call the bottom half for each card with work waiting 650 */ 651 for (i = 0; i < FST_MAX_CARDS; i++) { 652 if (work_intq & 0x01) { 653 if (fst_card_array[i] != NULL) { 654 dbg(DBG_INTR, 655 "Calling rx & tx bh for card %d\n", i); 656 do_bottom_half_rx(fst_card_array[i]); 657 do_bottom_half_tx(fst_card_array[i]); 658 } 659 } 660 work_intq = work_intq >> 1; 661 } 662 } 663 664 /* Card control functions 665 * ====================== 666 */ 667 /* Place the processor in reset state 668 * 669 * Used to be a simple write to card control space but a glitch in the latest 670 * AMD Am186CH processor means that we now have to do it by asserting and de- 671 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 672 * at offset 9052_CNTRL. Note the updates for the TXU. 673 */ 674 static inline void 675 fst_cpureset(struct fst_card_info *card) 676 { 677 unsigned char interrupt_line_register; 678 unsigned long j = jiffies + 1; 679 unsigned int regval; 680 681 if (card->family == FST_FAMILY_TXU) { 682 if (pci_read_config_byte 683 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 684 dbg(DBG_ASS, 685 "Error in reading interrupt line register\n"); 686 } 687 /* 688 * Assert PLX software reset and Am186 hardware reset 689 * and then deassert the PLX software reset but 186 still in reset 690 */ 691 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 692 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 693 /* 694 * We are delaying here to allow the 9054 to reset itself 695 */ 696 j = jiffies + 1; 697 while (jiffies < j) 698 /* Do nothing */ ; 699 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 700 /* 701 * We are delaying here to allow the 9054 to reload its eeprom 702 */ 703 j = jiffies + 1; 704 while (jiffies < j) 705 /* Do nothing */ ; 706 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 707 708 if (pci_write_config_byte 709 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 710 dbg(DBG_ASS, 711 "Error in writing interrupt line register\n"); 712 } 713 714 } else { 715 regval = inl(card->pci_conf + CNTRL_9052); 716 717 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 718 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 719 } 720 } 721 722 /* Release the processor from reset 723 */ 724 static inline void 725 fst_cpurelease(struct fst_card_info *card) 726 { 727 if (card->family == FST_FAMILY_TXU) { 728 /* 729 * Force posted writes to complete 730 */ 731 (void) readb(card->mem); 732 733 /* 734 * Release LRESET DO = 1 735 * Then release Local Hold, DO = 1 736 */ 737 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 738 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 739 } else { 740 (void) readb(card->ctlmem); 741 } 742 } 743 744 /* Clear the cards interrupt flag 745 */ 746 static inline void 747 fst_clear_intr(struct fst_card_info *card) 748 { 749 if (card->family == FST_FAMILY_TXU) { 750 (void) readb(card->ctlmem); 751 } else { 752 /* Poke the appropriate PLX chip register (same as enabling interrupts) 753 */ 754 outw(0x0543, card->pci_conf + INTCSR_9052); 755 } 756 } 757 758 /* Enable card interrupts 759 */ 760 static inline void 761 fst_enable_intr(struct fst_card_info *card) 762 { 763 if (card->family == FST_FAMILY_TXU) { 764 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 765 } else { 766 outw(0x0543, card->pci_conf + INTCSR_9052); 767 } 768 } 769 770 /* Disable card interrupts 771 */ 772 static inline void 773 fst_disable_intr(struct fst_card_info *card) 774 { 775 if (card->family == FST_FAMILY_TXU) { 776 outl(0x00000000, card->pci_conf + INTCSR_9054); 777 } else { 778 outw(0x0000, card->pci_conf + INTCSR_9052); 779 } 780 } 781 782 /* Process the result of trying to pass a received frame up the stack 783 */ 784 static void 785 fst_process_rx_status(int rx_status, char *name) 786 { 787 switch (rx_status) { 788 case NET_RX_SUCCESS: 789 { 790 /* 791 * Nothing to do here 792 */ 793 break; 794 } 795 796 case NET_RX_CN_LOW: 797 { 798 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name); 799 break; 800 } 801 802 case NET_RX_CN_MOD: 803 { 804 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name); 805 break; 806 } 807 808 case NET_RX_CN_HIGH: 809 { 810 dbg(DBG_ASS, "%s: Receive High Congestion\n", name); 811 break; 812 } 813 814 case NET_RX_DROP: 815 { 816 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 817 break; 818 } 819 } 820 } 821 822 /* Initilaise DMA for PLX 9054 823 */ 824 static inline void 825 fst_init_dma(struct fst_card_info *card) 826 { 827 /* 828 * This is only required for the PLX 9054 829 */ 830 if (card->family == FST_FAMILY_TXU) { 831 pci_set_master(card->device); 832 outl(0x00020441, card->pci_conf + DMAMODE0); 833 outl(0x00020441, card->pci_conf + DMAMODE1); 834 outl(0x0, card->pci_conf + DMATHR); 835 } 836 } 837 838 /* Tx dma complete interrupt 839 */ 840 static void 841 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 842 int len, int txpos) 843 { 844 struct net_device *dev = port_to_dev(port); 845 846 /* 847 * Everything is now set, just tell the card to go 848 */ 849 dbg(DBG_TX, "fst_tx_dma_complete\n"); 850 FST_WRB(card, txDescrRing[port->index][txpos].bits, 851 DMA_OWN | TX_STP | TX_ENP); 852 dev->stats.tx_packets++; 853 dev->stats.tx_bytes += len; 854 dev->trans_start = jiffies; 855 } 856 857 /* 858 * Mark it for our own raw sockets interface 859 */ 860 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) 861 { 862 skb->dev = dev; 863 skb_reset_mac_header(skb); 864 skb->pkt_type = PACKET_HOST; 865 return htons(ETH_P_CUST); 866 } 867 868 /* Rx dma complete interrupt 869 */ 870 static void 871 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 872 int len, struct sk_buff *skb, int rxp) 873 { 874 struct net_device *dev = port_to_dev(port); 875 int pi; 876 int rx_status; 877 878 dbg(DBG_TX, "fst_rx_dma_complete\n"); 879 pi = port->index; 880 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); 881 882 /* Reset buffer descriptor */ 883 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 884 885 /* Update stats */ 886 dev->stats.rx_packets++; 887 dev->stats.rx_bytes += len; 888 889 /* Push upstream */ 890 dbg(DBG_RX, "Pushing the frame up the stack\n"); 891 if (port->mode == FST_RAW) 892 skb->protocol = farsync_type_trans(skb, dev); 893 else 894 skb->protocol = hdlc_type_trans(skb, dev); 895 rx_status = netif_rx(skb); 896 fst_process_rx_status(rx_status, port_to_dev(port)->name); 897 if (rx_status == NET_RX_DROP) 898 dev->stats.rx_dropped++; 899 } 900 901 /* 902 * Receive a frame through the DMA 903 */ 904 static inline void 905 fst_rx_dma(struct fst_card_info *card, unsigned char *skb, 906 unsigned char *mem, int len) 907 { 908 /* 909 * This routine will setup the DMA and start it 910 */ 911 912 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len); 913 if (card->dmarx_in_progress) { 914 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 915 } 916 917 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */ 918 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */ 919 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 920 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 921 922 /* 923 * We use the dmarx_in_progress flag to flag the channel as busy 924 */ 925 card->dmarx_in_progress = 1; 926 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 927 } 928 929 /* 930 * Send a frame through the DMA 931 */ 932 static inline void 933 fst_tx_dma(struct fst_card_info *card, unsigned char *skb, 934 unsigned char *mem, int len) 935 { 936 /* 937 * This routine will setup the DMA and start it. 938 */ 939 940 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); 941 if (card->dmatx_in_progress) { 942 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 943 } 944 945 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ 946 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ 947 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 948 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 949 950 /* 951 * We use the dmatx_in_progress to flag the channel as busy 952 */ 953 card->dmatx_in_progress = 1; 954 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 955 } 956 957 /* Issue a Mailbox command for a port. 958 * Note we issue them on a fire and forget basis, not expecting to see an 959 * error and not waiting for completion. 960 */ 961 static void 962 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 963 { 964 struct fst_card_info *card; 965 unsigned short mbval; 966 unsigned long flags; 967 int safety; 968 969 card = port->card; 970 spin_lock_irqsave(&card->card_lock, flags); 971 mbval = FST_RDW(card, portMailbox[port->index][0]); 972 973 safety = 0; 974 /* Wait for any previous command to complete */ 975 while (mbval > NAK) { 976 spin_unlock_irqrestore(&card->card_lock, flags); 977 schedule_timeout_uninterruptible(1); 978 spin_lock_irqsave(&card->card_lock, flags); 979 980 if (++safety > 2000) { 981 printk_err("Mailbox safety timeout\n"); 982 break; 983 } 984 985 mbval = FST_RDW(card, portMailbox[port->index][0]); 986 } 987 if (safety > 0) { 988 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 989 } 990 if (mbval == NAK) { 991 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 992 } 993 994 FST_WRW(card, portMailbox[port->index][0], cmd); 995 996 if (cmd == ABORTTX || cmd == STARTPORT) { 997 port->txpos = 0; 998 port->txipos = 0; 999 port->start = 0; 1000 } 1001 1002 spin_unlock_irqrestore(&card->card_lock, flags); 1003 } 1004 1005 /* Port output signals control 1006 */ 1007 static inline void 1008 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 1009 { 1010 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 1011 FST_WRL(port->card, v24OpSts[port->index], outputs); 1012 1013 if (port->run) 1014 fst_issue_cmd(port, SETV24O); 1015 } 1016 1017 static inline void 1018 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 1019 { 1020 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 1021 FST_WRL(port->card, v24OpSts[port->index], outputs); 1022 1023 if (port->run) 1024 fst_issue_cmd(port, SETV24O); 1025 } 1026 1027 /* 1028 * Setup port Rx buffers 1029 */ 1030 static void 1031 fst_rx_config(struct fst_port_info *port) 1032 { 1033 int i; 1034 int pi; 1035 unsigned int offset; 1036 unsigned long flags; 1037 struct fst_card_info *card; 1038 1039 pi = port->index; 1040 card = port->card; 1041 spin_lock_irqsave(&card->card_lock, flags); 1042 for (i = 0; i < NUM_RX_BUFFER; i++) { 1043 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 1044 1045 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); 1046 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1047 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 1048 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 1049 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 1050 } 1051 port->rxpos = 0; 1052 spin_unlock_irqrestore(&card->card_lock, flags); 1053 } 1054 1055 /* 1056 * Setup port Tx buffers 1057 */ 1058 static void 1059 fst_tx_config(struct fst_port_info *port) 1060 { 1061 int i; 1062 int pi; 1063 unsigned int offset; 1064 unsigned long flags; 1065 struct fst_card_info *card; 1066 1067 pi = port->index; 1068 card = port->card; 1069 spin_lock_irqsave(&card->card_lock, flags); 1070 for (i = 0; i < NUM_TX_BUFFER; i++) { 1071 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1072 1073 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); 1074 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1075 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1076 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1077 } 1078 port->txpos = 0; 1079 port->txipos = 0; 1080 port->start = 0; 1081 spin_unlock_irqrestore(&card->card_lock, flags); 1082 } 1083 1084 /* TE1 Alarm change interrupt event 1085 */ 1086 static void 1087 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1088 { 1089 u8 los; 1090 u8 rra; 1091 u8 ais; 1092 1093 los = FST_RDB(card, suStatus.lossOfSignal); 1094 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1095 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1096 1097 if (los) { 1098 /* 1099 * Lost the link 1100 */ 1101 if (netif_carrier_ok(port_to_dev(port))) { 1102 dbg(DBG_INTR, "Net carrier off\n"); 1103 netif_carrier_off(port_to_dev(port)); 1104 } 1105 } else { 1106 /* 1107 * Link available 1108 */ 1109 if (!netif_carrier_ok(port_to_dev(port))) { 1110 dbg(DBG_INTR, "Net carrier on\n"); 1111 netif_carrier_on(port_to_dev(port)); 1112 } 1113 } 1114 1115 if (los) 1116 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1117 else 1118 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1119 if (rra) 1120 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1121 else 1122 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1123 1124 if (ais) 1125 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1126 else 1127 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1128 } 1129 1130 /* Control signal change interrupt event 1131 */ 1132 static void 1133 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1134 { 1135 int signals; 1136 1137 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1138 1139 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 1140 ? IPSTS_INDICATE : IPSTS_DCD)) { 1141 if (!netif_carrier_ok(port_to_dev(port))) { 1142 dbg(DBG_INTR, "DCD active\n"); 1143 netif_carrier_on(port_to_dev(port)); 1144 } 1145 } else { 1146 if (netif_carrier_ok(port_to_dev(port))) { 1147 dbg(DBG_INTR, "DCD lost\n"); 1148 netif_carrier_off(port_to_dev(port)); 1149 } 1150 } 1151 } 1152 1153 /* Log Rx Errors 1154 */ 1155 static void 1156 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1157 unsigned char dmabits, int rxp, unsigned short len) 1158 { 1159 struct net_device *dev = port_to_dev(port); 1160 1161 /* 1162 * Increment the appropriate error counter 1163 */ 1164 dev->stats.rx_errors++; 1165 if (dmabits & RX_OFLO) { 1166 dev->stats.rx_fifo_errors++; 1167 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1168 card->card_no, port->index, rxp); 1169 } 1170 if (dmabits & RX_CRC) { 1171 dev->stats.rx_crc_errors++; 1172 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1173 card->card_no, port->index); 1174 } 1175 if (dmabits & RX_FRAM) { 1176 dev->stats.rx_frame_errors++; 1177 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1178 card->card_no, port->index); 1179 } 1180 if (dmabits == (RX_STP | RX_ENP)) { 1181 dev->stats.rx_length_errors++; 1182 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1183 len, card->card_no, port->index); 1184 } 1185 } 1186 1187 /* Rx Error Recovery 1188 */ 1189 static void 1190 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1191 unsigned char dmabits, int rxp, unsigned short len) 1192 { 1193 int i; 1194 int pi; 1195 1196 pi = port->index; 1197 /* 1198 * Discard buffer descriptors until we see the start of the 1199 * next frame. Note that for long frames this could be in 1200 * a subsequent interrupt. 1201 */ 1202 i = 0; 1203 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1204 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1205 rxp = (rxp+1) % NUM_RX_BUFFER; 1206 if (++i > NUM_RX_BUFFER) { 1207 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1208 " than we have\n"); 1209 break; 1210 } 1211 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1212 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1213 } 1214 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1215 1216 /* Discard the terminal buffer */ 1217 if (!(dmabits & DMA_OWN)) { 1218 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1219 rxp = (rxp+1) % NUM_RX_BUFFER; 1220 } 1221 port->rxpos = rxp; 1222 return; 1223 1224 } 1225 1226 /* Rx complete interrupt 1227 */ 1228 static void 1229 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1230 { 1231 unsigned char dmabits; 1232 int pi; 1233 int rxp; 1234 int rx_status; 1235 unsigned short len; 1236 struct sk_buff *skb; 1237 struct net_device *dev = port_to_dev(port); 1238 1239 /* Check we have a buffer to process */ 1240 pi = port->index; 1241 rxp = port->rxpos; 1242 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1243 if (dmabits & DMA_OWN) { 1244 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1245 pi, rxp); 1246 return; 1247 } 1248 if (card->dmarx_in_progress) { 1249 return; 1250 } 1251 1252 /* Get buffer length */ 1253 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1254 /* Discard the CRC */ 1255 len -= 2; 1256 if (len == 0) { 1257 /* 1258 * This seems to happen on the TE1 interface sometimes 1259 * so throw the frame away and log the event. 1260 */ 1261 printk_err("Frame received with 0 length. Card %d Port %d\n", 1262 card->card_no, port->index); 1263 /* Return descriptor to card */ 1264 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1265 1266 rxp = (rxp+1) % NUM_RX_BUFFER; 1267 port->rxpos = rxp; 1268 return; 1269 } 1270 1271 /* Check buffer length and for other errors. We insist on one packet 1272 * in one buffer. This simplifies things greatly and since we've 1273 * allocated 8K it shouldn't be a real world limitation 1274 */ 1275 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1276 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1277 fst_log_rx_error(card, port, dmabits, rxp, len); 1278 fst_recover_rx_error(card, port, dmabits, rxp, len); 1279 return; 1280 } 1281 1282 /* Allocate SKB */ 1283 if ((skb = dev_alloc_skb(len)) == NULL) { 1284 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1285 1286 dev->stats.rx_dropped++; 1287 1288 /* Return descriptor to card */ 1289 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1290 1291 rxp = (rxp+1) % NUM_RX_BUFFER; 1292 port->rxpos = rxp; 1293 return; 1294 } 1295 1296 /* 1297 * We know the length we need to receive, len. 1298 * It's not worth using the DMA for reads of less than 1299 * FST_MIN_DMA_LEN 1300 */ 1301 1302 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { 1303 memcpy_fromio(skb_put(skb, len), 1304 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1305 len); 1306 1307 /* Reset buffer descriptor */ 1308 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1309 1310 /* Update stats */ 1311 dev->stats.rx_packets++; 1312 dev->stats.rx_bytes += len; 1313 1314 /* Push upstream */ 1315 dbg(DBG_RX, "Pushing frame up the stack\n"); 1316 if (port->mode == FST_RAW) 1317 skb->protocol = farsync_type_trans(skb, dev); 1318 else 1319 skb->protocol = hdlc_type_trans(skb, dev); 1320 rx_status = netif_rx(skb); 1321 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1322 if (rx_status == NET_RX_DROP) 1323 dev->stats.rx_dropped++; 1324 } else { 1325 card->dma_skb_rx = skb; 1326 card->dma_port_rx = port; 1327 card->dma_len_rx = len; 1328 card->dma_rxpos = rxp; 1329 fst_rx_dma(card, (char *) card->rx_dma_handle_card, 1330 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1331 } 1332 if (rxp != port->rxpos) { 1333 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1334 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1335 } 1336 rxp = (rxp+1) % NUM_RX_BUFFER; 1337 port->rxpos = rxp; 1338 } 1339 1340 /* 1341 * The bottom halfs to the ISR 1342 * 1343 */ 1344 1345 static void 1346 do_bottom_half_tx(struct fst_card_info *card) 1347 { 1348 struct fst_port_info *port; 1349 int pi; 1350 int txq_length; 1351 struct sk_buff *skb; 1352 unsigned long flags; 1353 struct net_device *dev; 1354 1355 /* 1356 * Find a free buffer for the transmit 1357 * Step through each port on this card 1358 */ 1359 1360 dbg(DBG_TX, "do_bottom_half_tx\n"); 1361 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1362 if (!port->run) 1363 continue; 1364 1365 dev = port_to_dev(port); 1366 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1367 DMA_OWN) 1368 && !(card->dmatx_in_progress)) { 1369 /* 1370 * There doesn't seem to be a txdone event per-se 1371 * We seem to have to deduce it, by checking the DMA_OWN 1372 * bit on the next buffer we think we can use 1373 */ 1374 spin_lock_irqsave(&card->card_lock, flags); 1375 if ((txq_length = port->txqe - port->txqs) < 0) { 1376 /* 1377 * This is the case where one has wrapped and the 1378 * maths gives us a negative number 1379 */ 1380 txq_length = txq_length + FST_TXQ_DEPTH; 1381 } 1382 spin_unlock_irqrestore(&card->card_lock, flags); 1383 if (txq_length > 0) { 1384 /* 1385 * There is something to send 1386 */ 1387 spin_lock_irqsave(&card->card_lock, flags); 1388 skb = port->txq[port->txqs]; 1389 port->txqs++; 1390 if (port->txqs == FST_TXQ_DEPTH) { 1391 port->txqs = 0; 1392 } 1393 spin_unlock_irqrestore(&card->card_lock, flags); 1394 /* 1395 * copy the data and set the required indicators on the 1396 * card. 1397 */ 1398 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1399 cnv_bcnt(skb->len)); 1400 if ((skb->len < FST_MIN_DMA_LEN) 1401 || (card->family == FST_FAMILY_TXP)) { 1402 /* Enqueue the packet with normal io */ 1403 memcpy_toio(card->mem + 1404 BUF_OFFSET(txBuffer[pi] 1405 [port-> 1406 txpos][0]), 1407 skb->data, skb->len); 1408 FST_WRB(card, 1409 txDescrRing[pi][port->txpos]. 1410 bits, 1411 DMA_OWN | TX_STP | TX_ENP); 1412 dev->stats.tx_packets++; 1413 dev->stats.tx_bytes += skb->len; 1414 dev->trans_start = jiffies; 1415 } else { 1416 /* Or do it through dma */ 1417 memcpy(card->tx_dma_handle_host, 1418 skb->data, skb->len); 1419 card->dma_port_tx = port; 1420 card->dma_len_tx = skb->len; 1421 card->dma_txpos = port->txpos; 1422 fst_tx_dma(card, 1423 (char *) card-> 1424 tx_dma_handle_card, 1425 (char *) 1426 BUF_OFFSET(txBuffer[pi] 1427 [port->txpos][0]), 1428 skb->len); 1429 } 1430 if (++port->txpos >= NUM_TX_BUFFER) 1431 port->txpos = 0; 1432 /* 1433 * If we have flow control on, can we now release it? 1434 */ 1435 if (port->start) { 1436 if (txq_length < fst_txq_low) { 1437 netif_wake_queue(port_to_dev 1438 (port)); 1439 port->start = 0; 1440 } 1441 } 1442 dev_kfree_skb(skb); 1443 } else { 1444 /* 1445 * Nothing to send so break out of the while loop 1446 */ 1447 break; 1448 } 1449 } 1450 } 1451 } 1452 1453 static void 1454 do_bottom_half_rx(struct fst_card_info *card) 1455 { 1456 struct fst_port_info *port; 1457 int pi; 1458 int rx_count = 0; 1459 1460 /* Check for rx completions on all ports on this card */ 1461 dbg(DBG_RX, "do_bottom_half_rx\n"); 1462 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1463 if (!port->run) 1464 continue; 1465 1466 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1467 & DMA_OWN) && !(card->dmarx_in_progress)) { 1468 if (rx_count > fst_max_reads) { 1469 /* 1470 * Don't spend forever in receive processing 1471 * Schedule another event 1472 */ 1473 fst_q_work_item(&fst_work_intq, card->card_no); 1474 tasklet_schedule(&fst_int_task); 1475 break; /* Leave the loop */ 1476 } 1477 fst_intr_rx(card, port); 1478 rx_count++; 1479 } 1480 } 1481 } 1482 1483 /* 1484 * The interrupt service routine 1485 * Dev_id is our fst_card_info pointer 1486 */ 1487 static irqreturn_t 1488 fst_intr(int dummy, void *dev_id) 1489 { 1490 struct fst_card_info *card = dev_id; 1491 struct fst_port_info *port; 1492 int rdidx; /* Event buffer indices */ 1493 int wridx; 1494 int event; /* Actual event for processing */ 1495 unsigned int dma_intcsr = 0; 1496 unsigned int do_card_interrupt; 1497 unsigned int int_retry_count; 1498 1499 /* 1500 * Check to see if the interrupt was for this card 1501 * return if not 1502 * Note that the call to clear the interrupt is important 1503 */ 1504 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); 1505 if (card->state != FST_RUNNING) { 1506 printk_err 1507 ("Interrupt received for card %d in a non running state (%d)\n", 1508 card->card_no, card->state); 1509 1510 /* 1511 * It is possible to really be running, i.e. we have re-loaded 1512 * a running card 1513 * Clear and reprime the interrupt source 1514 */ 1515 fst_clear_intr(card); 1516 return IRQ_HANDLED; 1517 } 1518 1519 /* Clear and reprime the interrupt source */ 1520 fst_clear_intr(card); 1521 1522 /* 1523 * Is the interrupt for this card (handshake == 1) 1524 */ 1525 do_card_interrupt = 0; 1526 if (FST_RDB(card, interruptHandshake) == 1) { 1527 do_card_interrupt += FST_CARD_INT; 1528 /* Set the software acknowledge */ 1529 FST_WRB(card, interruptHandshake, 0xEE); 1530 } 1531 if (card->family == FST_FAMILY_TXU) { 1532 /* 1533 * Is it a DMA Interrupt 1534 */ 1535 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1536 if (dma_intcsr & 0x00200000) { 1537 /* 1538 * DMA Channel 0 (Rx transfer complete) 1539 */ 1540 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1541 outb(0x8, card->pci_conf + DMACSR0); 1542 fst_rx_dma_complete(card, card->dma_port_rx, 1543 card->dma_len_rx, card->dma_skb_rx, 1544 card->dma_rxpos); 1545 card->dmarx_in_progress = 0; 1546 do_card_interrupt += FST_RX_DMA_INT; 1547 } 1548 if (dma_intcsr & 0x00400000) { 1549 /* 1550 * DMA Channel 1 (Tx transfer complete) 1551 */ 1552 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1553 outb(0x8, card->pci_conf + DMACSR1); 1554 fst_tx_dma_complete(card, card->dma_port_tx, 1555 card->dma_len_tx, card->dma_txpos); 1556 card->dmatx_in_progress = 0; 1557 do_card_interrupt += FST_TX_DMA_INT; 1558 } 1559 } 1560 1561 /* 1562 * Have we been missing Interrupts 1563 */ 1564 int_retry_count = FST_RDL(card, interruptRetryCount); 1565 if (int_retry_count) { 1566 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1567 card->card_no, int_retry_count); 1568 FST_WRL(card, interruptRetryCount, 0); 1569 } 1570 1571 if (!do_card_interrupt) { 1572 return IRQ_HANDLED; 1573 } 1574 1575 /* Scehdule the bottom half of the ISR */ 1576 fst_q_work_item(&fst_work_intq, card->card_no); 1577 tasklet_schedule(&fst_int_task); 1578 1579 /* Drain the event queue */ 1580 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1581 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1582 while (rdidx != wridx) { 1583 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1584 port = &card->ports[event & 0x03]; 1585 1586 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1587 1588 switch (event) { 1589 case TE1_ALMA: 1590 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1591 if (port->run) 1592 fst_intr_te1_alarm(card, port); 1593 break; 1594 1595 case CTLA_CHG: 1596 case CTLB_CHG: 1597 case CTLC_CHG: 1598 case CTLD_CHG: 1599 if (port->run) 1600 fst_intr_ctlchg(card, port); 1601 break; 1602 1603 case ABTA_SENT: 1604 case ABTB_SENT: 1605 case ABTC_SENT: 1606 case ABTD_SENT: 1607 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1608 break; 1609 1610 case TXA_UNDF: 1611 case TXB_UNDF: 1612 case TXC_UNDF: 1613 case TXD_UNDF: 1614 /* Difficult to see how we'd get this given that we 1615 * always load up the entire packet for DMA. 1616 */ 1617 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1618 port_to_dev(port)->stats.tx_errors++; 1619 port_to_dev(port)->stats.tx_fifo_errors++; 1620 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1621 card->card_no, port->index); 1622 break; 1623 1624 case INIT_CPLT: 1625 dbg(DBG_INIT, "Card init OK intr\n"); 1626 break; 1627 1628 case INIT_FAIL: 1629 dbg(DBG_INIT, "Card init FAILED intr\n"); 1630 card->state = FST_IFAILED; 1631 break; 1632 1633 default: 1634 printk_err("intr: unknown card event %d. ignored\n", 1635 event); 1636 break; 1637 } 1638 1639 /* Bump and wrap the index */ 1640 if (++rdidx >= MAX_CIRBUFF) 1641 rdidx = 0; 1642 } 1643 FST_WRB(card, interruptEvent.rdindex, rdidx); 1644 return IRQ_HANDLED; 1645 } 1646 1647 /* Check that the shared memory configuration is one that we can handle 1648 * and that some basic parameters are correct 1649 */ 1650 static void 1651 check_started_ok(struct fst_card_info *card) 1652 { 1653 int i; 1654 1655 /* Check structure version and end marker */ 1656 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1657 printk_err("Bad shared memory version %d expected %d\n", 1658 FST_RDW(card, smcVersion), SMC_VERSION); 1659 card->state = FST_BADVERSION; 1660 return; 1661 } 1662 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1663 printk_err("Missing shared memory signature\n"); 1664 card->state = FST_BADVERSION; 1665 return; 1666 } 1667 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1668 if ((i = FST_RDB(card, taskStatus)) == 0x01) { 1669 card->state = FST_RUNNING; 1670 } else if (i == 0xFF) { 1671 printk_err("Firmware initialisation failed. Card halted\n"); 1672 card->state = FST_HALTED; 1673 return; 1674 } else if (i != 0x00) { 1675 printk_err("Unknown firmware status 0x%x\n", i); 1676 card->state = FST_HALTED; 1677 return; 1678 } 1679 1680 /* Finally check the number of ports reported by firmware against the 1681 * number we assumed at card detection. Should never happen with 1682 * existing firmware etc so we just report it for the moment. 1683 */ 1684 if (FST_RDL(card, numberOfPorts) != card->nports) { 1685 printk_warn("Port count mismatch on card %d." 1686 " Firmware thinks %d we say %d\n", card->card_no, 1687 FST_RDL(card, numberOfPorts), card->nports); 1688 } 1689 } 1690 1691 static int 1692 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1693 struct fstioc_info *info) 1694 { 1695 int err; 1696 unsigned char my_framing; 1697 1698 /* Set things according to the user set valid flags 1699 * Several of the old options have been invalidated/replaced by the 1700 * generic hdlc package. 1701 */ 1702 err = 0; 1703 if (info->valid & FSTVAL_PROTO) { 1704 if (info->proto == FST_RAW) 1705 port->mode = FST_RAW; 1706 else 1707 port->mode = FST_GEN_HDLC; 1708 } 1709 1710 if (info->valid & FSTVAL_CABLE) 1711 err = -EINVAL; 1712 1713 if (info->valid & FSTVAL_SPEED) 1714 err = -EINVAL; 1715 1716 if (info->valid & FSTVAL_PHASE) 1717 FST_WRB(card, portConfig[port->index].invertClock, 1718 info->invertClock); 1719 if (info->valid & FSTVAL_MODE) 1720 FST_WRW(card, cardMode, info->cardMode); 1721 if (info->valid & FSTVAL_TE1) { 1722 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1723 FST_WRB(card, suConfig.clocking, info->clockSource); 1724 my_framing = FRAMING_E1; 1725 if (info->framing == E1) 1726 my_framing = FRAMING_E1; 1727 if (info->framing == T1) 1728 my_framing = FRAMING_T1; 1729 if (info->framing == J1) 1730 my_framing = FRAMING_J1; 1731 FST_WRB(card, suConfig.framing, my_framing); 1732 FST_WRB(card, suConfig.structure, info->structure); 1733 FST_WRB(card, suConfig.interface, info->interface); 1734 FST_WRB(card, suConfig.coding, info->coding); 1735 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1736 FST_WRB(card, suConfig.equalizer, info->equalizer); 1737 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1738 FST_WRB(card, suConfig.loopMode, info->loopMode); 1739 FST_WRB(card, suConfig.range, info->range); 1740 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1741 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1742 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1743 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1744 if (info->idleCode) 1745 FST_WRB(card, suConfig.enableIdleCode, 1); 1746 else 1747 FST_WRB(card, suConfig.enableIdleCode, 0); 1748 FST_WRB(card, suConfig.idleCode, info->idleCode); 1749 #if FST_DEBUG 1750 if (info->valid & FSTVAL_TE1) { 1751 printk("Setting TE1 data\n"); 1752 printk("Line Speed = %d\n", info->lineSpeed); 1753 printk("Start slot = %d\n", info->startingSlot); 1754 printk("Clock source = %d\n", info->clockSource); 1755 printk("Framing = %d\n", my_framing); 1756 printk("Structure = %d\n", info->structure); 1757 printk("interface = %d\n", info->interface); 1758 printk("Coding = %d\n", info->coding); 1759 printk("Line build out = %d\n", info->lineBuildOut); 1760 printk("Equaliser = %d\n", info->equalizer); 1761 printk("Transparent mode = %d\n", 1762 info->transparentMode); 1763 printk("Loop mode = %d\n", info->loopMode); 1764 printk("Range = %d\n", info->range); 1765 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1766 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1767 printk("LOS Threshold = %d\n", info->losThreshold); 1768 printk("Idle Code = %d\n", info->idleCode); 1769 } 1770 #endif 1771 } 1772 #if FST_DEBUG 1773 if (info->valid & FSTVAL_DEBUG) { 1774 fst_debug_mask = info->debug; 1775 } 1776 #endif 1777 1778 return err; 1779 } 1780 1781 static void 1782 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1783 struct fstioc_info *info) 1784 { 1785 int i; 1786 1787 memset(info, 0, sizeof (struct fstioc_info)); 1788 1789 i = port->index; 1790 info->kernelVersion = LINUX_VERSION_CODE; 1791 info->nports = card->nports; 1792 info->type = card->type; 1793 info->state = card->state; 1794 info->proto = FST_GEN_HDLC; 1795 info->index = i; 1796 #if FST_DEBUG 1797 info->debug = fst_debug_mask; 1798 #endif 1799 1800 /* Only mark information as valid if card is running. 1801 * Copy the data anyway in case it is useful for diagnostics 1802 */ 1803 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1804 #if FST_DEBUG 1805 | FSTVAL_DEBUG 1806 #endif 1807 ; 1808 1809 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1810 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1811 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1812 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1813 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1814 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1815 info->clockStatus = FST_RDW(card, clockStatus[i]); 1816 info->cableStatus = FST_RDW(card, cableStatus); 1817 info->cardMode = FST_RDW(card, cardMode); 1818 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1819 1820 /* 1821 * The T2U can report cable presence for both A or B 1822 * in bits 0 and 1 of cableStatus. See which port we are and 1823 * do the mapping. 1824 */ 1825 if (card->family == FST_FAMILY_TXU) { 1826 if (port->index == 0) { 1827 /* 1828 * Port A 1829 */ 1830 info->cableStatus = info->cableStatus & 1; 1831 } else { 1832 /* 1833 * Port B 1834 */ 1835 info->cableStatus = info->cableStatus >> 1; 1836 info->cableStatus = info->cableStatus & 1; 1837 } 1838 } 1839 /* 1840 * Some additional bits if we are TE1 1841 */ 1842 if (card->type == FST_TYPE_TE1) { 1843 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1844 info->clockSource = FST_RDB(card, suConfig.clocking); 1845 info->framing = FST_RDB(card, suConfig.framing); 1846 info->structure = FST_RDB(card, suConfig.structure); 1847 info->interface = FST_RDB(card, suConfig.interface); 1848 info->coding = FST_RDB(card, suConfig.coding); 1849 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1850 info->equalizer = FST_RDB(card, suConfig.equalizer); 1851 info->loopMode = FST_RDB(card, suConfig.loopMode); 1852 info->range = FST_RDB(card, suConfig.range); 1853 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1854 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1855 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1856 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1857 if (FST_RDB(card, suConfig.enableIdleCode)) 1858 info->idleCode = FST_RDB(card, suConfig.idleCode); 1859 else 1860 info->idleCode = 0; 1861 info->receiveBufferDelay = 1862 FST_RDL(card, suStatus.receiveBufferDelay); 1863 info->framingErrorCount = 1864 FST_RDL(card, suStatus.framingErrorCount); 1865 info->codeViolationCount = 1866 FST_RDL(card, suStatus.codeViolationCount); 1867 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1868 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1869 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1870 info->receiveRemoteAlarm = 1871 FST_RDB(card, suStatus.receiveRemoteAlarm); 1872 info->alarmIndicationSignal = 1873 FST_RDB(card, suStatus.alarmIndicationSignal); 1874 } 1875 } 1876 1877 static int 1878 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1879 struct ifreq *ifr) 1880 { 1881 sync_serial_settings sync; 1882 int i; 1883 1884 if (ifr->ifr_settings.size != sizeof (sync)) { 1885 return -ENOMEM; 1886 } 1887 1888 if (copy_from_user 1889 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { 1890 return -EFAULT; 1891 } 1892 1893 if (sync.loopback) 1894 return -EINVAL; 1895 1896 i = port->index; 1897 1898 switch (ifr->ifr_settings.type) { 1899 case IF_IFACE_V35: 1900 FST_WRW(card, portConfig[i].lineInterface, V35); 1901 port->hwif = V35; 1902 break; 1903 1904 case IF_IFACE_V24: 1905 FST_WRW(card, portConfig[i].lineInterface, V24); 1906 port->hwif = V24; 1907 break; 1908 1909 case IF_IFACE_X21: 1910 FST_WRW(card, portConfig[i].lineInterface, X21); 1911 port->hwif = X21; 1912 break; 1913 1914 case IF_IFACE_X21D: 1915 FST_WRW(card, portConfig[i].lineInterface, X21D); 1916 port->hwif = X21D; 1917 break; 1918 1919 case IF_IFACE_T1: 1920 FST_WRW(card, portConfig[i].lineInterface, T1); 1921 port->hwif = T1; 1922 break; 1923 1924 case IF_IFACE_E1: 1925 FST_WRW(card, portConfig[i].lineInterface, E1); 1926 port->hwif = E1; 1927 break; 1928 1929 case IF_IFACE_SYNC_SERIAL: 1930 break; 1931 1932 default: 1933 return -EINVAL; 1934 } 1935 1936 switch (sync.clock_type) { 1937 case CLOCK_EXT: 1938 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1939 break; 1940 1941 case CLOCK_INT: 1942 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1943 break; 1944 1945 default: 1946 return -EINVAL; 1947 } 1948 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1949 return 0; 1950 } 1951 1952 static int 1953 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1954 struct ifreq *ifr) 1955 { 1956 sync_serial_settings sync; 1957 int i; 1958 1959 /* First check what line type is set, we'll default to reporting X.21 1960 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1961 * changed 1962 */ 1963 switch (port->hwif) { 1964 case E1: 1965 ifr->ifr_settings.type = IF_IFACE_E1; 1966 break; 1967 case T1: 1968 ifr->ifr_settings.type = IF_IFACE_T1; 1969 break; 1970 case V35: 1971 ifr->ifr_settings.type = IF_IFACE_V35; 1972 break; 1973 case V24: 1974 ifr->ifr_settings.type = IF_IFACE_V24; 1975 break; 1976 case X21D: 1977 ifr->ifr_settings.type = IF_IFACE_X21D; 1978 break; 1979 case X21: 1980 default: 1981 ifr->ifr_settings.type = IF_IFACE_X21; 1982 break; 1983 } 1984 if (ifr->ifr_settings.size == 0) { 1985 return 0; /* only type requested */ 1986 } 1987 if (ifr->ifr_settings.size < sizeof (sync)) { 1988 return -ENOMEM; 1989 } 1990 1991 i = port->index; 1992 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 1993 /* Lucky card and linux use same encoding here */ 1994 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 1995 INTCLK ? CLOCK_INT : CLOCK_EXT; 1996 sync.loopback = 0; 1997 1998 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { 1999 return -EFAULT; 2000 } 2001 2002 ifr->ifr_settings.size = sizeof (sync); 2003 return 0; 2004 } 2005 2006 static int 2007 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2008 { 2009 struct fst_card_info *card; 2010 struct fst_port_info *port; 2011 struct fstioc_write wrthdr; 2012 struct fstioc_info info; 2013 unsigned long flags; 2014 void *buf; 2015 2016 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 2017 2018 port = dev_to_port(dev); 2019 card = port->card; 2020 2021 if (!capable(CAP_NET_ADMIN)) 2022 return -EPERM; 2023 2024 switch (cmd) { 2025 case FSTCPURESET: 2026 fst_cpureset(card); 2027 card->state = FST_RESET; 2028 return 0; 2029 2030 case FSTCPURELEASE: 2031 fst_cpurelease(card); 2032 card->state = FST_STARTING; 2033 return 0; 2034 2035 case FSTWRITE: /* Code write (download) */ 2036 2037 /* First copy in the header with the length and offset of data 2038 * to write 2039 */ 2040 if (ifr->ifr_data == NULL) { 2041 return -EINVAL; 2042 } 2043 if (copy_from_user(&wrthdr, ifr->ifr_data, 2044 sizeof (struct fstioc_write))) { 2045 return -EFAULT; 2046 } 2047 2048 /* Sanity check the parameters. We don't support partial writes 2049 * when going over the top 2050 */ 2051 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE 2052 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) { 2053 return -ENXIO; 2054 } 2055 2056 /* Now copy the data to the card. */ 2057 2058 buf = kmalloc(wrthdr.size, GFP_KERNEL); 2059 if (!buf) 2060 return -ENOMEM; 2061 2062 if (copy_from_user(buf, 2063 ifr->ifr_data + sizeof (struct fstioc_write), 2064 wrthdr.size)) { 2065 kfree(buf); 2066 return -EFAULT; 2067 } 2068 2069 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); 2070 kfree(buf); 2071 2072 /* Writes to the memory of a card in the reset state constitute 2073 * a download 2074 */ 2075 if (card->state == FST_RESET) { 2076 card->state = FST_DOWNLOAD; 2077 } 2078 return 0; 2079 2080 case FSTGETCONF: 2081 2082 /* If card has just been started check the shared memory config 2083 * version and marker 2084 */ 2085 if (card->state == FST_STARTING) { 2086 check_started_ok(card); 2087 2088 /* If everything checked out enable card interrupts */ 2089 if (card->state == FST_RUNNING) { 2090 spin_lock_irqsave(&card->card_lock, flags); 2091 fst_enable_intr(card); 2092 FST_WRB(card, interruptHandshake, 0xEE); 2093 spin_unlock_irqrestore(&card->card_lock, flags); 2094 } 2095 } 2096 2097 if (ifr->ifr_data == NULL) { 2098 return -EINVAL; 2099 } 2100 2101 gather_conf_info(card, port, &info); 2102 2103 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { 2104 return -EFAULT; 2105 } 2106 return 0; 2107 2108 case FSTSETCONF: 2109 2110 /* 2111 * Most of the settings have been moved to the generic ioctls 2112 * this just covers debug and board ident now 2113 */ 2114 2115 if (card->state != FST_RUNNING) { 2116 printk_err 2117 ("Attempt to configure card %d in non-running state (%d)\n", 2118 card->card_no, card->state); 2119 return -EIO; 2120 } 2121 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { 2122 return -EFAULT; 2123 } 2124 2125 return set_conf_from_info(card, port, &info); 2126 2127 case SIOCWANDEV: 2128 switch (ifr->ifr_settings.type) { 2129 case IF_GET_IFACE: 2130 return fst_get_iface(card, port, ifr); 2131 2132 case IF_IFACE_SYNC_SERIAL: 2133 case IF_IFACE_V35: 2134 case IF_IFACE_V24: 2135 case IF_IFACE_X21: 2136 case IF_IFACE_X21D: 2137 case IF_IFACE_T1: 2138 case IF_IFACE_E1: 2139 return fst_set_iface(card, port, ifr); 2140 2141 case IF_PROTO_RAW: 2142 port->mode = FST_RAW; 2143 return 0; 2144 2145 case IF_GET_PROTO: 2146 if (port->mode == FST_RAW) { 2147 ifr->ifr_settings.type = IF_PROTO_RAW; 2148 return 0; 2149 } 2150 return hdlc_ioctl(dev, ifr, cmd); 2151 2152 default: 2153 port->mode = FST_GEN_HDLC; 2154 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2155 ifr->ifr_settings.type); 2156 return hdlc_ioctl(dev, ifr, cmd); 2157 } 2158 2159 default: 2160 /* Not one of ours. Pass through to HDLC package */ 2161 return hdlc_ioctl(dev, ifr, cmd); 2162 } 2163 } 2164 2165 static void 2166 fst_openport(struct fst_port_info *port) 2167 { 2168 int signals; 2169 int txq_length; 2170 2171 /* Only init things if card is actually running. This allows open to 2172 * succeed for downloads etc. 2173 */ 2174 if (port->card->state == FST_RUNNING) { 2175 if (port->run) { 2176 dbg(DBG_OPEN, "open: found port already running\n"); 2177 2178 fst_issue_cmd(port, STOPPORT); 2179 port->run = 0; 2180 } 2181 2182 fst_rx_config(port); 2183 fst_tx_config(port); 2184 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2185 2186 fst_issue_cmd(port, STARTPORT); 2187 port->run = 1; 2188 2189 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2190 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 2191 ? IPSTS_INDICATE : IPSTS_DCD)) 2192 netif_carrier_on(port_to_dev(port)); 2193 else 2194 netif_carrier_off(port_to_dev(port)); 2195 2196 txq_length = port->txqe - port->txqs; 2197 port->txqe = 0; 2198 port->txqs = 0; 2199 } 2200 2201 } 2202 2203 static void 2204 fst_closeport(struct fst_port_info *port) 2205 { 2206 if (port->card->state == FST_RUNNING) { 2207 if (port->run) { 2208 port->run = 0; 2209 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2210 2211 fst_issue_cmd(port, STOPPORT); 2212 } else { 2213 dbg(DBG_OPEN, "close: port not running\n"); 2214 } 2215 } 2216 } 2217 2218 static int 2219 fst_open(struct net_device *dev) 2220 { 2221 int err; 2222 struct fst_port_info *port; 2223 2224 port = dev_to_port(dev); 2225 if (!try_module_get(THIS_MODULE)) 2226 return -EBUSY; 2227 2228 if (port->mode != FST_RAW) { 2229 err = hdlc_open(dev); 2230 if (err) 2231 return err; 2232 } 2233 2234 fst_openport(port); 2235 netif_wake_queue(dev); 2236 return 0; 2237 } 2238 2239 static int 2240 fst_close(struct net_device *dev) 2241 { 2242 struct fst_port_info *port; 2243 struct fst_card_info *card; 2244 unsigned char tx_dma_done; 2245 unsigned char rx_dma_done; 2246 2247 port = dev_to_port(dev); 2248 card = port->card; 2249 2250 tx_dma_done = inb(card->pci_conf + DMACSR1); 2251 rx_dma_done = inb(card->pci_conf + DMACSR0); 2252 dbg(DBG_OPEN, 2253 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2254 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2255 rx_dma_done); 2256 2257 netif_stop_queue(dev); 2258 fst_closeport(dev_to_port(dev)); 2259 if (port->mode != FST_RAW) { 2260 hdlc_close(dev); 2261 } 2262 module_put(THIS_MODULE); 2263 return 0; 2264 } 2265 2266 static int 2267 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2268 { 2269 /* 2270 * Setting currently fixed in FarSync card so we check and forget 2271 */ 2272 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2273 return -EINVAL; 2274 return 0; 2275 } 2276 2277 static void 2278 fst_tx_timeout(struct net_device *dev) 2279 { 2280 struct fst_port_info *port; 2281 struct fst_card_info *card; 2282 2283 port = dev_to_port(dev); 2284 card = port->card; 2285 dev->stats.tx_errors++; 2286 dev->stats.tx_aborted_errors++; 2287 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2288 card->card_no, port->index); 2289 fst_issue_cmd(port, ABORTTX); 2290 2291 dev->trans_start = jiffies; 2292 netif_wake_queue(dev); 2293 port->start = 0; 2294 } 2295 2296 static int 2297 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2298 { 2299 struct fst_card_info *card; 2300 struct fst_port_info *port; 2301 unsigned long flags; 2302 int txq_length; 2303 2304 port = dev_to_port(dev); 2305 card = port->card; 2306 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2307 2308 /* Drop packet with error if we don't have carrier */ 2309 if (!netif_carrier_ok(dev)) { 2310 dev_kfree_skb(skb); 2311 dev->stats.tx_errors++; 2312 dev->stats.tx_carrier_errors++; 2313 dbg(DBG_ASS, 2314 "Tried to transmit but no carrier on card %d port %d\n", 2315 card->card_no, port->index); 2316 return 0; 2317 } 2318 2319 /* Drop it if it's too big! MTU failure ? */ 2320 if (skb->len > LEN_TX_BUFFER) { 2321 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2322 LEN_TX_BUFFER); 2323 dev_kfree_skb(skb); 2324 dev->stats.tx_errors++; 2325 return 0; 2326 } 2327 2328 /* 2329 * We are always going to queue the packet 2330 * so that the bottom half is the only place we tx from 2331 * Check there is room in the port txq 2332 */ 2333 spin_lock_irqsave(&card->card_lock, flags); 2334 if ((txq_length = port->txqe - port->txqs) < 0) { 2335 /* 2336 * This is the case where the next free has wrapped but the 2337 * last used hasn't 2338 */ 2339 txq_length = txq_length + FST_TXQ_DEPTH; 2340 } 2341 spin_unlock_irqrestore(&card->card_lock, flags); 2342 if (txq_length > fst_txq_high) { 2343 /* 2344 * We have got enough buffers in the pipeline. Ask the network 2345 * layer to stop sending frames down 2346 */ 2347 netif_stop_queue(dev); 2348 port->start = 1; /* I'm using this to signal stop sent up */ 2349 } 2350 2351 if (txq_length == FST_TXQ_DEPTH - 1) { 2352 /* 2353 * This shouldn't have happened but such is life 2354 */ 2355 dev_kfree_skb(skb); 2356 dev->stats.tx_errors++; 2357 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2358 card->card_no, port->index); 2359 return 0; 2360 } 2361 2362 /* 2363 * queue the buffer 2364 */ 2365 spin_lock_irqsave(&card->card_lock, flags); 2366 port->txq[port->txqe] = skb; 2367 port->txqe++; 2368 if (port->txqe == FST_TXQ_DEPTH) 2369 port->txqe = 0; 2370 spin_unlock_irqrestore(&card->card_lock, flags); 2371 2372 /* Scehdule the bottom half which now does transmit processing */ 2373 fst_q_work_item(&fst_work_txq, card->card_no); 2374 tasklet_schedule(&fst_tx_task); 2375 2376 return 0; 2377 } 2378 2379 /* 2380 * Card setup having checked hardware resources. 2381 * Should be pretty bizarre if we get an error here (kernel memory 2382 * exhaustion is one possibility). If we do see a problem we report it 2383 * via a printk and leave the corresponding interface and all that follow 2384 * disabled. 2385 */ 2386 static char *type_strings[] __devinitdata = { 2387 "no hardware", /* Should never be seen */ 2388 "FarSync T2P", 2389 "FarSync T4P", 2390 "FarSync T1U", 2391 "FarSync T2U", 2392 "FarSync T4U", 2393 "FarSync TE1" 2394 }; 2395 2396 static void __devinit 2397 fst_init_card(struct fst_card_info *card) 2398 { 2399 int i; 2400 int err; 2401 2402 /* We're working on a number of ports based on the card ID. If the 2403 * firmware detects something different later (should never happen) 2404 * we'll have to revise it in some way then. 2405 */ 2406 for (i = 0; i < card->nports; i++) { 2407 err = register_hdlc_device(card->ports[i].dev); 2408 if (err < 0) { 2409 int j; 2410 printk_err ("Cannot register HDLC device for port %d" 2411 " (errno %d)\n", i, -err ); 2412 for (j = i; j < card->nports; j++) { 2413 free_netdev(card->ports[j].dev); 2414 card->ports[j].dev = NULL; 2415 } 2416 card->nports = i; 2417 break; 2418 } 2419 } 2420 2421 printk_info("%s-%s: %s IRQ%d, %d ports\n", 2422 port_to_dev(&card->ports[0])->name, 2423 port_to_dev(&card->ports[card->nports - 1])->name, 2424 type_strings[card->type], card->irq, card->nports); 2425 } 2426 2427 static const struct net_device_ops fst_ops = { 2428 .ndo_open = fst_open, 2429 .ndo_stop = fst_close, 2430 .ndo_change_mtu = hdlc_change_mtu, 2431 .ndo_start_xmit = hdlc_start_xmit, 2432 .ndo_do_ioctl = fst_ioctl, 2433 .ndo_tx_timeout = fst_tx_timeout, 2434 }; 2435 2436 /* 2437 * Initialise card when detected. 2438 * Returns 0 to indicate success, or errno otherwise. 2439 */ 2440 static int __devinit 2441 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2442 { 2443 static int firsttime_done = 0; 2444 static int no_of_cards_added = 0; 2445 struct fst_card_info *card; 2446 int err = 0; 2447 int i; 2448 2449 if (!firsttime_done) { 2450 printk_info("FarSync WAN driver " FST_USER_VERSION 2451 " (c) 2001-2004 FarSite Communications Ltd.\n"); 2452 firsttime_done = 1; 2453 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2454 } 2455 2456 /* 2457 * We are going to be clever and allow certain cards not to be 2458 * configured. An exclude list can be provided in /etc/modules.conf 2459 */ 2460 if (fst_excluded_cards != 0) { 2461 /* 2462 * There are cards to exclude 2463 * 2464 */ 2465 for (i = 0; i < fst_excluded_cards; i++) { 2466 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { 2467 printk_info("FarSync PCI device %d not assigned\n", 2468 (pdev->devfn) >> 3); 2469 return -EBUSY; 2470 } 2471 } 2472 } 2473 2474 /* Allocate driver private data */ 2475 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL); 2476 if (card == NULL) { 2477 printk_err("FarSync card found but insufficient memory for" 2478 " driver storage\n"); 2479 return -ENOMEM; 2480 } 2481 2482 /* Try to enable the device */ 2483 if ((err = pci_enable_device(pdev)) != 0) { 2484 printk_err("Failed to enable card. Err %d\n", -err); 2485 kfree(card); 2486 return err; 2487 } 2488 2489 if ((err = pci_request_regions(pdev, "FarSync")) !=0) { 2490 printk_err("Failed to allocate regions. Err %d\n", -err); 2491 pci_disable_device(pdev); 2492 kfree(card); 2493 return err; 2494 } 2495 2496 /* Get virtual addresses of memory regions */ 2497 card->pci_conf = pci_resource_start(pdev, 1); 2498 card->phys_mem = pci_resource_start(pdev, 2); 2499 card->phys_ctlmem = pci_resource_start(pdev, 3); 2500 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { 2501 printk_err("Physical memory remap failed\n"); 2502 pci_release_regions(pdev); 2503 pci_disable_device(pdev); 2504 kfree(card); 2505 return -ENODEV; 2506 } 2507 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { 2508 printk_err("Control memory remap failed\n"); 2509 pci_release_regions(pdev); 2510 pci_disable_device(pdev); 2511 kfree(card); 2512 return -ENODEV; 2513 } 2514 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2515 2516 /* Register the interrupt handler */ 2517 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { 2518 printk_err("Unable to register interrupt %d\n", card->irq); 2519 pci_release_regions(pdev); 2520 pci_disable_device(pdev); 2521 iounmap(card->ctlmem); 2522 iounmap(card->mem); 2523 kfree(card); 2524 return -ENODEV; 2525 } 2526 2527 /* Record info we need */ 2528 card->irq = pdev->irq; 2529 card->type = ent->driver_data; 2530 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2531 (ent->driver_data == FST_TYPE_T4P)) 2532 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2533 if ((ent->driver_data == FST_TYPE_T1U) || 2534 (ent->driver_data == FST_TYPE_TE1)) 2535 card->nports = 1; 2536 else 2537 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2538 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2539 2540 card->state = FST_UNINIT; 2541 spin_lock_init ( &card->card_lock ); 2542 2543 for ( i = 0 ; i < card->nports ; i++ ) { 2544 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2545 hdlc_device *hdlc; 2546 if (!dev) { 2547 while (i--) 2548 free_netdev(card->ports[i].dev); 2549 printk_err ("FarSync: out of memory\n"); 2550 free_irq(card->irq, card); 2551 pci_release_regions(pdev); 2552 pci_disable_device(pdev); 2553 iounmap(card->ctlmem); 2554 iounmap(card->mem); 2555 kfree(card); 2556 return -ENODEV; 2557 } 2558 card->ports[i].dev = dev; 2559 card->ports[i].card = card; 2560 card->ports[i].index = i; 2561 card->ports[i].run = 0; 2562 2563 hdlc = dev_to_hdlc(dev); 2564 2565 /* Fill in the net device info */ 2566 /* Since this is a PCI setup this is purely 2567 * informational. Give them the buffer addresses 2568 * and basic card I/O. 2569 */ 2570 dev->mem_start = card->phys_mem 2571 + BUF_OFFSET ( txBuffer[i][0][0]); 2572 dev->mem_end = card->phys_mem 2573 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); 2574 dev->base_addr = card->pci_conf; 2575 dev->irq = card->irq; 2576 2577 dev->netdev_ops = &fst_ops; 2578 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2579 dev->watchdog_timeo = FST_TX_TIMEOUT; 2580 hdlc->attach = fst_attach; 2581 hdlc->xmit = fst_start_xmit; 2582 } 2583 2584 card->device = pdev; 2585 2586 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2587 card->nports, card->irq); 2588 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2589 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2590 2591 /* Reset the card's processor */ 2592 fst_cpureset(card); 2593 card->state = FST_RESET; 2594 2595 /* Initialise DMA (if required) */ 2596 fst_init_dma(card); 2597 2598 /* Record driver data for later use */ 2599 pci_set_drvdata(pdev, card); 2600 2601 /* Remainder of card setup */ 2602 fst_card_array[no_of_cards_added] = card; 2603 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2604 fst_init_card(card); 2605 if (card->family == FST_FAMILY_TXU) { 2606 /* 2607 * Allocate a dma buffer for transmit and receives 2608 */ 2609 card->rx_dma_handle_host = 2610 pci_alloc_consistent(card->device, FST_MAX_MTU, 2611 &card->rx_dma_handle_card); 2612 if (card->rx_dma_handle_host == NULL) { 2613 printk_err("Could not allocate rx dma buffer\n"); 2614 fst_disable_intr(card); 2615 pci_release_regions(pdev); 2616 pci_disable_device(pdev); 2617 iounmap(card->ctlmem); 2618 iounmap(card->mem); 2619 kfree(card); 2620 return -ENOMEM; 2621 } 2622 card->tx_dma_handle_host = 2623 pci_alloc_consistent(card->device, FST_MAX_MTU, 2624 &card->tx_dma_handle_card); 2625 if (card->tx_dma_handle_host == NULL) { 2626 printk_err("Could not allocate tx dma buffer\n"); 2627 fst_disable_intr(card); 2628 pci_release_regions(pdev); 2629 pci_disable_device(pdev); 2630 iounmap(card->ctlmem); 2631 iounmap(card->mem); 2632 kfree(card); 2633 return -ENOMEM; 2634 } 2635 } 2636 return 0; /* Success */ 2637 } 2638 2639 /* 2640 * Cleanup and close down a card 2641 */ 2642 static void __devexit 2643 fst_remove_one(struct pci_dev *pdev) 2644 { 2645 struct fst_card_info *card; 2646 int i; 2647 2648 card = pci_get_drvdata(pdev); 2649 2650 for (i = 0; i < card->nports; i++) { 2651 struct net_device *dev = port_to_dev(&card->ports[i]); 2652 unregister_hdlc_device(dev); 2653 } 2654 2655 fst_disable_intr(card); 2656 free_irq(card->irq, card); 2657 2658 iounmap(card->ctlmem); 2659 iounmap(card->mem); 2660 pci_release_regions(pdev); 2661 if (card->family == FST_FAMILY_TXU) { 2662 /* 2663 * Free dma buffers 2664 */ 2665 pci_free_consistent(card->device, FST_MAX_MTU, 2666 card->rx_dma_handle_host, 2667 card->rx_dma_handle_card); 2668 pci_free_consistent(card->device, FST_MAX_MTU, 2669 card->tx_dma_handle_host, 2670 card->tx_dma_handle_card); 2671 } 2672 fst_card_array[card->card_no] = NULL; 2673 } 2674 2675 static struct pci_driver fst_driver = { 2676 .name = FST_NAME, 2677 .id_table = fst_pci_dev_id, 2678 .probe = fst_add_one, 2679 .remove = __devexit_p(fst_remove_one), 2680 .suspend = NULL, 2681 .resume = NULL, 2682 }; 2683 2684 static int __init 2685 fst_init(void) 2686 { 2687 int i; 2688 2689 for (i = 0; i < FST_MAX_CARDS; i++) 2690 fst_card_array[i] = NULL; 2691 spin_lock_init(&fst_work_q_lock); 2692 return pci_register_driver(&fst_driver); 2693 } 2694 2695 static void __exit 2696 fst_cleanup_module(void) 2697 { 2698 printk_info("FarSync WAN driver unloading\n"); 2699 pci_unregister_driver(&fst_driver); 2700 } 2701 2702 module_init(fst_init); 2703 module_exit(fst_cleanup_module); 2704