1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 10 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/version.h> 18 #include <linux/pci.h> 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/ioport.h> 22 #include <linux/init.h> 23 #include <linux/interrupt.h> 24 #include <linux/delay.h> 25 #include <linux/if.h> 26 #include <linux/hdlc.h> 27 #include <asm/io.h> 28 #include <linux/uaccess.h> 29 30 #include "farsync.h" 31 32 /* Module info 33 */ 34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 36 MODULE_LICENSE("GPL"); 37 38 /* Driver configuration and global parameters 39 * ========================================== 40 */ 41 42 /* Number of ports (per card) and cards supported 43 */ 44 #define FST_MAX_PORTS 4 45 #define FST_MAX_CARDS 32 46 47 /* Default parameters for the link 48 */ 49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 50 * useful 51 */ 52 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 53 * of frames on the way down to the card 54 * so that we can keep the card busy 55 * and maximise throughput 56 */ 57 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 58 * network layer 59 */ 60 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 61 * control from network layer 62 */ 63 #define FST_MAX_MTU 8000 /* Huge but possible */ 64 #define FST_DEF_MTU 1500 /* Common sane value */ 65 66 #define FST_TX_TIMEOUT (2 * HZ) 67 68 #ifdef ARPHRD_RAWHDLC 69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 70 #else 71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 72 #endif 73 74 /* Modules parameters and associated variables 75 */ 76 static int fst_txq_low = FST_LOW_WATER_MARK; 77 static int fst_txq_high = FST_HIGH_WATER_MARK; 78 static int fst_max_reads = 7; 79 static int fst_excluded_cards; 80 static int fst_excluded_list[FST_MAX_CARDS]; 81 82 module_param(fst_txq_low, int, 0); 83 module_param(fst_txq_high, int, 0); 84 module_param(fst_max_reads, int, 0); 85 module_param(fst_excluded_cards, int, 0); 86 module_param_array(fst_excluded_list, int, NULL, 0); 87 88 /* Card shared memory layout 89 * ========================= 90 */ 91 #pragma pack(1) 92 93 /* This information is derived in part from the FarSite FarSync Smc.h 94 * file. Unfortunately various name clashes and the non-portability of the 95 * bit field declarations in that file have meant that I have chosen to 96 * recreate the information here. 97 * 98 * The SMC (Shared Memory Configuration) has a version number that is 99 * incremented every time there is a significant change. This number can 100 * be used to check that we have not got out of step with the firmware 101 * contained in the .CDE files. 102 */ 103 #define SMC_VERSION 24 104 105 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 106 107 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 108 * configuration structure 109 */ 110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 111 * buffers 112 */ 113 114 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 115 #define LEN_RX_BUFFER 8192 116 117 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 118 #define LEN_SMALL_RX_BUFFER 256 119 120 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 121 #define NUM_RX_BUFFER 8 122 123 /* Interrupt retry time in milliseconds */ 124 #define INT_RETRY_TIME 2 125 126 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 127 * of buffer descriptors. The structure is almost identical to that used 128 * in the LANCE Ethernet controllers. Details available as PDF from the 129 * AMD web site: https://www.amd.com/products/epd/processors/\ 130 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 131 */ 132 struct txdesc { /* Transmit descriptor */ 133 volatile u16 ladr; /* Low order address of packet. This is a 134 * linear address in the Am186 memory space 135 */ 136 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 137 * bits must be zero 138 */ 139 volatile u8 bits; /* Status and config */ 140 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 141 * Transmit terminal count interrupt enable in 142 * top bit. 143 */ 144 u16 unused; /* Not used in Tx */ 145 }; 146 147 struct rxdesc { /* Receive descriptor */ 148 volatile u16 ladr; /* Low order address of packet */ 149 volatile u8 hadr; /* High order address */ 150 volatile u8 bits; /* Status and config */ 151 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 152 * Receive terminal count interrupt enable in 153 * top bit. 154 */ 155 volatile u16 mcnt; /* Message byte count (15 bits) */ 156 }; 157 158 /* Convert a length into the 15 bit 2's complement */ 159 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 160 /* Since we need to set the high bit to enable the completion interrupt this 161 * can be made a lot simpler 162 */ 163 #define cnv_bcnt(len) (-(len)) 164 165 /* Status and config bits for the above */ 166 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 167 #define TX_STP 0x02 /* Tx: start of packet */ 168 #define TX_ENP 0x01 /* Tx: end of packet */ 169 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 170 #define RX_FRAM 0x20 /* Rx: framing error */ 171 #define RX_OFLO 0x10 /* Rx: overflow error */ 172 #define RX_CRC 0x08 /* Rx: CRC error */ 173 #define RX_HBUF 0x04 /* Rx: buffer error */ 174 #define RX_STP 0x02 /* Rx: start of packet */ 175 #define RX_ENP 0x01 /* Rx: end of packet */ 176 177 /* Interrupts from the card are caused by various events which are presented 178 * in a circular buffer as several events may be processed on one physical int 179 */ 180 #define MAX_CIRBUFF 32 181 182 struct cirbuff { 183 u8 rdindex; /* read, then increment and wrap */ 184 u8 wrindex; /* write, then increment and wrap */ 185 u8 evntbuff[MAX_CIRBUFF]; 186 }; 187 188 /* Interrupt event codes. 189 * Where appropriate the two low order bits indicate the port number 190 */ 191 #define CTLA_CHG 0x18 /* Control signal changed */ 192 #define CTLB_CHG 0x19 193 #define CTLC_CHG 0x1A 194 #define CTLD_CHG 0x1B 195 196 #define INIT_CPLT 0x20 /* Initialisation complete */ 197 #define INIT_FAIL 0x21 /* Initialisation failed */ 198 199 #define ABTA_SENT 0x24 /* Abort sent */ 200 #define ABTB_SENT 0x25 201 #define ABTC_SENT 0x26 202 #define ABTD_SENT 0x27 203 204 #define TXA_UNDF 0x28 /* Transmission underflow */ 205 #define TXB_UNDF 0x29 206 #define TXC_UNDF 0x2A 207 #define TXD_UNDF 0x2B 208 209 #define F56_INT 0x2C 210 #define M32_INT 0x2D 211 212 #define TE1_ALMA 0x30 213 214 /* Port physical configuration. See farsync.h for field values */ 215 struct port_cfg { 216 u16 lineInterface; /* Physical interface type */ 217 u8 x25op; /* Unused at present */ 218 u8 internalClock; /* 1 => internal clock, 0 => external */ 219 u8 transparentMode; /* 1 => on, 0 => off */ 220 u8 invertClock; /* 0 => normal, 1 => inverted */ 221 u8 padBytes[6]; /* Padding */ 222 u32 lineSpeed; /* Speed in bps */ 223 }; 224 225 /* TE1 port physical configuration */ 226 struct su_config { 227 u32 dataRate; 228 u8 clocking; 229 u8 framing; 230 u8 structure; 231 u8 interface; 232 u8 coding; 233 u8 lineBuildOut; 234 u8 equalizer; 235 u8 transparentMode; 236 u8 loopMode; 237 u8 range; 238 u8 txBufferMode; 239 u8 rxBufferMode; 240 u8 startingSlot; 241 u8 losThreshold; 242 u8 enableIdleCode; 243 u8 idleCode; 244 u8 spare[44]; 245 }; 246 247 /* TE1 Status */ 248 struct su_status { 249 u32 receiveBufferDelay; 250 u32 framingErrorCount; 251 u32 codeViolationCount; 252 u32 crcErrorCount; 253 u32 lineAttenuation; 254 u8 portStarted; 255 u8 lossOfSignal; 256 u8 receiveRemoteAlarm; 257 u8 alarmIndicationSignal; 258 u8 spare[40]; 259 }; 260 261 /* Finally sling all the above together into the shared memory structure. 262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 263 * evolving under NT for some time so I guess we're stuck with it. 264 * The structure starts at offset SMC_BASE. 265 * See farsync.h for some field values. 266 */ 267 struct fst_shared { 268 /* DMA descriptor rings */ 269 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 270 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 271 272 /* Obsolete small buffers */ 273 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 274 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 275 276 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 277 * 0xFF => halted 278 */ 279 280 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 281 * set to 0xEE by host to acknowledge interrupt 282 */ 283 284 u16 smcVersion; /* Must match SMC_VERSION */ 285 286 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 287 * version, RR = revision and BB = build 288 */ 289 290 u16 txa_done; /* Obsolete completion flags */ 291 u16 rxa_done; 292 u16 txb_done; 293 u16 rxb_done; 294 u16 txc_done; 295 u16 rxc_done; 296 u16 txd_done; 297 u16 rxd_done; 298 299 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 300 301 struct cirbuff interruptEvent; /* interrupt causes */ 302 303 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 304 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 305 306 struct port_cfg portConfig[FST_MAX_PORTS]; 307 308 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 309 310 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 311 312 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 313 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 314 315 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 316 u16 cardMailbox[4]; /* Not used */ 317 318 /* Number of times the card thinks the host has 319 * missed an interrupt by not acknowledging 320 * within 2mS (I guess NT has problems) 321 */ 322 u32 interruptRetryCount; 323 324 /* Driver private data used as an ID. We'll not 325 * use this as I'd rather keep such things 326 * in main memory rather than on the PCI bus 327 */ 328 u32 portHandle[FST_MAX_PORTS]; 329 330 /* Count of Tx underflows for stats */ 331 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 332 333 /* Debounced V.24 control input status */ 334 u32 v24DebouncedSts[FST_MAX_PORTS]; 335 336 /* Adapter debounce timers. Don't touch */ 337 u32 ctsTimer[FST_MAX_PORTS]; 338 u32 ctsTimerRun[FST_MAX_PORTS]; 339 u32 dcdTimer[FST_MAX_PORTS]; 340 u32 dcdTimerRun[FST_MAX_PORTS]; 341 342 u32 numberOfPorts; /* Number of ports detected at startup */ 343 344 u16 _reserved[64]; 345 346 u16 cardMode; /* Bit-mask to enable features: 347 * Bit 0: 1 enables LED identify mode 348 */ 349 350 u16 portScheduleOffset; 351 352 struct su_config suConfig; /* TE1 Bits */ 353 struct su_status suStatus; 354 355 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 356 * the structure and marks the end of shared 357 * memory. Adapter code initializes it as 358 * END_SIG. 359 */ 360 }; 361 362 /* endOfSmcSignature value */ 363 #define END_SIG 0x12345678 364 365 /* Mailbox values. (portMailbox) */ 366 #define NOP 0 /* No operation */ 367 #define ACK 1 /* Positive acknowledgement to PC driver */ 368 #define NAK 2 /* Negative acknowledgement to PC driver */ 369 #define STARTPORT 3 /* Start an HDLC port */ 370 #define STOPPORT 4 /* Stop an HDLC port */ 371 #define ABORTTX 5 /* Abort the transmitter for a port */ 372 #define SETV24O 6 /* Set V24 outputs */ 373 374 /* PLX Chip Register Offsets */ 375 #define CNTRL_9052 0x50 /* Control Register */ 376 #define CNTRL_9054 0x6c /* Control Register */ 377 378 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 379 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 380 381 /* 9054 DMA Registers */ 382 /* Note that we will be using DMA Channel 0 for copying rx data 383 * and Channel 1 for copying tx data 384 */ 385 #define DMAMODE0 0x80 386 #define DMAPADR0 0x84 387 #define DMALADR0 0x88 388 #define DMASIZ0 0x8c 389 #define DMADPR0 0x90 390 #define DMAMODE1 0x94 391 #define DMAPADR1 0x98 392 #define DMALADR1 0x9c 393 #define DMASIZ1 0xa0 394 #define DMADPR1 0xa4 395 #define DMACSR0 0xa8 396 #define DMACSR1 0xa9 397 #define DMAARB 0xac 398 #define DMATHR 0xb0 399 #define DMADAC0 0xb4 400 #define DMADAC1 0xb8 401 #define DMAMARBR 0xac 402 403 #define FST_MIN_DMA_LEN 64 404 #define FST_RX_DMA_INT 0x01 405 #define FST_TX_DMA_INT 0x02 406 #define FST_CARD_INT 0x04 407 408 /* Larger buffers are positioned in memory at offset BFM_BASE */ 409 struct buf_window { 410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 412 }; 413 414 /* Calculate offset of a buffer object within the shared memory window */ 415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 416 417 #pragma pack() 418 419 /* Device driver private information 420 * ================================= 421 */ 422 /* Per port (line or channel) information 423 */ 424 struct fst_port_info { 425 struct net_device *dev; /* Device struct - must be first */ 426 struct fst_card_info *card; /* Card we're associated with */ 427 int index; /* Port index on the card */ 428 int hwif; /* Line hardware (lineInterface copy) */ 429 int run; /* Port is running */ 430 int mode; /* Normal or FarSync raw */ 431 int rxpos; /* Next Rx buffer to use */ 432 int txpos; /* Next Tx buffer to use */ 433 int txipos; /* Next Tx buffer to check for free */ 434 int start; /* Indication of start/stop to network */ 435 /* A sixteen entry transmit queue 436 */ 437 int txqs; /* index to get next buffer to tx */ 438 int txqe; /* index to queue next packet */ 439 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 440 int rxqdepth; 441 }; 442 443 /* Per card information 444 */ 445 struct fst_card_info { 446 char __iomem *mem; /* Card memory mapped to kernel space */ 447 char __iomem *ctlmem; /* Control memory for PCI cards */ 448 unsigned int phys_mem; /* Physical memory window address */ 449 unsigned int phys_ctlmem; /* Physical control memory address */ 450 unsigned int irq; /* Interrupt request line number */ 451 unsigned int nports; /* Number of serial ports */ 452 unsigned int type; /* Type index of card */ 453 unsigned int state; /* State of card */ 454 spinlock_t card_lock; /* Lock for SMP access */ 455 unsigned short pci_conf; /* PCI card config in I/O space */ 456 /* Per port info */ 457 struct fst_port_info ports[FST_MAX_PORTS]; 458 struct pci_dev *device; /* Information about the pci device */ 459 int card_no; /* Inst of the card on the system */ 460 int family; /* TxP or TxU */ 461 int dmarx_in_progress; 462 int dmatx_in_progress; 463 unsigned long int_count; 464 unsigned long int_time_ave; 465 void *rx_dma_handle_host; 466 dma_addr_t rx_dma_handle_card; 467 void *tx_dma_handle_host; 468 dma_addr_t tx_dma_handle_card; 469 struct sk_buff *dma_skb_rx; 470 struct fst_port_info *dma_port_rx; 471 struct fst_port_info *dma_port_tx; 472 int dma_len_rx; 473 int dma_len_tx; 474 int dma_txpos; 475 int dma_rxpos; 476 }; 477 478 /* Convert an HDLC device pointer into a port info pointer and similar */ 479 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 480 #define port_to_dev(P) ((P)->dev) 481 482 /* Shared memory window access macros 483 * 484 * We have a nice memory based structure above, which could be directly 485 * mapped on i386 but might not work on other architectures unless we use 486 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 487 * physical offsets so we have to convert. The only saving grace is that 488 * this should all collapse back to a simple indirection eventually. 489 */ 490 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 491 492 #define FST_RDB(C, E) (readb((C)->mem + WIN_OFFSET(E))) 493 #define FST_RDW(C, E) (readw((C)->mem + WIN_OFFSET(E))) 494 #define FST_RDL(C, E) (readl((C)->mem + WIN_OFFSET(E))) 495 496 #define FST_WRB(C, E, B) (writeb((B), (C)->mem + WIN_OFFSET(E))) 497 #define FST_WRW(C, E, W) (writew((W), (C)->mem + WIN_OFFSET(E))) 498 #define FST_WRL(C, E, L) (writel((L), (C)->mem + WIN_OFFSET(E))) 499 500 /* Debug support 501 */ 502 #if FST_DEBUG 503 504 static int fst_debug_mask = { FST_DEBUG }; 505 506 /* Most common debug activity is to print something if the corresponding bit 507 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 508 * support variable numbers of macro parameters. The inverted if prevents us 509 * eating someone else's else clause. 510 */ 511 #define dbg(F, fmt, args...) \ 512 do { \ 513 if (fst_debug_mask & (F)) \ 514 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 515 } while (0) 516 #else 517 #define dbg(F, fmt, args...) \ 518 do { \ 519 if (0) \ 520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 521 } while (0) 522 #endif 523 524 /* PCI ID lookup table 525 */ 526 static const struct pci_device_id fst_pci_dev_id[] = { 527 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 528 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 529 530 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 531 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 532 533 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 534 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 535 536 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 537 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 538 539 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 540 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 541 542 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 543 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 544 545 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 546 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 547 {0,} /* End */ 548 }; 549 550 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 551 552 /* Device Driver Work Queues 553 * 554 * So that we don't spend too much time processing events in the 555 * Interrupt Service routine, we will declare a work queue per Card 556 * and make the ISR schedule a task in the queue for later execution. 557 * In the 2.4 Kernel we used to use the immediate queue for BH's 558 * Now that they are gone, tasklets seem to be much better than work 559 * queues. 560 */ 561 562 static void do_bottom_half_tx(struct fst_card_info *card); 563 static void do_bottom_half_rx(struct fst_card_info *card); 564 static void fst_process_tx_work_q(struct tasklet_struct *unused); 565 static void fst_process_int_work_q(struct tasklet_struct *unused); 566 567 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q); 568 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q); 569 570 static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 571 static DEFINE_SPINLOCK(fst_work_q_lock); 572 static u64 fst_work_txq; 573 static u64 fst_work_intq; 574 575 static void 576 fst_q_work_item(u64 *queue, int card_index) 577 { 578 unsigned long flags; 579 u64 mask; 580 581 /* Grab the queue exclusively 582 */ 583 spin_lock_irqsave(&fst_work_q_lock, flags); 584 585 /* Making an entry in the queue is simply a matter of setting 586 * a bit for the card indicating that there is work to do in the 587 * bottom half for the card. Note the limitation of 64 cards. 588 * That ought to be enough 589 */ 590 mask = (u64)1 << card_index; 591 *queue |= mask; 592 spin_unlock_irqrestore(&fst_work_q_lock, flags); 593 } 594 595 static void 596 fst_process_tx_work_q(struct tasklet_struct *unused) 597 { 598 unsigned long flags; 599 u64 work_txq; 600 int i; 601 602 /* Grab the queue exclusively 603 */ 604 dbg(DBG_TX, "fst_process_tx_work_q\n"); 605 spin_lock_irqsave(&fst_work_q_lock, flags); 606 work_txq = fst_work_txq; 607 fst_work_txq = 0; 608 spin_unlock_irqrestore(&fst_work_q_lock, flags); 609 610 /* Call the bottom half for each card with work waiting 611 */ 612 for (i = 0; i < FST_MAX_CARDS; i++) { 613 if (work_txq & 0x01) { 614 if (fst_card_array[i]) { 615 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 616 do_bottom_half_tx(fst_card_array[i]); 617 } 618 } 619 work_txq = work_txq >> 1; 620 } 621 } 622 623 static void 624 fst_process_int_work_q(struct tasklet_struct *unused) 625 { 626 unsigned long flags; 627 u64 work_intq; 628 int i; 629 630 /* Grab the queue exclusively 631 */ 632 dbg(DBG_INTR, "fst_process_int_work_q\n"); 633 spin_lock_irqsave(&fst_work_q_lock, flags); 634 work_intq = fst_work_intq; 635 fst_work_intq = 0; 636 spin_unlock_irqrestore(&fst_work_q_lock, flags); 637 638 /* Call the bottom half for each card with work waiting 639 */ 640 for (i = 0; i < FST_MAX_CARDS; i++) { 641 if (work_intq & 0x01) { 642 if (fst_card_array[i]) { 643 dbg(DBG_INTR, 644 "Calling rx & tx bh for card %d\n", i); 645 do_bottom_half_rx(fst_card_array[i]); 646 do_bottom_half_tx(fst_card_array[i]); 647 } 648 } 649 work_intq = work_intq >> 1; 650 } 651 } 652 653 /* Card control functions 654 * ====================== 655 */ 656 /* Place the processor in reset state 657 * 658 * Used to be a simple write to card control space but a glitch in the latest 659 * AMD Am186CH processor means that we now have to do it by asserting and de- 660 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 661 * at offset 9052_CNTRL. Note the updates for the TXU. 662 */ 663 static inline void 664 fst_cpureset(struct fst_card_info *card) 665 { 666 unsigned char interrupt_line_register; 667 unsigned int regval; 668 669 if (card->family == FST_FAMILY_TXU) { 670 if (pci_read_config_byte 671 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 672 dbg(DBG_ASS, 673 "Error in reading interrupt line register\n"); 674 } 675 /* Assert PLX software reset and Am186 hardware reset 676 * and then deassert the PLX software reset but 186 still in reset 677 */ 678 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 679 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 680 /* We are delaying here to allow the 9054 to reset itself 681 */ 682 usleep_range(10, 20); 683 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 684 /* We are delaying here to allow the 9054 to reload its eeprom 685 */ 686 usleep_range(10, 20); 687 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 688 689 if (pci_write_config_byte 690 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 691 dbg(DBG_ASS, 692 "Error in writing interrupt line register\n"); 693 } 694 695 } else { 696 regval = inl(card->pci_conf + CNTRL_9052); 697 698 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 699 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 700 } 701 } 702 703 /* Release the processor from reset 704 */ 705 static inline void 706 fst_cpurelease(struct fst_card_info *card) 707 { 708 if (card->family == FST_FAMILY_TXU) { 709 /* Force posted writes to complete 710 */ 711 (void)readb(card->mem); 712 713 /* Release LRESET DO = 1 714 * Then release Local Hold, DO = 1 715 */ 716 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 717 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 718 } else { 719 (void)readb(card->ctlmem); 720 } 721 } 722 723 /* Clear the cards interrupt flag 724 */ 725 static inline void 726 fst_clear_intr(struct fst_card_info *card) 727 { 728 if (card->family == FST_FAMILY_TXU) { 729 (void)readb(card->ctlmem); 730 } else { 731 /* Poke the appropriate PLX chip register (same as enabling interrupts) 732 */ 733 outw(0x0543, card->pci_conf + INTCSR_9052); 734 } 735 } 736 737 /* Enable card interrupts 738 */ 739 static inline void 740 fst_enable_intr(struct fst_card_info *card) 741 { 742 if (card->family == FST_FAMILY_TXU) 743 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 744 else 745 outw(0x0543, card->pci_conf + INTCSR_9052); 746 } 747 748 /* Disable card interrupts 749 */ 750 static inline void 751 fst_disable_intr(struct fst_card_info *card) 752 { 753 if (card->family == FST_FAMILY_TXU) 754 outl(0x00000000, card->pci_conf + INTCSR_9054); 755 else 756 outw(0x0000, card->pci_conf + INTCSR_9052); 757 } 758 759 /* Process the result of trying to pass a received frame up the stack 760 */ 761 static void 762 fst_process_rx_status(int rx_status, char *name) 763 { 764 switch (rx_status) { 765 case NET_RX_SUCCESS: 766 { 767 /* Nothing to do here 768 */ 769 break; 770 } 771 case NET_RX_DROP: 772 { 773 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 774 break; 775 } 776 } 777 } 778 779 /* Initilaise DMA for PLX 9054 780 */ 781 static inline void 782 fst_init_dma(struct fst_card_info *card) 783 { 784 /* This is only required for the PLX 9054 785 */ 786 if (card->family == FST_FAMILY_TXU) { 787 pci_set_master(card->device); 788 outl(0x00020441, card->pci_conf + DMAMODE0); 789 outl(0x00020441, card->pci_conf + DMAMODE1); 790 outl(0x0, card->pci_conf + DMATHR); 791 } 792 } 793 794 /* Tx dma complete interrupt 795 */ 796 static void 797 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 798 int len, int txpos) 799 { 800 struct net_device *dev = port_to_dev(port); 801 802 /* Everything is now set, just tell the card to go 803 */ 804 dbg(DBG_TX, "fst_tx_dma_complete\n"); 805 FST_WRB(card, txDescrRing[port->index][txpos].bits, 806 DMA_OWN | TX_STP | TX_ENP); 807 dev->stats.tx_packets++; 808 dev->stats.tx_bytes += len; 809 netif_trans_update(dev); 810 } 811 812 /* Mark it for our own raw sockets interface 813 */ 814 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) 815 { 816 skb->dev = dev; 817 skb_reset_mac_header(skb); 818 skb->pkt_type = PACKET_HOST; 819 return htons(ETH_P_CUST); 820 } 821 822 /* Rx dma complete interrupt 823 */ 824 static void 825 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 826 int len, struct sk_buff *skb, int rxp) 827 { 828 struct net_device *dev = port_to_dev(port); 829 int pi; 830 int rx_status; 831 832 dbg(DBG_TX, "fst_rx_dma_complete\n"); 833 pi = port->index; 834 skb_put_data(skb, card->rx_dma_handle_host, len); 835 836 /* Reset buffer descriptor */ 837 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 838 839 /* Update stats */ 840 dev->stats.rx_packets++; 841 dev->stats.rx_bytes += len; 842 843 /* Push upstream */ 844 dbg(DBG_RX, "Pushing the frame up the stack\n"); 845 if (port->mode == FST_RAW) 846 skb->protocol = farsync_type_trans(skb, dev); 847 else 848 skb->protocol = hdlc_type_trans(skb, dev); 849 rx_status = netif_rx(skb); 850 fst_process_rx_status(rx_status, port_to_dev(port)->name); 851 if (rx_status == NET_RX_DROP) 852 dev->stats.rx_dropped++; 853 } 854 855 /* Receive a frame through the DMA 856 */ 857 static inline void 858 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len) 859 { 860 /* This routine will setup the DMA and start it 861 */ 862 863 dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len); 864 if (card->dmarx_in_progress) 865 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 866 867 outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */ 868 outl(mem, card->pci_conf + DMALADR0); /* from here */ 869 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 870 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 871 872 /* We use the dmarx_in_progress flag to flag the channel as busy 873 */ 874 card->dmarx_in_progress = 1; 875 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 876 } 877 878 /* Send a frame through the DMA 879 */ 880 static inline void 881 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len) 882 { 883 /* This routine will setup the DMA and start it. 884 */ 885 886 dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len); 887 if (card->dmatx_in_progress) 888 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 889 890 outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */ 891 outl(mem, card->pci_conf + DMALADR1); /* to here */ 892 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 893 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 894 895 /* We use the dmatx_in_progress to flag the channel as busy 896 */ 897 card->dmatx_in_progress = 1; 898 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 899 } 900 901 /* Issue a Mailbox command for a port. 902 * Note we issue them on a fire and forget basis, not expecting to see an 903 * error and not waiting for completion. 904 */ 905 static void 906 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 907 { 908 struct fst_card_info *card; 909 unsigned short mbval; 910 unsigned long flags; 911 int safety; 912 913 card = port->card; 914 spin_lock_irqsave(&card->card_lock, flags); 915 mbval = FST_RDW(card, portMailbox[port->index][0]); 916 917 safety = 0; 918 /* Wait for any previous command to complete */ 919 while (mbval > NAK) { 920 spin_unlock_irqrestore(&card->card_lock, flags); 921 schedule_timeout_uninterruptible(1); 922 spin_lock_irqsave(&card->card_lock, flags); 923 924 if (++safety > 2000) { 925 pr_err("Mailbox safety timeout\n"); 926 break; 927 } 928 929 mbval = FST_RDW(card, portMailbox[port->index][0]); 930 } 931 if (safety > 0) 932 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 933 934 if (mbval == NAK) 935 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 936 937 FST_WRW(card, portMailbox[port->index][0], cmd); 938 939 if (cmd == ABORTTX || cmd == STARTPORT) { 940 port->txpos = 0; 941 port->txipos = 0; 942 port->start = 0; 943 } 944 945 spin_unlock_irqrestore(&card->card_lock, flags); 946 } 947 948 /* Port output signals control 949 */ 950 static inline void 951 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 952 { 953 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 954 FST_WRL(port->card, v24OpSts[port->index], outputs); 955 956 if (port->run) 957 fst_issue_cmd(port, SETV24O); 958 } 959 960 static inline void 961 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 962 { 963 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 964 FST_WRL(port->card, v24OpSts[port->index], outputs); 965 966 if (port->run) 967 fst_issue_cmd(port, SETV24O); 968 } 969 970 /* Setup port Rx buffers 971 */ 972 static void 973 fst_rx_config(struct fst_port_info *port) 974 { 975 int i; 976 int pi; 977 unsigned int offset; 978 unsigned long flags; 979 struct fst_card_info *card; 980 981 pi = port->index; 982 card = port->card; 983 spin_lock_irqsave(&card->card_lock, flags); 984 for (i = 0; i < NUM_RX_BUFFER; i++) { 985 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 986 987 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16)offset); 988 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8)(offset >> 16)); 989 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 990 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 991 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 992 } 993 port->rxpos = 0; 994 spin_unlock_irqrestore(&card->card_lock, flags); 995 } 996 997 /* Setup port Tx buffers 998 */ 999 static void 1000 fst_tx_config(struct fst_port_info *port) 1001 { 1002 int i; 1003 int pi; 1004 unsigned int offset; 1005 unsigned long flags; 1006 struct fst_card_info *card; 1007 1008 pi = port->index; 1009 card = port->card; 1010 spin_lock_irqsave(&card->card_lock, flags); 1011 for (i = 0; i < NUM_TX_BUFFER; i++) { 1012 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1013 1014 FST_WRW(card, txDescrRing[pi][i].ladr, (u16)offset); 1015 FST_WRB(card, txDescrRing[pi][i].hadr, (u8)(offset >> 16)); 1016 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1017 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1018 } 1019 port->txpos = 0; 1020 port->txipos = 0; 1021 port->start = 0; 1022 spin_unlock_irqrestore(&card->card_lock, flags); 1023 } 1024 1025 /* TE1 Alarm change interrupt event 1026 */ 1027 static void 1028 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1029 { 1030 u8 los; 1031 u8 rra; 1032 u8 ais; 1033 1034 los = FST_RDB(card, suStatus.lossOfSignal); 1035 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1036 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1037 1038 if (los) { 1039 /* Lost the link 1040 */ 1041 if (netif_carrier_ok(port_to_dev(port))) { 1042 dbg(DBG_INTR, "Net carrier off\n"); 1043 netif_carrier_off(port_to_dev(port)); 1044 } 1045 } else { 1046 /* Link available 1047 */ 1048 if (!netif_carrier_ok(port_to_dev(port))) { 1049 dbg(DBG_INTR, "Net carrier on\n"); 1050 netif_carrier_on(port_to_dev(port)); 1051 } 1052 } 1053 1054 if (los) 1055 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1056 else 1057 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1058 if (rra) 1059 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1060 else 1061 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1062 1063 if (ais) 1064 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1065 else 1066 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1067 } 1068 1069 /* Control signal change interrupt event 1070 */ 1071 static void 1072 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1073 { 1074 int signals; 1075 1076 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1077 1078 if (signals & ((port->hwif == X21 || port->hwif == X21D) 1079 ? IPSTS_INDICATE : IPSTS_DCD)) { 1080 if (!netif_carrier_ok(port_to_dev(port))) { 1081 dbg(DBG_INTR, "DCD active\n"); 1082 netif_carrier_on(port_to_dev(port)); 1083 } 1084 } else { 1085 if (netif_carrier_ok(port_to_dev(port))) { 1086 dbg(DBG_INTR, "DCD lost\n"); 1087 netif_carrier_off(port_to_dev(port)); 1088 } 1089 } 1090 } 1091 1092 /* Log Rx Errors 1093 */ 1094 static void 1095 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1096 unsigned char dmabits, int rxp, unsigned short len) 1097 { 1098 struct net_device *dev = port_to_dev(port); 1099 1100 /* Increment the appropriate error counter 1101 */ 1102 dev->stats.rx_errors++; 1103 if (dmabits & RX_OFLO) { 1104 dev->stats.rx_fifo_errors++; 1105 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1106 card->card_no, port->index, rxp); 1107 } 1108 if (dmabits & RX_CRC) { 1109 dev->stats.rx_crc_errors++; 1110 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1111 card->card_no, port->index); 1112 } 1113 if (dmabits & RX_FRAM) { 1114 dev->stats.rx_frame_errors++; 1115 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1116 card->card_no, port->index); 1117 } 1118 if (dmabits == (RX_STP | RX_ENP)) { 1119 dev->stats.rx_length_errors++; 1120 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1121 len, card->card_no, port->index); 1122 } 1123 } 1124 1125 /* Rx Error Recovery 1126 */ 1127 static void 1128 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1129 unsigned char dmabits, int rxp, unsigned short len) 1130 { 1131 int i; 1132 int pi; 1133 1134 pi = port->index; 1135 /* Discard buffer descriptors until we see the start of the 1136 * next frame. Note that for long frames this could be in 1137 * a subsequent interrupt. 1138 */ 1139 i = 0; 1140 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1141 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1142 rxp = (rxp + 1) % NUM_RX_BUFFER; 1143 if (++i > NUM_RX_BUFFER) { 1144 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1145 " than we have\n"); 1146 break; 1147 } 1148 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1149 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1150 } 1151 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1152 1153 /* Discard the terminal buffer */ 1154 if (!(dmabits & DMA_OWN)) { 1155 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1156 rxp = (rxp + 1) % NUM_RX_BUFFER; 1157 } 1158 port->rxpos = rxp; 1159 } 1160 1161 /* Rx complete interrupt 1162 */ 1163 static void 1164 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1165 { 1166 unsigned char dmabits; 1167 int pi; 1168 int rxp; 1169 int rx_status; 1170 unsigned short len; 1171 struct sk_buff *skb; 1172 struct net_device *dev = port_to_dev(port); 1173 1174 /* Check we have a buffer to process */ 1175 pi = port->index; 1176 rxp = port->rxpos; 1177 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1178 if (dmabits & DMA_OWN) { 1179 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1180 pi, rxp); 1181 return; 1182 } 1183 if (card->dmarx_in_progress) 1184 return; 1185 1186 /* Get buffer length */ 1187 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1188 /* Discard the CRC */ 1189 len -= 2; 1190 if (len == 0) { 1191 /* This seems to happen on the TE1 interface sometimes 1192 * so throw the frame away and log the event. 1193 */ 1194 pr_err("Frame received with 0 length. Card %d Port %d\n", 1195 card->card_no, port->index); 1196 /* Return descriptor to card */ 1197 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1198 1199 rxp = (rxp + 1) % NUM_RX_BUFFER; 1200 port->rxpos = rxp; 1201 return; 1202 } 1203 1204 /* Check buffer length and for other errors. We insist on one packet 1205 * in one buffer. This simplifies things greatly and since we've 1206 * allocated 8K it shouldn't be a real world limitation 1207 */ 1208 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1209 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1210 fst_log_rx_error(card, port, dmabits, rxp, len); 1211 fst_recover_rx_error(card, port, dmabits, rxp, len); 1212 return; 1213 } 1214 1215 /* Allocate SKB */ 1216 skb = dev_alloc_skb(len); 1217 if (!skb) { 1218 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1219 1220 dev->stats.rx_dropped++; 1221 1222 /* Return descriptor to card */ 1223 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1224 1225 rxp = (rxp + 1) % NUM_RX_BUFFER; 1226 port->rxpos = rxp; 1227 return; 1228 } 1229 1230 /* We know the length we need to receive, len. 1231 * It's not worth using the DMA for reads of less than 1232 * FST_MIN_DMA_LEN 1233 */ 1234 1235 if (len < FST_MIN_DMA_LEN || card->family == FST_FAMILY_TXP) { 1236 memcpy_fromio(skb_put(skb, len), 1237 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1238 len); 1239 1240 /* Reset buffer descriptor */ 1241 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1242 1243 /* Update stats */ 1244 dev->stats.rx_packets++; 1245 dev->stats.rx_bytes += len; 1246 1247 /* Push upstream */ 1248 dbg(DBG_RX, "Pushing frame up the stack\n"); 1249 if (port->mode == FST_RAW) 1250 skb->protocol = farsync_type_trans(skb, dev); 1251 else 1252 skb->protocol = hdlc_type_trans(skb, dev); 1253 rx_status = netif_rx(skb); 1254 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1255 if (rx_status == NET_RX_DROP) 1256 dev->stats.rx_dropped++; 1257 } else { 1258 card->dma_skb_rx = skb; 1259 card->dma_port_rx = port; 1260 card->dma_len_rx = len; 1261 card->dma_rxpos = rxp; 1262 fst_rx_dma(card, card->rx_dma_handle_card, 1263 BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1264 } 1265 if (rxp != port->rxpos) { 1266 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1267 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1268 } 1269 rxp = (rxp + 1) % NUM_RX_BUFFER; 1270 port->rxpos = rxp; 1271 } 1272 1273 /* The bottom half to the ISR 1274 * 1275 */ 1276 1277 static void 1278 do_bottom_half_tx(struct fst_card_info *card) 1279 { 1280 struct fst_port_info *port; 1281 int pi; 1282 int txq_length; 1283 struct sk_buff *skb; 1284 unsigned long flags; 1285 struct net_device *dev; 1286 1287 /* Find a free buffer for the transmit 1288 * Step through each port on this card 1289 */ 1290 1291 dbg(DBG_TX, "do_bottom_half_tx\n"); 1292 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1293 if (!port->run) 1294 continue; 1295 1296 dev = port_to_dev(port); 1297 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1298 DMA_OWN) && 1299 !(card->dmatx_in_progress)) { 1300 /* There doesn't seem to be a txdone event per-se 1301 * We seem to have to deduce it, by checking the DMA_OWN 1302 * bit on the next buffer we think we can use 1303 */ 1304 spin_lock_irqsave(&card->card_lock, flags); 1305 txq_length = port->txqe - port->txqs; 1306 if (txq_length < 0) { 1307 /* This is the case where one has wrapped and the 1308 * maths gives us a negative number 1309 */ 1310 txq_length = txq_length + FST_TXQ_DEPTH; 1311 } 1312 spin_unlock_irqrestore(&card->card_lock, flags); 1313 if (txq_length > 0) { 1314 /* There is something to send 1315 */ 1316 spin_lock_irqsave(&card->card_lock, flags); 1317 skb = port->txq[port->txqs]; 1318 port->txqs++; 1319 if (port->txqs == FST_TXQ_DEPTH) 1320 port->txqs = 0; 1321 1322 spin_unlock_irqrestore(&card->card_lock, flags); 1323 /* copy the data and set the required indicators on the 1324 * card. 1325 */ 1326 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1327 cnv_bcnt(skb->len)); 1328 if (skb->len < FST_MIN_DMA_LEN || 1329 card->family == FST_FAMILY_TXP) { 1330 /* Enqueue the packet with normal io */ 1331 memcpy_toio(card->mem + 1332 BUF_OFFSET(txBuffer[pi] 1333 [port-> 1334 txpos][0]), 1335 skb->data, skb->len); 1336 FST_WRB(card, 1337 txDescrRing[pi][port->txpos]. 1338 bits, 1339 DMA_OWN | TX_STP | TX_ENP); 1340 dev->stats.tx_packets++; 1341 dev->stats.tx_bytes += skb->len; 1342 netif_trans_update(dev); 1343 } else { 1344 /* Or do it through dma */ 1345 memcpy(card->tx_dma_handle_host, 1346 skb->data, skb->len); 1347 card->dma_port_tx = port; 1348 card->dma_len_tx = skb->len; 1349 card->dma_txpos = port->txpos; 1350 fst_tx_dma(card, 1351 card->tx_dma_handle_card, 1352 BUF_OFFSET(txBuffer[pi] 1353 [port->txpos][0]), 1354 skb->len); 1355 } 1356 if (++port->txpos >= NUM_TX_BUFFER) 1357 port->txpos = 0; 1358 /* If we have flow control on, can we now release it? 1359 */ 1360 if (port->start) { 1361 if (txq_length < fst_txq_low) { 1362 netif_wake_queue(port_to_dev 1363 (port)); 1364 port->start = 0; 1365 } 1366 } 1367 dev_kfree_skb(skb); 1368 } else { 1369 /* Nothing to send so break out of the while loop 1370 */ 1371 break; 1372 } 1373 } 1374 } 1375 } 1376 1377 static void 1378 do_bottom_half_rx(struct fst_card_info *card) 1379 { 1380 struct fst_port_info *port; 1381 int pi; 1382 int rx_count = 0; 1383 1384 /* Check for rx completions on all ports on this card */ 1385 dbg(DBG_RX, "do_bottom_half_rx\n"); 1386 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1387 if (!port->run) 1388 continue; 1389 1390 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1391 & DMA_OWN) && !(card->dmarx_in_progress)) { 1392 if (rx_count > fst_max_reads) { 1393 /* Don't spend forever in receive processing 1394 * Schedule another event 1395 */ 1396 fst_q_work_item(&fst_work_intq, card->card_no); 1397 tasklet_schedule(&fst_int_task); 1398 break; /* Leave the loop */ 1399 } 1400 fst_intr_rx(card, port); 1401 rx_count++; 1402 } 1403 } 1404 } 1405 1406 /* The interrupt service routine 1407 * Dev_id is our fst_card_info pointer 1408 */ 1409 static irqreturn_t 1410 fst_intr(int dummy, void *dev_id) 1411 { 1412 struct fst_card_info *card = dev_id; 1413 struct fst_port_info *port; 1414 int rdidx; /* Event buffer indices */ 1415 int wridx; 1416 int event; /* Actual event for processing */ 1417 unsigned int dma_intcsr = 0; 1418 unsigned int do_card_interrupt; 1419 unsigned int int_retry_count; 1420 1421 /* Check to see if the interrupt was for this card 1422 * return if not 1423 * Note that the call to clear the interrupt is important 1424 */ 1425 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); 1426 if (card->state != FST_RUNNING) { 1427 pr_err("Interrupt received for card %d in a non running state (%d)\n", 1428 card->card_no, card->state); 1429 1430 /* It is possible to really be running, i.e. we have re-loaded 1431 * a running card 1432 * Clear and reprime the interrupt source 1433 */ 1434 fst_clear_intr(card); 1435 return IRQ_HANDLED; 1436 } 1437 1438 /* Clear and reprime the interrupt source */ 1439 fst_clear_intr(card); 1440 1441 /* Is the interrupt for this card (handshake == 1) 1442 */ 1443 do_card_interrupt = 0; 1444 if (FST_RDB(card, interruptHandshake) == 1) { 1445 do_card_interrupt += FST_CARD_INT; 1446 /* Set the software acknowledge */ 1447 FST_WRB(card, interruptHandshake, 0xEE); 1448 } 1449 if (card->family == FST_FAMILY_TXU) { 1450 /* Is it a DMA Interrupt 1451 */ 1452 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1453 if (dma_intcsr & 0x00200000) { 1454 /* DMA Channel 0 (Rx transfer complete) 1455 */ 1456 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1457 outb(0x8, card->pci_conf + DMACSR0); 1458 fst_rx_dma_complete(card, card->dma_port_rx, 1459 card->dma_len_rx, card->dma_skb_rx, 1460 card->dma_rxpos); 1461 card->dmarx_in_progress = 0; 1462 do_card_interrupt += FST_RX_DMA_INT; 1463 } 1464 if (dma_intcsr & 0x00400000) { 1465 /* DMA Channel 1 (Tx transfer complete) 1466 */ 1467 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1468 outb(0x8, card->pci_conf + DMACSR1); 1469 fst_tx_dma_complete(card, card->dma_port_tx, 1470 card->dma_len_tx, card->dma_txpos); 1471 card->dmatx_in_progress = 0; 1472 do_card_interrupt += FST_TX_DMA_INT; 1473 } 1474 } 1475 1476 /* Have we been missing Interrupts 1477 */ 1478 int_retry_count = FST_RDL(card, interruptRetryCount); 1479 if (int_retry_count) { 1480 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1481 card->card_no, int_retry_count); 1482 FST_WRL(card, interruptRetryCount, 0); 1483 } 1484 1485 if (!do_card_interrupt) 1486 return IRQ_HANDLED; 1487 1488 /* Scehdule the bottom half of the ISR */ 1489 fst_q_work_item(&fst_work_intq, card->card_no); 1490 tasklet_schedule(&fst_int_task); 1491 1492 /* Drain the event queue */ 1493 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1494 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1495 while (rdidx != wridx) { 1496 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1497 port = &card->ports[event & 0x03]; 1498 1499 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1500 1501 switch (event) { 1502 case TE1_ALMA: 1503 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1504 if (port->run) 1505 fst_intr_te1_alarm(card, port); 1506 break; 1507 1508 case CTLA_CHG: 1509 case CTLB_CHG: 1510 case CTLC_CHG: 1511 case CTLD_CHG: 1512 if (port->run) 1513 fst_intr_ctlchg(card, port); 1514 break; 1515 1516 case ABTA_SENT: 1517 case ABTB_SENT: 1518 case ABTC_SENT: 1519 case ABTD_SENT: 1520 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1521 break; 1522 1523 case TXA_UNDF: 1524 case TXB_UNDF: 1525 case TXC_UNDF: 1526 case TXD_UNDF: 1527 /* Difficult to see how we'd get this given that we 1528 * always load up the entire packet for DMA. 1529 */ 1530 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1531 port_to_dev(port)->stats.tx_errors++; 1532 port_to_dev(port)->stats.tx_fifo_errors++; 1533 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1534 card->card_no, port->index); 1535 break; 1536 1537 case INIT_CPLT: 1538 dbg(DBG_INIT, "Card init OK intr\n"); 1539 break; 1540 1541 case INIT_FAIL: 1542 dbg(DBG_INIT, "Card init FAILED intr\n"); 1543 card->state = FST_IFAILED; 1544 break; 1545 1546 default: 1547 pr_err("intr: unknown card event %d. ignored\n", event); 1548 break; 1549 } 1550 1551 /* Bump and wrap the index */ 1552 if (++rdidx >= MAX_CIRBUFF) 1553 rdidx = 0; 1554 } 1555 FST_WRB(card, interruptEvent.rdindex, rdidx); 1556 return IRQ_HANDLED; 1557 } 1558 1559 /* Check that the shared memory configuration is one that we can handle 1560 * and that some basic parameters are correct 1561 */ 1562 static void 1563 check_started_ok(struct fst_card_info *card) 1564 { 1565 int i; 1566 1567 /* Check structure version and end marker */ 1568 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1569 pr_err("Bad shared memory version %d expected %d\n", 1570 FST_RDW(card, smcVersion), SMC_VERSION); 1571 card->state = FST_BADVERSION; 1572 return; 1573 } 1574 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1575 pr_err("Missing shared memory signature\n"); 1576 card->state = FST_BADVERSION; 1577 return; 1578 } 1579 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1580 i = FST_RDB(card, taskStatus); 1581 if (i == 0x01) { 1582 card->state = FST_RUNNING; 1583 } else if (i == 0xFF) { 1584 pr_err("Firmware initialisation failed. Card halted\n"); 1585 card->state = FST_HALTED; 1586 return; 1587 } else if (i != 0x00) { 1588 pr_err("Unknown firmware status 0x%x\n", i); 1589 card->state = FST_HALTED; 1590 return; 1591 } 1592 1593 /* Finally check the number of ports reported by firmware against the 1594 * number we assumed at card detection. Should never happen with 1595 * existing firmware etc so we just report it for the moment. 1596 */ 1597 if (FST_RDL(card, numberOfPorts) != card->nports) { 1598 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n", 1599 card->card_no, 1600 FST_RDL(card, numberOfPorts), card->nports); 1601 } 1602 } 1603 1604 static int 1605 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1606 struct fstioc_info *info) 1607 { 1608 int err; 1609 unsigned char my_framing; 1610 1611 /* Set things according to the user set valid flags 1612 * Several of the old options have been invalidated/replaced by the 1613 * generic hdlc package. 1614 */ 1615 err = 0; 1616 if (info->valid & FSTVAL_PROTO) { 1617 if (info->proto == FST_RAW) 1618 port->mode = FST_RAW; 1619 else 1620 port->mode = FST_GEN_HDLC; 1621 } 1622 1623 if (info->valid & FSTVAL_CABLE) 1624 err = -EINVAL; 1625 1626 if (info->valid & FSTVAL_SPEED) 1627 err = -EINVAL; 1628 1629 if (info->valid & FSTVAL_PHASE) 1630 FST_WRB(card, portConfig[port->index].invertClock, 1631 info->invertClock); 1632 if (info->valid & FSTVAL_MODE) 1633 FST_WRW(card, cardMode, info->cardMode); 1634 if (info->valid & FSTVAL_TE1) { 1635 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1636 FST_WRB(card, suConfig.clocking, info->clockSource); 1637 my_framing = FRAMING_E1; 1638 if (info->framing == E1) 1639 my_framing = FRAMING_E1; 1640 if (info->framing == T1) 1641 my_framing = FRAMING_T1; 1642 if (info->framing == J1) 1643 my_framing = FRAMING_J1; 1644 FST_WRB(card, suConfig.framing, my_framing); 1645 FST_WRB(card, suConfig.structure, info->structure); 1646 FST_WRB(card, suConfig.interface, info->interface); 1647 FST_WRB(card, suConfig.coding, info->coding); 1648 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1649 FST_WRB(card, suConfig.equalizer, info->equalizer); 1650 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1651 FST_WRB(card, suConfig.loopMode, info->loopMode); 1652 FST_WRB(card, suConfig.range, info->range); 1653 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1654 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1655 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1656 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1657 if (info->idleCode) 1658 FST_WRB(card, suConfig.enableIdleCode, 1); 1659 else 1660 FST_WRB(card, suConfig.enableIdleCode, 0); 1661 FST_WRB(card, suConfig.idleCode, info->idleCode); 1662 #if FST_DEBUG 1663 if (info->valid & FSTVAL_TE1) { 1664 printk("Setting TE1 data\n"); 1665 printk("Line Speed = %d\n", info->lineSpeed); 1666 printk("Start slot = %d\n", info->startingSlot); 1667 printk("Clock source = %d\n", info->clockSource); 1668 printk("Framing = %d\n", my_framing); 1669 printk("Structure = %d\n", info->structure); 1670 printk("interface = %d\n", info->interface); 1671 printk("Coding = %d\n", info->coding); 1672 printk("Line build out = %d\n", info->lineBuildOut); 1673 printk("Equaliser = %d\n", info->equalizer); 1674 printk("Transparent mode = %d\n", 1675 info->transparentMode); 1676 printk("Loop mode = %d\n", info->loopMode); 1677 printk("Range = %d\n", info->range); 1678 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1679 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1680 printk("LOS Threshold = %d\n", info->losThreshold); 1681 printk("Idle Code = %d\n", info->idleCode); 1682 } 1683 #endif 1684 } 1685 #if FST_DEBUG 1686 if (info->valid & FSTVAL_DEBUG) 1687 fst_debug_mask = info->debug; 1688 #endif 1689 1690 return err; 1691 } 1692 1693 static void 1694 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1695 struct fstioc_info *info) 1696 { 1697 int i; 1698 1699 memset(info, 0, sizeof(struct fstioc_info)); 1700 1701 i = port->index; 1702 info->kernelVersion = LINUX_VERSION_CODE; 1703 info->nports = card->nports; 1704 info->type = card->type; 1705 info->state = card->state; 1706 info->proto = FST_GEN_HDLC; 1707 info->index = i; 1708 #if FST_DEBUG 1709 info->debug = fst_debug_mask; 1710 #endif 1711 1712 /* Only mark information as valid if card is running. 1713 * Copy the data anyway in case it is useful for diagnostics 1714 */ 1715 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1716 #if FST_DEBUG 1717 | FSTVAL_DEBUG 1718 #endif 1719 ; 1720 1721 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1722 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1723 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1724 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1725 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1726 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1727 info->clockStatus = FST_RDW(card, clockStatus[i]); 1728 info->cableStatus = FST_RDW(card, cableStatus); 1729 info->cardMode = FST_RDW(card, cardMode); 1730 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1731 1732 /* The T2U can report cable presence for both A or B 1733 * in bits 0 and 1 of cableStatus. See which port we are and 1734 * do the mapping. 1735 */ 1736 if (card->family == FST_FAMILY_TXU) { 1737 if (port->index == 0) { 1738 /* Port A 1739 */ 1740 info->cableStatus = info->cableStatus & 1; 1741 } else { 1742 /* Port B 1743 */ 1744 info->cableStatus = info->cableStatus >> 1; 1745 info->cableStatus = info->cableStatus & 1; 1746 } 1747 } 1748 /* Some additional bits if we are TE1 1749 */ 1750 if (card->type == FST_TYPE_TE1) { 1751 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1752 info->clockSource = FST_RDB(card, suConfig.clocking); 1753 info->framing = FST_RDB(card, suConfig.framing); 1754 info->structure = FST_RDB(card, suConfig.structure); 1755 info->interface = FST_RDB(card, suConfig.interface); 1756 info->coding = FST_RDB(card, suConfig.coding); 1757 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1758 info->equalizer = FST_RDB(card, suConfig.equalizer); 1759 info->loopMode = FST_RDB(card, suConfig.loopMode); 1760 info->range = FST_RDB(card, suConfig.range); 1761 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1762 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1763 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1764 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1765 if (FST_RDB(card, suConfig.enableIdleCode)) 1766 info->idleCode = FST_RDB(card, suConfig.idleCode); 1767 else 1768 info->idleCode = 0; 1769 info->receiveBufferDelay = 1770 FST_RDL(card, suStatus.receiveBufferDelay); 1771 info->framingErrorCount = 1772 FST_RDL(card, suStatus.framingErrorCount); 1773 info->codeViolationCount = 1774 FST_RDL(card, suStatus.codeViolationCount); 1775 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1776 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1777 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1778 info->receiveRemoteAlarm = 1779 FST_RDB(card, suStatus.receiveRemoteAlarm); 1780 info->alarmIndicationSignal = 1781 FST_RDB(card, suStatus.alarmIndicationSignal); 1782 } 1783 } 1784 1785 static int 1786 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1787 struct ifreq *ifr) 1788 { 1789 sync_serial_settings sync; 1790 int i; 1791 1792 if (ifr->ifr_settings.size != sizeof(sync)) 1793 return -ENOMEM; 1794 1795 if (copy_from_user 1796 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof(sync))) 1797 return -EFAULT; 1798 1799 if (sync.loopback) 1800 return -EINVAL; 1801 1802 i = port->index; 1803 1804 switch (ifr->ifr_settings.type) { 1805 case IF_IFACE_V35: 1806 FST_WRW(card, portConfig[i].lineInterface, V35); 1807 port->hwif = V35; 1808 break; 1809 1810 case IF_IFACE_V24: 1811 FST_WRW(card, portConfig[i].lineInterface, V24); 1812 port->hwif = V24; 1813 break; 1814 1815 case IF_IFACE_X21: 1816 FST_WRW(card, portConfig[i].lineInterface, X21); 1817 port->hwif = X21; 1818 break; 1819 1820 case IF_IFACE_X21D: 1821 FST_WRW(card, portConfig[i].lineInterface, X21D); 1822 port->hwif = X21D; 1823 break; 1824 1825 case IF_IFACE_T1: 1826 FST_WRW(card, portConfig[i].lineInterface, T1); 1827 port->hwif = T1; 1828 break; 1829 1830 case IF_IFACE_E1: 1831 FST_WRW(card, portConfig[i].lineInterface, E1); 1832 port->hwif = E1; 1833 break; 1834 1835 case IF_IFACE_SYNC_SERIAL: 1836 break; 1837 1838 default: 1839 return -EINVAL; 1840 } 1841 1842 switch (sync.clock_type) { 1843 case CLOCK_EXT: 1844 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1845 break; 1846 1847 case CLOCK_INT: 1848 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1849 break; 1850 1851 default: 1852 return -EINVAL; 1853 } 1854 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1855 return 0; 1856 } 1857 1858 static int 1859 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1860 struct ifreq *ifr) 1861 { 1862 sync_serial_settings sync; 1863 int i; 1864 1865 /* First check what line type is set, we'll default to reporting X.21 1866 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1867 * changed 1868 */ 1869 switch (port->hwif) { 1870 case E1: 1871 ifr->ifr_settings.type = IF_IFACE_E1; 1872 break; 1873 case T1: 1874 ifr->ifr_settings.type = IF_IFACE_T1; 1875 break; 1876 case V35: 1877 ifr->ifr_settings.type = IF_IFACE_V35; 1878 break; 1879 case V24: 1880 ifr->ifr_settings.type = IF_IFACE_V24; 1881 break; 1882 case X21D: 1883 ifr->ifr_settings.type = IF_IFACE_X21D; 1884 break; 1885 case X21: 1886 default: 1887 ifr->ifr_settings.type = IF_IFACE_X21; 1888 break; 1889 } 1890 if (ifr->ifr_settings.size == 0) 1891 return 0; /* only type requested */ 1892 1893 if (ifr->ifr_settings.size < sizeof(sync)) 1894 return -ENOMEM; 1895 1896 i = port->index; 1897 memset(&sync, 0, sizeof(sync)); 1898 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 1899 /* Lucky card and linux use same encoding here */ 1900 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 1901 INTCLK ? CLOCK_INT : CLOCK_EXT; 1902 sync.loopback = 0; 1903 1904 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof(sync))) 1905 return -EFAULT; 1906 1907 ifr->ifr_settings.size = sizeof(sync); 1908 return 0; 1909 } 1910 1911 static int 1912 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1913 { 1914 struct fst_card_info *card; 1915 struct fst_port_info *port; 1916 struct fstioc_write wrthdr; 1917 struct fstioc_info info; 1918 unsigned long flags; 1919 void *buf; 1920 1921 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 1922 1923 port = dev_to_port(dev); 1924 card = port->card; 1925 1926 if (!capable(CAP_NET_ADMIN)) 1927 return -EPERM; 1928 1929 switch (cmd) { 1930 case FSTCPURESET: 1931 fst_cpureset(card); 1932 card->state = FST_RESET; 1933 return 0; 1934 1935 case FSTCPURELEASE: 1936 fst_cpurelease(card); 1937 card->state = FST_STARTING; 1938 return 0; 1939 1940 case FSTWRITE: /* Code write (download) */ 1941 1942 /* First copy in the header with the length and offset of data 1943 * to write 1944 */ 1945 if (!ifr->ifr_data) 1946 return -EINVAL; 1947 1948 if (copy_from_user(&wrthdr, ifr->ifr_data, 1949 sizeof(struct fstioc_write))) 1950 return -EFAULT; 1951 1952 /* Sanity check the parameters. We don't support partial writes 1953 * when going over the top 1954 */ 1955 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE || 1956 wrthdr.size + wrthdr.offset > FST_MEMSIZE) 1957 return -ENXIO; 1958 1959 /* Now copy the data to the card. */ 1960 1961 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write), 1962 wrthdr.size); 1963 if (IS_ERR(buf)) 1964 return PTR_ERR(buf); 1965 1966 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); 1967 kfree(buf); 1968 1969 /* Writes to the memory of a card in the reset state constitute 1970 * a download 1971 */ 1972 if (card->state == FST_RESET) 1973 card->state = FST_DOWNLOAD; 1974 1975 return 0; 1976 1977 case FSTGETCONF: 1978 1979 /* If card has just been started check the shared memory config 1980 * version and marker 1981 */ 1982 if (card->state == FST_STARTING) { 1983 check_started_ok(card); 1984 1985 /* If everything checked out enable card interrupts */ 1986 if (card->state == FST_RUNNING) { 1987 spin_lock_irqsave(&card->card_lock, flags); 1988 fst_enable_intr(card); 1989 FST_WRB(card, interruptHandshake, 0xEE); 1990 spin_unlock_irqrestore(&card->card_lock, flags); 1991 } 1992 } 1993 1994 if (!ifr->ifr_data) 1995 return -EINVAL; 1996 1997 gather_conf_info(card, port, &info); 1998 1999 if (copy_to_user(ifr->ifr_data, &info, sizeof(info))) 2000 return -EFAULT; 2001 2002 return 0; 2003 2004 case FSTSETCONF: 2005 /* Most of the settings have been moved to the generic ioctls 2006 * this just covers debug and board ident now 2007 */ 2008 2009 if (card->state != FST_RUNNING) { 2010 pr_err("Attempt to configure card %d in non-running state (%d)\n", 2011 card->card_no, card->state); 2012 return -EIO; 2013 } 2014 if (copy_from_user(&info, ifr->ifr_data, sizeof(info))) 2015 return -EFAULT; 2016 2017 return set_conf_from_info(card, port, &info); 2018 2019 case SIOCWANDEV: 2020 switch (ifr->ifr_settings.type) { 2021 case IF_GET_IFACE: 2022 return fst_get_iface(card, port, ifr); 2023 2024 case IF_IFACE_SYNC_SERIAL: 2025 case IF_IFACE_V35: 2026 case IF_IFACE_V24: 2027 case IF_IFACE_X21: 2028 case IF_IFACE_X21D: 2029 case IF_IFACE_T1: 2030 case IF_IFACE_E1: 2031 return fst_set_iface(card, port, ifr); 2032 2033 case IF_PROTO_RAW: 2034 port->mode = FST_RAW; 2035 return 0; 2036 2037 case IF_GET_PROTO: 2038 if (port->mode == FST_RAW) { 2039 ifr->ifr_settings.type = IF_PROTO_RAW; 2040 return 0; 2041 } 2042 return hdlc_ioctl(dev, ifr, cmd); 2043 2044 default: 2045 port->mode = FST_GEN_HDLC; 2046 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2047 ifr->ifr_settings.type); 2048 return hdlc_ioctl(dev, ifr, cmd); 2049 } 2050 2051 default: 2052 /* Not one of ours. Pass through to HDLC package */ 2053 return hdlc_ioctl(dev, ifr, cmd); 2054 } 2055 } 2056 2057 static void 2058 fst_openport(struct fst_port_info *port) 2059 { 2060 int signals; 2061 2062 /* Only init things if card is actually running. This allows open to 2063 * succeed for downloads etc. 2064 */ 2065 if (port->card->state == FST_RUNNING) { 2066 if (port->run) { 2067 dbg(DBG_OPEN, "open: found port already running\n"); 2068 2069 fst_issue_cmd(port, STOPPORT); 2070 port->run = 0; 2071 } 2072 2073 fst_rx_config(port); 2074 fst_tx_config(port); 2075 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2076 2077 fst_issue_cmd(port, STARTPORT); 2078 port->run = 1; 2079 2080 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2081 if (signals & ((port->hwif == X21 || port->hwif == X21D) 2082 ? IPSTS_INDICATE : IPSTS_DCD)) 2083 netif_carrier_on(port_to_dev(port)); 2084 else 2085 netif_carrier_off(port_to_dev(port)); 2086 2087 port->txqe = 0; 2088 port->txqs = 0; 2089 } 2090 } 2091 2092 static void 2093 fst_closeport(struct fst_port_info *port) 2094 { 2095 if (port->card->state == FST_RUNNING) { 2096 if (port->run) { 2097 port->run = 0; 2098 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2099 2100 fst_issue_cmd(port, STOPPORT); 2101 } else { 2102 dbg(DBG_OPEN, "close: port not running\n"); 2103 } 2104 } 2105 } 2106 2107 static int 2108 fst_open(struct net_device *dev) 2109 { 2110 int err; 2111 struct fst_port_info *port; 2112 2113 port = dev_to_port(dev); 2114 if (!try_module_get(THIS_MODULE)) 2115 return -EBUSY; 2116 2117 if (port->mode != FST_RAW) { 2118 err = hdlc_open(dev); 2119 if (err) { 2120 module_put(THIS_MODULE); 2121 return err; 2122 } 2123 } 2124 2125 fst_openport(port); 2126 netif_wake_queue(dev); 2127 return 0; 2128 } 2129 2130 static int 2131 fst_close(struct net_device *dev) 2132 { 2133 struct fst_port_info *port; 2134 struct fst_card_info *card; 2135 unsigned char tx_dma_done; 2136 unsigned char rx_dma_done; 2137 2138 port = dev_to_port(dev); 2139 card = port->card; 2140 2141 tx_dma_done = inb(card->pci_conf + DMACSR1); 2142 rx_dma_done = inb(card->pci_conf + DMACSR0); 2143 dbg(DBG_OPEN, 2144 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2145 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2146 rx_dma_done); 2147 2148 netif_stop_queue(dev); 2149 fst_closeport(dev_to_port(dev)); 2150 if (port->mode != FST_RAW) 2151 hdlc_close(dev); 2152 2153 module_put(THIS_MODULE); 2154 return 0; 2155 } 2156 2157 static int 2158 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2159 { 2160 /* Setting currently fixed in FarSync card so we check and forget 2161 */ 2162 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2163 return -EINVAL; 2164 return 0; 2165 } 2166 2167 static void 2168 fst_tx_timeout(struct net_device *dev, unsigned int txqueue) 2169 { 2170 struct fst_port_info *port; 2171 struct fst_card_info *card; 2172 2173 port = dev_to_port(dev); 2174 card = port->card; 2175 dev->stats.tx_errors++; 2176 dev->stats.tx_aborted_errors++; 2177 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2178 card->card_no, port->index); 2179 fst_issue_cmd(port, ABORTTX); 2180 2181 netif_trans_update(dev); 2182 netif_wake_queue(dev); 2183 port->start = 0; 2184 } 2185 2186 static netdev_tx_t 2187 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2188 { 2189 struct fst_card_info *card; 2190 struct fst_port_info *port; 2191 unsigned long flags; 2192 int txq_length; 2193 2194 port = dev_to_port(dev); 2195 card = port->card; 2196 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2197 2198 /* Drop packet with error if we don't have carrier */ 2199 if (!netif_carrier_ok(dev)) { 2200 dev_kfree_skb(skb); 2201 dev->stats.tx_errors++; 2202 dev->stats.tx_carrier_errors++; 2203 dbg(DBG_ASS, 2204 "Tried to transmit but no carrier on card %d port %d\n", 2205 card->card_no, port->index); 2206 return NETDEV_TX_OK; 2207 } 2208 2209 /* Drop it if it's too big! MTU failure ? */ 2210 if (skb->len > LEN_TX_BUFFER) { 2211 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2212 LEN_TX_BUFFER); 2213 dev_kfree_skb(skb); 2214 dev->stats.tx_errors++; 2215 return NETDEV_TX_OK; 2216 } 2217 2218 /* We are always going to queue the packet 2219 * so that the bottom half is the only place we tx from 2220 * Check there is room in the port txq 2221 */ 2222 spin_lock_irqsave(&card->card_lock, flags); 2223 txq_length = port->txqe - port->txqs; 2224 if (txq_length < 0) { 2225 /* This is the case where the next free has wrapped but the 2226 * last used hasn't 2227 */ 2228 txq_length = txq_length + FST_TXQ_DEPTH; 2229 } 2230 spin_unlock_irqrestore(&card->card_lock, flags); 2231 if (txq_length > fst_txq_high) { 2232 /* We have got enough buffers in the pipeline. Ask the network 2233 * layer to stop sending frames down 2234 */ 2235 netif_stop_queue(dev); 2236 port->start = 1; /* I'm using this to signal stop sent up */ 2237 } 2238 2239 if (txq_length == FST_TXQ_DEPTH - 1) { 2240 /* This shouldn't have happened but such is life 2241 */ 2242 dev_kfree_skb(skb); 2243 dev->stats.tx_errors++; 2244 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2245 card->card_no, port->index); 2246 return NETDEV_TX_OK; 2247 } 2248 2249 /* queue the buffer 2250 */ 2251 spin_lock_irqsave(&card->card_lock, flags); 2252 port->txq[port->txqe] = skb; 2253 port->txqe++; 2254 if (port->txqe == FST_TXQ_DEPTH) 2255 port->txqe = 0; 2256 spin_unlock_irqrestore(&card->card_lock, flags); 2257 2258 /* Scehdule the bottom half which now does transmit processing */ 2259 fst_q_work_item(&fst_work_txq, card->card_no); 2260 tasklet_schedule(&fst_tx_task); 2261 2262 return NETDEV_TX_OK; 2263 } 2264 2265 /* Card setup having checked hardware resources. 2266 * Should be pretty bizarre if we get an error here (kernel memory 2267 * exhaustion is one possibility). If we do see a problem we report it 2268 * via a printk and leave the corresponding interface and all that follow 2269 * disabled. 2270 */ 2271 static char *type_strings[] = { 2272 "no hardware", /* Should never be seen */ 2273 "FarSync T2P", 2274 "FarSync T4P", 2275 "FarSync T1U", 2276 "FarSync T2U", 2277 "FarSync T4U", 2278 "FarSync TE1" 2279 }; 2280 2281 static int 2282 fst_init_card(struct fst_card_info *card) 2283 { 2284 int i; 2285 int err; 2286 2287 /* We're working on a number of ports based on the card ID. If the 2288 * firmware detects something different later (should never happen) 2289 * we'll have to revise it in some way then. 2290 */ 2291 for (i = 0; i < card->nports; i++) { 2292 err = register_hdlc_device(card->ports[i].dev); 2293 if (err < 0) { 2294 pr_err("Cannot register HDLC device for port %d (errno %d)\n", 2295 i, -err); 2296 while (i--) 2297 unregister_hdlc_device(card->ports[i].dev); 2298 return err; 2299 } 2300 } 2301 2302 pr_info("%s-%s: %s IRQ%d, %d ports\n", 2303 port_to_dev(&card->ports[0])->name, 2304 port_to_dev(&card->ports[card->nports - 1])->name, 2305 type_strings[card->type], card->irq, card->nports); 2306 return 0; 2307 } 2308 2309 static const struct net_device_ops fst_ops = { 2310 .ndo_open = fst_open, 2311 .ndo_stop = fst_close, 2312 .ndo_start_xmit = hdlc_start_xmit, 2313 .ndo_do_ioctl = fst_ioctl, 2314 .ndo_tx_timeout = fst_tx_timeout, 2315 }; 2316 2317 /* Initialise card when detected. 2318 * Returns 0 to indicate success, or errno otherwise. 2319 */ 2320 static int 2321 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2322 { 2323 static int no_of_cards_added; 2324 struct fst_card_info *card; 2325 int err = 0; 2326 int i; 2327 2328 printk_once(KERN_INFO 2329 pr_fmt("FarSync WAN driver " FST_USER_VERSION 2330 " (c) 2001-2004 FarSite Communications Ltd.\n")); 2331 #if FST_DEBUG 2332 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2333 #endif 2334 /* We are going to be clever and allow certain cards not to be 2335 * configured. An exclude list can be provided in /etc/modules.conf 2336 */ 2337 if (fst_excluded_cards != 0) { 2338 /* There are cards to exclude 2339 * 2340 */ 2341 for (i = 0; i < fst_excluded_cards; i++) { 2342 if (pdev->devfn >> 3 == fst_excluded_list[i]) { 2343 pr_info("FarSync PCI device %d not assigned\n", 2344 (pdev->devfn) >> 3); 2345 return -EBUSY; 2346 } 2347 } 2348 } 2349 2350 /* Allocate driver private data */ 2351 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL); 2352 if (!card) 2353 return -ENOMEM; 2354 2355 /* Try to enable the device */ 2356 err = pci_enable_device(pdev); 2357 if (err) { 2358 pr_err("Failed to enable card. Err %d\n", -err); 2359 goto enable_fail; 2360 } 2361 2362 err = pci_request_regions(pdev, "FarSync"); 2363 if (err) { 2364 pr_err("Failed to allocate regions. Err %d\n", -err); 2365 goto regions_fail; 2366 } 2367 2368 /* Get virtual addresses of memory regions */ 2369 card->pci_conf = pci_resource_start(pdev, 1); 2370 card->phys_mem = pci_resource_start(pdev, 2); 2371 card->phys_ctlmem = pci_resource_start(pdev, 3); 2372 card->mem = ioremap(card->phys_mem, FST_MEMSIZE); 2373 if (!card->mem) { 2374 pr_err("Physical memory remap failed\n"); 2375 err = -ENODEV; 2376 goto ioremap_physmem_fail; 2377 } 2378 card->ctlmem = ioremap(card->phys_ctlmem, 0x10); 2379 if (!card->ctlmem) { 2380 pr_err("Control memory remap failed\n"); 2381 err = -ENODEV; 2382 goto ioremap_ctlmem_fail; 2383 } 2384 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2385 2386 /* Register the interrupt handler */ 2387 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { 2388 pr_err("Unable to register interrupt %d\n", card->irq); 2389 err = -ENODEV; 2390 goto irq_fail; 2391 } 2392 2393 /* Record info we need */ 2394 card->irq = pdev->irq; 2395 card->type = ent->driver_data; 2396 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2397 (ent->driver_data == FST_TYPE_T4P)) 2398 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2399 if (ent->driver_data == FST_TYPE_T1U || 2400 ent->driver_data == FST_TYPE_TE1) 2401 card->nports = 1; 2402 else 2403 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2404 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2405 2406 card->state = FST_UNINIT; 2407 spin_lock_init(&card->card_lock); 2408 2409 for (i = 0; i < card->nports; i++) { 2410 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2411 hdlc_device *hdlc; 2412 2413 if (!dev) { 2414 while (i--) 2415 free_netdev(card->ports[i].dev); 2416 pr_err("FarSync: out of memory\n"); 2417 err = -ENOMEM; 2418 goto hdlcdev_fail; 2419 } 2420 card->ports[i].dev = dev; 2421 card->ports[i].card = card; 2422 card->ports[i].index = i; 2423 card->ports[i].run = 0; 2424 2425 hdlc = dev_to_hdlc(dev); 2426 2427 /* Fill in the net device info */ 2428 /* Since this is a PCI setup this is purely 2429 * informational. Give them the buffer addresses 2430 * and basic card I/O. 2431 */ 2432 dev->mem_start = card->phys_mem 2433 + BUF_OFFSET(txBuffer[i][0][0]); 2434 dev->mem_end = card->phys_mem 2435 + BUF_OFFSET(txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]); 2436 dev->base_addr = card->pci_conf; 2437 dev->irq = card->irq; 2438 2439 dev->netdev_ops = &fst_ops; 2440 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2441 dev->watchdog_timeo = FST_TX_TIMEOUT; 2442 hdlc->attach = fst_attach; 2443 hdlc->xmit = fst_start_xmit; 2444 } 2445 2446 card->device = pdev; 2447 2448 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2449 card->nports, card->irq); 2450 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2451 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2452 2453 /* Reset the card's processor */ 2454 fst_cpureset(card); 2455 card->state = FST_RESET; 2456 2457 /* Initialise DMA (if required) */ 2458 fst_init_dma(card); 2459 2460 /* Record driver data for later use */ 2461 pci_set_drvdata(pdev, card); 2462 2463 /* Remainder of card setup */ 2464 if (no_of_cards_added >= FST_MAX_CARDS) { 2465 pr_err("FarSync: too many cards\n"); 2466 err = -ENOMEM; 2467 goto card_array_fail; 2468 } 2469 fst_card_array[no_of_cards_added] = card; 2470 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2471 err = fst_init_card(card); 2472 if (err) 2473 goto init_card_fail; 2474 if (card->family == FST_FAMILY_TXU) { 2475 /* Allocate a dma buffer for transmit and receives 2476 */ 2477 card->rx_dma_handle_host = 2478 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU, 2479 &card->rx_dma_handle_card, GFP_KERNEL); 2480 if (!card->rx_dma_handle_host) { 2481 pr_err("Could not allocate rx dma buffer\n"); 2482 err = -ENOMEM; 2483 goto rx_dma_fail; 2484 } 2485 card->tx_dma_handle_host = 2486 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU, 2487 &card->tx_dma_handle_card, GFP_KERNEL); 2488 if (!card->tx_dma_handle_host) { 2489 pr_err("Could not allocate tx dma buffer\n"); 2490 err = -ENOMEM; 2491 goto tx_dma_fail; 2492 } 2493 } 2494 return 0; /* Success */ 2495 2496 tx_dma_fail: 2497 dma_free_coherent(&card->device->dev, FST_MAX_MTU, 2498 card->rx_dma_handle_host, card->rx_dma_handle_card); 2499 rx_dma_fail: 2500 fst_disable_intr(card); 2501 for (i = 0 ; i < card->nports ; i++) 2502 unregister_hdlc_device(card->ports[i].dev); 2503 init_card_fail: 2504 fst_card_array[card->card_no] = NULL; 2505 card_array_fail: 2506 for (i = 0 ; i < card->nports ; i++) 2507 free_netdev(card->ports[i].dev); 2508 hdlcdev_fail: 2509 free_irq(card->irq, card); 2510 irq_fail: 2511 iounmap(card->ctlmem); 2512 ioremap_ctlmem_fail: 2513 iounmap(card->mem); 2514 ioremap_physmem_fail: 2515 pci_release_regions(pdev); 2516 regions_fail: 2517 pci_disable_device(pdev); 2518 enable_fail: 2519 kfree(card); 2520 return err; 2521 } 2522 2523 /* Cleanup and close down a card 2524 */ 2525 static void 2526 fst_remove_one(struct pci_dev *pdev) 2527 { 2528 struct fst_card_info *card; 2529 int i; 2530 2531 card = pci_get_drvdata(pdev); 2532 2533 for (i = 0; i < card->nports; i++) { 2534 struct net_device *dev = port_to_dev(&card->ports[i]); 2535 2536 unregister_hdlc_device(dev); 2537 } 2538 2539 fst_disable_intr(card); 2540 free_irq(card->irq, card); 2541 2542 iounmap(card->ctlmem); 2543 iounmap(card->mem); 2544 pci_release_regions(pdev); 2545 if (card->family == FST_FAMILY_TXU) { 2546 /* Free dma buffers 2547 */ 2548 dma_free_coherent(&card->device->dev, FST_MAX_MTU, 2549 card->rx_dma_handle_host, 2550 card->rx_dma_handle_card); 2551 dma_free_coherent(&card->device->dev, FST_MAX_MTU, 2552 card->tx_dma_handle_host, 2553 card->tx_dma_handle_card); 2554 } 2555 fst_card_array[card->card_no] = NULL; 2556 } 2557 2558 static struct pci_driver fst_driver = { 2559 .name = FST_NAME, 2560 .id_table = fst_pci_dev_id, 2561 .probe = fst_add_one, 2562 .remove = fst_remove_one, 2563 }; 2564 2565 static int __init 2566 fst_init(void) 2567 { 2568 int i; 2569 2570 for (i = 0; i < FST_MAX_CARDS; i++) 2571 fst_card_array[i] = NULL; 2572 return pci_register_driver(&fst_driver); 2573 } 2574 2575 static void __exit 2576 fst_cleanup_module(void) 2577 { 2578 pr_info("FarSync WAN driver unloading\n"); 2579 pci_unregister_driver(&fst_driver); 2580 } 2581 2582 module_init(fst_init); 2583 module_exit(fst_cleanup_module); 2584