xref: /openbmc/linux/drivers/net/wan/farsync.c (revision 9ac8d3fb)
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/if.h>
25 #include <linux/hdlc.h>
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
28 
29 #include "farsync.h"
30 
31 /*
32  *      Module info
33  */
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
37 
38 /*      Driver configuration and global parameters
39  *      ==========================================
40  */
41 
42 /*      Number of ports (per card) and cards supported
43  */
44 #define FST_MAX_PORTS           4
45 #define FST_MAX_CARDS           32
46 
47 /*      Default parameters for the link
48  */
49 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
50 					 * useful */
51 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
52 					 * of frames on the way down to the card
53 					 * so that we can keep the card busy
54 					 * and maximise throughput
55 					 */
56 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
57 					 * network layer */
58 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
59 					 * control from network layer */
60 #define FST_MAX_MTU             8000	/* Huge but possible */
61 #define FST_DEF_MTU             1500	/* Common sane value */
62 
63 #define FST_TX_TIMEOUT          (2*HZ)
64 
65 #ifdef ARPHRD_RAWHDLC
66 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
67 #else
68 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
69 #endif
70 
71 /*
72  * Modules parameters and associated varaibles
73  */
74 static int fst_txq_low = FST_LOW_WATER_MARK;
75 static int fst_txq_high = FST_HIGH_WATER_MARK;
76 static int fst_max_reads = 7;
77 static int fst_excluded_cards = 0;
78 static int fst_excluded_list[FST_MAX_CARDS];
79 
80 module_param(fst_txq_low, int, 0);
81 module_param(fst_txq_high, int, 0);
82 module_param(fst_max_reads, int, 0);
83 module_param(fst_excluded_cards, int, 0);
84 module_param_array(fst_excluded_list, int, NULL, 0);
85 
86 /*      Card shared memory layout
87  *      =========================
88  */
89 #pragma pack(1)
90 
91 /*      This information is derived in part from the FarSite FarSync Smc.h
92  *      file. Unfortunately various name clashes and the non-portability of the
93  *      bit field declarations in that file have meant that I have chosen to
94  *      recreate the information here.
95  *
96  *      The SMC (Shared Memory Configuration) has a version number that is
97  *      incremented every time there is a significant change. This number can
98  *      be used to check that we have not got out of step with the firmware
99  *      contained in the .CDE files.
100  */
101 #define SMC_VERSION 24
102 
103 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
104 
105 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
106 				 * configuration structure */
107 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
108 				 * buffers */
109 
110 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
111 #define LEN_RX_BUFFER 8192
112 
113 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
114 #define LEN_SMALL_RX_BUFFER 256
115 
116 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
117 #define NUM_RX_BUFFER 8
118 
119 /* Interrupt retry time in milliseconds */
120 #define INT_RETRY_TIME 2
121 
122 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
123  *      of buffer descriptors. The structure is almost identical to that used
124  *      in the LANCE Ethernet controllers. Details available as PDF from the
125  *      AMD web site: http://www.amd.com/products/epd/processors/\
126  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
127  */
128 struct txdesc {			/* Transmit descriptor */
129 	volatile u16 ladr;	/* Low order address of packet. This is a
130 				 * linear address in the Am186 memory space
131 				 */
132 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
133 				 * bits must be zero
134 				 */
135 	volatile u8 bits;	/* Status and config */
136 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
137 				 * Transmit terminal count interrupt enable in
138 				 * top bit.
139 				 */
140 	u16 unused;		/* Not used in Tx */
141 };
142 
143 struct rxdesc {			/* Receive descriptor */
144 	volatile u16 ladr;	/* Low order address of packet */
145 	volatile u8 hadr;	/* High order address */
146 	volatile u8 bits;	/* Status and config */
147 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
148 				 * Receive terminal count interrupt enable in
149 				 * top bit.
150 				 */
151 	volatile u16 mcnt;	/* Message byte count (15 bits) */
152 };
153 
154 /* Convert a length into the 15 bit 2's complement */
155 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
156 /* Since we need to set the high bit to enable the completion interrupt this
157  * can be made a lot simpler
158  */
159 #define cnv_bcnt(len)   (-(len))
160 
161 /* Status and config bits for the above */
162 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
163 #define TX_STP          0x02	/* Tx: start of packet */
164 #define TX_ENP          0x01	/* Tx: end of packet */
165 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
166 #define RX_FRAM         0x20	/* Rx: framing error */
167 #define RX_OFLO         0x10	/* Rx: overflow error */
168 #define RX_CRC          0x08	/* Rx: CRC error */
169 #define RX_HBUF         0x04	/* Rx: buffer error */
170 #define RX_STP          0x02	/* Rx: start of packet */
171 #define RX_ENP          0x01	/* Rx: end of packet */
172 
173 /* Interrupts from the card are caused by various events which are presented
174  * in a circular buffer as several events may be processed on one physical int
175  */
176 #define MAX_CIRBUFF     32
177 
178 struct cirbuff {
179 	u8 rdindex;		/* read, then increment and wrap */
180 	u8 wrindex;		/* write, then increment and wrap */
181 	u8 evntbuff[MAX_CIRBUFF];
182 };
183 
184 /* Interrupt event codes.
185  * Where appropriate the two low order bits indicate the port number
186  */
187 #define CTLA_CHG        0x18	/* Control signal changed */
188 #define CTLB_CHG        0x19
189 #define CTLC_CHG        0x1A
190 #define CTLD_CHG        0x1B
191 
192 #define INIT_CPLT       0x20	/* Initialisation complete */
193 #define INIT_FAIL       0x21	/* Initialisation failed */
194 
195 #define ABTA_SENT       0x24	/* Abort sent */
196 #define ABTB_SENT       0x25
197 #define ABTC_SENT       0x26
198 #define ABTD_SENT       0x27
199 
200 #define TXA_UNDF        0x28	/* Transmission underflow */
201 #define TXB_UNDF        0x29
202 #define TXC_UNDF        0x2A
203 #define TXD_UNDF        0x2B
204 
205 #define F56_INT         0x2C
206 #define M32_INT         0x2D
207 
208 #define TE1_ALMA        0x30
209 
210 /* Port physical configuration. See farsync.h for field values */
211 struct port_cfg {
212 	u16 lineInterface;	/* Physical interface type */
213 	u8 x25op;		/* Unused at present */
214 	u8 internalClock;	/* 1 => internal clock, 0 => external */
215 	u8 transparentMode;	/* 1 => on, 0 => off */
216 	u8 invertClock;		/* 0 => normal, 1 => inverted */
217 	u8 padBytes[6];		/* Padding */
218 	u32 lineSpeed;		/* Speed in bps */
219 };
220 
221 /* TE1 port physical configuration */
222 struct su_config {
223 	u32 dataRate;
224 	u8 clocking;
225 	u8 framing;
226 	u8 structure;
227 	u8 interface;
228 	u8 coding;
229 	u8 lineBuildOut;
230 	u8 equalizer;
231 	u8 transparentMode;
232 	u8 loopMode;
233 	u8 range;
234 	u8 txBufferMode;
235 	u8 rxBufferMode;
236 	u8 startingSlot;
237 	u8 losThreshold;
238 	u8 enableIdleCode;
239 	u8 idleCode;
240 	u8 spare[44];
241 };
242 
243 /* TE1 Status */
244 struct su_status {
245 	u32 receiveBufferDelay;
246 	u32 framingErrorCount;
247 	u32 codeViolationCount;
248 	u32 crcErrorCount;
249 	u32 lineAttenuation;
250 	u8 portStarted;
251 	u8 lossOfSignal;
252 	u8 receiveRemoteAlarm;
253 	u8 alarmIndicationSignal;
254 	u8 spare[40];
255 };
256 
257 /* Finally sling all the above together into the shared memory structure.
258  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
259  * evolving under NT for some time so I guess we're stuck with it.
260  * The structure starts at offset SMC_BASE.
261  * See farsync.h for some field values.
262  */
263 struct fst_shared {
264 	/* DMA descriptor rings */
265 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
266 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
267 
268 	/* Obsolete small buffers */
269 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
270 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
271 
272 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
273 				 * 0xFF => halted
274 				 */
275 
276 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
277 				 * set to 0xEE by host to acknowledge interrupt
278 				 */
279 
280 	u16 smcVersion;		/* Must match SMC_VERSION */
281 
282 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
283 				 * version, RR = revision and BB = build
284 				 */
285 
286 	u16 txa_done;		/* Obsolete completion flags */
287 	u16 rxa_done;
288 	u16 txb_done;
289 	u16 rxb_done;
290 	u16 txc_done;
291 	u16 rxc_done;
292 	u16 txd_done;
293 	u16 rxd_done;
294 
295 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
296 
297 	struct cirbuff interruptEvent;	/* interrupt causes */
298 
299 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
300 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
301 
302 	struct port_cfg portConfig[FST_MAX_PORTS];
303 
304 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
305 
306 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
307 
308 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
309 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
310 
311 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
312 	u16 cardMailbox[4];	/* Not used */
313 
314 	/* Number of times the card thinks the host has
315 	 * missed an interrupt by not acknowledging
316 	 * within 2mS (I guess NT has problems)
317 	 */
318 	u32 interruptRetryCount;
319 
320 	/* Driver private data used as an ID. We'll not
321 	 * use this as I'd rather keep such things
322 	 * in main memory rather than on the PCI bus
323 	 */
324 	u32 portHandle[FST_MAX_PORTS];
325 
326 	/* Count of Tx underflows for stats */
327 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
328 
329 	/* Debounced V.24 control input status */
330 	u32 v24DebouncedSts[FST_MAX_PORTS];
331 
332 	/* Adapter debounce timers. Don't touch */
333 	u32 ctsTimer[FST_MAX_PORTS];
334 	u32 ctsTimerRun[FST_MAX_PORTS];
335 	u32 dcdTimer[FST_MAX_PORTS];
336 	u32 dcdTimerRun[FST_MAX_PORTS];
337 
338 	u32 numberOfPorts;	/* Number of ports detected at startup */
339 
340 	u16 _reserved[64];
341 
342 	u16 cardMode;		/* Bit-mask to enable features:
343 				 * Bit 0: 1 enables LED identify mode
344 				 */
345 
346 	u16 portScheduleOffset;
347 
348 	struct su_config suConfig;	/* TE1 Bits */
349 	struct su_status suStatus;
350 
351 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
352 				 * the structure and marks the end of shared
353 				 * memory. Adapter code initializes it as
354 				 * END_SIG.
355 				 */
356 };
357 
358 /* endOfSmcSignature value */
359 #define END_SIG                 0x12345678
360 
361 /* Mailbox values. (portMailbox) */
362 #define NOP             0	/* No operation */
363 #define ACK             1	/* Positive acknowledgement to PC driver */
364 #define NAK             2	/* Negative acknowledgement to PC driver */
365 #define STARTPORT       3	/* Start an HDLC port */
366 #define STOPPORT        4	/* Stop an HDLC port */
367 #define ABORTTX         5	/* Abort the transmitter for a port */
368 #define SETV24O         6	/* Set V24 outputs */
369 
370 /* PLX Chip Register Offsets */
371 #define CNTRL_9052      0x50	/* Control Register */
372 #define CNTRL_9054      0x6c	/* Control Register */
373 
374 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
375 #define INTCSR_9054     0x68	/* Interrupt control/status register */
376 
377 /* 9054 DMA Registers */
378 /*
379  * Note that we will be using DMA Channel 0 for copying rx data
380  * and Channel 1 for copying tx data
381  */
382 #define DMAMODE0        0x80
383 #define DMAPADR0        0x84
384 #define DMALADR0        0x88
385 #define DMASIZ0         0x8c
386 #define DMADPR0         0x90
387 #define DMAMODE1        0x94
388 #define DMAPADR1        0x98
389 #define DMALADR1        0x9c
390 #define DMASIZ1         0xa0
391 #define DMADPR1         0xa4
392 #define DMACSR0         0xa8
393 #define DMACSR1         0xa9
394 #define DMAARB          0xac
395 #define DMATHR          0xb0
396 #define DMADAC0         0xb4
397 #define DMADAC1         0xb8
398 #define DMAMARBR        0xac
399 
400 #define FST_MIN_DMA_LEN 64
401 #define FST_RX_DMA_INT  0x01
402 #define FST_TX_DMA_INT  0x02
403 #define FST_CARD_INT    0x04
404 
405 /* Larger buffers are positioned in memory at offset BFM_BASE */
406 struct buf_window {
407 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
408 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
409 };
410 
411 /* Calculate offset of a buffer object within the shared memory window */
412 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
413 
414 #pragma pack()
415 
416 /*      Device driver private information
417  *      =================================
418  */
419 /*      Per port (line or channel) information
420  */
421 struct fst_port_info {
422         struct net_device *dev; /* Device struct - must be first */
423 	struct fst_card_info *card;	/* Card we're associated with */
424 	int index;		/* Port index on the card */
425 	int hwif;		/* Line hardware (lineInterface copy) */
426 	int run;		/* Port is running */
427 	int mode;		/* Normal or FarSync raw */
428 	int rxpos;		/* Next Rx buffer to use */
429 	int txpos;		/* Next Tx buffer to use */
430 	int txipos;		/* Next Tx buffer to check for free */
431 	int start;		/* Indication of start/stop to network */
432 	/*
433 	 * A sixteen entry transmit queue
434 	 */
435 	int txqs;		/* index to get next buffer to tx */
436 	int txqe;		/* index to queue next packet */
437 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
438 	int rxqdepth;
439 };
440 
441 /*      Per card information
442  */
443 struct fst_card_info {
444 	char __iomem *mem;	/* Card memory mapped to kernel space */
445 	char __iomem *ctlmem;	/* Control memory for PCI cards */
446 	unsigned int phys_mem;	/* Physical memory window address */
447 	unsigned int phys_ctlmem;	/* Physical control memory address */
448 	unsigned int irq;	/* Interrupt request line number */
449 	unsigned int nports;	/* Number of serial ports */
450 	unsigned int type;	/* Type index of card */
451 	unsigned int state;	/* State of card */
452 	spinlock_t card_lock;	/* Lock for SMP access */
453 	unsigned short pci_conf;	/* PCI card config in I/O space */
454 	/* Per port info */
455 	struct fst_port_info ports[FST_MAX_PORTS];
456 	struct pci_dev *device;	/* Information about the pci device */
457 	int card_no;		/* Inst of the card on the system */
458 	int family;		/* TxP or TxU */
459 	int dmarx_in_progress;
460 	int dmatx_in_progress;
461 	unsigned long int_count;
462 	unsigned long int_time_ave;
463 	void *rx_dma_handle_host;
464 	dma_addr_t rx_dma_handle_card;
465 	void *tx_dma_handle_host;
466 	dma_addr_t tx_dma_handle_card;
467 	struct sk_buff *dma_skb_rx;
468 	struct fst_port_info *dma_port_rx;
469 	struct fst_port_info *dma_port_tx;
470 	int dma_len_rx;
471 	int dma_len_tx;
472 	int dma_txpos;
473 	int dma_rxpos;
474 };
475 
476 /* Convert an HDLC device pointer into a port info pointer and similar */
477 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
478 #define port_to_dev(P)  ((P)->dev)
479 
480 
481 /*
482  *      Shared memory window access macros
483  *
484  *      We have a nice memory based structure above, which could be directly
485  *      mapped on i386 but might not work on other architectures unless we use
486  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487  *      physical offsets so we have to convert. The only saving grace is that
488  *      this should all collapse back to a simple indirection eventually.
489  */
490 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
491 
492 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
493 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
494 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
495 
496 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
497 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
498 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
499 
500 /*
501  *      Debug support
502  */
503 #if FST_DEBUG
504 
505 static int fst_debug_mask = { FST_DEBUG };
506 
507 /* Most common debug activity is to print something if the corresponding bit
508  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
509  * support variable numbers of macro parameters. The inverted if prevents us
510  * eating someone else's else clause.
511  */
512 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
513                                 ; \
514                         else \
515                                 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
516 
517 #else
518 #define dbg(X...)		/* NOP */
519 #endif
520 
521 /*      Printing short cuts
522  */
523 #define printk_err(fmt,A...)    printk ( KERN_ERR     FST_NAME ": " fmt, ## A )
524 #define printk_warn(fmt,A...)   printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
525 #define printk_info(fmt,A...)   printk ( KERN_INFO    FST_NAME ": " fmt, ## A )
526 
527 /*
528  *      PCI ID lookup table
529  */
530 static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
531 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
532 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
533 
534 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
535 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
536 
537 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
538 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
539 
540 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
541 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
542 
543 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
544 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
545 
546 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
547 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
548 
549 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
550 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 	{0,}			/* End */
552 };
553 
554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
555 
556 /*
557  *      Device Driver Work Queues
558  *
559  *      So that we don't spend too much time processing events in the
560  *      Interrupt Service routine, we will declare a work queue per Card
561  *      and make the ISR schedule a task in the queue for later execution.
562  *      In the 2.4 Kernel we used to use the immediate queue for BH's
563  *      Now that they are gone, tasklets seem to be much better than work
564  *      queues.
565  */
566 
567 static void do_bottom_half_tx(struct fst_card_info *card);
568 static void do_bottom_half_rx(struct fst_card_info *card);
569 static void fst_process_tx_work_q(unsigned long work_q);
570 static void fst_process_int_work_q(unsigned long work_q);
571 
572 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
573 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
574 
575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
576 static spinlock_t fst_work_q_lock;
577 static u64 fst_work_txq;
578 static u64 fst_work_intq;
579 
580 static void
581 fst_q_work_item(u64 * queue, int card_index)
582 {
583 	unsigned long flags;
584 	u64 mask;
585 
586 	/*
587 	 * Grab the queue exclusively
588 	 */
589 	spin_lock_irqsave(&fst_work_q_lock, flags);
590 
591 	/*
592 	 * Making an entry in the queue is simply a matter of setting
593 	 * a bit for the card indicating that there is work to do in the
594 	 * bottom half for the card.  Note the limitation of 64 cards.
595 	 * That ought to be enough
596 	 */
597 	mask = 1 << card_index;
598 	*queue |= mask;
599 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
600 }
601 
602 static void
603 fst_process_tx_work_q(unsigned long /*void **/work_q)
604 {
605 	unsigned long flags;
606 	u64 work_txq;
607 	int i;
608 
609 	/*
610 	 * Grab the queue exclusively
611 	 */
612 	dbg(DBG_TX, "fst_process_tx_work_q\n");
613 	spin_lock_irqsave(&fst_work_q_lock, flags);
614 	work_txq = fst_work_txq;
615 	fst_work_txq = 0;
616 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
617 
618 	/*
619 	 * Call the bottom half for each card with work waiting
620 	 */
621 	for (i = 0; i < FST_MAX_CARDS; i++) {
622 		if (work_txq & 0x01) {
623 			if (fst_card_array[i] != NULL) {
624 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
625 				do_bottom_half_tx(fst_card_array[i]);
626 			}
627 		}
628 		work_txq = work_txq >> 1;
629 	}
630 }
631 
632 static void
633 fst_process_int_work_q(unsigned long /*void **/work_q)
634 {
635 	unsigned long flags;
636 	u64 work_intq;
637 	int i;
638 
639 	/*
640 	 * Grab the queue exclusively
641 	 */
642 	dbg(DBG_INTR, "fst_process_int_work_q\n");
643 	spin_lock_irqsave(&fst_work_q_lock, flags);
644 	work_intq = fst_work_intq;
645 	fst_work_intq = 0;
646 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
647 
648 	/*
649 	 * Call the bottom half for each card with work waiting
650 	 */
651 	for (i = 0; i < FST_MAX_CARDS; i++) {
652 		if (work_intq & 0x01) {
653 			if (fst_card_array[i] != NULL) {
654 				dbg(DBG_INTR,
655 				    "Calling rx & tx bh for card %d\n", i);
656 				do_bottom_half_rx(fst_card_array[i]);
657 				do_bottom_half_tx(fst_card_array[i]);
658 			}
659 		}
660 		work_intq = work_intq >> 1;
661 	}
662 }
663 
664 /*      Card control functions
665  *      ======================
666  */
667 /*      Place the processor in reset state
668  *
669  * Used to be a simple write to card control space but a glitch in the latest
670  * AMD Am186CH processor means that we now have to do it by asserting and de-
671  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
672  * at offset 9052_CNTRL.  Note the updates for the TXU.
673  */
674 static inline void
675 fst_cpureset(struct fst_card_info *card)
676 {
677 	unsigned char interrupt_line_register;
678 	unsigned long j = jiffies + 1;
679 	unsigned int regval;
680 
681 	if (card->family == FST_FAMILY_TXU) {
682 		if (pci_read_config_byte
683 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
684 			dbg(DBG_ASS,
685 			    "Error in reading interrupt line register\n");
686 		}
687 		/*
688 		 * Assert PLX software reset and Am186 hardware reset
689 		 * and then deassert the PLX software reset but 186 still in reset
690 		 */
691 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
692 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
693 		/*
694 		 * We are delaying here to allow the 9054 to reset itself
695 		 */
696 		j = jiffies + 1;
697 		while (jiffies < j)
698 			/* Do nothing */ ;
699 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
700 		/*
701 		 * We are delaying here to allow the 9054 to reload its eeprom
702 		 */
703 		j = jiffies + 1;
704 		while (jiffies < j)
705 			/* Do nothing */ ;
706 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
707 
708 		if (pci_write_config_byte
709 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
710 			dbg(DBG_ASS,
711 			    "Error in writing interrupt line register\n");
712 		}
713 
714 	} else {
715 		regval = inl(card->pci_conf + CNTRL_9052);
716 
717 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
718 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
719 	}
720 }
721 
722 /*      Release the processor from reset
723  */
724 static inline void
725 fst_cpurelease(struct fst_card_info *card)
726 {
727 	if (card->family == FST_FAMILY_TXU) {
728 		/*
729 		 * Force posted writes to complete
730 		 */
731 		(void) readb(card->mem);
732 
733 		/*
734 		 * Release LRESET DO = 1
735 		 * Then release Local Hold, DO = 1
736 		 */
737 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
738 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
739 	} else {
740 		(void) readb(card->ctlmem);
741 	}
742 }
743 
744 /*      Clear the cards interrupt flag
745  */
746 static inline void
747 fst_clear_intr(struct fst_card_info *card)
748 {
749 	if (card->family == FST_FAMILY_TXU) {
750 		(void) readb(card->ctlmem);
751 	} else {
752 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
753 		 */
754 		outw(0x0543, card->pci_conf + INTCSR_9052);
755 	}
756 }
757 
758 /*      Enable card interrupts
759  */
760 static inline void
761 fst_enable_intr(struct fst_card_info *card)
762 {
763 	if (card->family == FST_FAMILY_TXU) {
764 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
765 	} else {
766 		outw(0x0543, card->pci_conf + INTCSR_9052);
767 	}
768 }
769 
770 /*      Disable card interrupts
771  */
772 static inline void
773 fst_disable_intr(struct fst_card_info *card)
774 {
775 	if (card->family == FST_FAMILY_TXU) {
776 		outl(0x00000000, card->pci_conf + INTCSR_9054);
777 	} else {
778 		outw(0x0000, card->pci_conf + INTCSR_9052);
779 	}
780 }
781 
782 /*      Process the result of trying to pass a received frame up the stack
783  */
784 static void
785 fst_process_rx_status(int rx_status, char *name)
786 {
787 	switch (rx_status) {
788 	case NET_RX_SUCCESS:
789 		{
790 			/*
791 			 * Nothing to do here
792 			 */
793 			break;
794 		}
795 
796 	case NET_RX_CN_LOW:
797 		{
798 			dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
799 			break;
800 		}
801 
802 	case NET_RX_CN_MOD:
803 		{
804 			dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
805 			break;
806 		}
807 
808 	case NET_RX_CN_HIGH:
809 		{
810 			dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
811 			break;
812 		}
813 
814 	case NET_RX_DROP:
815 		{
816 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
817 			break;
818 		}
819 	}
820 }
821 
822 /*      Initilaise DMA for PLX 9054
823  */
824 static inline void
825 fst_init_dma(struct fst_card_info *card)
826 {
827 	/*
828 	 * This is only required for the PLX 9054
829 	 */
830 	if (card->family == FST_FAMILY_TXU) {
831 	        pci_set_master(card->device);
832 		outl(0x00020441, card->pci_conf + DMAMODE0);
833 		outl(0x00020441, card->pci_conf + DMAMODE1);
834 		outl(0x0, card->pci_conf + DMATHR);
835 	}
836 }
837 
838 /*      Tx dma complete interrupt
839  */
840 static void
841 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
842 		    int len, int txpos)
843 {
844 	struct net_device *dev = port_to_dev(port);
845 
846 	/*
847 	 * Everything is now set, just tell the card to go
848 	 */
849 	dbg(DBG_TX, "fst_tx_dma_complete\n");
850 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
851 		DMA_OWN | TX_STP | TX_ENP);
852 	dev->stats.tx_packets++;
853 	dev->stats.tx_bytes += len;
854 	dev->trans_start = jiffies;
855 }
856 
857 /*
858  * Mark it for our own raw sockets interface
859  */
860 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
861 {
862 	skb->dev = dev;
863 	skb_reset_mac_header(skb);
864 	skb->pkt_type = PACKET_HOST;
865 	return htons(ETH_P_CUST);
866 }
867 
868 /*      Rx dma complete interrupt
869  */
870 static void
871 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
872 		    int len, struct sk_buff *skb, int rxp)
873 {
874 	struct net_device *dev = port_to_dev(port);
875 	int pi;
876 	int rx_status;
877 
878 	dbg(DBG_TX, "fst_rx_dma_complete\n");
879 	pi = port->index;
880 	memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
881 
882 	/* Reset buffer descriptor */
883 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
884 
885 	/* Update stats */
886 	dev->stats.rx_packets++;
887 	dev->stats.rx_bytes += len;
888 
889 	/* Push upstream */
890 	dbg(DBG_RX, "Pushing the frame up the stack\n");
891 	if (port->mode == FST_RAW)
892 		skb->protocol = farsync_type_trans(skb, dev);
893 	else
894 		skb->protocol = hdlc_type_trans(skb, dev);
895 	rx_status = netif_rx(skb);
896 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
897 	if (rx_status == NET_RX_DROP)
898 		dev->stats.rx_dropped++;
899 	dev->last_rx = jiffies;
900 }
901 
902 /*
903  *      Receive a frame through the DMA
904  */
905 static inline void
906 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
907 	   unsigned char *mem, int len)
908 {
909 	/*
910 	 * This routine will setup the DMA and start it
911 	 */
912 
913 	dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
914 	if (card->dmarx_in_progress) {
915 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
916 	}
917 
918 	outl((unsigned long) skb, card->pci_conf + DMAPADR0);	/* Copy to here */
919 	outl((unsigned long) mem, card->pci_conf + DMALADR0);	/* from here */
920 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
921 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
922 
923 	/*
924 	 * We use the dmarx_in_progress flag to flag the channel as busy
925 	 */
926 	card->dmarx_in_progress = 1;
927 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
928 }
929 
930 /*
931  *      Send a frame through the DMA
932  */
933 static inline void
934 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
935 	   unsigned char *mem, int len)
936 {
937 	/*
938 	 * This routine will setup the DMA and start it.
939 	 */
940 
941 	dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
942 	if (card->dmatx_in_progress) {
943 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
944 	}
945 
946 	outl((unsigned long) skb, card->pci_conf + DMAPADR1);	/* Copy from here */
947 	outl((unsigned long) mem, card->pci_conf + DMALADR1);	/* to here */
948 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
949 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
950 
951 	/*
952 	 * We use the dmatx_in_progress to flag the channel as busy
953 	 */
954 	card->dmatx_in_progress = 1;
955 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
956 }
957 
958 /*      Issue a Mailbox command for a port.
959  *      Note we issue them on a fire and forget basis, not expecting to see an
960  *      error and not waiting for completion.
961  */
962 static void
963 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
964 {
965 	struct fst_card_info *card;
966 	unsigned short mbval;
967 	unsigned long flags;
968 	int safety;
969 
970 	card = port->card;
971 	spin_lock_irqsave(&card->card_lock, flags);
972 	mbval = FST_RDW(card, portMailbox[port->index][0]);
973 
974 	safety = 0;
975 	/* Wait for any previous command to complete */
976 	while (mbval > NAK) {
977 		spin_unlock_irqrestore(&card->card_lock, flags);
978 		schedule_timeout_uninterruptible(1);
979 		spin_lock_irqsave(&card->card_lock, flags);
980 
981 		if (++safety > 2000) {
982 			printk_err("Mailbox safety timeout\n");
983 			break;
984 		}
985 
986 		mbval = FST_RDW(card, portMailbox[port->index][0]);
987 	}
988 	if (safety > 0) {
989 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
990 	}
991 	if (mbval == NAK) {
992 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
993 	}
994 
995 	FST_WRW(card, portMailbox[port->index][0], cmd);
996 
997 	if (cmd == ABORTTX || cmd == STARTPORT) {
998 		port->txpos = 0;
999 		port->txipos = 0;
1000 		port->start = 0;
1001 	}
1002 
1003 	spin_unlock_irqrestore(&card->card_lock, flags);
1004 }
1005 
1006 /*      Port output signals control
1007  */
1008 static inline void
1009 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1010 {
1011 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1012 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1013 
1014 	if (port->run)
1015 		fst_issue_cmd(port, SETV24O);
1016 }
1017 
1018 static inline void
1019 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1020 {
1021 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1022 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1023 
1024 	if (port->run)
1025 		fst_issue_cmd(port, SETV24O);
1026 }
1027 
1028 /*
1029  *      Setup port Rx buffers
1030  */
1031 static void
1032 fst_rx_config(struct fst_port_info *port)
1033 {
1034 	int i;
1035 	int pi;
1036 	unsigned int offset;
1037 	unsigned long flags;
1038 	struct fst_card_info *card;
1039 
1040 	pi = port->index;
1041 	card = port->card;
1042 	spin_lock_irqsave(&card->card_lock, flags);
1043 	for (i = 0; i < NUM_RX_BUFFER; i++) {
1044 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1045 
1046 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1047 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1048 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1049 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1050 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1051 	}
1052 	port->rxpos = 0;
1053 	spin_unlock_irqrestore(&card->card_lock, flags);
1054 }
1055 
1056 /*
1057  *      Setup port Tx buffers
1058  */
1059 static void
1060 fst_tx_config(struct fst_port_info *port)
1061 {
1062 	int i;
1063 	int pi;
1064 	unsigned int offset;
1065 	unsigned long flags;
1066 	struct fst_card_info *card;
1067 
1068 	pi = port->index;
1069 	card = port->card;
1070 	spin_lock_irqsave(&card->card_lock, flags);
1071 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1072 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1073 
1074 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1075 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1076 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1077 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1078 	}
1079 	port->txpos = 0;
1080 	port->txipos = 0;
1081 	port->start = 0;
1082 	spin_unlock_irqrestore(&card->card_lock, flags);
1083 }
1084 
1085 /*      TE1 Alarm change interrupt event
1086  */
1087 static void
1088 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1089 {
1090 	u8 los;
1091 	u8 rra;
1092 	u8 ais;
1093 
1094 	los = FST_RDB(card, suStatus.lossOfSignal);
1095 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1096 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1097 
1098 	if (los) {
1099 		/*
1100 		 * Lost the link
1101 		 */
1102 		if (netif_carrier_ok(port_to_dev(port))) {
1103 			dbg(DBG_INTR, "Net carrier off\n");
1104 			netif_carrier_off(port_to_dev(port));
1105 		}
1106 	} else {
1107 		/*
1108 		 * Link available
1109 		 */
1110 		if (!netif_carrier_ok(port_to_dev(port))) {
1111 			dbg(DBG_INTR, "Net carrier on\n");
1112 			netif_carrier_on(port_to_dev(port));
1113 		}
1114 	}
1115 
1116 	if (los)
1117 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1118 	else
1119 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1120 	if (rra)
1121 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1122 	else
1123 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1124 
1125 	if (ais)
1126 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1127 	else
1128 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1129 }
1130 
1131 /*      Control signal change interrupt event
1132  */
1133 static void
1134 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1135 {
1136 	int signals;
1137 
1138 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1139 
1140 	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1141 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1142 		if (!netif_carrier_ok(port_to_dev(port))) {
1143 			dbg(DBG_INTR, "DCD active\n");
1144 			netif_carrier_on(port_to_dev(port));
1145 		}
1146 	} else {
1147 		if (netif_carrier_ok(port_to_dev(port))) {
1148 			dbg(DBG_INTR, "DCD lost\n");
1149 			netif_carrier_off(port_to_dev(port));
1150 		}
1151 	}
1152 }
1153 
1154 /*      Log Rx Errors
1155  */
1156 static void
1157 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1158 		 unsigned char dmabits, int rxp, unsigned short len)
1159 {
1160 	struct net_device *dev = port_to_dev(port);
1161 
1162 	/*
1163 	 * Increment the appropriate error counter
1164 	 */
1165 	dev->stats.rx_errors++;
1166 	if (dmabits & RX_OFLO) {
1167 		dev->stats.rx_fifo_errors++;
1168 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1169 		    card->card_no, port->index, rxp);
1170 	}
1171 	if (dmabits & RX_CRC) {
1172 		dev->stats.rx_crc_errors++;
1173 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1174 		    card->card_no, port->index);
1175 	}
1176 	if (dmabits & RX_FRAM) {
1177 		dev->stats.rx_frame_errors++;
1178 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1179 		    card->card_no, port->index);
1180 	}
1181 	if (dmabits == (RX_STP | RX_ENP)) {
1182 		dev->stats.rx_length_errors++;
1183 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1184 		    len, card->card_no, port->index);
1185 	}
1186 }
1187 
1188 /*      Rx Error Recovery
1189  */
1190 static void
1191 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1192 		     unsigned char dmabits, int rxp, unsigned short len)
1193 {
1194 	int i;
1195 	int pi;
1196 
1197 	pi = port->index;
1198 	/*
1199 	 * Discard buffer descriptors until we see the start of the
1200 	 * next frame.  Note that for long frames this could be in
1201 	 * a subsequent interrupt.
1202 	 */
1203 	i = 0;
1204 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1205 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1206 		rxp = (rxp+1) % NUM_RX_BUFFER;
1207 		if (++i > NUM_RX_BUFFER) {
1208 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1209 			    " than we have\n");
1210 			break;
1211 		}
1212 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1213 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1214 	}
1215 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1216 
1217 	/* Discard the terminal buffer */
1218 	if (!(dmabits & DMA_OWN)) {
1219 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1220 		rxp = (rxp+1) % NUM_RX_BUFFER;
1221 	}
1222 	port->rxpos = rxp;
1223 	return;
1224 
1225 }
1226 
1227 /*      Rx complete interrupt
1228  */
1229 static void
1230 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1231 {
1232 	unsigned char dmabits;
1233 	int pi;
1234 	int rxp;
1235 	int rx_status;
1236 	unsigned short len;
1237 	struct sk_buff *skb;
1238 	struct net_device *dev = port_to_dev(port);
1239 
1240 	/* Check we have a buffer to process */
1241 	pi = port->index;
1242 	rxp = port->rxpos;
1243 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1244 	if (dmabits & DMA_OWN) {
1245 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1246 		    pi, rxp);
1247 		return;
1248 	}
1249 	if (card->dmarx_in_progress) {
1250 		return;
1251 	}
1252 
1253 	/* Get buffer length */
1254 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1255 	/* Discard the CRC */
1256 	len -= 2;
1257 	if (len == 0) {
1258 		/*
1259 		 * This seems to happen on the TE1 interface sometimes
1260 		 * so throw the frame away and log the event.
1261 		 */
1262 		printk_err("Frame received with 0 length. Card %d Port %d\n",
1263 			   card->card_no, port->index);
1264 		/* Return descriptor to card */
1265 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1266 
1267 		rxp = (rxp+1) % NUM_RX_BUFFER;
1268 		port->rxpos = rxp;
1269 		return;
1270 	}
1271 
1272 	/* Check buffer length and for other errors. We insist on one packet
1273 	 * in one buffer. This simplifies things greatly and since we've
1274 	 * allocated 8K it shouldn't be a real world limitation
1275 	 */
1276 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1277 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1278 		fst_log_rx_error(card, port, dmabits, rxp, len);
1279 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1280 		return;
1281 	}
1282 
1283 	/* Allocate SKB */
1284 	if ((skb = dev_alloc_skb(len)) == NULL) {
1285 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1286 
1287 		dev->stats.rx_dropped++;
1288 
1289 		/* Return descriptor to card */
1290 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1291 
1292 		rxp = (rxp+1) % NUM_RX_BUFFER;
1293 		port->rxpos = rxp;
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * We know the length we need to receive, len.
1299 	 * It's not worth using the DMA for reads of less than
1300 	 * FST_MIN_DMA_LEN
1301 	 */
1302 
1303 	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1304 		memcpy_fromio(skb_put(skb, len),
1305 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1306 			      len);
1307 
1308 		/* Reset buffer descriptor */
1309 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1310 
1311 		/* Update stats */
1312 		dev->stats.rx_packets++;
1313 		dev->stats.rx_bytes += len;
1314 
1315 		/* Push upstream */
1316 		dbg(DBG_RX, "Pushing frame up the stack\n");
1317 		if (port->mode == FST_RAW)
1318 			skb->protocol = farsync_type_trans(skb, dev);
1319 		else
1320 			skb->protocol = hdlc_type_trans(skb, dev);
1321 		rx_status = netif_rx(skb);
1322 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1323 		if (rx_status == NET_RX_DROP)
1324 			dev->stats.rx_dropped++;
1325 		dev->last_rx = jiffies;
1326 	} else {
1327 		card->dma_skb_rx = skb;
1328 		card->dma_port_rx = port;
1329 		card->dma_len_rx = len;
1330 		card->dma_rxpos = rxp;
1331 		fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1332 			   (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1333 	}
1334 	if (rxp != port->rxpos) {
1335 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1336 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1337 	}
1338 	rxp = (rxp+1) % NUM_RX_BUFFER;
1339 	port->rxpos = rxp;
1340 }
1341 
1342 /*
1343  *      The bottom halfs to the ISR
1344  *
1345  */
1346 
1347 static void
1348 do_bottom_half_tx(struct fst_card_info *card)
1349 {
1350 	struct fst_port_info *port;
1351 	int pi;
1352 	int txq_length;
1353 	struct sk_buff *skb;
1354 	unsigned long flags;
1355 	struct net_device *dev;
1356 
1357 	/*
1358 	 *  Find a free buffer for the transmit
1359 	 *  Step through each port on this card
1360 	 */
1361 
1362 	dbg(DBG_TX, "do_bottom_half_tx\n");
1363 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1364 		if (!port->run)
1365 			continue;
1366 
1367 		dev = port_to_dev(port);
1368 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1369 			 DMA_OWN)
1370 		       && !(card->dmatx_in_progress)) {
1371 			/*
1372 			 * There doesn't seem to be a txdone event per-se
1373 			 * We seem to have to deduce it, by checking the DMA_OWN
1374 			 * bit on the next buffer we think we can use
1375 			 */
1376 			spin_lock_irqsave(&card->card_lock, flags);
1377 			if ((txq_length = port->txqe - port->txqs) < 0) {
1378 				/*
1379 				 * This is the case where one has wrapped and the
1380 				 * maths gives us a negative number
1381 				 */
1382 				txq_length = txq_length + FST_TXQ_DEPTH;
1383 			}
1384 			spin_unlock_irqrestore(&card->card_lock, flags);
1385 			if (txq_length > 0) {
1386 				/*
1387 				 * There is something to send
1388 				 */
1389 				spin_lock_irqsave(&card->card_lock, flags);
1390 				skb = port->txq[port->txqs];
1391 				port->txqs++;
1392 				if (port->txqs == FST_TXQ_DEPTH) {
1393 					port->txqs = 0;
1394 				}
1395 				spin_unlock_irqrestore(&card->card_lock, flags);
1396 				/*
1397 				 * copy the data and set the required indicators on the
1398 				 * card.
1399 				 */
1400 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1401 					cnv_bcnt(skb->len));
1402 				if ((skb->len < FST_MIN_DMA_LEN)
1403 				    || (card->family == FST_FAMILY_TXP)) {
1404 					/* Enqueue the packet with normal io */
1405 					memcpy_toio(card->mem +
1406 						    BUF_OFFSET(txBuffer[pi]
1407 							       [port->
1408 								txpos][0]),
1409 						    skb->data, skb->len);
1410 					FST_WRB(card,
1411 						txDescrRing[pi][port->txpos].
1412 						bits,
1413 						DMA_OWN | TX_STP | TX_ENP);
1414 					dev->stats.tx_packets++;
1415 					dev->stats.tx_bytes += skb->len;
1416 					dev->trans_start = jiffies;
1417 				} else {
1418 					/* Or do it through dma */
1419 					memcpy(card->tx_dma_handle_host,
1420 					       skb->data, skb->len);
1421 					card->dma_port_tx = port;
1422 					card->dma_len_tx = skb->len;
1423 					card->dma_txpos = port->txpos;
1424 					fst_tx_dma(card,
1425 						   (char *) card->
1426 						   tx_dma_handle_card,
1427 						   (char *)
1428 						   BUF_OFFSET(txBuffer[pi]
1429 							      [port->txpos][0]),
1430 						   skb->len);
1431 				}
1432 				if (++port->txpos >= NUM_TX_BUFFER)
1433 					port->txpos = 0;
1434 				/*
1435 				 * If we have flow control on, can we now release it?
1436 				 */
1437 				if (port->start) {
1438 					if (txq_length < fst_txq_low) {
1439 						netif_wake_queue(port_to_dev
1440 								 (port));
1441 						port->start = 0;
1442 					}
1443 				}
1444 				dev_kfree_skb(skb);
1445 			} else {
1446 				/*
1447 				 * Nothing to send so break out of the while loop
1448 				 */
1449 				break;
1450 			}
1451 		}
1452 	}
1453 }
1454 
1455 static void
1456 do_bottom_half_rx(struct fst_card_info *card)
1457 {
1458 	struct fst_port_info *port;
1459 	int pi;
1460 	int rx_count = 0;
1461 
1462 	/* Check for rx completions on all ports on this card */
1463 	dbg(DBG_RX, "do_bottom_half_rx\n");
1464 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1465 		if (!port->run)
1466 			continue;
1467 
1468 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1469 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1470 			if (rx_count > fst_max_reads) {
1471 				/*
1472 				 * Don't spend forever in receive processing
1473 				 * Schedule another event
1474 				 */
1475 				fst_q_work_item(&fst_work_intq, card->card_no);
1476 				tasklet_schedule(&fst_int_task);
1477 				break;	/* Leave the loop */
1478 			}
1479 			fst_intr_rx(card, port);
1480 			rx_count++;
1481 		}
1482 	}
1483 }
1484 
1485 /*
1486  *      The interrupt service routine
1487  *      Dev_id is our fst_card_info pointer
1488  */
1489 static irqreturn_t
1490 fst_intr(int dummy, void *dev_id)
1491 {
1492 	struct fst_card_info *card = dev_id;
1493 	struct fst_port_info *port;
1494 	int rdidx;		/* Event buffer indices */
1495 	int wridx;
1496 	int event;		/* Actual event for processing */
1497 	unsigned int dma_intcsr = 0;
1498 	unsigned int do_card_interrupt;
1499 	unsigned int int_retry_count;
1500 
1501 	/*
1502 	 * Check to see if the interrupt was for this card
1503 	 * return if not
1504 	 * Note that the call to clear the interrupt is important
1505 	 */
1506 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1507 	if (card->state != FST_RUNNING) {
1508 		printk_err
1509 		    ("Interrupt received for card %d in a non running state (%d)\n",
1510 		     card->card_no, card->state);
1511 
1512 		/*
1513 		 * It is possible to really be running, i.e. we have re-loaded
1514 		 * a running card
1515 		 * Clear and reprime the interrupt source
1516 		 */
1517 		fst_clear_intr(card);
1518 		return IRQ_HANDLED;
1519 	}
1520 
1521 	/* Clear and reprime the interrupt source */
1522 	fst_clear_intr(card);
1523 
1524 	/*
1525 	 * Is the interrupt for this card (handshake == 1)
1526 	 */
1527 	do_card_interrupt = 0;
1528 	if (FST_RDB(card, interruptHandshake) == 1) {
1529 		do_card_interrupt += FST_CARD_INT;
1530 		/* Set the software acknowledge */
1531 		FST_WRB(card, interruptHandshake, 0xEE);
1532 	}
1533 	if (card->family == FST_FAMILY_TXU) {
1534 		/*
1535 		 * Is it a DMA Interrupt
1536 		 */
1537 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1538 		if (dma_intcsr & 0x00200000) {
1539 			/*
1540 			 * DMA Channel 0 (Rx transfer complete)
1541 			 */
1542 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1543 			outb(0x8, card->pci_conf + DMACSR0);
1544 			fst_rx_dma_complete(card, card->dma_port_rx,
1545 					    card->dma_len_rx, card->dma_skb_rx,
1546 					    card->dma_rxpos);
1547 			card->dmarx_in_progress = 0;
1548 			do_card_interrupt += FST_RX_DMA_INT;
1549 		}
1550 		if (dma_intcsr & 0x00400000) {
1551 			/*
1552 			 * DMA Channel 1 (Tx transfer complete)
1553 			 */
1554 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1555 			outb(0x8, card->pci_conf + DMACSR1);
1556 			fst_tx_dma_complete(card, card->dma_port_tx,
1557 					    card->dma_len_tx, card->dma_txpos);
1558 			card->dmatx_in_progress = 0;
1559 			do_card_interrupt += FST_TX_DMA_INT;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Have we been missing Interrupts
1565 	 */
1566 	int_retry_count = FST_RDL(card, interruptRetryCount);
1567 	if (int_retry_count) {
1568 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1569 		    card->card_no, int_retry_count);
1570 		FST_WRL(card, interruptRetryCount, 0);
1571 	}
1572 
1573 	if (!do_card_interrupt) {
1574 		return IRQ_HANDLED;
1575 	}
1576 
1577 	/* Scehdule the bottom half of the ISR */
1578 	fst_q_work_item(&fst_work_intq, card->card_no);
1579 	tasklet_schedule(&fst_int_task);
1580 
1581 	/* Drain the event queue */
1582 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1583 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1584 	while (rdidx != wridx) {
1585 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1586 		port = &card->ports[event & 0x03];
1587 
1588 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1589 
1590 		switch (event) {
1591 		case TE1_ALMA:
1592 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1593 			if (port->run)
1594 				fst_intr_te1_alarm(card, port);
1595 			break;
1596 
1597 		case CTLA_CHG:
1598 		case CTLB_CHG:
1599 		case CTLC_CHG:
1600 		case CTLD_CHG:
1601 			if (port->run)
1602 				fst_intr_ctlchg(card, port);
1603 			break;
1604 
1605 		case ABTA_SENT:
1606 		case ABTB_SENT:
1607 		case ABTC_SENT:
1608 		case ABTD_SENT:
1609 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1610 			break;
1611 
1612 		case TXA_UNDF:
1613 		case TXB_UNDF:
1614 		case TXC_UNDF:
1615 		case TXD_UNDF:
1616 			/* Difficult to see how we'd get this given that we
1617 			 * always load up the entire packet for DMA.
1618 			 */
1619 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1620 			port_to_dev(port)->stats.tx_errors++;
1621 			port_to_dev(port)->stats.tx_fifo_errors++;
1622 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1623 			    card->card_no, port->index);
1624 			break;
1625 
1626 		case INIT_CPLT:
1627 			dbg(DBG_INIT, "Card init OK intr\n");
1628 			break;
1629 
1630 		case INIT_FAIL:
1631 			dbg(DBG_INIT, "Card init FAILED intr\n");
1632 			card->state = FST_IFAILED;
1633 			break;
1634 
1635 		default:
1636 			printk_err("intr: unknown card event %d. ignored\n",
1637 				   event);
1638 			break;
1639 		}
1640 
1641 		/* Bump and wrap the index */
1642 		if (++rdidx >= MAX_CIRBUFF)
1643 			rdidx = 0;
1644 	}
1645 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1646         return IRQ_HANDLED;
1647 }
1648 
1649 /*      Check that the shared memory configuration is one that we can handle
1650  *      and that some basic parameters are correct
1651  */
1652 static void
1653 check_started_ok(struct fst_card_info *card)
1654 {
1655 	int i;
1656 
1657 	/* Check structure version and end marker */
1658 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1659 		printk_err("Bad shared memory version %d expected %d\n",
1660 			   FST_RDW(card, smcVersion), SMC_VERSION);
1661 		card->state = FST_BADVERSION;
1662 		return;
1663 	}
1664 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1665 		printk_err("Missing shared memory signature\n");
1666 		card->state = FST_BADVERSION;
1667 		return;
1668 	}
1669 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1670 	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1671 		card->state = FST_RUNNING;
1672 	} else if (i == 0xFF) {
1673 		printk_err("Firmware initialisation failed. Card halted\n");
1674 		card->state = FST_HALTED;
1675 		return;
1676 	} else if (i != 0x00) {
1677 		printk_err("Unknown firmware status 0x%x\n", i);
1678 		card->state = FST_HALTED;
1679 		return;
1680 	}
1681 
1682 	/* Finally check the number of ports reported by firmware against the
1683 	 * number we assumed at card detection. Should never happen with
1684 	 * existing firmware etc so we just report it for the moment.
1685 	 */
1686 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1687 		printk_warn("Port count mismatch on card %d."
1688 			    " Firmware thinks %d we say %d\n", card->card_no,
1689 			    FST_RDL(card, numberOfPorts), card->nports);
1690 	}
1691 }
1692 
1693 static int
1694 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1695 		   struct fstioc_info *info)
1696 {
1697 	int err;
1698 	unsigned char my_framing;
1699 
1700 	/* Set things according to the user set valid flags
1701 	 * Several of the old options have been invalidated/replaced by the
1702 	 * generic hdlc package.
1703 	 */
1704 	err = 0;
1705 	if (info->valid & FSTVAL_PROTO) {
1706 		if (info->proto == FST_RAW)
1707 			port->mode = FST_RAW;
1708 		else
1709 			port->mode = FST_GEN_HDLC;
1710 	}
1711 
1712 	if (info->valid & FSTVAL_CABLE)
1713 		err = -EINVAL;
1714 
1715 	if (info->valid & FSTVAL_SPEED)
1716 		err = -EINVAL;
1717 
1718 	if (info->valid & FSTVAL_PHASE)
1719 		FST_WRB(card, portConfig[port->index].invertClock,
1720 			info->invertClock);
1721 	if (info->valid & FSTVAL_MODE)
1722 		FST_WRW(card, cardMode, info->cardMode);
1723 	if (info->valid & FSTVAL_TE1) {
1724 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1725 		FST_WRB(card, suConfig.clocking, info->clockSource);
1726 		my_framing = FRAMING_E1;
1727 		if (info->framing == E1)
1728 			my_framing = FRAMING_E1;
1729 		if (info->framing == T1)
1730 			my_framing = FRAMING_T1;
1731 		if (info->framing == J1)
1732 			my_framing = FRAMING_J1;
1733 		FST_WRB(card, suConfig.framing, my_framing);
1734 		FST_WRB(card, suConfig.structure, info->structure);
1735 		FST_WRB(card, suConfig.interface, info->interface);
1736 		FST_WRB(card, suConfig.coding, info->coding);
1737 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1738 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1739 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1740 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1741 		FST_WRB(card, suConfig.range, info->range);
1742 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1743 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1744 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1745 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1746 		if (info->idleCode)
1747 			FST_WRB(card, suConfig.enableIdleCode, 1);
1748 		else
1749 			FST_WRB(card, suConfig.enableIdleCode, 0);
1750 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1751 #if FST_DEBUG
1752 		if (info->valid & FSTVAL_TE1) {
1753 			printk("Setting TE1 data\n");
1754 			printk("Line Speed = %d\n", info->lineSpeed);
1755 			printk("Start slot = %d\n", info->startingSlot);
1756 			printk("Clock source = %d\n", info->clockSource);
1757 			printk("Framing = %d\n", my_framing);
1758 			printk("Structure = %d\n", info->structure);
1759 			printk("interface = %d\n", info->interface);
1760 			printk("Coding = %d\n", info->coding);
1761 			printk("Line build out = %d\n", info->lineBuildOut);
1762 			printk("Equaliser = %d\n", info->equalizer);
1763 			printk("Transparent mode = %d\n",
1764 			       info->transparentMode);
1765 			printk("Loop mode = %d\n", info->loopMode);
1766 			printk("Range = %d\n", info->range);
1767 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1768 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1769 			printk("LOS Threshold = %d\n", info->losThreshold);
1770 			printk("Idle Code = %d\n", info->idleCode);
1771 		}
1772 #endif
1773 	}
1774 #if FST_DEBUG
1775 	if (info->valid & FSTVAL_DEBUG) {
1776 		fst_debug_mask = info->debug;
1777 	}
1778 #endif
1779 
1780 	return err;
1781 }
1782 
1783 static void
1784 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1785 		 struct fstioc_info *info)
1786 {
1787 	int i;
1788 
1789 	memset(info, 0, sizeof (struct fstioc_info));
1790 
1791 	i = port->index;
1792 	info->kernelVersion = LINUX_VERSION_CODE;
1793 	info->nports = card->nports;
1794 	info->type = card->type;
1795 	info->state = card->state;
1796 	info->proto = FST_GEN_HDLC;
1797 	info->index = i;
1798 #if FST_DEBUG
1799 	info->debug = fst_debug_mask;
1800 #endif
1801 
1802 	/* Only mark information as valid if card is running.
1803 	 * Copy the data anyway in case it is useful for diagnostics
1804 	 */
1805 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1806 #if FST_DEBUG
1807 	    | FSTVAL_DEBUG
1808 #endif
1809 	    ;
1810 
1811 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1812 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1813 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1814 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1815 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1816 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1817 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1818 	info->cableStatus = FST_RDW(card, cableStatus);
1819 	info->cardMode = FST_RDW(card, cardMode);
1820 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1821 
1822 	/*
1823 	 * The T2U can report cable presence for both A or B
1824 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1825 	 * do the mapping.
1826 	 */
1827 	if (card->family == FST_FAMILY_TXU) {
1828 		if (port->index == 0) {
1829 			/*
1830 			 * Port A
1831 			 */
1832 			info->cableStatus = info->cableStatus & 1;
1833 		} else {
1834 			/*
1835 			 * Port B
1836 			 */
1837 			info->cableStatus = info->cableStatus >> 1;
1838 			info->cableStatus = info->cableStatus & 1;
1839 		}
1840 	}
1841 	/*
1842 	 * Some additional bits if we are TE1
1843 	 */
1844 	if (card->type == FST_TYPE_TE1) {
1845 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1846 		info->clockSource = FST_RDB(card, suConfig.clocking);
1847 		info->framing = FST_RDB(card, suConfig.framing);
1848 		info->structure = FST_RDB(card, suConfig.structure);
1849 		info->interface = FST_RDB(card, suConfig.interface);
1850 		info->coding = FST_RDB(card, suConfig.coding);
1851 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1852 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1853 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1854 		info->range = FST_RDB(card, suConfig.range);
1855 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1856 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1857 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1858 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1859 		if (FST_RDB(card, suConfig.enableIdleCode))
1860 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1861 		else
1862 			info->idleCode = 0;
1863 		info->receiveBufferDelay =
1864 		    FST_RDL(card, suStatus.receiveBufferDelay);
1865 		info->framingErrorCount =
1866 		    FST_RDL(card, suStatus.framingErrorCount);
1867 		info->codeViolationCount =
1868 		    FST_RDL(card, suStatus.codeViolationCount);
1869 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1870 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1871 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1872 		info->receiveRemoteAlarm =
1873 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1874 		info->alarmIndicationSignal =
1875 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1876 	}
1877 }
1878 
1879 static int
1880 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1881 	      struct ifreq *ifr)
1882 {
1883 	sync_serial_settings sync;
1884 	int i;
1885 
1886 	if (ifr->ifr_settings.size != sizeof (sync)) {
1887 		return -ENOMEM;
1888 	}
1889 
1890 	if (copy_from_user
1891 	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1892 		return -EFAULT;
1893 	}
1894 
1895 	if (sync.loopback)
1896 		return -EINVAL;
1897 
1898 	i = port->index;
1899 
1900 	switch (ifr->ifr_settings.type) {
1901 	case IF_IFACE_V35:
1902 		FST_WRW(card, portConfig[i].lineInterface, V35);
1903 		port->hwif = V35;
1904 		break;
1905 
1906 	case IF_IFACE_V24:
1907 		FST_WRW(card, portConfig[i].lineInterface, V24);
1908 		port->hwif = V24;
1909 		break;
1910 
1911 	case IF_IFACE_X21:
1912 		FST_WRW(card, portConfig[i].lineInterface, X21);
1913 		port->hwif = X21;
1914 		break;
1915 
1916 	case IF_IFACE_X21D:
1917 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1918 		port->hwif = X21D;
1919 		break;
1920 
1921 	case IF_IFACE_T1:
1922 		FST_WRW(card, portConfig[i].lineInterface, T1);
1923 		port->hwif = T1;
1924 		break;
1925 
1926 	case IF_IFACE_E1:
1927 		FST_WRW(card, portConfig[i].lineInterface, E1);
1928 		port->hwif = E1;
1929 		break;
1930 
1931 	case IF_IFACE_SYNC_SERIAL:
1932 		break;
1933 
1934 	default:
1935 		return -EINVAL;
1936 	}
1937 
1938 	switch (sync.clock_type) {
1939 	case CLOCK_EXT:
1940 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1941 		break;
1942 
1943 	case CLOCK_INT:
1944 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1945 		break;
1946 
1947 	default:
1948 		return -EINVAL;
1949 	}
1950 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1951 	return 0;
1952 }
1953 
1954 static int
1955 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1956 	      struct ifreq *ifr)
1957 {
1958 	sync_serial_settings sync;
1959 	int i;
1960 
1961 	/* First check what line type is set, we'll default to reporting X.21
1962 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1963 	 * changed
1964 	 */
1965 	switch (port->hwif) {
1966 	case E1:
1967 		ifr->ifr_settings.type = IF_IFACE_E1;
1968 		break;
1969 	case T1:
1970 		ifr->ifr_settings.type = IF_IFACE_T1;
1971 		break;
1972 	case V35:
1973 		ifr->ifr_settings.type = IF_IFACE_V35;
1974 		break;
1975 	case V24:
1976 		ifr->ifr_settings.type = IF_IFACE_V24;
1977 		break;
1978 	case X21D:
1979 		ifr->ifr_settings.type = IF_IFACE_X21D;
1980 		break;
1981 	case X21:
1982 	default:
1983 		ifr->ifr_settings.type = IF_IFACE_X21;
1984 		break;
1985 	}
1986 	if (ifr->ifr_settings.size == 0) {
1987 		return 0;	/* only type requested */
1988 	}
1989 	if (ifr->ifr_settings.size < sizeof (sync)) {
1990 		return -ENOMEM;
1991 	}
1992 
1993 	i = port->index;
1994 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1995 	/* Lucky card and linux use same encoding here */
1996 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1997 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1998 	sync.loopback = 0;
1999 
2000 	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2001 		return -EFAULT;
2002 	}
2003 
2004 	ifr->ifr_settings.size = sizeof (sync);
2005 	return 0;
2006 }
2007 
2008 static int
2009 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2010 {
2011 	struct fst_card_info *card;
2012 	struct fst_port_info *port;
2013 	struct fstioc_write wrthdr;
2014 	struct fstioc_info info;
2015 	unsigned long flags;
2016 	void *buf;
2017 
2018 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2019 
2020 	port = dev_to_port(dev);
2021 	card = port->card;
2022 
2023 	if (!capable(CAP_NET_ADMIN))
2024 		return -EPERM;
2025 
2026 	switch (cmd) {
2027 	case FSTCPURESET:
2028 		fst_cpureset(card);
2029 		card->state = FST_RESET;
2030 		return 0;
2031 
2032 	case FSTCPURELEASE:
2033 		fst_cpurelease(card);
2034 		card->state = FST_STARTING;
2035 		return 0;
2036 
2037 	case FSTWRITE:		/* Code write (download) */
2038 
2039 		/* First copy in the header with the length and offset of data
2040 		 * to write
2041 		 */
2042 		if (ifr->ifr_data == NULL) {
2043 			return -EINVAL;
2044 		}
2045 		if (copy_from_user(&wrthdr, ifr->ifr_data,
2046 				   sizeof (struct fstioc_write))) {
2047 			return -EFAULT;
2048 		}
2049 
2050 		/* Sanity check the parameters. We don't support partial writes
2051 		 * when going over the top
2052 		 */
2053 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2054 		    || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2055 			return -ENXIO;
2056 		}
2057 
2058 		/* Now copy the data to the card. */
2059 
2060 		buf = kmalloc(wrthdr.size, GFP_KERNEL);
2061 		if (!buf)
2062 			return -ENOMEM;
2063 
2064 		if (copy_from_user(buf,
2065 				   ifr->ifr_data + sizeof (struct fstioc_write),
2066 				   wrthdr.size)) {
2067 			kfree(buf);
2068 			return -EFAULT;
2069 		}
2070 
2071 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2072 		kfree(buf);
2073 
2074 		/* Writes to the memory of a card in the reset state constitute
2075 		 * a download
2076 		 */
2077 		if (card->state == FST_RESET) {
2078 			card->state = FST_DOWNLOAD;
2079 		}
2080 		return 0;
2081 
2082 	case FSTGETCONF:
2083 
2084 		/* If card has just been started check the shared memory config
2085 		 * version and marker
2086 		 */
2087 		if (card->state == FST_STARTING) {
2088 			check_started_ok(card);
2089 
2090 			/* If everything checked out enable card interrupts */
2091 			if (card->state == FST_RUNNING) {
2092 				spin_lock_irqsave(&card->card_lock, flags);
2093 				fst_enable_intr(card);
2094 				FST_WRB(card, interruptHandshake, 0xEE);
2095 				spin_unlock_irqrestore(&card->card_lock, flags);
2096 			}
2097 		}
2098 
2099 		if (ifr->ifr_data == NULL) {
2100 			return -EINVAL;
2101 		}
2102 
2103 		gather_conf_info(card, port, &info);
2104 
2105 		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2106 			return -EFAULT;
2107 		}
2108 		return 0;
2109 
2110 	case FSTSETCONF:
2111 
2112 		/*
2113 		 * Most of the settings have been moved to the generic ioctls
2114 		 * this just covers debug and board ident now
2115 		 */
2116 
2117 		if (card->state != FST_RUNNING) {
2118 			printk_err
2119 			    ("Attempt to configure card %d in non-running state (%d)\n",
2120 			     card->card_no, card->state);
2121 			return -EIO;
2122 		}
2123 		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2124 			return -EFAULT;
2125 		}
2126 
2127 		return set_conf_from_info(card, port, &info);
2128 
2129 	case SIOCWANDEV:
2130 		switch (ifr->ifr_settings.type) {
2131 		case IF_GET_IFACE:
2132 			return fst_get_iface(card, port, ifr);
2133 
2134 		case IF_IFACE_SYNC_SERIAL:
2135 		case IF_IFACE_V35:
2136 		case IF_IFACE_V24:
2137 		case IF_IFACE_X21:
2138 		case IF_IFACE_X21D:
2139 		case IF_IFACE_T1:
2140 		case IF_IFACE_E1:
2141 			return fst_set_iface(card, port, ifr);
2142 
2143 		case IF_PROTO_RAW:
2144 			port->mode = FST_RAW;
2145 			return 0;
2146 
2147 		case IF_GET_PROTO:
2148 			if (port->mode == FST_RAW) {
2149 				ifr->ifr_settings.type = IF_PROTO_RAW;
2150 				return 0;
2151 			}
2152 			return hdlc_ioctl(dev, ifr, cmd);
2153 
2154 		default:
2155 			port->mode = FST_GEN_HDLC;
2156 			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2157 			    ifr->ifr_settings.type);
2158 			return hdlc_ioctl(dev, ifr, cmd);
2159 		}
2160 
2161 	default:
2162 		/* Not one of ours. Pass through to HDLC package */
2163 		return hdlc_ioctl(dev, ifr, cmd);
2164 	}
2165 }
2166 
2167 static void
2168 fst_openport(struct fst_port_info *port)
2169 {
2170 	int signals;
2171 	int txq_length;
2172 
2173 	/* Only init things if card is actually running. This allows open to
2174 	 * succeed for downloads etc.
2175 	 */
2176 	if (port->card->state == FST_RUNNING) {
2177 		if (port->run) {
2178 			dbg(DBG_OPEN, "open: found port already running\n");
2179 
2180 			fst_issue_cmd(port, STOPPORT);
2181 			port->run = 0;
2182 		}
2183 
2184 		fst_rx_config(port);
2185 		fst_tx_config(port);
2186 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2187 
2188 		fst_issue_cmd(port, STARTPORT);
2189 		port->run = 1;
2190 
2191 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2192 		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2193 			       ? IPSTS_INDICATE : IPSTS_DCD))
2194 			netif_carrier_on(port_to_dev(port));
2195 		else
2196 			netif_carrier_off(port_to_dev(port));
2197 
2198 		txq_length = port->txqe - port->txqs;
2199 		port->txqe = 0;
2200 		port->txqs = 0;
2201 	}
2202 
2203 }
2204 
2205 static void
2206 fst_closeport(struct fst_port_info *port)
2207 {
2208 	if (port->card->state == FST_RUNNING) {
2209 		if (port->run) {
2210 			port->run = 0;
2211 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2212 
2213 			fst_issue_cmd(port, STOPPORT);
2214 		} else {
2215 			dbg(DBG_OPEN, "close: port not running\n");
2216 		}
2217 	}
2218 }
2219 
2220 static int
2221 fst_open(struct net_device *dev)
2222 {
2223 	int err;
2224 	struct fst_port_info *port;
2225 
2226 	port = dev_to_port(dev);
2227 	if (!try_module_get(THIS_MODULE))
2228           return -EBUSY;
2229 
2230 	if (port->mode != FST_RAW) {
2231 		err = hdlc_open(dev);
2232 		if (err)
2233 			return err;
2234 	}
2235 
2236 	fst_openport(port);
2237 	netif_wake_queue(dev);
2238 	return 0;
2239 }
2240 
2241 static int
2242 fst_close(struct net_device *dev)
2243 {
2244 	struct fst_port_info *port;
2245 	struct fst_card_info *card;
2246 	unsigned char tx_dma_done;
2247 	unsigned char rx_dma_done;
2248 
2249 	port = dev_to_port(dev);
2250 	card = port->card;
2251 
2252 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2253 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2254 	dbg(DBG_OPEN,
2255 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2256 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2257 	    rx_dma_done);
2258 
2259 	netif_stop_queue(dev);
2260 	fst_closeport(dev_to_port(dev));
2261 	if (port->mode != FST_RAW) {
2262 		hdlc_close(dev);
2263 	}
2264 	module_put(THIS_MODULE);
2265 	return 0;
2266 }
2267 
2268 static int
2269 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2270 {
2271 	/*
2272 	 * Setting currently fixed in FarSync card so we check and forget
2273 	 */
2274 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2275 		return -EINVAL;
2276 	return 0;
2277 }
2278 
2279 static void
2280 fst_tx_timeout(struct net_device *dev)
2281 {
2282 	struct fst_port_info *port;
2283 	struct fst_card_info *card;
2284 
2285 	port = dev_to_port(dev);
2286 	card = port->card;
2287 	dev->stats.tx_errors++;
2288 	dev->stats.tx_aborted_errors++;
2289 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2290 	    card->card_no, port->index);
2291 	fst_issue_cmd(port, ABORTTX);
2292 
2293 	dev->trans_start = jiffies;
2294 	netif_wake_queue(dev);
2295 	port->start = 0;
2296 }
2297 
2298 static int
2299 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2300 {
2301 	struct fst_card_info *card;
2302 	struct fst_port_info *port;
2303 	unsigned long flags;
2304 	int txq_length;
2305 
2306 	port = dev_to_port(dev);
2307 	card = port->card;
2308 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2309 
2310 	/* Drop packet with error if we don't have carrier */
2311 	if (!netif_carrier_ok(dev)) {
2312 		dev_kfree_skb(skb);
2313 		dev->stats.tx_errors++;
2314 		dev->stats.tx_carrier_errors++;
2315 		dbg(DBG_ASS,
2316 		    "Tried to transmit but no carrier on card %d port %d\n",
2317 		    card->card_no, port->index);
2318 		return 0;
2319 	}
2320 
2321 	/* Drop it if it's too big! MTU failure ? */
2322 	if (skb->len > LEN_TX_BUFFER) {
2323 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2324 		    LEN_TX_BUFFER);
2325 		dev_kfree_skb(skb);
2326 		dev->stats.tx_errors++;
2327 		return 0;
2328 	}
2329 
2330 	/*
2331 	 * We are always going to queue the packet
2332 	 * so that the bottom half is the only place we tx from
2333 	 * Check there is room in the port txq
2334 	 */
2335 	spin_lock_irqsave(&card->card_lock, flags);
2336 	if ((txq_length = port->txqe - port->txqs) < 0) {
2337 		/*
2338 		 * This is the case where the next free has wrapped but the
2339 		 * last used hasn't
2340 		 */
2341 		txq_length = txq_length + FST_TXQ_DEPTH;
2342 	}
2343 	spin_unlock_irqrestore(&card->card_lock, flags);
2344 	if (txq_length > fst_txq_high) {
2345 		/*
2346 		 * We have got enough buffers in the pipeline.  Ask the network
2347 		 * layer to stop sending frames down
2348 		 */
2349 		netif_stop_queue(dev);
2350 		port->start = 1;	/* I'm using this to signal stop sent up */
2351 	}
2352 
2353 	if (txq_length == FST_TXQ_DEPTH - 1) {
2354 		/*
2355 		 * This shouldn't have happened but such is life
2356 		 */
2357 		dev_kfree_skb(skb);
2358 		dev->stats.tx_errors++;
2359 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2360 		    card->card_no, port->index);
2361 		return 0;
2362 	}
2363 
2364 	/*
2365 	 * queue the buffer
2366 	 */
2367 	spin_lock_irqsave(&card->card_lock, flags);
2368 	port->txq[port->txqe] = skb;
2369 	port->txqe++;
2370 	if (port->txqe == FST_TXQ_DEPTH)
2371 		port->txqe = 0;
2372 	spin_unlock_irqrestore(&card->card_lock, flags);
2373 
2374 	/* Scehdule the bottom half which now does transmit processing */
2375 	fst_q_work_item(&fst_work_txq, card->card_no);
2376 	tasklet_schedule(&fst_tx_task);
2377 
2378 	return 0;
2379 }
2380 
2381 /*
2382  *      Card setup having checked hardware resources.
2383  *      Should be pretty bizarre if we get an error here (kernel memory
2384  *      exhaustion is one possibility). If we do see a problem we report it
2385  *      via a printk and leave the corresponding interface and all that follow
2386  *      disabled.
2387  */
2388 static char *type_strings[] __devinitdata = {
2389 	"no hardware",		/* Should never be seen */
2390 	"FarSync T2P",
2391 	"FarSync T4P",
2392 	"FarSync T1U",
2393 	"FarSync T2U",
2394 	"FarSync T4U",
2395 	"FarSync TE1"
2396 };
2397 
2398 static void __devinit
2399 fst_init_card(struct fst_card_info *card)
2400 {
2401 	int i;
2402 	int err;
2403 
2404 	/* We're working on a number of ports based on the card ID. If the
2405 	 * firmware detects something different later (should never happen)
2406 	 * we'll have to revise it in some way then.
2407 	 */
2408 	for (i = 0; i < card->nports; i++) {
2409                 err = register_hdlc_device(card->ports[i].dev);
2410                 if (err < 0) {
2411 			int j;
2412                         printk_err ("Cannot register HDLC device for port %d"
2413                                     " (errno %d)\n", i, -err );
2414 			for (j = i; j < card->nports; j++) {
2415 				free_netdev(card->ports[j].dev);
2416 				card->ports[j].dev = NULL;
2417 			}
2418                         card->nports = i;
2419                         break;
2420                 }
2421 	}
2422 
2423 	printk_info("%s-%s: %s IRQ%d, %d ports\n",
2424 	       port_to_dev(&card->ports[0])->name,
2425 	       port_to_dev(&card->ports[card->nports - 1])->name,
2426 	       type_strings[card->type], card->irq, card->nports);
2427 }
2428 
2429 /*
2430  *      Initialise card when detected.
2431  *      Returns 0 to indicate success, or errno otherwise.
2432  */
2433 static int __devinit
2434 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2435 {
2436 	static int firsttime_done = 0;
2437 	static int no_of_cards_added = 0;
2438 	struct fst_card_info *card;
2439 	int err = 0;
2440 	int i;
2441 
2442 	if (!firsttime_done) {
2443 		printk_info("FarSync WAN driver " FST_USER_VERSION
2444 		       " (c) 2001-2004 FarSite Communications Ltd.\n");
2445 		firsttime_done = 1;
2446 		dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2447 	}
2448 
2449 	/*
2450 	 * We are going to be clever and allow certain cards not to be
2451 	 * configured.  An exclude list can be provided in /etc/modules.conf
2452 	 */
2453 	if (fst_excluded_cards != 0) {
2454 		/*
2455 		 * There are cards to exclude
2456 		 *
2457 		 */
2458 		for (i = 0; i < fst_excluded_cards; i++) {
2459 			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2460 				printk_info("FarSync PCI device %d not assigned\n",
2461 				       (pdev->devfn) >> 3);
2462 				return -EBUSY;
2463 			}
2464 		}
2465 	}
2466 
2467 	/* Allocate driver private data */
2468 	card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2469 	if (card == NULL) {
2470 		printk_err("FarSync card found but insufficient memory for"
2471 			   " driver storage\n");
2472 		return -ENOMEM;
2473 	}
2474 
2475 	/* Try to enable the device */
2476 	if ((err = pci_enable_device(pdev)) != 0) {
2477 		printk_err("Failed to enable card. Err %d\n", -err);
2478 		kfree(card);
2479 		return err;
2480 	}
2481 
2482 	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2483 	        printk_err("Failed to allocate regions. Err %d\n", -err);
2484 		pci_disable_device(pdev);
2485 		kfree(card);
2486 	        return err;
2487 	}
2488 
2489 	/* Get virtual addresses of memory regions */
2490 	card->pci_conf = pci_resource_start(pdev, 1);
2491 	card->phys_mem = pci_resource_start(pdev, 2);
2492 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2493 	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2494 		printk_err("Physical memory remap failed\n");
2495 		pci_release_regions(pdev);
2496 		pci_disable_device(pdev);
2497 		kfree(card);
2498 		return -ENODEV;
2499 	}
2500 	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2501 		printk_err("Control memory remap failed\n");
2502 		pci_release_regions(pdev);
2503 		pci_disable_device(pdev);
2504 		kfree(card);
2505 		return -ENODEV;
2506 	}
2507 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2508 
2509 	/* Register the interrupt handler */
2510 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2511 		printk_err("Unable to register interrupt %d\n", card->irq);
2512 		pci_release_regions(pdev);
2513 		pci_disable_device(pdev);
2514 		iounmap(card->ctlmem);
2515 		iounmap(card->mem);
2516 		kfree(card);
2517 		return -ENODEV;
2518 	}
2519 
2520 	/* Record info we need */
2521 	card->irq = pdev->irq;
2522 	card->type = ent->driver_data;
2523 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2524 			(ent->driver_data == FST_TYPE_T4P))
2525 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2526 	if ((ent->driver_data == FST_TYPE_T1U) ||
2527 	    (ent->driver_data == FST_TYPE_TE1))
2528 		card->nports = 1;
2529 	else
2530 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2531 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2532 
2533 	card->state = FST_UNINIT;
2534         spin_lock_init ( &card->card_lock );
2535 
2536         for ( i = 0 ; i < card->nports ; i++ ) {
2537 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2538 		hdlc_device *hdlc;
2539 		if (!dev) {
2540 			while (i--)
2541 				free_netdev(card->ports[i].dev);
2542 			printk_err ("FarSync: out of memory\n");
2543                         free_irq(card->irq, card);
2544                         pci_release_regions(pdev);
2545                         pci_disable_device(pdev);
2546                         iounmap(card->ctlmem);
2547                         iounmap(card->mem);
2548                         kfree(card);
2549                         return -ENODEV;
2550 		}
2551 		card->ports[i].dev    = dev;
2552                 card->ports[i].card   = card;
2553                 card->ports[i].index  = i;
2554                 card->ports[i].run    = 0;
2555 
2556 		hdlc = dev_to_hdlc(dev);
2557 
2558                 /* Fill in the net device info */
2559 		/* Since this is a PCI setup this is purely
2560 		 * informational. Give them the buffer addresses
2561 		 * and basic card I/O.
2562 		 */
2563                 dev->mem_start   = card->phys_mem
2564                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2565                 dev->mem_end     = card->phys_mem
2566                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2567                 dev->base_addr   = card->pci_conf;
2568                 dev->irq         = card->irq;
2569 
2570                 dev->tx_queue_len          = FST_TX_QUEUE_LEN;
2571                 dev->open                  = fst_open;
2572                 dev->stop                  = fst_close;
2573                 dev->do_ioctl              = fst_ioctl;
2574                 dev->watchdog_timeo        = FST_TX_TIMEOUT;
2575                 dev->tx_timeout            = fst_tx_timeout;
2576                 hdlc->attach = fst_attach;
2577                 hdlc->xmit   = fst_start_xmit;
2578 	}
2579 
2580 	card->device = pdev;
2581 
2582 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2583 	    card->nports, card->irq);
2584 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2585 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2586 
2587 	/* Reset the card's processor */
2588 	fst_cpureset(card);
2589 	card->state = FST_RESET;
2590 
2591 	/* Initialise DMA (if required) */
2592 	fst_init_dma(card);
2593 
2594 	/* Record driver data for later use */
2595 	pci_set_drvdata(pdev, card);
2596 
2597 	/* Remainder of card setup */
2598 	fst_card_array[no_of_cards_added] = card;
2599 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2600 	fst_init_card(card);
2601 	if (card->family == FST_FAMILY_TXU) {
2602 		/*
2603 		 * Allocate a dma buffer for transmit and receives
2604 		 */
2605 		card->rx_dma_handle_host =
2606 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2607 					 &card->rx_dma_handle_card);
2608 		if (card->rx_dma_handle_host == NULL) {
2609 			printk_err("Could not allocate rx dma buffer\n");
2610 			fst_disable_intr(card);
2611 			pci_release_regions(pdev);
2612 			pci_disable_device(pdev);
2613 			iounmap(card->ctlmem);
2614 			iounmap(card->mem);
2615 			kfree(card);
2616 			return -ENOMEM;
2617 		}
2618 		card->tx_dma_handle_host =
2619 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2620 					 &card->tx_dma_handle_card);
2621 		if (card->tx_dma_handle_host == NULL) {
2622 			printk_err("Could not allocate tx dma buffer\n");
2623 			fst_disable_intr(card);
2624 			pci_release_regions(pdev);
2625 			pci_disable_device(pdev);
2626 			iounmap(card->ctlmem);
2627 			iounmap(card->mem);
2628 			kfree(card);
2629 			return -ENOMEM;
2630 		}
2631 	}
2632 	return 0;		/* Success */
2633 }
2634 
2635 /*
2636  *      Cleanup and close down a card
2637  */
2638 static void __devexit
2639 fst_remove_one(struct pci_dev *pdev)
2640 {
2641 	struct fst_card_info *card;
2642 	int i;
2643 
2644 	card = pci_get_drvdata(pdev);
2645 
2646 	for (i = 0; i < card->nports; i++) {
2647 		struct net_device *dev = port_to_dev(&card->ports[i]);
2648 		unregister_hdlc_device(dev);
2649 	}
2650 
2651 	fst_disable_intr(card);
2652 	free_irq(card->irq, card);
2653 
2654 	iounmap(card->ctlmem);
2655 	iounmap(card->mem);
2656 	pci_release_regions(pdev);
2657 	if (card->family == FST_FAMILY_TXU) {
2658 		/*
2659 		 * Free dma buffers
2660 		 */
2661 		pci_free_consistent(card->device, FST_MAX_MTU,
2662 				    card->rx_dma_handle_host,
2663 				    card->rx_dma_handle_card);
2664 		pci_free_consistent(card->device, FST_MAX_MTU,
2665 				    card->tx_dma_handle_host,
2666 				    card->tx_dma_handle_card);
2667 	}
2668 	fst_card_array[card->card_no] = NULL;
2669 }
2670 
2671 static struct pci_driver fst_driver = {
2672         .name		= FST_NAME,
2673         .id_table	= fst_pci_dev_id,
2674         .probe		= fst_add_one,
2675         .remove	= __devexit_p(fst_remove_one),
2676         .suspend	= NULL,
2677         .resume	= NULL,
2678 };
2679 
2680 static int __init
2681 fst_init(void)
2682 {
2683 	int i;
2684 
2685 	for (i = 0; i < FST_MAX_CARDS; i++)
2686 		fst_card_array[i] = NULL;
2687 	spin_lock_init(&fst_work_q_lock);
2688 	return pci_register_driver(&fst_driver);
2689 }
2690 
2691 static void __exit
2692 fst_cleanup_module(void)
2693 {
2694 	printk_info("FarSync WAN driver unloading\n");
2695 	pci_unregister_driver(&fst_driver);
2696 }
2697 
2698 module_init(fst_init);
2699 module_exit(fst_cleanup_module);
2700