1 /* 2 * FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 * 14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/version.h> 21 #include <linux/pci.h> 22 #include <linux/ioport.h> 23 #include <linux/init.h> 24 #include <linux/if.h> 25 #include <linux/hdlc.h> 26 #include <asm/io.h> 27 #include <asm/uaccess.h> 28 29 #include "farsync.h" 30 31 /* 32 * Module info 33 */ 34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 36 MODULE_LICENSE("GPL"); 37 38 /* Driver configuration and global parameters 39 * ========================================== 40 */ 41 42 /* Number of ports (per card) and cards supported 43 */ 44 #define FST_MAX_PORTS 4 45 #define FST_MAX_CARDS 32 46 47 /* Default parameters for the link 48 */ 49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 50 * useful */ 51 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 52 * of frames on the way down to the card 53 * so that we can keep the card busy 54 * and maximise throughput 55 */ 56 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 57 * network layer */ 58 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 59 * control from network layer */ 60 #define FST_MAX_MTU 8000 /* Huge but possible */ 61 #define FST_DEF_MTU 1500 /* Common sane value */ 62 63 #define FST_TX_TIMEOUT (2*HZ) 64 65 #ifdef ARPHRD_RAWHDLC 66 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 67 #else 68 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 69 #endif 70 71 /* 72 * Modules parameters and associated varaibles 73 */ 74 static int fst_txq_low = FST_LOW_WATER_MARK; 75 static int fst_txq_high = FST_HIGH_WATER_MARK; 76 static int fst_max_reads = 7; 77 static int fst_excluded_cards = 0; 78 static int fst_excluded_list[FST_MAX_CARDS]; 79 80 module_param(fst_txq_low, int, 0); 81 module_param(fst_txq_high, int, 0); 82 module_param(fst_max_reads, int, 0); 83 module_param(fst_excluded_cards, int, 0); 84 module_param_array(fst_excluded_list, int, NULL, 0); 85 86 /* Card shared memory layout 87 * ========================= 88 */ 89 #pragma pack(1) 90 91 /* This information is derived in part from the FarSite FarSync Smc.h 92 * file. Unfortunately various name clashes and the non-portability of the 93 * bit field declarations in that file have meant that I have chosen to 94 * recreate the information here. 95 * 96 * The SMC (Shared Memory Configuration) has a version number that is 97 * incremented every time there is a significant change. This number can 98 * be used to check that we have not got out of step with the firmware 99 * contained in the .CDE files. 100 */ 101 #define SMC_VERSION 24 102 103 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 104 105 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 106 * configuration structure */ 107 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 108 * buffers */ 109 110 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 111 #define LEN_RX_BUFFER 8192 112 113 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 114 #define LEN_SMALL_RX_BUFFER 256 115 116 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 117 #define NUM_RX_BUFFER 8 118 119 /* Interrupt retry time in milliseconds */ 120 #define INT_RETRY_TIME 2 121 122 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 123 * of buffer descriptors. The structure is almost identical to that used 124 * in the LANCE Ethernet controllers. Details available as PDF from the 125 * AMD web site: http://www.amd.com/products/epd/processors/\ 126 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 127 */ 128 struct txdesc { /* Transmit descriptor */ 129 volatile u16 ladr; /* Low order address of packet. This is a 130 * linear address in the Am186 memory space 131 */ 132 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 133 * bits must be zero 134 */ 135 volatile u8 bits; /* Status and config */ 136 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 137 * Transmit terminal count interrupt enable in 138 * top bit. 139 */ 140 u16 unused; /* Not used in Tx */ 141 }; 142 143 struct rxdesc { /* Receive descriptor */ 144 volatile u16 ladr; /* Low order address of packet */ 145 volatile u8 hadr; /* High order address */ 146 volatile u8 bits; /* Status and config */ 147 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 148 * Receive terminal count interrupt enable in 149 * top bit. 150 */ 151 volatile u16 mcnt; /* Message byte count (15 bits) */ 152 }; 153 154 /* Convert a length into the 15 bit 2's complement */ 155 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 156 /* Since we need to set the high bit to enable the completion interrupt this 157 * can be made a lot simpler 158 */ 159 #define cnv_bcnt(len) (-(len)) 160 161 /* Status and config bits for the above */ 162 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 163 #define TX_STP 0x02 /* Tx: start of packet */ 164 #define TX_ENP 0x01 /* Tx: end of packet */ 165 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 166 #define RX_FRAM 0x20 /* Rx: framing error */ 167 #define RX_OFLO 0x10 /* Rx: overflow error */ 168 #define RX_CRC 0x08 /* Rx: CRC error */ 169 #define RX_HBUF 0x04 /* Rx: buffer error */ 170 #define RX_STP 0x02 /* Rx: start of packet */ 171 #define RX_ENP 0x01 /* Rx: end of packet */ 172 173 /* Interrupts from the card are caused by various events which are presented 174 * in a circular buffer as several events may be processed on one physical int 175 */ 176 #define MAX_CIRBUFF 32 177 178 struct cirbuff { 179 u8 rdindex; /* read, then increment and wrap */ 180 u8 wrindex; /* write, then increment and wrap */ 181 u8 evntbuff[MAX_CIRBUFF]; 182 }; 183 184 /* Interrupt event codes. 185 * Where appropriate the two low order bits indicate the port number 186 */ 187 #define CTLA_CHG 0x18 /* Control signal changed */ 188 #define CTLB_CHG 0x19 189 #define CTLC_CHG 0x1A 190 #define CTLD_CHG 0x1B 191 192 #define INIT_CPLT 0x20 /* Initialisation complete */ 193 #define INIT_FAIL 0x21 /* Initialisation failed */ 194 195 #define ABTA_SENT 0x24 /* Abort sent */ 196 #define ABTB_SENT 0x25 197 #define ABTC_SENT 0x26 198 #define ABTD_SENT 0x27 199 200 #define TXA_UNDF 0x28 /* Transmission underflow */ 201 #define TXB_UNDF 0x29 202 #define TXC_UNDF 0x2A 203 #define TXD_UNDF 0x2B 204 205 #define F56_INT 0x2C 206 #define M32_INT 0x2D 207 208 #define TE1_ALMA 0x30 209 210 /* Port physical configuration. See farsync.h for field values */ 211 struct port_cfg { 212 u16 lineInterface; /* Physical interface type */ 213 u8 x25op; /* Unused at present */ 214 u8 internalClock; /* 1 => internal clock, 0 => external */ 215 u8 transparentMode; /* 1 => on, 0 => off */ 216 u8 invertClock; /* 0 => normal, 1 => inverted */ 217 u8 padBytes[6]; /* Padding */ 218 u32 lineSpeed; /* Speed in bps */ 219 }; 220 221 /* TE1 port physical configuration */ 222 struct su_config { 223 u32 dataRate; 224 u8 clocking; 225 u8 framing; 226 u8 structure; 227 u8 interface; 228 u8 coding; 229 u8 lineBuildOut; 230 u8 equalizer; 231 u8 transparentMode; 232 u8 loopMode; 233 u8 range; 234 u8 txBufferMode; 235 u8 rxBufferMode; 236 u8 startingSlot; 237 u8 losThreshold; 238 u8 enableIdleCode; 239 u8 idleCode; 240 u8 spare[44]; 241 }; 242 243 /* TE1 Status */ 244 struct su_status { 245 u32 receiveBufferDelay; 246 u32 framingErrorCount; 247 u32 codeViolationCount; 248 u32 crcErrorCount; 249 u32 lineAttenuation; 250 u8 portStarted; 251 u8 lossOfSignal; 252 u8 receiveRemoteAlarm; 253 u8 alarmIndicationSignal; 254 u8 spare[40]; 255 }; 256 257 /* Finally sling all the above together into the shared memory structure. 258 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 259 * evolving under NT for some time so I guess we're stuck with it. 260 * The structure starts at offset SMC_BASE. 261 * See farsync.h for some field values. 262 */ 263 struct fst_shared { 264 /* DMA descriptor rings */ 265 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 266 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 267 268 /* Obsolete small buffers */ 269 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 270 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 271 272 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 273 * 0xFF => halted 274 */ 275 276 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 277 * set to 0xEE by host to acknowledge interrupt 278 */ 279 280 u16 smcVersion; /* Must match SMC_VERSION */ 281 282 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 283 * version, RR = revision and BB = build 284 */ 285 286 u16 txa_done; /* Obsolete completion flags */ 287 u16 rxa_done; 288 u16 txb_done; 289 u16 rxb_done; 290 u16 txc_done; 291 u16 rxc_done; 292 u16 txd_done; 293 u16 rxd_done; 294 295 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 296 297 struct cirbuff interruptEvent; /* interrupt causes */ 298 299 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 300 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 301 302 struct port_cfg portConfig[FST_MAX_PORTS]; 303 304 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 305 306 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 307 308 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 309 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 310 311 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 312 u16 cardMailbox[4]; /* Not used */ 313 314 /* Number of times the card thinks the host has 315 * missed an interrupt by not acknowledging 316 * within 2mS (I guess NT has problems) 317 */ 318 u32 interruptRetryCount; 319 320 /* Driver private data used as an ID. We'll not 321 * use this as I'd rather keep such things 322 * in main memory rather than on the PCI bus 323 */ 324 u32 portHandle[FST_MAX_PORTS]; 325 326 /* Count of Tx underflows for stats */ 327 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 328 329 /* Debounced V.24 control input status */ 330 u32 v24DebouncedSts[FST_MAX_PORTS]; 331 332 /* Adapter debounce timers. Don't touch */ 333 u32 ctsTimer[FST_MAX_PORTS]; 334 u32 ctsTimerRun[FST_MAX_PORTS]; 335 u32 dcdTimer[FST_MAX_PORTS]; 336 u32 dcdTimerRun[FST_MAX_PORTS]; 337 338 u32 numberOfPorts; /* Number of ports detected at startup */ 339 340 u16 _reserved[64]; 341 342 u16 cardMode; /* Bit-mask to enable features: 343 * Bit 0: 1 enables LED identify mode 344 */ 345 346 u16 portScheduleOffset; 347 348 struct su_config suConfig; /* TE1 Bits */ 349 struct su_status suStatus; 350 351 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 352 * the structure and marks the end of shared 353 * memory. Adapter code initializes it as 354 * END_SIG. 355 */ 356 }; 357 358 /* endOfSmcSignature value */ 359 #define END_SIG 0x12345678 360 361 /* Mailbox values. (portMailbox) */ 362 #define NOP 0 /* No operation */ 363 #define ACK 1 /* Positive acknowledgement to PC driver */ 364 #define NAK 2 /* Negative acknowledgement to PC driver */ 365 #define STARTPORT 3 /* Start an HDLC port */ 366 #define STOPPORT 4 /* Stop an HDLC port */ 367 #define ABORTTX 5 /* Abort the transmitter for a port */ 368 #define SETV24O 6 /* Set V24 outputs */ 369 370 /* PLX Chip Register Offsets */ 371 #define CNTRL_9052 0x50 /* Control Register */ 372 #define CNTRL_9054 0x6c /* Control Register */ 373 374 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 375 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 376 377 /* 9054 DMA Registers */ 378 /* 379 * Note that we will be using DMA Channel 0 for copying rx data 380 * and Channel 1 for copying tx data 381 */ 382 #define DMAMODE0 0x80 383 #define DMAPADR0 0x84 384 #define DMALADR0 0x88 385 #define DMASIZ0 0x8c 386 #define DMADPR0 0x90 387 #define DMAMODE1 0x94 388 #define DMAPADR1 0x98 389 #define DMALADR1 0x9c 390 #define DMASIZ1 0xa0 391 #define DMADPR1 0xa4 392 #define DMACSR0 0xa8 393 #define DMACSR1 0xa9 394 #define DMAARB 0xac 395 #define DMATHR 0xb0 396 #define DMADAC0 0xb4 397 #define DMADAC1 0xb8 398 #define DMAMARBR 0xac 399 400 #define FST_MIN_DMA_LEN 64 401 #define FST_RX_DMA_INT 0x01 402 #define FST_TX_DMA_INT 0x02 403 #define FST_CARD_INT 0x04 404 405 /* Larger buffers are positioned in memory at offset BFM_BASE */ 406 struct buf_window { 407 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 408 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 409 }; 410 411 /* Calculate offset of a buffer object within the shared memory window */ 412 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 413 414 #pragma pack() 415 416 /* Device driver private information 417 * ================================= 418 */ 419 /* Per port (line or channel) information 420 */ 421 struct fst_port_info { 422 struct net_device *dev; /* Device struct - must be first */ 423 struct fst_card_info *card; /* Card we're associated with */ 424 int index; /* Port index on the card */ 425 int hwif; /* Line hardware (lineInterface copy) */ 426 int run; /* Port is running */ 427 int mode; /* Normal or FarSync raw */ 428 int rxpos; /* Next Rx buffer to use */ 429 int txpos; /* Next Tx buffer to use */ 430 int txipos; /* Next Tx buffer to check for free */ 431 int start; /* Indication of start/stop to network */ 432 /* 433 * A sixteen entry transmit queue 434 */ 435 int txqs; /* index to get next buffer to tx */ 436 int txqe; /* index to queue next packet */ 437 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 438 int rxqdepth; 439 }; 440 441 /* Per card information 442 */ 443 struct fst_card_info { 444 char __iomem *mem; /* Card memory mapped to kernel space */ 445 char __iomem *ctlmem; /* Control memory for PCI cards */ 446 unsigned int phys_mem; /* Physical memory window address */ 447 unsigned int phys_ctlmem; /* Physical control memory address */ 448 unsigned int irq; /* Interrupt request line number */ 449 unsigned int nports; /* Number of serial ports */ 450 unsigned int type; /* Type index of card */ 451 unsigned int state; /* State of card */ 452 spinlock_t card_lock; /* Lock for SMP access */ 453 unsigned short pci_conf; /* PCI card config in I/O space */ 454 /* Per port info */ 455 struct fst_port_info ports[FST_MAX_PORTS]; 456 struct pci_dev *device; /* Information about the pci device */ 457 int card_no; /* Inst of the card on the system */ 458 int family; /* TxP or TxU */ 459 int dmarx_in_progress; 460 int dmatx_in_progress; 461 unsigned long int_count; 462 unsigned long int_time_ave; 463 void *rx_dma_handle_host; 464 dma_addr_t rx_dma_handle_card; 465 void *tx_dma_handle_host; 466 dma_addr_t tx_dma_handle_card; 467 struct sk_buff *dma_skb_rx; 468 struct fst_port_info *dma_port_rx; 469 struct fst_port_info *dma_port_tx; 470 int dma_len_rx; 471 int dma_len_tx; 472 int dma_txpos; 473 int dma_rxpos; 474 }; 475 476 /* Convert an HDLC device pointer into a port info pointer and similar */ 477 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 478 #define port_to_dev(P) ((P)->dev) 479 480 481 /* 482 * Shared memory window access macros 483 * 484 * We have a nice memory based structure above, which could be directly 485 * mapped on i386 but might not work on other architectures unless we use 486 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 487 * physical offsets so we have to convert. The only saving grace is that 488 * this should all collapse back to a simple indirection eventually. 489 */ 490 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 491 492 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) 493 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) 494 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) 495 496 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) 497 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) 498 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) 499 500 /* 501 * Debug support 502 */ 503 #if FST_DEBUG 504 505 static int fst_debug_mask = { FST_DEBUG }; 506 507 /* Most common debug activity is to print something if the corresponding bit 508 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 509 * support variable numbers of macro parameters. The inverted if prevents us 510 * eating someone else's else clause. 511 */ 512 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \ 513 ; \ 514 else \ 515 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) 516 517 #else 518 #define dbg(X...) /* NOP */ 519 #endif 520 521 /* Printing short cuts 522 */ 523 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) 524 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) 525 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) 526 527 /* 528 * PCI ID lookup table 529 */ 530 static struct pci_device_id fst_pci_dev_id[] __devinitdata = { 531 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 532 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 533 534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 535 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 536 537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 538 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 539 540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 541 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 542 543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 544 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 545 546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 547 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 548 549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 551 {0,} /* End */ 552 }; 553 554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 555 556 /* 557 * Device Driver Work Queues 558 * 559 * So that we don't spend too much time processing events in the 560 * Interrupt Service routine, we will declare a work queue per Card 561 * and make the ISR schedule a task in the queue for later execution. 562 * In the 2.4 Kernel we used to use the immediate queue for BH's 563 * Now that they are gone, tasklets seem to be much better than work 564 * queues. 565 */ 566 567 static void do_bottom_half_tx(struct fst_card_info *card); 568 static void do_bottom_half_rx(struct fst_card_info *card); 569 static void fst_process_tx_work_q(unsigned long work_q); 570 static void fst_process_int_work_q(unsigned long work_q); 571 572 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); 573 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); 574 575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 576 static spinlock_t fst_work_q_lock; 577 static u64 fst_work_txq; 578 static u64 fst_work_intq; 579 580 static void 581 fst_q_work_item(u64 * queue, int card_index) 582 { 583 unsigned long flags; 584 u64 mask; 585 586 /* 587 * Grab the queue exclusively 588 */ 589 spin_lock_irqsave(&fst_work_q_lock, flags); 590 591 /* 592 * Making an entry in the queue is simply a matter of setting 593 * a bit for the card indicating that there is work to do in the 594 * bottom half for the card. Note the limitation of 64 cards. 595 * That ought to be enough 596 */ 597 mask = 1 << card_index; 598 *queue |= mask; 599 spin_unlock_irqrestore(&fst_work_q_lock, flags); 600 } 601 602 static void 603 fst_process_tx_work_q(unsigned long /*void **/work_q) 604 { 605 unsigned long flags; 606 u64 work_txq; 607 int i; 608 609 /* 610 * Grab the queue exclusively 611 */ 612 dbg(DBG_TX, "fst_process_tx_work_q\n"); 613 spin_lock_irqsave(&fst_work_q_lock, flags); 614 work_txq = fst_work_txq; 615 fst_work_txq = 0; 616 spin_unlock_irqrestore(&fst_work_q_lock, flags); 617 618 /* 619 * Call the bottom half for each card with work waiting 620 */ 621 for (i = 0; i < FST_MAX_CARDS; i++) { 622 if (work_txq & 0x01) { 623 if (fst_card_array[i] != NULL) { 624 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 625 do_bottom_half_tx(fst_card_array[i]); 626 } 627 } 628 work_txq = work_txq >> 1; 629 } 630 } 631 632 static void 633 fst_process_int_work_q(unsigned long /*void **/work_q) 634 { 635 unsigned long flags; 636 u64 work_intq; 637 int i; 638 639 /* 640 * Grab the queue exclusively 641 */ 642 dbg(DBG_INTR, "fst_process_int_work_q\n"); 643 spin_lock_irqsave(&fst_work_q_lock, flags); 644 work_intq = fst_work_intq; 645 fst_work_intq = 0; 646 spin_unlock_irqrestore(&fst_work_q_lock, flags); 647 648 /* 649 * Call the bottom half for each card with work waiting 650 */ 651 for (i = 0; i < FST_MAX_CARDS; i++) { 652 if (work_intq & 0x01) { 653 if (fst_card_array[i] != NULL) { 654 dbg(DBG_INTR, 655 "Calling rx & tx bh for card %d\n", i); 656 do_bottom_half_rx(fst_card_array[i]); 657 do_bottom_half_tx(fst_card_array[i]); 658 } 659 } 660 work_intq = work_intq >> 1; 661 } 662 } 663 664 /* Card control functions 665 * ====================== 666 */ 667 /* Place the processor in reset state 668 * 669 * Used to be a simple write to card control space but a glitch in the latest 670 * AMD Am186CH processor means that we now have to do it by asserting and de- 671 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 672 * at offset 9052_CNTRL. Note the updates for the TXU. 673 */ 674 static inline void 675 fst_cpureset(struct fst_card_info *card) 676 { 677 unsigned char interrupt_line_register; 678 unsigned long j = jiffies + 1; 679 unsigned int regval; 680 681 if (card->family == FST_FAMILY_TXU) { 682 if (pci_read_config_byte 683 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 684 dbg(DBG_ASS, 685 "Error in reading interrupt line register\n"); 686 } 687 /* 688 * Assert PLX software reset and Am186 hardware reset 689 * and then deassert the PLX software reset but 186 still in reset 690 */ 691 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 692 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 693 /* 694 * We are delaying here to allow the 9054 to reset itself 695 */ 696 j = jiffies + 1; 697 while (jiffies < j) 698 /* Do nothing */ ; 699 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 700 /* 701 * We are delaying here to allow the 9054 to reload its eeprom 702 */ 703 j = jiffies + 1; 704 while (jiffies < j) 705 /* Do nothing */ ; 706 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 707 708 if (pci_write_config_byte 709 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 710 dbg(DBG_ASS, 711 "Error in writing interrupt line register\n"); 712 } 713 714 } else { 715 regval = inl(card->pci_conf + CNTRL_9052); 716 717 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 718 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 719 } 720 } 721 722 /* Release the processor from reset 723 */ 724 static inline void 725 fst_cpurelease(struct fst_card_info *card) 726 { 727 if (card->family == FST_FAMILY_TXU) { 728 /* 729 * Force posted writes to complete 730 */ 731 (void) readb(card->mem); 732 733 /* 734 * Release LRESET DO = 1 735 * Then release Local Hold, DO = 1 736 */ 737 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 738 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 739 } else { 740 (void) readb(card->ctlmem); 741 } 742 } 743 744 /* Clear the cards interrupt flag 745 */ 746 static inline void 747 fst_clear_intr(struct fst_card_info *card) 748 { 749 if (card->family == FST_FAMILY_TXU) { 750 (void) readb(card->ctlmem); 751 } else { 752 /* Poke the appropriate PLX chip register (same as enabling interrupts) 753 */ 754 outw(0x0543, card->pci_conf + INTCSR_9052); 755 } 756 } 757 758 /* Enable card interrupts 759 */ 760 static inline void 761 fst_enable_intr(struct fst_card_info *card) 762 { 763 if (card->family == FST_FAMILY_TXU) { 764 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 765 } else { 766 outw(0x0543, card->pci_conf + INTCSR_9052); 767 } 768 } 769 770 /* Disable card interrupts 771 */ 772 static inline void 773 fst_disable_intr(struct fst_card_info *card) 774 { 775 if (card->family == FST_FAMILY_TXU) { 776 outl(0x00000000, card->pci_conf + INTCSR_9054); 777 } else { 778 outw(0x0000, card->pci_conf + INTCSR_9052); 779 } 780 } 781 782 /* Process the result of trying to pass a received frame up the stack 783 */ 784 static void 785 fst_process_rx_status(int rx_status, char *name) 786 { 787 switch (rx_status) { 788 case NET_RX_SUCCESS: 789 { 790 /* 791 * Nothing to do here 792 */ 793 break; 794 } 795 796 case NET_RX_CN_LOW: 797 { 798 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name); 799 break; 800 } 801 802 case NET_RX_CN_MOD: 803 { 804 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name); 805 break; 806 } 807 808 case NET_RX_CN_HIGH: 809 { 810 dbg(DBG_ASS, "%s: Receive High Congestion\n", name); 811 break; 812 } 813 814 case NET_RX_DROP: 815 { 816 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 817 break; 818 } 819 } 820 } 821 822 /* Initilaise DMA for PLX 9054 823 */ 824 static inline void 825 fst_init_dma(struct fst_card_info *card) 826 { 827 /* 828 * This is only required for the PLX 9054 829 */ 830 if (card->family == FST_FAMILY_TXU) { 831 pci_set_master(card->device); 832 outl(0x00020441, card->pci_conf + DMAMODE0); 833 outl(0x00020441, card->pci_conf + DMAMODE1); 834 outl(0x0, card->pci_conf + DMATHR); 835 } 836 } 837 838 /* Tx dma complete interrupt 839 */ 840 static void 841 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 842 int len, int txpos) 843 { 844 struct net_device *dev = port_to_dev(port); 845 846 /* 847 * Everything is now set, just tell the card to go 848 */ 849 dbg(DBG_TX, "fst_tx_dma_complete\n"); 850 FST_WRB(card, txDescrRing[port->index][txpos].bits, 851 DMA_OWN | TX_STP | TX_ENP); 852 dev->stats.tx_packets++; 853 dev->stats.tx_bytes += len; 854 dev->trans_start = jiffies; 855 } 856 857 /* 858 * Mark it for our own raw sockets interface 859 */ 860 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) 861 { 862 skb->dev = dev; 863 skb_reset_mac_header(skb); 864 skb->pkt_type = PACKET_HOST; 865 return htons(ETH_P_CUST); 866 } 867 868 /* Rx dma complete interrupt 869 */ 870 static void 871 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 872 int len, struct sk_buff *skb, int rxp) 873 { 874 struct net_device *dev = port_to_dev(port); 875 int pi; 876 int rx_status; 877 878 dbg(DBG_TX, "fst_rx_dma_complete\n"); 879 pi = port->index; 880 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); 881 882 /* Reset buffer descriptor */ 883 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 884 885 /* Update stats */ 886 dev->stats.rx_packets++; 887 dev->stats.rx_bytes += len; 888 889 /* Push upstream */ 890 dbg(DBG_RX, "Pushing the frame up the stack\n"); 891 if (port->mode == FST_RAW) 892 skb->protocol = farsync_type_trans(skb, dev); 893 else 894 skb->protocol = hdlc_type_trans(skb, dev); 895 rx_status = netif_rx(skb); 896 fst_process_rx_status(rx_status, port_to_dev(port)->name); 897 if (rx_status == NET_RX_DROP) 898 dev->stats.rx_dropped++; 899 dev->last_rx = jiffies; 900 } 901 902 /* 903 * Receive a frame through the DMA 904 */ 905 static inline void 906 fst_rx_dma(struct fst_card_info *card, unsigned char *skb, 907 unsigned char *mem, int len) 908 { 909 /* 910 * This routine will setup the DMA and start it 911 */ 912 913 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len); 914 if (card->dmarx_in_progress) { 915 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 916 } 917 918 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */ 919 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */ 920 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 921 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 922 923 /* 924 * We use the dmarx_in_progress flag to flag the channel as busy 925 */ 926 card->dmarx_in_progress = 1; 927 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 928 } 929 930 /* 931 * Send a frame through the DMA 932 */ 933 static inline void 934 fst_tx_dma(struct fst_card_info *card, unsigned char *skb, 935 unsigned char *mem, int len) 936 { 937 /* 938 * This routine will setup the DMA and start it. 939 */ 940 941 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); 942 if (card->dmatx_in_progress) { 943 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 944 } 945 946 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ 947 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ 948 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 949 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 950 951 /* 952 * We use the dmatx_in_progress to flag the channel as busy 953 */ 954 card->dmatx_in_progress = 1; 955 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 956 } 957 958 /* Issue a Mailbox command for a port. 959 * Note we issue them on a fire and forget basis, not expecting to see an 960 * error and not waiting for completion. 961 */ 962 static void 963 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 964 { 965 struct fst_card_info *card; 966 unsigned short mbval; 967 unsigned long flags; 968 int safety; 969 970 card = port->card; 971 spin_lock_irqsave(&card->card_lock, flags); 972 mbval = FST_RDW(card, portMailbox[port->index][0]); 973 974 safety = 0; 975 /* Wait for any previous command to complete */ 976 while (mbval > NAK) { 977 spin_unlock_irqrestore(&card->card_lock, flags); 978 schedule_timeout_uninterruptible(1); 979 spin_lock_irqsave(&card->card_lock, flags); 980 981 if (++safety > 2000) { 982 printk_err("Mailbox safety timeout\n"); 983 break; 984 } 985 986 mbval = FST_RDW(card, portMailbox[port->index][0]); 987 } 988 if (safety > 0) { 989 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 990 } 991 if (mbval == NAK) { 992 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 993 } 994 995 FST_WRW(card, portMailbox[port->index][0], cmd); 996 997 if (cmd == ABORTTX || cmd == STARTPORT) { 998 port->txpos = 0; 999 port->txipos = 0; 1000 port->start = 0; 1001 } 1002 1003 spin_unlock_irqrestore(&card->card_lock, flags); 1004 } 1005 1006 /* Port output signals control 1007 */ 1008 static inline void 1009 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 1010 { 1011 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 1012 FST_WRL(port->card, v24OpSts[port->index], outputs); 1013 1014 if (port->run) 1015 fst_issue_cmd(port, SETV24O); 1016 } 1017 1018 static inline void 1019 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 1020 { 1021 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 1022 FST_WRL(port->card, v24OpSts[port->index], outputs); 1023 1024 if (port->run) 1025 fst_issue_cmd(port, SETV24O); 1026 } 1027 1028 /* 1029 * Setup port Rx buffers 1030 */ 1031 static void 1032 fst_rx_config(struct fst_port_info *port) 1033 { 1034 int i; 1035 int pi; 1036 unsigned int offset; 1037 unsigned long flags; 1038 struct fst_card_info *card; 1039 1040 pi = port->index; 1041 card = port->card; 1042 spin_lock_irqsave(&card->card_lock, flags); 1043 for (i = 0; i < NUM_RX_BUFFER; i++) { 1044 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 1045 1046 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); 1047 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1048 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 1049 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 1050 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 1051 } 1052 port->rxpos = 0; 1053 spin_unlock_irqrestore(&card->card_lock, flags); 1054 } 1055 1056 /* 1057 * Setup port Tx buffers 1058 */ 1059 static void 1060 fst_tx_config(struct fst_port_info *port) 1061 { 1062 int i; 1063 int pi; 1064 unsigned int offset; 1065 unsigned long flags; 1066 struct fst_card_info *card; 1067 1068 pi = port->index; 1069 card = port->card; 1070 spin_lock_irqsave(&card->card_lock, flags); 1071 for (i = 0; i < NUM_TX_BUFFER; i++) { 1072 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1073 1074 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); 1075 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1076 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1077 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1078 } 1079 port->txpos = 0; 1080 port->txipos = 0; 1081 port->start = 0; 1082 spin_unlock_irqrestore(&card->card_lock, flags); 1083 } 1084 1085 /* TE1 Alarm change interrupt event 1086 */ 1087 static void 1088 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1089 { 1090 u8 los; 1091 u8 rra; 1092 u8 ais; 1093 1094 los = FST_RDB(card, suStatus.lossOfSignal); 1095 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1096 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1097 1098 if (los) { 1099 /* 1100 * Lost the link 1101 */ 1102 if (netif_carrier_ok(port_to_dev(port))) { 1103 dbg(DBG_INTR, "Net carrier off\n"); 1104 netif_carrier_off(port_to_dev(port)); 1105 } 1106 } else { 1107 /* 1108 * Link available 1109 */ 1110 if (!netif_carrier_ok(port_to_dev(port))) { 1111 dbg(DBG_INTR, "Net carrier on\n"); 1112 netif_carrier_on(port_to_dev(port)); 1113 } 1114 } 1115 1116 if (los) 1117 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1118 else 1119 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1120 if (rra) 1121 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1122 else 1123 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1124 1125 if (ais) 1126 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1127 else 1128 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1129 } 1130 1131 /* Control signal change interrupt event 1132 */ 1133 static void 1134 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1135 { 1136 int signals; 1137 1138 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1139 1140 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 1141 ? IPSTS_INDICATE : IPSTS_DCD)) { 1142 if (!netif_carrier_ok(port_to_dev(port))) { 1143 dbg(DBG_INTR, "DCD active\n"); 1144 netif_carrier_on(port_to_dev(port)); 1145 } 1146 } else { 1147 if (netif_carrier_ok(port_to_dev(port))) { 1148 dbg(DBG_INTR, "DCD lost\n"); 1149 netif_carrier_off(port_to_dev(port)); 1150 } 1151 } 1152 } 1153 1154 /* Log Rx Errors 1155 */ 1156 static void 1157 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1158 unsigned char dmabits, int rxp, unsigned short len) 1159 { 1160 struct net_device *dev = port_to_dev(port); 1161 1162 /* 1163 * Increment the appropriate error counter 1164 */ 1165 dev->stats.rx_errors++; 1166 if (dmabits & RX_OFLO) { 1167 dev->stats.rx_fifo_errors++; 1168 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1169 card->card_no, port->index, rxp); 1170 } 1171 if (dmabits & RX_CRC) { 1172 dev->stats.rx_crc_errors++; 1173 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1174 card->card_no, port->index); 1175 } 1176 if (dmabits & RX_FRAM) { 1177 dev->stats.rx_frame_errors++; 1178 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1179 card->card_no, port->index); 1180 } 1181 if (dmabits == (RX_STP | RX_ENP)) { 1182 dev->stats.rx_length_errors++; 1183 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1184 len, card->card_no, port->index); 1185 } 1186 } 1187 1188 /* Rx Error Recovery 1189 */ 1190 static void 1191 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1192 unsigned char dmabits, int rxp, unsigned short len) 1193 { 1194 int i; 1195 int pi; 1196 1197 pi = port->index; 1198 /* 1199 * Discard buffer descriptors until we see the start of the 1200 * next frame. Note that for long frames this could be in 1201 * a subsequent interrupt. 1202 */ 1203 i = 0; 1204 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1205 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1206 rxp = (rxp+1) % NUM_RX_BUFFER; 1207 if (++i > NUM_RX_BUFFER) { 1208 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1209 " than we have\n"); 1210 break; 1211 } 1212 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1213 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1214 } 1215 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1216 1217 /* Discard the terminal buffer */ 1218 if (!(dmabits & DMA_OWN)) { 1219 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1220 rxp = (rxp+1) % NUM_RX_BUFFER; 1221 } 1222 port->rxpos = rxp; 1223 return; 1224 1225 } 1226 1227 /* Rx complete interrupt 1228 */ 1229 static void 1230 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1231 { 1232 unsigned char dmabits; 1233 int pi; 1234 int rxp; 1235 int rx_status; 1236 unsigned short len; 1237 struct sk_buff *skb; 1238 struct net_device *dev = port_to_dev(port); 1239 1240 /* Check we have a buffer to process */ 1241 pi = port->index; 1242 rxp = port->rxpos; 1243 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1244 if (dmabits & DMA_OWN) { 1245 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1246 pi, rxp); 1247 return; 1248 } 1249 if (card->dmarx_in_progress) { 1250 return; 1251 } 1252 1253 /* Get buffer length */ 1254 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1255 /* Discard the CRC */ 1256 len -= 2; 1257 if (len == 0) { 1258 /* 1259 * This seems to happen on the TE1 interface sometimes 1260 * so throw the frame away and log the event. 1261 */ 1262 printk_err("Frame received with 0 length. Card %d Port %d\n", 1263 card->card_no, port->index); 1264 /* Return descriptor to card */ 1265 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1266 1267 rxp = (rxp+1) % NUM_RX_BUFFER; 1268 port->rxpos = rxp; 1269 return; 1270 } 1271 1272 /* Check buffer length and for other errors. We insist on one packet 1273 * in one buffer. This simplifies things greatly and since we've 1274 * allocated 8K it shouldn't be a real world limitation 1275 */ 1276 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1277 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1278 fst_log_rx_error(card, port, dmabits, rxp, len); 1279 fst_recover_rx_error(card, port, dmabits, rxp, len); 1280 return; 1281 } 1282 1283 /* Allocate SKB */ 1284 if ((skb = dev_alloc_skb(len)) == NULL) { 1285 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1286 1287 dev->stats.rx_dropped++; 1288 1289 /* Return descriptor to card */ 1290 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1291 1292 rxp = (rxp+1) % NUM_RX_BUFFER; 1293 port->rxpos = rxp; 1294 return; 1295 } 1296 1297 /* 1298 * We know the length we need to receive, len. 1299 * It's not worth using the DMA for reads of less than 1300 * FST_MIN_DMA_LEN 1301 */ 1302 1303 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { 1304 memcpy_fromio(skb_put(skb, len), 1305 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1306 len); 1307 1308 /* Reset buffer descriptor */ 1309 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1310 1311 /* Update stats */ 1312 dev->stats.rx_packets++; 1313 dev->stats.rx_bytes += len; 1314 1315 /* Push upstream */ 1316 dbg(DBG_RX, "Pushing frame up the stack\n"); 1317 if (port->mode == FST_RAW) 1318 skb->protocol = farsync_type_trans(skb, dev); 1319 else 1320 skb->protocol = hdlc_type_trans(skb, dev); 1321 rx_status = netif_rx(skb); 1322 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1323 if (rx_status == NET_RX_DROP) 1324 dev->stats.rx_dropped++; 1325 dev->last_rx = jiffies; 1326 } else { 1327 card->dma_skb_rx = skb; 1328 card->dma_port_rx = port; 1329 card->dma_len_rx = len; 1330 card->dma_rxpos = rxp; 1331 fst_rx_dma(card, (char *) card->rx_dma_handle_card, 1332 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1333 } 1334 if (rxp != port->rxpos) { 1335 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1336 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1337 } 1338 rxp = (rxp+1) % NUM_RX_BUFFER; 1339 port->rxpos = rxp; 1340 } 1341 1342 /* 1343 * The bottom halfs to the ISR 1344 * 1345 */ 1346 1347 static void 1348 do_bottom_half_tx(struct fst_card_info *card) 1349 { 1350 struct fst_port_info *port; 1351 int pi; 1352 int txq_length; 1353 struct sk_buff *skb; 1354 unsigned long flags; 1355 struct net_device *dev; 1356 1357 /* 1358 * Find a free buffer for the transmit 1359 * Step through each port on this card 1360 */ 1361 1362 dbg(DBG_TX, "do_bottom_half_tx\n"); 1363 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1364 if (!port->run) 1365 continue; 1366 1367 dev = port_to_dev(port); 1368 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1369 DMA_OWN) 1370 && !(card->dmatx_in_progress)) { 1371 /* 1372 * There doesn't seem to be a txdone event per-se 1373 * We seem to have to deduce it, by checking the DMA_OWN 1374 * bit on the next buffer we think we can use 1375 */ 1376 spin_lock_irqsave(&card->card_lock, flags); 1377 if ((txq_length = port->txqe - port->txqs) < 0) { 1378 /* 1379 * This is the case where one has wrapped and the 1380 * maths gives us a negative number 1381 */ 1382 txq_length = txq_length + FST_TXQ_DEPTH; 1383 } 1384 spin_unlock_irqrestore(&card->card_lock, flags); 1385 if (txq_length > 0) { 1386 /* 1387 * There is something to send 1388 */ 1389 spin_lock_irqsave(&card->card_lock, flags); 1390 skb = port->txq[port->txqs]; 1391 port->txqs++; 1392 if (port->txqs == FST_TXQ_DEPTH) { 1393 port->txqs = 0; 1394 } 1395 spin_unlock_irqrestore(&card->card_lock, flags); 1396 /* 1397 * copy the data and set the required indicators on the 1398 * card. 1399 */ 1400 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1401 cnv_bcnt(skb->len)); 1402 if ((skb->len < FST_MIN_DMA_LEN) 1403 || (card->family == FST_FAMILY_TXP)) { 1404 /* Enqueue the packet with normal io */ 1405 memcpy_toio(card->mem + 1406 BUF_OFFSET(txBuffer[pi] 1407 [port-> 1408 txpos][0]), 1409 skb->data, skb->len); 1410 FST_WRB(card, 1411 txDescrRing[pi][port->txpos]. 1412 bits, 1413 DMA_OWN | TX_STP | TX_ENP); 1414 dev->stats.tx_packets++; 1415 dev->stats.tx_bytes += skb->len; 1416 dev->trans_start = jiffies; 1417 } else { 1418 /* Or do it through dma */ 1419 memcpy(card->tx_dma_handle_host, 1420 skb->data, skb->len); 1421 card->dma_port_tx = port; 1422 card->dma_len_tx = skb->len; 1423 card->dma_txpos = port->txpos; 1424 fst_tx_dma(card, 1425 (char *) card-> 1426 tx_dma_handle_card, 1427 (char *) 1428 BUF_OFFSET(txBuffer[pi] 1429 [port->txpos][0]), 1430 skb->len); 1431 } 1432 if (++port->txpos >= NUM_TX_BUFFER) 1433 port->txpos = 0; 1434 /* 1435 * If we have flow control on, can we now release it? 1436 */ 1437 if (port->start) { 1438 if (txq_length < fst_txq_low) { 1439 netif_wake_queue(port_to_dev 1440 (port)); 1441 port->start = 0; 1442 } 1443 } 1444 dev_kfree_skb(skb); 1445 } else { 1446 /* 1447 * Nothing to send so break out of the while loop 1448 */ 1449 break; 1450 } 1451 } 1452 } 1453 } 1454 1455 static void 1456 do_bottom_half_rx(struct fst_card_info *card) 1457 { 1458 struct fst_port_info *port; 1459 int pi; 1460 int rx_count = 0; 1461 1462 /* Check for rx completions on all ports on this card */ 1463 dbg(DBG_RX, "do_bottom_half_rx\n"); 1464 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1465 if (!port->run) 1466 continue; 1467 1468 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1469 & DMA_OWN) && !(card->dmarx_in_progress)) { 1470 if (rx_count > fst_max_reads) { 1471 /* 1472 * Don't spend forever in receive processing 1473 * Schedule another event 1474 */ 1475 fst_q_work_item(&fst_work_intq, card->card_no); 1476 tasklet_schedule(&fst_int_task); 1477 break; /* Leave the loop */ 1478 } 1479 fst_intr_rx(card, port); 1480 rx_count++; 1481 } 1482 } 1483 } 1484 1485 /* 1486 * The interrupt service routine 1487 * Dev_id is our fst_card_info pointer 1488 */ 1489 static irqreturn_t 1490 fst_intr(int dummy, void *dev_id) 1491 { 1492 struct fst_card_info *card = dev_id; 1493 struct fst_port_info *port; 1494 int rdidx; /* Event buffer indices */ 1495 int wridx; 1496 int event; /* Actual event for processing */ 1497 unsigned int dma_intcsr = 0; 1498 unsigned int do_card_interrupt; 1499 unsigned int int_retry_count; 1500 1501 /* 1502 * Check to see if the interrupt was for this card 1503 * return if not 1504 * Note that the call to clear the interrupt is important 1505 */ 1506 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); 1507 if (card->state != FST_RUNNING) { 1508 printk_err 1509 ("Interrupt received for card %d in a non running state (%d)\n", 1510 card->card_no, card->state); 1511 1512 /* 1513 * It is possible to really be running, i.e. we have re-loaded 1514 * a running card 1515 * Clear and reprime the interrupt source 1516 */ 1517 fst_clear_intr(card); 1518 return IRQ_HANDLED; 1519 } 1520 1521 /* Clear and reprime the interrupt source */ 1522 fst_clear_intr(card); 1523 1524 /* 1525 * Is the interrupt for this card (handshake == 1) 1526 */ 1527 do_card_interrupt = 0; 1528 if (FST_RDB(card, interruptHandshake) == 1) { 1529 do_card_interrupt += FST_CARD_INT; 1530 /* Set the software acknowledge */ 1531 FST_WRB(card, interruptHandshake, 0xEE); 1532 } 1533 if (card->family == FST_FAMILY_TXU) { 1534 /* 1535 * Is it a DMA Interrupt 1536 */ 1537 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1538 if (dma_intcsr & 0x00200000) { 1539 /* 1540 * DMA Channel 0 (Rx transfer complete) 1541 */ 1542 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1543 outb(0x8, card->pci_conf + DMACSR0); 1544 fst_rx_dma_complete(card, card->dma_port_rx, 1545 card->dma_len_rx, card->dma_skb_rx, 1546 card->dma_rxpos); 1547 card->dmarx_in_progress = 0; 1548 do_card_interrupt += FST_RX_DMA_INT; 1549 } 1550 if (dma_intcsr & 0x00400000) { 1551 /* 1552 * DMA Channel 1 (Tx transfer complete) 1553 */ 1554 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1555 outb(0x8, card->pci_conf + DMACSR1); 1556 fst_tx_dma_complete(card, card->dma_port_tx, 1557 card->dma_len_tx, card->dma_txpos); 1558 card->dmatx_in_progress = 0; 1559 do_card_interrupt += FST_TX_DMA_INT; 1560 } 1561 } 1562 1563 /* 1564 * Have we been missing Interrupts 1565 */ 1566 int_retry_count = FST_RDL(card, interruptRetryCount); 1567 if (int_retry_count) { 1568 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1569 card->card_no, int_retry_count); 1570 FST_WRL(card, interruptRetryCount, 0); 1571 } 1572 1573 if (!do_card_interrupt) { 1574 return IRQ_HANDLED; 1575 } 1576 1577 /* Scehdule the bottom half of the ISR */ 1578 fst_q_work_item(&fst_work_intq, card->card_no); 1579 tasklet_schedule(&fst_int_task); 1580 1581 /* Drain the event queue */ 1582 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1583 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1584 while (rdidx != wridx) { 1585 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1586 port = &card->ports[event & 0x03]; 1587 1588 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1589 1590 switch (event) { 1591 case TE1_ALMA: 1592 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1593 if (port->run) 1594 fst_intr_te1_alarm(card, port); 1595 break; 1596 1597 case CTLA_CHG: 1598 case CTLB_CHG: 1599 case CTLC_CHG: 1600 case CTLD_CHG: 1601 if (port->run) 1602 fst_intr_ctlchg(card, port); 1603 break; 1604 1605 case ABTA_SENT: 1606 case ABTB_SENT: 1607 case ABTC_SENT: 1608 case ABTD_SENT: 1609 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1610 break; 1611 1612 case TXA_UNDF: 1613 case TXB_UNDF: 1614 case TXC_UNDF: 1615 case TXD_UNDF: 1616 /* Difficult to see how we'd get this given that we 1617 * always load up the entire packet for DMA. 1618 */ 1619 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1620 port_to_dev(port)->stats.tx_errors++; 1621 port_to_dev(port)->stats.tx_fifo_errors++; 1622 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1623 card->card_no, port->index); 1624 break; 1625 1626 case INIT_CPLT: 1627 dbg(DBG_INIT, "Card init OK intr\n"); 1628 break; 1629 1630 case INIT_FAIL: 1631 dbg(DBG_INIT, "Card init FAILED intr\n"); 1632 card->state = FST_IFAILED; 1633 break; 1634 1635 default: 1636 printk_err("intr: unknown card event %d. ignored\n", 1637 event); 1638 break; 1639 } 1640 1641 /* Bump and wrap the index */ 1642 if (++rdidx >= MAX_CIRBUFF) 1643 rdidx = 0; 1644 } 1645 FST_WRB(card, interruptEvent.rdindex, rdidx); 1646 return IRQ_HANDLED; 1647 } 1648 1649 /* Check that the shared memory configuration is one that we can handle 1650 * and that some basic parameters are correct 1651 */ 1652 static void 1653 check_started_ok(struct fst_card_info *card) 1654 { 1655 int i; 1656 1657 /* Check structure version and end marker */ 1658 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1659 printk_err("Bad shared memory version %d expected %d\n", 1660 FST_RDW(card, smcVersion), SMC_VERSION); 1661 card->state = FST_BADVERSION; 1662 return; 1663 } 1664 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1665 printk_err("Missing shared memory signature\n"); 1666 card->state = FST_BADVERSION; 1667 return; 1668 } 1669 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1670 if ((i = FST_RDB(card, taskStatus)) == 0x01) { 1671 card->state = FST_RUNNING; 1672 } else if (i == 0xFF) { 1673 printk_err("Firmware initialisation failed. Card halted\n"); 1674 card->state = FST_HALTED; 1675 return; 1676 } else if (i != 0x00) { 1677 printk_err("Unknown firmware status 0x%x\n", i); 1678 card->state = FST_HALTED; 1679 return; 1680 } 1681 1682 /* Finally check the number of ports reported by firmware against the 1683 * number we assumed at card detection. Should never happen with 1684 * existing firmware etc so we just report it for the moment. 1685 */ 1686 if (FST_RDL(card, numberOfPorts) != card->nports) { 1687 printk_warn("Port count mismatch on card %d." 1688 " Firmware thinks %d we say %d\n", card->card_no, 1689 FST_RDL(card, numberOfPorts), card->nports); 1690 } 1691 } 1692 1693 static int 1694 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1695 struct fstioc_info *info) 1696 { 1697 int err; 1698 unsigned char my_framing; 1699 1700 /* Set things according to the user set valid flags 1701 * Several of the old options have been invalidated/replaced by the 1702 * generic hdlc package. 1703 */ 1704 err = 0; 1705 if (info->valid & FSTVAL_PROTO) { 1706 if (info->proto == FST_RAW) 1707 port->mode = FST_RAW; 1708 else 1709 port->mode = FST_GEN_HDLC; 1710 } 1711 1712 if (info->valid & FSTVAL_CABLE) 1713 err = -EINVAL; 1714 1715 if (info->valid & FSTVAL_SPEED) 1716 err = -EINVAL; 1717 1718 if (info->valid & FSTVAL_PHASE) 1719 FST_WRB(card, portConfig[port->index].invertClock, 1720 info->invertClock); 1721 if (info->valid & FSTVAL_MODE) 1722 FST_WRW(card, cardMode, info->cardMode); 1723 if (info->valid & FSTVAL_TE1) { 1724 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1725 FST_WRB(card, suConfig.clocking, info->clockSource); 1726 my_framing = FRAMING_E1; 1727 if (info->framing == E1) 1728 my_framing = FRAMING_E1; 1729 if (info->framing == T1) 1730 my_framing = FRAMING_T1; 1731 if (info->framing == J1) 1732 my_framing = FRAMING_J1; 1733 FST_WRB(card, suConfig.framing, my_framing); 1734 FST_WRB(card, suConfig.structure, info->structure); 1735 FST_WRB(card, suConfig.interface, info->interface); 1736 FST_WRB(card, suConfig.coding, info->coding); 1737 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1738 FST_WRB(card, suConfig.equalizer, info->equalizer); 1739 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1740 FST_WRB(card, suConfig.loopMode, info->loopMode); 1741 FST_WRB(card, suConfig.range, info->range); 1742 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1743 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1744 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1745 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1746 if (info->idleCode) 1747 FST_WRB(card, suConfig.enableIdleCode, 1); 1748 else 1749 FST_WRB(card, suConfig.enableIdleCode, 0); 1750 FST_WRB(card, suConfig.idleCode, info->idleCode); 1751 #if FST_DEBUG 1752 if (info->valid & FSTVAL_TE1) { 1753 printk("Setting TE1 data\n"); 1754 printk("Line Speed = %d\n", info->lineSpeed); 1755 printk("Start slot = %d\n", info->startingSlot); 1756 printk("Clock source = %d\n", info->clockSource); 1757 printk("Framing = %d\n", my_framing); 1758 printk("Structure = %d\n", info->structure); 1759 printk("interface = %d\n", info->interface); 1760 printk("Coding = %d\n", info->coding); 1761 printk("Line build out = %d\n", info->lineBuildOut); 1762 printk("Equaliser = %d\n", info->equalizer); 1763 printk("Transparent mode = %d\n", 1764 info->transparentMode); 1765 printk("Loop mode = %d\n", info->loopMode); 1766 printk("Range = %d\n", info->range); 1767 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1768 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1769 printk("LOS Threshold = %d\n", info->losThreshold); 1770 printk("Idle Code = %d\n", info->idleCode); 1771 } 1772 #endif 1773 } 1774 #if FST_DEBUG 1775 if (info->valid & FSTVAL_DEBUG) { 1776 fst_debug_mask = info->debug; 1777 } 1778 #endif 1779 1780 return err; 1781 } 1782 1783 static void 1784 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1785 struct fstioc_info *info) 1786 { 1787 int i; 1788 1789 memset(info, 0, sizeof (struct fstioc_info)); 1790 1791 i = port->index; 1792 info->kernelVersion = LINUX_VERSION_CODE; 1793 info->nports = card->nports; 1794 info->type = card->type; 1795 info->state = card->state; 1796 info->proto = FST_GEN_HDLC; 1797 info->index = i; 1798 #if FST_DEBUG 1799 info->debug = fst_debug_mask; 1800 #endif 1801 1802 /* Only mark information as valid if card is running. 1803 * Copy the data anyway in case it is useful for diagnostics 1804 */ 1805 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1806 #if FST_DEBUG 1807 | FSTVAL_DEBUG 1808 #endif 1809 ; 1810 1811 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1812 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1813 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1814 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1815 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1816 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1817 info->clockStatus = FST_RDW(card, clockStatus[i]); 1818 info->cableStatus = FST_RDW(card, cableStatus); 1819 info->cardMode = FST_RDW(card, cardMode); 1820 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1821 1822 /* 1823 * The T2U can report cable presence for both A or B 1824 * in bits 0 and 1 of cableStatus. See which port we are and 1825 * do the mapping. 1826 */ 1827 if (card->family == FST_FAMILY_TXU) { 1828 if (port->index == 0) { 1829 /* 1830 * Port A 1831 */ 1832 info->cableStatus = info->cableStatus & 1; 1833 } else { 1834 /* 1835 * Port B 1836 */ 1837 info->cableStatus = info->cableStatus >> 1; 1838 info->cableStatus = info->cableStatus & 1; 1839 } 1840 } 1841 /* 1842 * Some additional bits if we are TE1 1843 */ 1844 if (card->type == FST_TYPE_TE1) { 1845 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1846 info->clockSource = FST_RDB(card, suConfig.clocking); 1847 info->framing = FST_RDB(card, suConfig.framing); 1848 info->structure = FST_RDB(card, suConfig.structure); 1849 info->interface = FST_RDB(card, suConfig.interface); 1850 info->coding = FST_RDB(card, suConfig.coding); 1851 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1852 info->equalizer = FST_RDB(card, suConfig.equalizer); 1853 info->loopMode = FST_RDB(card, suConfig.loopMode); 1854 info->range = FST_RDB(card, suConfig.range); 1855 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1856 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1857 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1858 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1859 if (FST_RDB(card, suConfig.enableIdleCode)) 1860 info->idleCode = FST_RDB(card, suConfig.idleCode); 1861 else 1862 info->idleCode = 0; 1863 info->receiveBufferDelay = 1864 FST_RDL(card, suStatus.receiveBufferDelay); 1865 info->framingErrorCount = 1866 FST_RDL(card, suStatus.framingErrorCount); 1867 info->codeViolationCount = 1868 FST_RDL(card, suStatus.codeViolationCount); 1869 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1870 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1871 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1872 info->receiveRemoteAlarm = 1873 FST_RDB(card, suStatus.receiveRemoteAlarm); 1874 info->alarmIndicationSignal = 1875 FST_RDB(card, suStatus.alarmIndicationSignal); 1876 } 1877 } 1878 1879 static int 1880 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1881 struct ifreq *ifr) 1882 { 1883 sync_serial_settings sync; 1884 int i; 1885 1886 if (ifr->ifr_settings.size != sizeof (sync)) { 1887 return -ENOMEM; 1888 } 1889 1890 if (copy_from_user 1891 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { 1892 return -EFAULT; 1893 } 1894 1895 if (sync.loopback) 1896 return -EINVAL; 1897 1898 i = port->index; 1899 1900 switch (ifr->ifr_settings.type) { 1901 case IF_IFACE_V35: 1902 FST_WRW(card, portConfig[i].lineInterface, V35); 1903 port->hwif = V35; 1904 break; 1905 1906 case IF_IFACE_V24: 1907 FST_WRW(card, portConfig[i].lineInterface, V24); 1908 port->hwif = V24; 1909 break; 1910 1911 case IF_IFACE_X21: 1912 FST_WRW(card, portConfig[i].lineInterface, X21); 1913 port->hwif = X21; 1914 break; 1915 1916 case IF_IFACE_X21D: 1917 FST_WRW(card, portConfig[i].lineInterface, X21D); 1918 port->hwif = X21D; 1919 break; 1920 1921 case IF_IFACE_T1: 1922 FST_WRW(card, portConfig[i].lineInterface, T1); 1923 port->hwif = T1; 1924 break; 1925 1926 case IF_IFACE_E1: 1927 FST_WRW(card, portConfig[i].lineInterface, E1); 1928 port->hwif = E1; 1929 break; 1930 1931 case IF_IFACE_SYNC_SERIAL: 1932 break; 1933 1934 default: 1935 return -EINVAL; 1936 } 1937 1938 switch (sync.clock_type) { 1939 case CLOCK_EXT: 1940 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1941 break; 1942 1943 case CLOCK_INT: 1944 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1945 break; 1946 1947 default: 1948 return -EINVAL; 1949 } 1950 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1951 return 0; 1952 } 1953 1954 static int 1955 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1956 struct ifreq *ifr) 1957 { 1958 sync_serial_settings sync; 1959 int i; 1960 1961 /* First check what line type is set, we'll default to reporting X.21 1962 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1963 * changed 1964 */ 1965 switch (port->hwif) { 1966 case E1: 1967 ifr->ifr_settings.type = IF_IFACE_E1; 1968 break; 1969 case T1: 1970 ifr->ifr_settings.type = IF_IFACE_T1; 1971 break; 1972 case V35: 1973 ifr->ifr_settings.type = IF_IFACE_V35; 1974 break; 1975 case V24: 1976 ifr->ifr_settings.type = IF_IFACE_V24; 1977 break; 1978 case X21D: 1979 ifr->ifr_settings.type = IF_IFACE_X21D; 1980 break; 1981 case X21: 1982 default: 1983 ifr->ifr_settings.type = IF_IFACE_X21; 1984 break; 1985 } 1986 if (ifr->ifr_settings.size == 0) { 1987 return 0; /* only type requested */ 1988 } 1989 if (ifr->ifr_settings.size < sizeof (sync)) { 1990 return -ENOMEM; 1991 } 1992 1993 i = port->index; 1994 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 1995 /* Lucky card and linux use same encoding here */ 1996 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 1997 INTCLK ? CLOCK_INT : CLOCK_EXT; 1998 sync.loopback = 0; 1999 2000 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { 2001 return -EFAULT; 2002 } 2003 2004 ifr->ifr_settings.size = sizeof (sync); 2005 return 0; 2006 } 2007 2008 static int 2009 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2010 { 2011 struct fst_card_info *card; 2012 struct fst_port_info *port; 2013 struct fstioc_write wrthdr; 2014 struct fstioc_info info; 2015 unsigned long flags; 2016 void *buf; 2017 2018 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 2019 2020 port = dev_to_port(dev); 2021 card = port->card; 2022 2023 if (!capable(CAP_NET_ADMIN)) 2024 return -EPERM; 2025 2026 switch (cmd) { 2027 case FSTCPURESET: 2028 fst_cpureset(card); 2029 card->state = FST_RESET; 2030 return 0; 2031 2032 case FSTCPURELEASE: 2033 fst_cpurelease(card); 2034 card->state = FST_STARTING; 2035 return 0; 2036 2037 case FSTWRITE: /* Code write (download) */ 2038 2039 /* First copy in the header with the length and offset of data 2040 * to write 2041 */ 2042 if (ifr->ifr_data == NULL) { 2043 return -EINVAL; 2044 } 2045 if (copy_from_user(&wrthdr, ifr->ifr_data, 2046 sizeof (struct fstioc_write))) { 2047 return -EFAULT; 2048 } 2049 2050 /* Sanity check the parameters. We don't support partial writes 2051 * when going over the top 2052 */ 2053 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE 2054 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) { 2055 return -ENXIO; 2056 } 2057 2058 /* Now copy the data to the card. */ 2059 2060 buf = kmalloc(wrthdr.size, GFP_KERNEL); 2061 if (!buf) 2062 return -ENOMEM; 2063 2064 if (copy_from_user(buf, 2065 ifr->ifr_data + sizeof (struct fstioc_write), 2066 wrthdr.size)) { 2067 kfree(buf); 2068 return -EFAULT; 2069 } 2070 2071 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); 2072 kfree(buf); 2073 2074 /* Writes to the memory of a card in the reset state constitute 2075 * a download 2076 */ 2077 if (card->state == FST_RESET) { 2078 card->state = FST_DOWNLOAD; 2079 } 2080 return 0; 2081 2082 case FSTGETCONF: 2083 2084 /* If card has just been started check the shared memory config 2085 * version and marker 2086 */ 2087 if (card->state == FST_STARTING) { 2088 check_started_ok(card); 2089 2090 /* If everything checked out enable card interrupts */ 2091 if (card->state == FST_RUNNING) { 2092 spin_lock_irqsave(&card->card_lock, flags); 2093 fst_enable_intr(card); 2094 FST_WRB(card, interruptHandshake, 0xEE); 2095 spin_unlock_irqrestore(&card->card_lock, flags); 2096 } 2097 } 2098 2099 if (ifr->ifr_data == NULL) { 2100 return -EINVAL; 2101 } 2102 2103 gather_conf_info(card, port, &info); 2104 2105 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { 2106 return -EFAULT; 2107 } 2108 return 0; 2109 2110 case FSTSETCONF: 2111 2112 /* 2113 * Most of the settings have been moved to the generic ioctls 2114 * this just covers debug and board ident now 2115 */ 2116 2117 if (card->state != FST_RUNNING) { 2118 printk_err 2119 ("Attempt to configure card %d in non-running state (%d)\n", 2120 card->card_no, card->state); 2121 return -EIO; 2122 } 2123 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { 2124 return -EFAULT; 2125 } 2126 2127 return set_conf_from_info(card, port, &info); 2128 2129 case SIOCWANDEV: 2130 switch (ifr->ifr_settings.type) { 2131 case IF_GET_IFACE: 2132 return fst_get_iface(card, port, ifr); 2133 2134 case IF_IFACE_SYNC_SERIAL: 2135 case IF_IFACE_V35: 2136 case IF_IFACE_V24: 2137 case IF_IFACE_X21: 2138 case IF_IFACE_X21D: 2139 case IF_IFACE_T1: 2140 case IF_IFACE_E1: 2141 return fst_set_iface(card, port, ifr); 2142 2143 case IF_PROTO_RAW: 2144 port->mode = FST_RAW; 2145 return 0; 2146 2147 case IF_GET_PROTO: 2148 if (port->mode == FST_RAW) { 2149 ifr->ifr_settings.type = IF_PROTO_RAW; 2150 return 0; 2151 } 2152 return hdlc_ioctl(dev, ifr, cmd); 2153 2154 default: 2155 port->mode = FST_GEN_HDLC; 2156 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2157 ifr->ifr_settings.type); 2158 return hdlc_ioctl(dev, ifr, cmd); 2159 } 2160 2161 default: 2162 /* Not one of ours. Pass through to HDLC package */ 2163 return hdlc_ioctl(dev, ifr, cmd); 2164 } 2165 } 2166 2167 static void 2168 fst_openport(struct fst_port_info *port) 2169 { 2170 int signals; 2171 int txq_length; 2172 2173 /* Only init things if card is actually running. This allows open to 2174 * succeed for downloads etc. 2175 */ 2176 if (port->card->state == FST_RUNNING) { 2177 if (port->run) { 2178 dbg(DBG_OPEN, "open: found port already running\n"); 2179 2180 fst_issue_cmd(port, STOPPORT); 2181 port->run = 0; 2182 } 2183 2184 fst_rx_config(port); 2185 fst_tx_config(port); 2186 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2187 2188 fst_issue_cmd(port, STARTPORT); 2189 port->run = 1; 2190 2191 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2192 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 2193 ? IPSTS_INDICATE : IPSTS_DCD)) 2194 netif_carrier_on(port_to_dev(port)); 2195 else 2196 netif_carrier_off(port_to_dev(port)); 2197 2198 txq_length = port->txqe - port->txqs; 2199 port->txqe = 0; 2200 port->txqs = 0; 2201 } 2202 2203 } 2204 2205 static void 2206 fst_closeport(struct fst_port_info *port) 2207 { 2208 if (port->card->state == FST_RUNNING) { 2209 if (port->run) { 2210 port->run = 0; 2211 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2212 2213 fst_issue_cmd(port, STOPPORT); 2214 } else { 2215 dbg(DBG_OPEN, "close: port not running\n"); 2216 } 2217 } 2218 } 2219 2220 static int 2221 fst_open(struct net_device *dev) 2222 { 2223 int err; 2224 struct fst_port_info *port; 2225 2226 port = dev_to_port(dev); 2227 if (!try_module_get(THIS_MODULE)) 2228 return -EBUSY; 2229 2230 if (port->mode != FST_RAW) { 2231 err = hdlc_open(dev); 2232 if (err) 2233 return err; 2234 } 2235 2236 fst_openport(port); 2237 netif_wake_queue(dev); 2238 return 0; 2239 } 2240 2241 static int 2242 fst_close(struct net_device *dev) 2243 { 2244 struct fst_port_info *port; 2245 struct fst_card_info *card; 2246 unsigned char tx_dma_done; 2247 unsigned char rx_dma_done; 2248 2249 port = dev_to_port(dev); 2250 card = port->card; 2251 2252 tx_dma_done = inb(card->pci_conf + DMACSR1); 2253 rx_dma_done = inb(card->pci_conf + DMACSR0); 2254 dbg(DBG_OPEN, 2255 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2256 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2257 rx_dma_done); 2258 2259 netif_stop_queue(dev); 2260 fst_closeport(dev_to_port(dev)); 2261 if (port->mode != FST_RAW) { 2262 hdlc_close(dev); 2263 } 2264 module_put(THIS_MODULE); 2265 return 0; 2266 } 2267 2268 static int 2269 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2270 { 2271 /* 2272 * Setting currently fixed in FarSync card so we check and forget 2273 */ 2274 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2275 return -EINVAL; 2276 return 0; 2277 } 2278 2279 static void 2280 fst_tx_timeout(struct net_device *dev) 2281 { 2282 struct fst_port_info *port; 2283 struct fst_card_info *card; 2284 2285 port = dev_to_port(dev); 2286 card = port->card; 2287 dev->stats.tx_errors++; 2288 dev->stats.tx_aborted_errors++; 2289 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2290 card->card_no, port->index); 2291 fst_issue_cmd(port, ABORTTX); 2292 2293 dev->trans_start = jiffies; 2294 netif_wake_queue(dev); 2295 port->start = 0; 2296 } 2297 2298 static int 2299 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2300 { 2301 struct fst_card_info *card; 2302 struct fst_port_info *port; 2303 unsigned long flags; 2304 int txq_length; 2305 2306 port = dev_to_port(dev); 2307 card = port->card; 2308 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2309 2310 /* Drop packet with error if we don't have carrier */ 2311 if (!netif_carrier_ok(dev)) { 2312 dev_kfree_skb(skb); 2313 dev->stats.tx_errors++; 2314 dev->stats.tx_carrier_errors++; 2315 dbg(DBG_ASS, 2316 "Tried to transmit but no carrier on card %d port %d\n", 2317 card->card_no, port->index); 2318 return 0; 2319 } 2320 2321 /* Drop it if it's too big! MTU failure ? */ 2322 if (skb->len > LEN_TX_BUFFER) { 2323 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2324 LEN_TX_BUFFER); 2325 dev_kfree_skb(skb); 2326 dev->stats.tx_errors++; 2327 return 0; 2328 } 2329 2330 /* 2331 * We are always going to queue the packet 2332 * so that the bottom half is the only place we tx from 2333 * Check there is room in the port txq 2334 */ 2335 spin_lock_irqsave(&card->card_lock, flags); 2336 if ((txq_length = port->txqe - port->txqs) < 0) { 2337 /* 2338 * This is the case where the next free has wrapped but the 2339 * last used hasn't 2340 */ 2341 txq_length = txq_length + FST_TXQ_DEPTH; 2342 } 2343 spin_unlock_irqrestore(&card->card_lock, flags); 2344 if (txq_length > fst_txq_high) { 2345 /* 2346 * We have got enough buffers in the pipeline. Ask the network 2347 * layer to stop sending frames down 2348 */ 2349 netif_stop_queue(dev); 2350 port->start = 1; /* I'm using this to signal stop sent up */ 2351 } 2352 2353 if (txq_length == FST_TXQ_DEPTH - 1) { 2354 /* 2355 * This shouldn't have happened but such is life 2356 */ 2357 dev_kfree_skb(skb); 2358 dev->stats.tx_errors++; 2359 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2360 card->card_no, port->index); 2361 return 0; 2362 } 2363 2364 /* 2365 * queue the buffer 2366 */ 2367 spin_lock_irqsave(&card->card_lock, flags); 2368 port->txq[port->txqe] = skb; 2369 port->txqe++; 2370 if (port->txqe == FST_TXQ_DEPTH) 2371 port->txqe = 0; 2372 spin_unlock_irqrestore(&card->card_lock, flags); 2373 2374 /* Scehdule the bottom half which now does transmit processing */ 2375 fst_q_work_item(&fst_work_txq, card->card_no); 2376 tasklet_schedule(&fst_tx_task); 2377 2378 return 0; 2379 } 2380 2381 /* 2382 * Card setup having checked hardware resources. 2383 * Should be pretty bizarre if we get an error here (kernel memory 2384 * exhaustion is one possibility). If we do see a problem we report it 2385 * via a printk and leave the corresponding interface and all that follow 2386 * disabled. 2387 */ 2388 static char *type_strings[] __devinitdata = { 2389 "no hardware", /* Should never be seen */ 2390 "FarSync T2P", 2391 "FarSync T4P", 2392 "FarSync T1U", 2393 "FarSync T2U", 2394 "FarSync T4U", 2395 "FarSync TE1" 2396 }; 2397 2398 static void __devinit 2399 fst_init_card(struct fst_card_info *card) 2400 { 2401 int i; 2402 int err; 2403 2404 /* We're working on a number of ports based on the card ID. If the 2405 * firmware detects something different later (should never happen) 2406 * we'll have to revise it in some way then. 2407 */ 2408 for (i = 0; i < card->nports; i++) { 2409 err = register_hdlc_device(card->ports[i].dev); 2410 if (err < 0) { 2411 int j; 2412 printk_err ("Cannot register HDLC device for port %d" 2413 " (errno %d)\n", i, -err ); 2414 for (j = i; j < card->nports; j++) { 2415 free_netdev(card->ports[j].dev); 2416 card->ports[j].dev = NULL; 2417 } 2418 card->nports = i; 2419 break; 2420 } 2421 } 2422 2423 printk_info("%s-%s: %s IRQ%d, %d ports\n", 2424 port_to_dev(&card->ports[0])->name, 2425 port_to_dev(&card->ports[card->nports - 1])->name, 2426 type_strings[card->type], card->irq, card->nports); 2427 } 2428 2429 /* 2430 * Initialise card when detected. 2431 * Returns 0 to indicate success, or errno otherwise. 2432 */ 2433 static int __devinit 2434 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2435 { 2436 static int firsttime_done = 0; 2437 static int no_of_cards_added = 0; 2438 struct fst_card_info *card; 2439 int err = 0; 2440 int i; 2441 2442 if (!firsttime_done) { 2443 printk_info("FarSync WAN driver " FST_USER_VERSION 2444 " (c) 2001-2004 FarSite Communications Ltd.\n"); 2445 firsttime_done = 1; 2446 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2447 } 2448 2449 /* 2450 * We are going to be clever and allow certain cards not to be 2451 * configured. An exclude list can be provided in /etc/modules.conf 2452 */ 2453 if (fst_excluded_cards != 0) { 2454 /* 2455 * There are cards to exclude 2456 * 2457 */ 2458 for (i = 0; i < fst_excluded_cards; i++) { 2459 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { 2460 printk_info("FarSync PCI device %d not assigned\n", 2461 (pdev->devfn) >> 3); 2462 return -EBUSY; 2463 } 2464 } 2465 } 2466 2467 /* Allocate driver private data */ 2468 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL); 2469 if (card == NULL) { 2470 printk_err("FarSync card found but insufficient memory for" 2471 " driver storage\n"); 2472 return -ENOMEM; 2473 } 2474 2475 /* Try to enable the device */ 2476 if ((err = pci_enable_device(pdev)) != 0) { 2477 printk_err("Failed to enable card. Err %d\n", -err); 2478 kfree(card); 2479 return err; 2480 } 2481 2482 if ((err = pci_request_regions(pdev, "FarSync")) !=0) { 2483 printk_err("Failed to allocate regions. Err %d\n", -err); 2484 pci_disable_device(pdev); 2485 kfree(card); 2486 return err; 2487 } 2488 2489 /* Get virtual addresses of memory regions */ 2490 card->pci_conf = pci_resource_start(pdev, 1); 2491 card->phys_mem = pci_resource_start(pdev, 2); 2492 card->phys_ctlmem = pci_resource_start(pdev, 3); 2493 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { 2494 printk_err("Physical memory remap failed\n"); 2495 pci_release_regions(pdev); 2496 pci_disable_device(pdev); 2497 kfree(card); 2498 return -ENODEV; 2499 } 2500 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { 2501 printk_err("Control memory remap failed\n"); 2502 pci_release_regions(pdev); 2503 pci_disable_device(pdev); 2504 kfree(card); 2505 return -ENODEV; 2506 } 2507 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2508 2509 /* Register the interrupt handler */ 2510 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { 2511 printk_err("Unable to register interrupt %d\n", card->irq); 2512 pci_release_regions(pdev); 2513 pci_disable_device(pdev); 2514 iounmap(card->ctlmem); 2515 iounmap(card->mem); 2516 kfree(card); 2517 return -ENODEV; 2518 } 2519 2520 /* Record info we need */ 2521 card->irq = pdev->irq; 2522 card->type = ent->driver_data; 2523 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2524 (ent->driver_data == FST_TYPE_T4P)) 2525 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2526 if ((ent->driver_data == FST_TYPE_T1U) || 2527 (ent->driver_data == FST_TYPE_TE1)) 2528 card->nports = 1; 2529 else 2530 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2531 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2532 2533 card->state = FST_UNINIT; 2534 spin_lock_init ( &card->card_lock ); 2535 2536 for ( i = 0 ; i < card->nports ; i++ ) { 2537 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2538 hdlc_device *hdlc; 2539 if (!dev) { 2540 while (i--) 2541 free_netdev(card->ports[i].dev); 2542 printk_err ("FarSync: out of memory\n"); 2543 free_irq(card->irq, card); 2544 pci_release_regions(pdev); 2545 pci_disable_device(pdev); 2546 iounmap(card->ctlmem); 2547 iounmap(card->mem); 2548 kfree(card); 2549 return -ENODEV; 2550 } 2551 card->ports[i].dev = dev; 2552 card->ports[i].card = card; 2553 card->ports[i].index = i; 2554 card->ports[i].run = 0; 2555 2556 hdlc = dev_to_hdlc(dev); 2557 2558 /* Fill in the net device info */ 2559 /* Since this is a PCI setup this is purely 2560 * informational. Give them the buffer addresses 2561 * and basic card I/O. 2562 */ 2563 dev->mem_start = card->phys_mem 2564 + BUF_OFFSET ( txBuffer[i][0][0]); 2565 dev->mem_end = card->phys_mem 2566 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); 2567 dev->base_addr = card->pci_conf; 2568 dev->irq = card->irq; 2569 2570 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2571 dev->open = fst_open; 2572 dev->stop = fst_close; 2573 dev->do_ioctl = fst_ioctl; 2574 dev->watchdog_timeo = FST_TX_TIMEOUT; 2575 dev->tx_timeout = fst_tx_timeout; 2576 hdlc->attach = fst_attach; 2577 hdlc->xmit = fst_start_xmit; 2578 } 2579 2580 card->device = pdev; 2581 2582 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2583 card->nports, card->irq); 2584 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2585 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2586 2587 /* Reset the card's processor */ 2588 fst_cpureset(card); 2589 card->state = FST_RESET; 2590 2591 /* Initialise DMA (if required) */ 2592 fst_init_dma(card); 2593 2594 /* Record driver data for later use */ 2595 pci_set_drvdata(pdev, card); 2596 2597 /* Remainder of card setup */ 2598 fst_card_array[no_of_cards_added] = card; 2599 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2600 fst_init_card(card); 2601 if (card->family == FST_FAMILY_TXU) { 2602 /* 2603 * Allocate a dma buffer for transmit and receives 2604 */ 2605 card->rx_dma_handle_host = 2606 pci_alloc_consistent(card->device, FST_MAX_MTU, 2607 &card->rx_dma_handle_card); 2608 if (card->rx_dma_handle_host == NULL) { 2609 printk_err("Could not allocate rx dma buffer\n"); 2610 fst_disable_intr(card); 2611 pci_release_regions(pdev); 2612 pci_disable_device(pdev); 2613 iounmap(card->ctlmem); 2614 iounmap(card->mem); 2615 kfree(card); 2616 return -ENOMEM; 2617 } 2618 card->tx_dma_handle_host = 2619 pci_alloc_consistent(card->device, FST_MAX_MTU, 2620 &card->tx_dma_handle_card); 2621 if (card->tx_dma_handle_host == NULL) { 2622 printk_err("Could not allocate tx dma buffer\n"); 2623 fst_disable_intr(card); 2624 pci_release_regions(pdev); 2625 pci_disable_device(pdev); 2626 iounmap(card->ctlmem); 2627 iounmap(card->mem); 2628 kfree(card); 2629 return -ENOMEM; 2630 } 2631 } 2632 return 0; /* Success */ 2633 } 2634 2635 /* 2636 * Cleanup and close down a card 2637 */ 2638 static void __devexit 2639 fst_remove_one(struct pci_dev *pdev) 2640 { 2641 struct fst_card_info *card; 2642 int i; 2643 2644 card = pci_get_drvdata(pdev); 2645 2646 for (i = 0; i < card->nports; i++) { 2647 struct net_device *dev = port_to_dev(&card->ports[i]); 2648 unregister_hdlc_device(dev); 2649 } 2650 2651 fst_disable_intr(card); 2652 free_irq(card->irq, card); 2653 2654 iounmap(card->ctlmem); 2655 iounmap(card->mem); 2656 pci_release_regions(pdev); 2657 if (card->family == FST_FAMILY_TXU) { 2658 /* 2659 * Free dma buffers 2660 */ 2661 pci_free_consistent(card->device, FST_MAX_MTU, 2662 card->rx_dma_handle_host, 2663 card->rx_dma_handle_card); 2664 pci_free_consistent(card->device, FST_MAX_MTU, 2665 card->tx_dma_handle_host, 2666 card->tx_dma_handle_card); 2667 } 2668 fst_card_array[card->card_no] = NULL; 2669 } 2670 2671 static struct pci_driver fst_driver = { 2672 .name = FST_NAME, 2673 .id_table = fst_pci_dev_id, 2674 .probe = fst_add_one, 2675 .remove = __devexit_p(fst_remove_one), 2676 .suspend = NULL, 2677 .resume = NULL, 2678 }; 2679 2680 static int __init 2681 fst_init(void) 2682 { 2683 int i; 2684 2685 for (i = 0; i < FST_MAX_CARDS; i++) 2686 fst_card_array[i] = NULL; 2687 spin_lock_init(&fst_work_q_lock); 2688 return pci_register_driver(&fst_driver); 2689 } 2690 2691 static void __exit 2692 fst_cleanup_module(void) 2693 { 2694 printk_info("FarSync WAN driver unloading\n"); 2695 pci_unregister_driver(&fst_driver); 2696 } 2697 2698 module_init(fst_init); 2699 module_exit(fst_cleanup_module); 2700