1 /* 2 * FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 * 14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/module.h> 21 #include <linux/kernel.h> 22 #include <linux/version.h> 23 #include <linux/pci.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/ioport.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/if.h> 30 #include <linux/hdlc.h> 31 #include <asm/io.h> 32 #include <asm/uaccess.h> 33 34 #include "farsync.h" 35 36 /* 37 * Module info 38 */ 39 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 40 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 41 MODULE_LICENSE("GPL"); 42 43 /* Driver configuration and global parameters 44 * ========================================== 45 */ 46 47 /* Number of ports (per card) and cards supported 48 */ 49 #define FST_MAX_PORTS 4 50 #define FST_MAX_CARDS 32 51 52 /* Default parameters for the link 53 */ 54 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 55 * useful */ 56 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 57 * of frames on the way down to the card 58 * so that we can keep the card busy 59 * and maximise throughput 60 */ 61 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 62 * network layer */ 63 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 64 * control from network layer */ 65 #define FST_MAX_MTU 8000 /* Huge but possible */ 66 #define FST_DEF_MTU 1500 /* Common sane value */ 67 68 #define FST_TX_TIMEOUT (2*HZ) 69 70 #ifdef ARPHRD_RAWHDLC 71 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 72 #else 73 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 74 #endif 75 76 /* 77 * Modules parameters and associated variables 78 */ 79 static int fst_txq_low = FST_LOW_WATER_MARK; 80 static int fst_txq_high = FST_HIGH_WATER_MARK; 81 static int fst_max_reads = 7; 82 static int fst_excluded_cards = 0; 83 static int fst_excluded_list[FST_MAX_CARDS]; 84 85 module_param(fst_txq_low, int, 0); 86 module_param(fst_txq_high, int, 0); 87 module_param(fst_max_reads, int, 0); 88 module_param(fst_excluded_cards, int, 0); 89 module_param_array(fst_excluded_list, int, NULL, 0); 90 91 /* Card shared memory layout 92 * ========================= 93 */ 94 #pragma pack(1) 95 96 /* This information is derived in part from the FarSite FarSync Smc.h 97 * file. Unfortunately various name clashes and the non-portability of the 98 * bit field declarations in that file have meant that I have chosen to 99 * recreate the information here. 100 * 101 * The SMC (Shared Memory Configuration) has a version number that is 102 * incremented every time there is a significant change. This number can 103 * be used to check that we have not got out of step with the firmware 104 * contained in the .CDE files. 105 */ 106 #define SMC_VERSION 24 107 108 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 109 110 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 111 * configuration structure */ 112 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 113 * buffers */ 114 115 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 116 #define LEN_RX_BUFFER 8192 117 118 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 119 #define LEN_SMALL_RX_BUFFER 256 120 121 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 122 #define NUM_RX_BUFFER 8 123 124 /* Interrupt retry time in milliseconds */ 125 #define INT_RETRY_TIME 2 126 127 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 128 * of buffer descriptors. The structure is almost identical to that used 129 * in the LANCE Ethernet controllers. Details available as PDF from the 130 * AMD web site: http://www.amd.com/products/epd/processors/\ 131 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 132 */ 133 struct txdesc { /* Transmit descriptor */ 134 volatile u16 ladr; /* Low order address of packet. This is a 135 * linear address in the Am186 memory space 136 */ 137 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 138 * bits must be zero 139 */ 140 volatile u8 bits; /* Status and config */ 141 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 142 * Transmit terminal count interrupt enable in 143 * top bit. 144 */ 145 u16 unused; /* Not used in Tx */ 146 }; 147 148 struct rxdesc { /* Receive descriptor */ 149 volatile u16 ladr; /* Low order address of packet */ 150 volatile u8 hadr; /* High order address */ 151 volatile u8 bits; /* Status and config */ 152 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 153 * Receive terminal count interrupt enable in 154 * top bit. 155 */ 156 volatile u16 mcnt; /* Message byte count (15 bits) */ 157 }; 158 159 /* Convert a length into the 15 bit 2's complement */ 160 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 161 /* Since we need to set the high bit to enable the completion interrupt this 162 * can be made a lot simpler 163 */ 164 #define cnv_bcnt(len) (-(len)) 165 166 /* Status and config bits for the above */ 167 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 168 #define TX_STP 0x02 /* Tx: start of packet */ 169 #define TX_ENP 0x01 /* Tx: end of packet */ 170 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 171 #define RX_FRAM 0x20 /* Rx: framing error */ 172 #define RX_OFLO 0x10 /* Rx: overflow error */ 173 #define RX_CRC 0x08 /* Rx: CRC error */ 174 #define RX_HBUF 0x04 /* Rx: buffer error */ 175 #define RX_STP 0x02 /* Rx: start of packet */ 176 #define RX_ENP 0x01 /* Rx: end of packet */ 177 178 /* Interrupts from the card are caused by various events which are presented 179 * in a circular buffer as several events may be processed on one physical int 180 */ 181 #define MAX_CIRBUFF 32 182 183 struct cirbuff { 184 u8 rdindex; /* read, then increment and wrap */ 185 u8 wrindex; /* write, then increment and wrap */ 186 u8 evntbuff[MAX_CIRBUFF]; 187 }; 188 189 /* Interrupt event codes. 190 * Where appropriate the two low order bits indicate the port number 191 */ 192 #define CTLA_CHG 0x18 /* Control signal changed */ 193 #define CTLB_CHG 0x19 194 #define CTLC_CHG 0x1A 195 #define CTLD_CHG 0x1B 196 197 #define INIT_CPLT 0x20 /* Initialisation complete */ 198 #define INIT_FAIL 0x21 /* Initialisation failed */ 199 200 #define ABTA_SENT 0x24 /* Abort sent */ 201 #define ABTB_SENT 0x25 202 #define ABTC_SENT 0x26 203 #define ABTD_SENT 0x27 204 205 #define TXA_UNDF 0x28 /* Transmission underflow */ 206 #define TXB_UNDF 0x29 207 #define TXC_UNDF 0x2A 208 #define TXD_UNDF 0x2B 209 210 #define F56_INT 0x2C 211 #define M32_INT 0x2D 212 213 #define TE1_ALMA 0x30 214 215 /* Port physical configuration. See farsync.h for field values */ 216 struct port_cfg { 217 u16 lineInterface; /* Physical interface type */ 218 u8 x25op; /* Unused at present */ 219 u8 internalClock; /* 1 => internal clock, 0 => external */ 220 u8 transparentMode; /* 1 => on, 0 => off */ 221 u8 invertClock; /* 0 => normal, 1 => inverted */ 222 u8 padBytes[6]; /* Padding */ 223 u32 lineSpeed; /* Speed in bps */ 224 }; 225 226 /* TE1 port physical configuration */ 227 struct su_config { 228 u32 dataRate; 229 u8 clocking; 230 u8 framing; 231 u8 structure; 232 u8 interface; 233 u8 coding; 234 u8 lineBuildOut; 235 u8 equalizer; 236 u8 transparentMode; 237 u8 loopMode; 238 u8 range; 239 u8 txBufferMode; 240 u8 rxBufferMode; 241 u8 startingSlot; 242 u8 losThreshold; 243 u8 enableIdleCode; 244 u8 idleCode; 245 u8 spare[44]; 246 }; 247 248 /* TE1 Status */ 249 struct su_status { 250 u32 receiveBufferDelay; 251 u32 framingErrorCount; 252 u32 codeViolationCount; 253 u32 crcErrorCount; 254 u32 lineAttenuation; 255 u8 portStarted; 256 u8 lossOfSignal; 257 u8 receiveRemoteAlarm; 258 u8 alarmIndicationSignal; 259 u8 spare[40]; 260 }; 261 262 /* Finally sling all the above together into the shared memory structure. 263 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 264 * evolving under NT for some time so I guess we're stuck with it. 265 * The structure starts at offset SMC_BASE. 266 * See farsync.h for some field values. 267 */ 268 struct fst_shared { 269 /* DMA descriptor rings */ 270 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 271 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 272 273 /* Obsolete small buffers */ 274 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 275 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 276 277 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 278 * 0xFF => halted 279 */ 280 281 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 282 * set to 0xEE by host to acknowledge interrupt 283 */ 284 285 u16 smcVersion; /* Must match SMC_VERSION */ 286 287 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 288 * version, RR = revision and BB = build 289 */ 290 291 u16 txa_done; /* Obsolete completion flags */ 292 u16 rxa_done; 293 u16 txb_done; 294 u16 rxb_done; 295 u16 txc_done; 296 u16 rxc_done; 297 u16 txd_done; 298 u16 rxd_done; 299 300 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 301 302 struct cirbuff interruptEvent; /* interrupt causes */ 303 304 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 305 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 306 307 struct port_cfg portConfig[FST_MAX_PORTS]; 308 309 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 310 311 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 312 313 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 314 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 315 316 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 317 u16 cardMailbox[4]; /* Not used */ 318 319 /* Number of times the card thinks the host has 320 * missed an interrupt by not acknowledging 321 * within 2mS (I guess NT has problems) 322 */ 323 u32 interruptRetryCount; 324 325 /* Driver private data used as an ID. We'll not 326 * use this as I'd rather keep such things 327 * in main memory rather than on the PCI bus 328 */ 329 u32 portHandle[FST_MAX_PORTS]; 330 331 /* Count of Tx underflows for stats */ 332 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 333 334 /* Debounced V.24 control input status */ 335 u32 v24DebouncedSts[FST_MAX_PORTS]; 336 337 /* Adapter debounce timers. Don't touch */ 338 u32 ctsTimer[FST_MAX_PORTS]; 339 u32 ctsTimerRun[FST_MAX_PORTS]; 340 u32 dcdTimer[FST_MAX_PORTS]; 341 u32 dcdTimerRun[FST_MAX_PORTS]; 342 343 u32 numberOfPorts; /* Number of ports detected at startup */ 344 345 u16 _reserved[64]; 346 347 u16 cardMode; /* Bit-mask to enable features: 348 * Bit 0: 1 enables LED identify mode 349 */ 350 351 u16 portScheduleOffset; 352 353 struct su_config suConfig; /* TE1 Bits */ 354 struct su_status suStatus; 355 356 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 357 * the structure and marks the end of shared 358 * memory. Adapter code initializes it as 359 * END_SIG. 360 */ 361 }; 362 363 /* endOfSmcSignature value */ 364 #define END_SIG 0x12345678 365 366 /* Mailbox values. (portMailbox) */ 367 #define NOP 0 /* No operation */ 368 #define ACK 1 /* Positive acknowledgement to PC driver */ 369 #define NAK 2 /* Negative acknowledgement to PC driver */ 370 #define STARTPORT 3 /* Start an HDLC port */ 371 #define STOPPORT 4 /* Stop an HDLC port */ 372 #define ABORTTX 5 /* Abort the transmitter for a port */ 373 #define SETV24O 6 /* Set V24 outputs */ 374 375 /* PLX Chip Register Offsets */ 376 #define CNTRL_9052 0x50 /* Control Register */ 377 #define CNTRL_9054 0x6c /* Control Register */ 378 379 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 380 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 381 382 /* 9054 DMA Registers */ 383 /* 384 * Note that we will be using DMA Channel 0 for copying rx data 385 * and Channel 1 for copying tx data 386 */ 387 #define DMAMODE0 0x80 388 #define DMAPADR0 0x84 389 #define DMALADR0 0x88 390 #define DMASIZ0 0x8c 391 #define DMADPR0 0x90 392 #define DMAMODE1 0x94 393 #define DMAPADR1 0x98 394 #define DMALADR1 0x9c 395 #define DMASIZ1 0xa0 396 #define DMADPR1 0xa4 397 #define DMACSR0 0xa8 398 #define DMACSR1 0xa9 399 #define DMAARB 0xac 400 #define DMATHR 0xb0 401 #define DMADAC0 0xb4 402 #define DMADAC1 0xb8 403 #define DMAMARBR 0xac 404 405 #define FST_MIN_DMA_LEN 64 406 #define FST_RX_DMA_INT 0x01 407 #define FST_TX_DMA_INT 0x02 408 #define FST_CARD_INT 0x04 409 410 /* Larger buffers are positioned in memory at offset BFM_BASE */ 411 struct buf_window { 412 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 413 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 414 }; 415 416 /* Calculate offset of a buffer object within the shared memory window */ 417 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 418 419 #pragma pack() 420 421 /* Device driver private information 422 * ================================= 423 */ 424 /* Per port (line or channel) information 425 */ 426 struct fst_port_info { 427 struct net_device *dev; /* Device struct - must be first */ 428 struct fst_card_info *card; /* Card we're associated with */ 429 int index; /* Port index on the card */ 430 int hwif; /* Line hardware (lineInterface copy) */ 431 int run; /* Port is running */ 432 int mode; /* Normal or FarSync raw */ 433 int rxpos; /* Next Rx buffer to use */ 434 int txpos; /* Next Tx buffer to use */ 435 int txipos; /* Next Tx buffer to check for free */ 436 int start; /* Indication of start/stop to network */ 437 /* 438 * A sixteen entry transmit queue 439 */ 440 int txqs; /* index to get next buffer to tx */ 441 int txqe; /* index to queue next packet */ 442 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 443 int rxqdepth; 444 }; 445 446 /* Per card information 447 */ 448 struct fst_card_info { 449 char __iomem *mem; /* Card memory mapped to kernel space */ 450 char __iomem *ctlmem; /* Control memory for PCI cards */ 451 unsigned int phys_mem; /* Physical memory window address */ 452 unsigned int phys_ctlmem; /* Physical control memory address */ 453 unsigned int irq; /* Interrupt request line number */ 454 unsigned int nports; /* Number of serial ports */ 455 unsigned int type; /* Type index of card */ 456 unsigned int state; /* State of card */ 457 spinlock_t card_lock; /* Lock for SMP access */ 458 unsigned short pci_conf; /* PCI card config in I/O space */ 459 /* Per port info */ 460 struct fst_port_info ports[FST_MAX_PORTS]; 461 struct pci_dev *device; /* Information about the pci device */ 462 int card_no; /* Inst of the card on the system */ 463 int family; /* TxP or TxU */ 464 int dmarx_in_progress; 465 int dmatx_in_progress; 466 unsigned long int_count; 467 unsigned long int_time_ave; 468 void *rx_dma_handle_host; 469 dma_addr_t rx_dma_handle_card; 470 void *tx_dma_handle_host; 471 dma_addr_t tx_dma_handle_card; 472 struct sk_buff *dma_skb_rx; 473 struct fst_port_info *dma_port_rx; 474 struct fst_port_info *dma_port_tx; 475 int dma_len_rx; 476 int dma_len_tx; 477 int dma_txpos; 478 int dma_rxpos; 479 }; 480 481 /* Convert an HDLC device pointer into a port info pointer and similar */ 482 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 483 #define port_to_dev(P) ((P)->dev) 484 485 486 /* 487 * Shared memory window access macros 488 * 489 * We have a nice memory based structure above, which could be directly 490 * mapped on i386 but might not work on other architectures unless we use 491 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 492 * physical offsets so we have to convert. The only saving grace is that 493 * this should all collapse back to a simple indirection eventually. 494 */ 495 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 496 497 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) 498 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) 499 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) 500 501 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) 502 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) 503 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) 504 505 /* 506 * Debug support 507 */ 508 #if FST_DEBUG 509 510 static int fst_debug_mask = { FST_DEBUG }; 511 512 /* Most common debug activity is to print something if the corresponding bit 513 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 514 * support variable numbers of macro parameters. The inverted if prevents us 515 * eating someone else's else clause. 516 */ 517 #define dbg(F, fmt, args...) \ 518 do { \ 519 if (fst_debug_mask & (F)) \ 520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 521 } while (0) 522 #else 523 #define dbg(F, fmt, args...) \ 524 do { \ 525 if (0) \ 526 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 527 } while (0) 528 #endif 529 530 /* 531 * PCI ID lookup table 532 */ 533 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = { 534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 536 537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 539 540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 542 543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 545 546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 548 549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 551 552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 554 {0,} /* End */ 555 }; 556 557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 558 559 /* 560 * Device Driver Work Queues 561 * 562 * So that we don't spend too much time processing events in the 563 * Interrupt Service routine, we will declare a work queue per Card 564 * and make the ISR schedule a task in the queue for later execution. 565 * In the 2.4 Kernel we used to use the immediate queue for BH's 566 * Now that they are gone, tasklets seem to be much better than work 567 * queues. 568 */ 569 570 static void do_bottom_half_tx(struct fst_card_info *card); 571 static void do_bottom_half_rx(struct fst_card_info *card); 572 static void fst_process_tx_work_q(unsigned long work_q); 573 static void fst_process_int_work_q(unsigned long work_q); 574 575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); 576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); 577 578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 579 static spinlock_t fst_work_q_lock; 580 static u64 fst_work_txq; 581 static u64 fst_work_intq; 582 583 static void 584 fst_q_work_item(u64 * queue, int card_index) 585 { 586 unsigned long flags; 587 u64 mask; 588 589 /* 590 * Grab the queue exclusively 591 */ 592 spin_lock_irqsave(&fst_work_q_lock, flags); 593 594 /* 595 * Making an entry in the queue is simply a matter of setting 596 * a bit for the card indicating that there is work to do in the 597 * bottom half for the card. Note the limitation of 64 cards. 598 * That ought to be enough 599 */ 600 mask = 1 << card_index; 601 *queue |= mask; 602 spin_unlock_irqrestore(&fst_work_q_lock, flags); 603 } 604 605 static void 606 fst_process_tx_work_q(unsigned long /*void **/work_q) 607 { 608 unsigned long flags; 609 u64 work_txq; 610 int i; 611 612 /* 613 * Grab the queue exclusively 614 */ 615 dbg(DBG_TX, "fst_process_tx_work_q\n"); 616 spin_lock_irqsave(&fst_work_q_lock, flags); 617 work_txq = fst_work_txq; 618 fst_work_txq = 0; 619 spin_unlock_irqrestore(&fst_work_q_lock, flags); 620 621 /* 622 * Call the bottom half for each card with work waiting 623 */ 624 for (i = 0; i < FST_MAX_CARDS; i++) { 625 if (work_txq & 0x01) { 626 if (fst_card_array[i] != NULL) { 627 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 628 do_bottom_half_tx(fst_card_array[i]); 629 } 630 } 631 work_txq = work_txq >> 1; 632 } 633 } 634 635 static void 636 fst_process_int_work_q(unsigned long /*void **/work_q) 637 { 638 unsigned long flags; 639 u64 work_intq; 640 int i; 641 642 /* 643 * Grab the queue exclusively 644 */ 645 dbg(DBG_INTR, "fst_process_int_work_q\n"); 646 spin_lock_irqsave(&fst_work_q_lock, flags); 647 work_intq = fst_work_intq; 648 fst_work_intq = 0; 649 spin_unlock_irqrestore(&fst_work_q_lock, flags); 650 651 /* 652 * Call the bottom half for each card with work waiting 653 */ 654 for (i = 0; i < FST_MAX_CARDS; i++) { 655 if (work_intq & 0x01) { 656 if (fst_card_array[i] != NULL) { 657 dbg(DBG_INTR, 658 "Calling rx & tx bh for card %d\n", i); 659 do_bottom_half_rx(fst_card_array[i]); 660 do_bottom_half_tx(fst_card_array[i]); 661 } 662 } 663 work_intq = work_intq >> 1; 664 } 665 } 666 667 /* Card control functions 668 * ====================== 669 */ 670 /* Place the processor in reset state 671 * 672 * Used to be a simple write to card control space but a glitch in the latest 673 * AMD Am186CH processor means that we now have to do it by asserting and de- 674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 675 * at offset 9052_CNTRL. Note the updates for the TXU. 676 */ 677 static inline void 678 fst_cpureset(struct fst_card_info *card) 679 { 680 unsigned char interrupt_line_register; 681 unsigned long j = jiffies + 1; 682 unsigned int regval; 683 684 if (card->family == FST_FAMILY_TXU) { 685 if (pci_read_config_byte 686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 687 dbg(DBG_ASS, 688 "Error in reading interrupt line register\n"); 689 } 690 /* 691 * Assert PLX software reset and Am186 hardware reset 692 * and then deassert the PLX software reset but 186 still in reset 693 */ 694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 696 /* 697 * We are delaying here to allow the 9054 to reset itself 698 */ 699 j = jiffies + 1; 700 while (jiffies < j) 701 /* Do nothing */ ; 702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 703 /* 704 * We are delaying here to allow the 9054 to reload its eeprom 705 */ 706 j = jiffies + 1; 707 while (jiffies < j) 708 /* Do nothing */ ; 709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 710 711 if (pci_write_config_byte 712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 713 dbg(DBG_ASS, 714 "Error in writing interrupt line register\n"); 715 } 716 717 } else { 718 regval = inl(card->pci_conf + CNTRL_9052); 719 720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 722 } 723 } 724 725 /* Release the processor from reset 726 */ 727 static inline void 728 fst_cpurelease(struct fst_card_info *card) 729 { 730 if (card->family == FST_FAMILY_TXU) { 731 /* 732 * Force posted writes to complete 733 */ 734 (void) readb(card->mem); 735 736 /* 737 * Release LRESET DO = 1 738 * Then release Local Hold, DO = 1 739 */ 740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 742 } else { 743 (void) readb(card->ctlmem); 744 } 745 } 746 747 /* Clear the cards interrupt flag 748 */ 749 static inline void 750 fst_clear_intr(struct fst_card_info *card) 751 { 752 if (card->family == FST_FAMILY_TXU) { 753 (void) readb(card->ctlmem); 754 } else { 755 /* Poke the appropriate PLX chip register (same as enabling interrupts) 756 */ 757 outw(0x0543, card->pci_conf + INTCSR_9052); 758 } 759 } 760 761 /* Enable card interrupts 762 */ 763 static inline void 764 fst_enable_intr(struct fst_card_info *card) 765 { 766 if (card->family == FST_FAMILY_TXU) { 767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 768 } else { 769 outw(0x0543, card->pci_conf + INTCSR_9052); 770 } 771 } 772 773 /* Disable card interrupts 774 */ 775 static inline void 776 fst_disable_intr(struct fst_card_info *card) 777 { 778 if (card->family == FST_FAMILY_TXU) { 779 outl(0x00000000, card->pci_conf + INTCSR_9054); 780 } else { 781 outw(0x0000, card->pci_conf + INTCSR_9052); 782 } 783 } 784 785 /* Process the result of trying to pass a received frame up the stack 786 */ 787 static void 788 fst_process_rx_status(int rx_status, char *name) 789 { 790 switch (rx_status) { 791 case NET_RX_SUCCESS: 792 { 793 /* 794 * Nothing to do here 795 */ 796 break; 797 } 798 case NET_RX_DROP: 799 { 800 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 801 break; 802 } 803 } 804 } 805 806 /* Initilaise DMA for PLX 9054 807 */ 808 static inline void 809 fst_init_dma(struct fst_card_info *card) 810 { 811 /* 812 * This is only required for the PLX 9054 813 */ 814 if (card->family == FST_FAMILY_TXU) { 815 pci_set_master(card->device); 816 outl(0x00020441, card->pci_conf + DMAMODE0); 817 outl(0x00020441, card->pci_conf + DMAMODE1); 818 outl(0x0, card->pci_conf + DMATHR); 819 } 820 } 821 822 /* Tx dma complete interrupt 823 */ 824 static void 825 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 826 int len, int txpos) 827 { 828 struct net_device *dev = port_to_dev(port); 829 830 /* 831 * Everything is now set, just tell the card to go 832 */ 833 dbg(DBG_TX, "fst_tx_dma_complete\n"); 834 FST_WRB(card, txDescrRing[port->index][txpos].bits, 835 DMA_OWN | TX_STP | TX_ENP); 836 dev->stats.tx_packets++; 837 dev->stats.tx_bytes += len; 838 dev->trans_start = jiffies; 839 } 840 841 /* 842 * Mark it for our own raw sockets interface 843 */ 844 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) 845 { 846 skb->dev = dev; 847 skb_reset_mac_header(skb); 848 skb->pkt_type = PACKET_HOST; 849 return htons(ETH_P_CUST); 850 } 851 852 /* Rx dma complete interrupt 853 */ 854 static void 855 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 856 int len, struct sk_buff *skb, int rxp) 857 { 858 struct net_device *dev = port_to_dev(port); 859 int pi; 860 int rx_status; 861 862 dbg(DBG_TX, "fst_rx_dma_complete\n"); 863 pi = port->index; 864 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); 865 866 /* Reset buffer descriptor */ 867 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 868 869 /* Update stats */ 870 dev->stats.rx_packets++; 871 dev->stats.rx_bytes += len; 872 873 /* Push upstream */ 874 dbg(DBG_RX, "Pushing the frame up the stack\n"); 875 if (port->mode == FST_RAW) 876 skb->protocol = farsync_type_trans(skb, dev); 877 else 878 skb->protocol = hdlc_type_trans(skb, dev); 879 rx_status = netif_rx(skb); 880 fst_process_rx_status(rx_status, port_to_dev(port)->name); 881 if (rx_status == NET_RX_DROP) 882 dev->stats.rx_dropped++; 883 } 884 885 /* 886 * Receive a frame through the DMA 887 */ 888 static inline void 889 fst_rx_dma(struct fst_card_info *card, dma_addr_t skb, 890 dma_addr_t mem, int len) 891 { 892 /* 893 * This routine will setup the DMA and start it 894 */ 895 896 dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n", 897 (unsigned long) skb, (unsigned long) mem, len); 898 if (card->dmarx_in_progress) { 899 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 900 } 901 902 outl(skb, card->pci_conf + DMAPADR0); /* Copy to here */ 903 outl(mem, card->pci_conf + DMALADR0); /* from here */ 904 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 905 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 906 907 /* 908 * We use the dmarx_in_progress flag to flag the channel as busy 909 */ 910 card->dmarx_in_progress = 1; 911 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 912 } 913 914 /* 915 * Send a frame through the DMA 916 */ 917 static inline void 918 fst_tx_dma(struct fst_card_info *card, unsigned char *skb, 919 unsigned char *mem, int len) 920 { 921 /* 922 * This routine will setup the DMA and start it. 923 */ 924 925 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); 926 if (card->dmatx_in_progress) { 927 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 928 } 929 930 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ 931 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ 932 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 933 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 934 935 /* 936 * We use the dmatx_in_progress to flag the channel as busy 937 */ 938 card->dmatx_in_progress = 1; 939 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 940 } 941 942 /* Issue a Mailbox command for a port. 943 * Note we issue them on a fire and forget basis, not expecting to see an 944 * error and not waiting for completion. 945 */ 946 static void 947 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 948 { 949 struct fst_card_info *card; 950 unsigned short mbval; 951 unsigned long flags; 952 int safety; 953 954 card = port->card; 955 spin_lock_irqsave(&card->card_lock, flags); 956 mbval = FST_RDW(card, portMailbox[port->index][0]); 957 958 safety = 0; 959 /* Wait for any previous command to complete */ 960 while (mbval > NAK) { 961 spin_unlock_irqrestore(&card->card_lock, flags); 962 schedule_timeout_uninterruptible(1); 963 spin_lock_irqsave(&card->card_lock, flags); 964 965 if (++safety > 2000) { 966 pr_err("Mailbox safety timeout\n"); 967 break; 968 } 969 970 mbval = FST_RDW(card, portMailbox[port->index][0]); 971 } 972 if (safety > 0) { 973 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 974 } 975 if (mbval == NAK) { 976 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 977 } 978 979 FST_WRW(card, portMailbox[port->index][0], cmd); 980 981 if (cmd == ABORTTX || cmd == STARTPORT) { 982 port->txpos = 0; 983 port->txipos = 0; 984 port->start = 0; 985 } 986 987 spin_unlock_irqrestore(&card->card_lock, flags); 988 } 989 990 /* Port output signals control 991 */ 992 static inline void 993 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 994 { 995 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 996 FST_WRL(port->card, v24OpSts[port->index], outputs); 997 998 if (port->run) 999 fst_issue_cmd(port, SETV24O); 1000 } 1001 1002 static inline void 1003 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 1004 { 1005 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 1006 FST_WRL(port->card, v24OpSts[port->index], outputs); 1007 1008 if (port->run) 1009 fst_issue_cmd(port, SETV24O); 1010 } 1011 1012 /* 1013 * Setup port Rx buffers 1014 */ 1015 static void 1016 fst_rx_config(struct fst_port_info *port) 1017 { 1018 int i; 1019 int pi; 1020 unsigned int offset; 1021 unsigned long flags; 1022 struct fst_card_info *card; 1023 1024 pi = port->index; 1025 card = port->card; 1026 spin_lock_irqsave(&card->card_lock, flags); 1027 for (i = 0; i < NUM_RX_BUFFER; i++) { 1028 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 1029 1030 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); 1031 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1032 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 1033 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 1034 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 1035 } 1036 port->rxpos = 0; 1037 spin_unlock_irqrestore(&card->card_lock, flags); 1038 } 1039 1040 /* 1041 * Setup port Tx buffers 1042 */ 1043 static void 1044 fst_tx_config(struct fst_port_info *port) 1045 { 1046 int i; 1047 int pi; 1048 unsigned int offset; 1049 unsigned long flags; 1050 struct fst_card_info *card; 1051 1052 pi = port->index; 1053 card = port->card; 1054 spin_lock_irqsave(&card->card_lock, flags); 1055 for (i = 0; i < NUM_TX_BUFFER; i++) { 1056 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1057 1058 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); 1059 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1060 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1061 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1062 } 1063 port->txpos = 0; 1064 port->txipos = 0; 1065 port->start = 0; 1066 spin_unlock_irqrestore(&card->card_lock, flags); 1067 } 1068 1069 /* TE1 Alarm change interrupt event 1070 */ 1071 static void 1072 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1073 { 1074 u8 los; 1075 u8 rra; 1076 u8 ais; 1077 1078 los = FST_RDB(card, suStatus.lossOfSignal); 1079 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1080 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1081 1082 if (los) { 1083 /* 1084 * Lost the link 1085 */ 1086 if (netif_carrier_ok(port_to_dev(port))) { 1087 dbg(DBG_INTR, "Net carrier off\n"); 1088 netif_carrier_off(port_to_dev(port)); 1089 } 1090 } else { 1091 /* 1092 * Link available 1093 */ 1094 if (!netif_carrier_ok(port_to_dev(port))) { 1095 dbg(DBG_INTR, "Net carrier on\n"); 1096 netif_carrier_on(port_to_dev(port)); 1097 } 1098 } 1099 1100 if (los) 1101 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1102 else 1103 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1104 if (rra) 1105 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1106 else 1107 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1108 1109 if (ais) 1110 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1111 else 1112 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1113 } 1114 1115 /* Control signal change interrupt event 1116 */ 1117 static void 1118 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1119 { 1120 int signals; 1121 1122 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1123 1124 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 1125 ? IPSTS_INDICATE : IPSTS_DCD)) { 1126 if (!netif_carrier_ok(port_to_dev(port))) { 1127 dbg(DBG_INTR, "DCD active\n"); 1128 netif_carrier_on(port_to_dev(port)); 1129 } 1130 } else { 1131 if (netif_carrier_ok(port_to_dev(port))) { 1132 dbg(DBG_INTR, "DCD lost\n"); 1133 netif_carrier_off(port_to_dev(port)); 1134 } 1135 } 1136 } 1137 1138 /* Log Rx Errors 1139 */ 1140 static void 1141 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1142 unsigned char dmabits, int rxp, unsigned short len) 1143 { 1144 struct net_device *dev = port_to_dev(port); 1145 1146 /* 1147 * Increment the appropriate error counter 1148 */ 1149 dev->stats.rx_errors++; 1150 if (dmabits & RX_OFLO) { 1151 dev->stats.rx_fifo_errors++; 1152 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1153 card->card_no, port->index, rxp); 1154 } 1155 if (dmabits & RX_CRC) { 1156 dev->stats.rx_crc_errors++; 1157 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1158 card->card_no, port->index); 1159 } 1160 if (dmabits & RX_FRAM) { 1161 dev->stats.rx_frame_errors++; 1162 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1163 card->card_no, port->index); 1164 } 1165 if (dmabits == (RX_STP | RX_ENP)) { 1166 dev->stats.rx_length_errors++; 1167 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1168 len, card->card_no, port->index); 1169 } 1170 } 1171 1172 /* Rx Error Recovery 1173 */ 1174 static void 1175 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1176 unsigned char dmabits, int rxp, unsigned short len) 1177 { 1178 int i; 1179 int pi; 1180 1181 pi = port->index; 1182 /* 1183 * Discard buffer descriptors until we see the start of the 1184 * next frame. Note that for long frames this could be in 1185 * a subsequent interrupt. 1186 */ 1187 i = 0; 1188 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1189 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1190 rxp = (rxp+1) % NUM_RX_BUFFER; 1191 if (++i > NUM_RX_BUFFER) { 1192 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1193 " than we have\n"); 1194 break; 1195 } 1196 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1197 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1198 } 1199 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1200 1201 /* Discard the terminal buffer */ 1202 if (!(dmabits & DMA_OWN)) { 1203 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1204 rxp = (rxp+1) % NUM_RX_BUFFER; 1205 } 1206 port->rxpos = rxp; 1207 return; 1208 1209 } 1210 1211 /* Rx complete interrupt 1212 */ 1213 static void 1214 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1215 { 1216 unsigned char dmabits; 1217 int pi; 1218 int rxp; 1219 int rx_status; 1220 unsigned short len; 1221 struct sk_buff *skb; 1222 struct net_device *dev = port_to_dev(port); 1223 1224 /* Check we have a buffer to process */ 1225 pi = port->index; 1226 rxp = port->rxpos; 1227 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1228 if (dmabits & DMA_OWN) { 1229 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1230 pi, rxp); 1231 return; 1232 } 1233 if (card->dmarx_in_progress) { 1234 return; 1235 } 1236 1237 /* Get buffer length */ 1238 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1239 /* Discard the CRC */ 1240 len -= 2; 1241 if (len == 0) { 1242 /* 1243 * This seems to happen on the TE1 interface sometimes 1244 * so throw the frame away and log the event. 1245 */ 1246 pr_err("Frame received with 0 length. Card %d Port %d\n", 1247 card->card_no, port->index); 1248 /* Return descriptor to card */ 1249 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1250 1251 rxp = (rxp+1) % NUM_RX_BUFFER; 1252 port->rxpos = rxp; 1253 return; 1254 } 1255 1256 /* Check buffer length and for other errors. We insist on one packet 1257 * in one buffer. This simplifies things greatly and since we've 1258 * allocated 8K it shouldn't be a real world limitation 1259 */ 1260 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1261 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1262 fst_log_rx_error(card, port, dmabits, rxp, len); 1263 fst_recover_rx_error(card, port, dmabits, rxp, len); 1264 return; 1265 } 1266 1267 /* Allocate SKB */ 1268 if ((skb = dev_alloc_skb(len)) == NULL) { 1269 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1270 1271 dev->stats.rx_dropped++; 1272 1273 /* Return descriptor to card */ 1274 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1275 1276 rxp = (rxp+1) % NUM_RX_BUFFER; 1277 port->rxpos = rxp; 1278 return; 1279 } 1280 1281 /* 1282 * We know the length we need to receive, len. 1283 * It's not worth using the DMA for reads of less than 1284 * FST_MIN_DMA_LEN 1285 */ 1286 1287 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { 1288 memcpy_fromio(skb_put(skb, len), 1289 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1290 len); 1291 1292 /* Reset buffer descriptor */ 1293 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1294 1295 /* Update stats */ 1296 dev->stats.rx_packets++; 1297 dev->stats.rx_bytes += len; 1298 1299 /* Push upstream */ 1300 dbg(DBG_RX, "Pushing frame up the stack\n"); 1301 if (port->mode == FST_RAW) 1302 skb->protocol = farsync_type_trans(skb, dev); 1303 else 1304 skb->protocol = hdlc_type_trans(skb, dev); 1305 rx_status = netif_rx(skb); 1306 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1307 if (rx_status == NET_RX_DROP) 1308 dev->stats.rx_dropped++; 1309 } else { 1310 card->dma_skb_rx = skb; 1311 card->dma_port_rx = port; 1312 card->dma_len_rx = len; 1313 card->dma_rxpos = rxp; 1314 fst_rx_dma(card, card->rx_dma_handle_card, 1315 BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1316 } 1317 if (rxp != port->rxpos) { 1318 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1319 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1320 } 1321 rxp = (rxp+1) % NUM_RX_BUFFER; 1322 port->rxpos = rxp; 1323 } 1324 1325 /* 1326 * The bottom halfs to the ISR 1327 * 1328 */ 1329 1330 static void 1331 do_bottom_half_tx(struct fst_card_info *card) 1332 { 1333 struct fst_port_info *port; 1334 int pi; 1335 int txq_length; 1336 struct sk_buff *skb; 1337 unsigned long flags; 1338 struct net_device *dev; 1339 1340 /* 1341 * Find a free buffer for the transmit 1342 * Step through each port on this card 1343 */ 1344 1345 dbg(DBG_TX, "do_bottom_half_tx\n"); 1346 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1347 if (!port->run) 1348 continue; 1349 1350 dev = port_to_dev(port); 1351 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1352 DMA_OWN) && 1353 !(card->dmatx_in_progress)) { 1354 /* 1355 * There doesn't seem to be a txdone event per-se 1356 * We seem to have to deduce it, by checking the DMA_OWN 1357 * bit on the next buffer we think we can use 1358 */ 1359 spin_lock_irqsave(&card->card_lock, flags); 1360 if ((txq_length = port->txqe - port->txqs) < 0) { 1361 /* 1362 * This is the case where one has wrapped and the 1363 * maths gives us a negative number 1364 */ 1365 txq_length = txq_length + FST_TXQ_DEPTH; 1366 } 1367 spin_unlock_irqrestore(&card->card_lock, flags); 1368 if (txq_length > 0) { 1369 /* 1370 * There is something to send 1371 */ 1372 spin_lock_irqsave(&card->card_lock, flags); 1373 skb = port->txq[port->txqs]; 1374 port->txqs++; 1375 if (port->txqs == FST_TXQ_DEPTH) { 1376 port->txqs = 0; 1377 } 1378 spin_unlock_irqrestore(&card->card_lock, flags); 1379 /* 1380 * copy the data and set the required indicators on the 1381 * card. 1382 */ 1383 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1384 cnv_bcnt(skb->len)); 1385 if ((skb->len < FST_MIN_DMA_LEN) || 1386 (card->family == FST_FAMILY_TXP)) { 1387 /* Enqueue the packet with normal io */ 1388 memcpy_toio(card->mem + 1389 BUF_OFFSET(txBuffer[pi] 1390 [port-> 1391 txpos][0]), 1392 skb->data, skb->len); 1393 FST_WRB(card, 1394 txDescrRing[pi][port->txpos]. 1395 bits, 1396 DMA_OWN | TX_STP | TX_ENP); 1397 dev->stats.tx_packets++; 1398 dev->stats.tx_bytes += skb->len; 1399 dev->trans_start = jiffies; 1400 } else { 1401 /* Or do it through dma */ 1402 memcpy(card->tx_dma_handle_host, 1403 skb->data, skb->len); 1404 card->dma_port_tx = port; 1405 card->dma_len_tx = skb->len; 1406 card->dma_txpos = port->txpos; 1407 fst_tx_dma(card, 1408 (char *) card-> 1409 tx_dma_handle_card, 1410 (char *) 1411 BUF_OFFSET(txBuffer[pi] 1412 [port->txpos][0]), 1413 skb->len); 1414 } 1415 if (++port->txpos >= NUM_TX_BUFFER) 1416 port->txpos = 0; 1417 /* 1418 * If we have flow control on, can we now release it? 1419 */ 1420 if (port->start) { 1421 if (txq_length < fst_txq_low) { 1422 netif_wake_queue(port_to_dev 1423 (port)); 1424 port->start = 0; 1425 } 1426 } 1427 dev_kfree_skb(skb); 1428 } else { 1429 /* 1430 * Nothing to send so break out of the while loop 1431 */ 1432 break; 1433 } 1434 } 1435 } 1436 } 1437 1438 static void 1439 do_bottom_half_rx(struct fst_card_info *card) 1440 { 1441 struct fst_port_info *port; 1442 int pi; 1443 int rx_count = 0; 1444 1445 /* Check for rx completions on all ports on this card */ 1446 dbg(DBG_RX, "do_bottom_half_rx\n"); 1447 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1448 if (!port->run) 1449 continue; 1450 1451 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1452 & DMA_OWN) && !(card->dmarx_in_progress)) { 1453 if (rx_count > fst_max_reads) { 1454 /* 1455 * Don't spend forever in receive processing 1456 * Schedule another event 1457 */ 1458 fst_q_work_item(&fst_work_intq, card->card_no); 1459 tasklet_schedule(&fst_int_task); 1460 break; /* Leave the loop */ 1461 } 1462 fst_intr_rx(card, port); 1463 rx_count++; 1464 } 1465 } 1466 } 1467 1468 /* 1469 * The interrupt service routine 1470 * Dev_id is our fst_card_info pointer 1471 */ 1472 static irqreturn_t 1473 fst_intr(int dummy, void *dev_id) 1474 { 1475 struct fst_card_info *card = dev_id; 1476 struct fst_port_info *port; 1477 int rdidx; /* Event buffer indices */ 1478 int wridx; 1479 int event; /* Actual event for processing */ 1480 unsigned int dma_intcsr = 0; 1481 unsigned int do_card_interrupt; 1482 unsigned int int_retry_count; 1483 1484 /* 1485 * Check to see if the interrupt was for this card 1486 * return if not 1487 * Note that the call to clear the interrupt is important 1488 */ 1489 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); 1490 if (card->state != FST_RUNNING) { 1491 pr_err("Interrupt received for card %d in a non running state (%d)\n", 1492 card->card_no, card->state); 1493 1494 /* 1495 * It is possible to really be running, i.e. we have re-loaded 1496 * a running card 1497 * Clear and reprime the interrupt source 1498 */ 1499 fst_clear_intr(card); 1500 return IRQ_HANDLED; 1501 } 1502 1503 /* Clear and reprime the interrupt source */ 1504 fst_clear_intr(card); 1505 1506 /* 1507 * Is the interrupt for this card (handshake == 1) 1508 */ 1509 do_card_interrupt = 0; 1510 if (FST_RDB(card, interruptHandshake) == 1) { 1511 do_card_interrupt += FST_CARD_INT; 1512 /* Set the software acknowledge */ 1513 FST_WRB(card, interruptHandshake, 0xEE); 1514 } 1515 if (card->family == FST_FAMILY_TXU) { 1516 /* 1517 * Is it a DMA Interrupt 1518 */ 1519 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1520 if (dma_intcsr & 0x00200000) { 1521 /* 1522 * DMA Channel 0 (Rx transfer complete) 1523 */ 1524 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1525 outb(0x8, card->pci_conf + DMACSR0); 1526 fst_rx_dma_complete(card, card->dma_port_rx, 1527 card->dma_len_rx, card->dma_skb_rx, 1528 card->dma_rxpos); 1529 card->dmarx_in_progress = 0; 1530 do_card_interrupt += FST_RX_DMA_INT; 1531 } 1532 if (dma_intcsr & 0x00400000) { 1533 /* 1534 * DMA Channel 1 (Tx transfer complete) 1535 */ 1536 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1537 outb(0x8, card->pci_conf + DMACSR1); 1538 fst_tx_dma_complete(card, card->dma_port_tx, 1539 card->dma_len_tx, card->dma_txpos); 1540 card->dmatx_in_progress = 0; 1541 do_card_interrupt += FST_TX_DMA_INT; 1542 } 1543 } 1544 1545 /* 1546 * Have we been missing Interrupts 1547 */ 1548 int_retry_count = FST_RDL(card, interruptRetryCount); 1549 if (int_retry_count) { 1550 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1551 card->card_no, int_retry_count); 1552 FST_WRL(card, interruptRetryCount, 0); 1553 } 1554 1555 if (!do_card_interrupt) { 1556 return IRQ_HANDLED; 1557 } 1558 1559 /* Scehdule the bottom half of the ISR */ 1560 fst_q_work_item(&fst_work_intq, card->card_no); 1561 tasklet_schedule(&fst_int_task); 1562 1563 /* Drain the event queue */ 1564 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1565 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1566 while (rdidx != wridx) { 1567 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1568 port = &card->ports[event & 0x03]; 1569 1570 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1571 1572 switch (event) { 1573 case TE1_ALMA: 1574 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1575 if (port->run) 1576 fst_intr_te1_alarm(card, port); 1577 break; 1578 1579 case CTLA_CHG: 1580 case CTLB_CHG: 1581 case CTLC_CHG: 1582 case CTLD_CHG: 1583 if (port->run) 1584 fst_intr_ctlchg(card, port); 1585 break; 1586 1587 case ABTA_SENT: 1588 case ABTB_SENT: 1589 case ABTC_SENT: 1590 case ABTD_SENT: 1591 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1592 break; 1593 1594 case TXA_UNDF: 1595 case TXB_UNDF: 1596 case TXC_UNDF: 1597 case TXD_UNDF: 1598 /* Difficult to see how we'd get this given that we 1599 * always load up the entire packet for DMA. 1600 */ 1601 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1602 port_to_dev(port)->stats.tx_errors++; 1603 port_to_dev(port)->stats.tx_fifo_errors++; 1604 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1605 card->card_no, port->index); 1606 break; 1607 1608 case INIT_CPLT: 1609 dbg(DBG_INIT, "Card init OK intr\n"); 1610 break; 1611 1612 case INIT_FAIL: 1613 dbg(DBG_INIT, "Card init FAILED intr\n"); 1614 card->state = FST_IFAILED; 1615 break; 1616 1617 default: 1618 pr_err("intr: unknown card event %d. ignored\n", event); 1619 break; 1620 } 1621 1622 /* Bump and wrap the index */ 1623 if (++rdidx >= MAX_CIRBUFF) 1624 rdidx = 0; 1625 } 1626 FST_WRB(card, interruptEvent.rdindex, rdidx); 1627 return IRQ_HANDLED; 1628 } 1629 1630 /* Check that the shared memory configuration is one that we can handle 1631 * and that some basic parameters are correct 1632 */ 1633 static void 1634 check_started_ok(struct fst_card_info *card) 1635 { 1636 int i; 1637 1638 /* Check structure version and end marker */ 1639 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1640 pr_err("Bad shared memory version %d expected %d\n", 1641 FST_RDW(card, smcVersion), SMC_VERSION); 1642 card->state = FST_BADVERSION; 1643 return; 1644 } 1645 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1646 pr_err("Missing shared memory signature\n"); 1647 card->state = FST_BADVERSION; 1648 return; 1649 } 1650 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1651 if ((i = FST_RDB(card, taskStatus)) == 0x01) { 1652 card->state = FST_RUNNING; 1653 } else if (i == 0xFF) { 1654 pr_err("Firmware initialisation failed. Card halted\n"); 1655 card->state = FST_HALTED; 1656 return; 1657 } else if (i != 0x00) { 1658 pr_err("Unknown firmware status 0x%x\n", i); 1659 card->state = FST_HALTED; 1660 return; 1661 } 1662 1663 /* Finally check the number of ports reported by firmware against the 1664 * number we assumed at card detection. Should never happen with 1665 * existing firmware etc so we just report it for the moment. 1666 */ 1667 if (FST_RDL(card, numberOfPorts) != card->nports) { 1668 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n", 1669 card->card_no, 1670 FST_RDL(card, numberOfPorts), card->nports); 1671 } 1672 } 1673 1674 static int 1675 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1676 struct fstioc_info *info) 1677 { 1678 int err; 1679 unsigned char my_framing; 1680 1681 /* Set things according to the user set valid flags 1682 * Several of the old options have been invalidated/replaced by the 1683 * generic hdlc package. 1684 */ 1685 err = 0; 1686 if (info->valid & FSTVAL_PROTO) { 1687 if (info->proto == FST_RAW) 1688 port->mode = FST_RAW; 1689 else 1690 port->mode = FST_GEN_HDLC; 1691 } 1692 1693 if (info->valid & FSTVAL_CABLE) 1694 err = -EINVAL; 1695 1696 if (info->valid & FSTVAL_SPEED) 1697 err = -EINVAL; 1698 1699 if (info->valid & FSTVAL_PHASE) 1700 FST_WRB(card, portConfig[port->index].invertClock, 1701 info->invertClock); 1702 if (info->valid & FSTVAL_MODE) 1703 FST_WRW(card, cardMode, info->cardMode); 1704 if (info->valid & FSTVAL_TE1) { 1705 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1706 FST_WRB(card, suConfig.clocking, info->clockSource); 1707 my_framing = FRAMING_E1; 1708 if (info->framing == E1) 1709 my_framing = FRAMING_E1; 1710 if (info->framing == T1) 1711 my_framing = FRAMING_T1; 1712 if (info->framing == J1) 1713 my_framing = FRAMING_J1; 1714 FST_WRB(card, suConfig.framing, my_framing); 1715 FST_WRB(card, suConfig.structure, info->structure); 1716 FST_WRB(card, suConfig.interface, info->interface); 1717 FST_WRB(card, suConfig.coding, info->coding); 1718 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1719 FST_WRB(card, suConfig.equalizer, info->equalizer); 1720 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1721 FST_WRB(card, suConfig.loopMode, info->loopMode); 1722 FST_WRB(card, suConfig.range, info->range); 1723 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1724 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1725 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1726 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1727 if (info->idleCode) 1728 FST_WRB(card, suConfig.enableIdleCode, 1); 1729 else 1730 FST_WRB(card, suConfig.enableIdleCode, 0); 1731 FST_WRB(card, suConfig.idleCode, info->idleCode); 1732 #if FST_DEBUG 1733 if (info->valid & FSTVAL_TE1) { 1734 printk("Setting TE1 data\n"); 1735 printk("Line Speed = %d\n", info->lineSpeed); 1736 printk("Start slot = %d\n", info->startingSlot); 1737 printk("Clock source = %d\n", info->clockSource); 1738 printk("Framing = %d\n", my_framing); 1739 printk("Structure = %d\n", info->structure); 1740 printk("interface = %d\n", info->interface); 1741 printk("Coding = %d\n", info->coding); 1742 printk("Line build out = %d\n", info->lineBuildOut); 1743 printk("Equaliser = %d\n", info->equalizer); 1744 printk("Transparent mode = %d\n", 1745 info->transparentMode); 1746 printk("Loop mode = %d\n", info->loopMode); 1747 printk("Range = %d\n", info->range); 1748 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1749 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1750 printk("LOS Threshold = %d\n", info->losThreshold); 1751 printk("Idle Code = %d\n", info->idleCode); 1752 } 1753 #endif 1754 } 1755 #if FST_DEBUG 1756 if (info->valid & FSTVAL_DEBUG) { 1757 fst_debug_mask = info->debug; 1758 } 1759 #endif 1760 1761 return err; 1762 } 1763 1764 static void 1765 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1766 struct fstioc_info *info) 1767 { 1768 int i; 1769 1770 memset(info, 0, sizeof (struct fstioc_info)); 1771 1772 i = port->index; 1773 info->kernelVersion = LINUX_VERSION_CODE; 1774 info->nports = card->nports; 1775 info->type = card->type; 1776 info->state = card->state; 1777 info->proto = FST_GEN_HDLC; 1778 info->index = i; 1779 #if FST_DEBUG 1780 info->debug = fst_debug_mask; 1781 #endif 1782 1783 /* Only mark information as valid if card is running. 1784 * Copy the data anyway in case it is useful for diagnostics 1785 */ 1786 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1787 #if FST_DEBUG 1788 | FSTVAL_DEBUG 1789 #endif 1790 ; 1791 1792 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1793 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1794 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1795 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1796 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1797 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1798 info->clockStatus = FST_RDW(card, clockStatus[i]); 1799 info->cableStatus = FST_RDW(card, cableStatus); 1800 info->cardMode = FST_RDW(card, cardMode); 1801 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1802 1803 /* 1804 * The T2U can report cable presence for both A or B 1805 * in bits 0 and 1 of cableStatus. See which port we are and 1806 * do the mapping. 1807 */ 1808 if (card->family == FST_FAMILY_TXU) { 1809 if (port->index == 0) { 1810 /* 1811 * Port A 1812 */ 1813 info->cableStatus = info->cableStatus & 1; 1814 } else { 1815 /* 1816 * Port B 1817 */ 1818 info->cableStatus = info->cableStatus >> 1; 1819 info->cableStatus = info->cableStatus & 1; 1820 } 1821 } 1822 /* 1823 * Some additional bits if we are TE1 1824 */ 1825 if (card->type == FST_TYPE_TE1) { 1826 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1827 info->clockSource = FST_RDB(card, suConfig.clocking); 1828 info->framing = FST_RDB(card, suConfig.framing); 1829 info->structure = FST_RDB(card, suConfig.structure); 1830 info->interface = FST_RDB(card, suConfig.interface); 1831 info->coding = FST_RDB(card, suConfig.coding); 1832 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1833 info->equalizer = FST_RDB(card, suConfig.equalizer); 1834 info->loopMode = FST_RDB(card, suConfig.loopMode); 1835 info->range = FST_RDB(card, suConfig.range); 1836 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1837 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1838 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1839 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1840 if (FST_RDB(card, suConfig.enableIdleCode)) 1841 info->idleCode = FST_RDB(card, suConfig.idleCode); 1842 else 1843 info->idleCode = 0; 1844 info->receiveBufferDelay = 1845 FST_RDL(card, suStatus.receiveBufferDelay); 1846 info->framingErrorCount = 1847 FST_RDL(card, suStatus.framingErrorCount); 1848 info->codeViolationCount = 1849 FST_RDL(card, suStatus.codeViolationCount); 1850 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1851 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1852 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1853 info->receiveRemoteAlarm = 1854 FST_RDB(card, suStatus.receiveRemoteAlarm); 1855 info->alarmIndicationSignal = 1856 FST_RDB(card, suStatus.alarmIndicationSignal); 1857 } 1858 } 1859 1860 static int 1861 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1862 struct ifreq *ifr) 1863 { 1864 sync_serial_settings sync; 1865 int i; 1866 1867 if (ifr->ifr_settings.size != sizeof (sync)) { 1868 return -ENOMEM; 1869 } 1870 1871 if (copy_from_user 1872 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { 1873 return -EFAULT; 1874 } 1875 1876 if (sync.loopback) 1877 return -EINVAL; 1878 1879 i = port->index; 1880 1881 switch (ifr->ifr_settings.type) { 1882 case IF_IFACE_V35: 1883 FST_WRW(card, portConfig[i].lineInterface, V35); 1884 port->hwif = V35; 1885 break; 1886 1887 case IF_IFACE_V24: 1888 FST_WRW(card, portConfig[i].lineInterface, V24); 1889 port->hwif = V24; 1890 break; 1891 1892 case IF_IFACE_X21: 1893 FST_WRW(card, portConfig[i].lineInterface, X21); 1894 port->hwif = X21; 1895 break; 1896 1897 case IF_IFACE_X21D: 1898 FST_WRW(card, portConfig[i].lineInterface, X21D); 1899 port->hwif = X21D; 1900 break; 1901 1902 case IF_IFACE_T1: 1903 FST_WRW(card, portConfig[i].lineInterface, T1); 1904 port->hwif = T1; 1905 break; 1906 1907 case IF_IFACE_E1: 1908 FST_WRW(card, portConfig[i].lineInterface, E1); 1909 port->hwif = E1; 1910 break; 1911 1912 case IF_IFACE_SYNC_SERIAL: 1913 break; 1914 1915 default: 1916 return -EINVAL; 1917 } 1918 1919 switch (sync.clock_type) { 1920 case CLOCK_EXT: 1921 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1922 break; 1923 1924 case CLOCK_INT: 1925 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1926 break; 1927 1928 default: 1929 return -EINVAL; 1930 } 1931 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1932 return 0; 1933 } 1934 1935 static int 1936 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1937 struct ifreq *ifr) 1938 { 1939 sync_serial_settings sync; 1940 int i; 1941 1942 /* First check what line type is set, we'll default to reporting X.21 1943 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1944 * changed 1945 */ 1946 switch (port->hwif) { 1947 case E1: 1948 ifr->ifr_settings.type = IF_IFACE_E1; 1949 break; 1950 case T1: 1951 ifr->ifr_settings.type = IF_IFACE_T1; 1952 break; 1953 case V35: 1954 ifr->ifr_settings.type = IF_IFACE_V35; 1955 break; 1956 case V24: 1957 ifr->ifr_settings.type = IF_IFACE_V24; 1958 break; 1959 case X21D: 1960 ifr->ifr_settings.type = IF_IFACE_X21D; 1961 break; 1962 case X21: 1963 default: 1964 ifr->ifr_settings.type = IF_IFACE_X21; 1965 break; 1966 } 1967 if (ifr->ifr_settings.size == 0) { 1968 return 0; /* only type requested */ 1969 } 1970 if (ifr->ifr_settings.size < sizeof (sync)) { 1971 return -ENOMEM; 1972 } 1973 1974 i = port->index; 1975 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 1976 /* Lucky card and linux use same encoding here */ 1977 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 1978 INTCLK ? CLOCK_INT : CLOCK_EXT; 1979 sync.loopback = 0; 1980 1981 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { 1982 return -EFAULT; 1983 } 1984 1985 ifr->ifr_settings.size = sizeof (sync); 1986 return 0; 1987 } 1988 1989 static int 1990 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1991 { 1992 struct fst_card_info *card; 1993 struct fst_port_info *port; 1994 struct fstioc_write wrthdr; 1995 struct fstioc_info info; 1996 unsigned long flags; 1997 void *buf; 1998 1999 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 2000 2001 port = dev_to_port(dev); 2002 card = port->card; 2003 2004 if (!capable(CAP_NET_ADMIN)) 2005 return -EPERM; 2006 2007 switch (cmd) { 2008 case FSTCPURESET: 2009 fst_cpureset(card); 2010 card->state = FST_RESET; 2011 return 0; 2012 2013 case FSTCPURELEASE: 2014 fst_cpurelease(card); 2015 card->state = FST_STARTING; 2016 return 0; 2017 2018 case FSTWRITE: /* Code write (download) */ 2019 2020 /* First copy in the header with the length and offset of data 2021 * to write 2022 */ 2023 if (ifr->ifr_data == NULL) { 2024 return -EINVAL; 2025 } 2026 if (copy_from_user(&wrthdr, ifr->ifr_data, 2027 sizeof (struct fstioc_write))) { 2028 return -EFAULT; 2029 } 2030 2031 /* Sanity check the parameters. We don't support partial writes 2032 * when going over the top 2033 */ 2034 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE || 2035 wrthdr.size + wrthdr.offset > FST_MEMSIZE) { 2036 return -ENXIO; 2037 } 2038 2039 /* Now copy the data to the card. */ 2040 2041 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write), 2042 wrthdr.size); 2043 if (IS_ERR(buf)) 2044 return PTR_ERR(buf); 2045 2046 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); 2047 kfree(buf); 2048 2049 /* Writes to the memory of a card in the reset state constitute 2050 * a download 2051 */ 2052 if (card->state == FST_RESET) { 2053 card->state = FST_DOWNLOAD; 2054 } 2055 return 0; 2056 2057 case FSTGETCONF: 2058 2059 /* If card has just been started check the shared memory config 2060 * version and marker 2061 */ 2062 if (card->state == FST_STARTING) { 2063 check_started_ok(card); 2064 2065 /* If everything checked out enable card interrupts */ 2066 if (card->state == FST_RUNNING) { 2067 spin_lock_irqsave(&card->card_lock, flags); 2068 fst_enable_intr(card); 2069 FST_WRB(card, interruptHandshake, 0xEE); 2070 spin_unlock_irqrestore(&card->card_lock, flags); 2071 } 2072 } 2073 2074 if (ifr->ifr_data == NULL) { 2075 return -EINVAL; 2076 } 2077 2078 gather_conf_info(card, port, &info); 2079 2080 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { 2081 return -EFAULT; 2082 } 2083 return 0; 2084 2085 case FSTSETCONF: 2086 2087 /* 2088 * Most of the settings have been moved to the generic ioctls 2089 * this just covers debug and board ident now 2090 */ 2091 2092 if (card->state != FST_RUNNING) { 2093 pr_err("Attempt to configure card %d in non-running state (%d)\n", 2094 card->card_no, card->state); 2095 return -EIO; 2096 } 2097 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { 2098 return -EFAULT; 2099 } 2100 2101 return set_conf_from_info(card, port, &info); 2102 2103 case SIOCWANDEV: 2104 switch (ifr->ifr_settings.type) { 2105 case IF_GET_IFACE: 2106 return fst_get_iface(card, port, ifr); 2107 2108 case IF_IFACE_SYNC_SERIAL: 2109 case IF_IFACE_V35: 2110 case IF_IFACE_V24: 2111 case IF_IFACE_X21: 2112 case IF_IFACE_X21D: 2113 case IF_IFACE_T1: 2114 case IF_IFACE_E1: 2115 return fst_set_iface(card, port, ifr); 2116 2117 case IF_PROTO_RAW: 2118 port->mode = FST_RAW; 2119 return 0; 2120 2121 case IF_GET_PROTO: 2122 if (port->mode == FST_RAW) { 2123 ifr->ifr_settings.type = IF_PROTO_RAW; 2124 return 0; 2125 } 2126 return hdlc_ioctl(dev, ifr, cmd); 2127 2128 default: 2129 port->mode = FST_GEN_HDLC; 2130 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2131 ifr->ifr_settings.type); 2132 return hdlc_ioctl(dev, ifr, cmd); 2133 } 2134 2135 default: 2136 /* Not one of ours. Pass through to HDLC package */ 2137 return hdlc_ioctl(dev, ifr, cmd); 2138 } 2139 } 2140 2141 static void 2142 fst_openport(struct fst_port_info *port) 2143 { 2144 int signals; 2145 int txq_length; 2146 2147 /* Only init things if card is actually running. This allows open to 2148 * succeed for downloads etc. 2149 */ 2150 if (port->card->state == FST_RUNNING) { 2151 if (port->run) { 2152 dbg(DBG_OPEN, "open: found port already running\n"); 2153 2154 fst_issue_cmd(port, STOPPORT); 2155 port->run = 0; 2156 } 2157 2158 fst_rx_config(port); 2159 fst_tx_config(port); 2160 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2161 2162 fst_issue_cmd(port, STARTPORT); 2163 port->run = 1; 2164 2165 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2166 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 2167 ? IPSTS_INDICATE : IPSTS_DCD)) 2168 netif_carrier_on(port_to_dev(port)); 2169 else 2170 netif_carrier_off(port_to_dev(port)); 2171 2172 txq_length = port->txqe - port->txqs; 2173 port->txqe = 0; 2174 port->txqs = 0; 2175 } 2176 2177 } 2178 2179 static void 2180 fst_closeport(struct fst_port_info *port) 2181 { 2182 if (port->card->state == FST_RUNNING) { 2183 if (port->run) { 2184 port->run = 0; 2185 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2186 2187 fst_issue_cmd(port, STOPPORT); 2188 } else { 2189 dbg(DBG_OPEN, "close: port not running\n"); 2190 } 2191 } 2192 } 2193 2194 static int 2195 fst_open(struct net_device *dev) 2196 { 2197 int err; 2198 struct fst_port_info *port; 2199 2200 port = dev_to_port(dev); 2201 if (!try_module_get(THIS_MODULE)) 2202 return -EBUSY; 2203 2204 if (port->mode != FST_RAW) { 2205 err = hdlc_open(dev); 2206 if (err) { 2207 module_put(THIS_MODULE); 2208 return err; 2209 } 2210 } 2211 2212 fst_openport(port); 2213 netif_wake_queue(dev); 2214 return 0; 2215 } 2216 2217 static int 2218 fst_close(struct net_device *dev) 2219 { 2220 struct fst_port_info *port; 2221 struct fst_card_info *card; 2222 unsigned char tx_dma_done; 2223 unsigned char rx_dma_done; 2224 2225 port = dev_to_port(dev); 2226 card = port->card; 2227 2228 tx_dma_done = inb(card->pci_conf + DMACSR1); 2229 rx_dma_done = inb(card->pci_conf + DMACSR0); 2230 dbg(DBG_OPEN, 2231 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2232 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2233 rx_dma_done); 2234 2235 netif_stop_queue(dev); 2236 fst_closeport(dev_to_port(dev)); 2237 if (port->mode != FST_RAW) { 2238 hdlc_close(dev); 2239 } 2240 module_put(THIS_MODULE); 2241 return 0; 2242 } 2243 2244 static int 2245 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2246 { 2247 /* 2248 * Setting currently fixed in FarSync card so we check and forget 2249 */ 2250 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2251 return -EINVAL; 2252 return 0; 2253 } 2254 2255 static void 2256 fst_tx_timeout(struct net_device *dev) 2257 { 2258 struct fst_port_info *port; 2259 struct fst_card_info *card; 2260 2261 port = dev_to_port(dev); 2262 card = port->card; 2263 dev->stats.tx_errors++; 2264 dev->stats.tx_aborted_errors++; 2265 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2266 card->card_no, port->index); 2267 fst_issue_cmd(port, ABORTTX); 2268 2269 dev->trans_start = jiffies; 2270 netif_wake_queue(dev); 2271 port->start = 0; 2272 } 2273 2274 static netdev_tx_t 2275 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2276 { 2277 struct fst_card_info *card; 2278 struct fst_port_info *port; 2279 unsigned long flags; 2280 int txq_length; 2281 2282 port = dev_to_port(dev); 2283 card = port->card; 2284 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2285 2286 /* Drop packet with error if we don't have carrier */ 2287 if (!netif_carrier_ok(dev)) { 2288 dev_kfree_skb(skb); 2289 dev->stats.tx_errors++; 2290 dev->stats.tx_carrier_errors++; 2291 dbg(DBG_ASS, 2292 "Tried to transmit but no carrier on card %d port %d\n", 2293 card->card_no, port->index); 2294 return NETDEV_TX_OK; 2295 } 2296 2297 /* Drop it if it's too big! MTU failure ? */ 2298 if (skb->len > LEN_TX_BUFFER) { 2299 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2300 LEN_TX_BUFFER); 2301 dev_kfree_skb(skb); 2302 dev->stats.tx_errors++; 2303 return NETDEV_TX_OK; 2304 } 2305 2306 /* 2307 * We are always going to queue the packet 2308 * so that the bottom half is the only place we tx from 2309 * Check there is room in the port txq 2310 */ 2311 spin_lock_irqsave(&card->card_lock, flags); 2312 if ((txq_length = port->txqe - port->txqs) < 0) { 2313 /* 2314 * This is the case where the next free has wrapped but the 2315 * last used hasn't 2316 */ 2317 txq_length = txq_length + FST_TXQ_DEPTH; 2318 } 2319 spin_unlock_irqrestore(&card->card_lock, flags); 2320 if (txq_length > fst_txq_high) { 2321 /* 2322 * We have got enough buffers in the pipeline. Ask the network 2323 * layer to stop sending frames down 2324 */ 2325 netif_stop_queue(dev); 2326 port->start = 1; /* I'm using this to signal stop sent up */ 2327 } 2328 2329 if (txq_length == FST_TXQ_DEPTH - 1) { 2330 /* 2331 * This shouldn't have happened but such is life 2332 */ 2333 dev_kfree_skb(skb); 2334 dev->stats.tx_errors++; 2335 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2336 card->card_no, port->index); 2337 return NETDEV_TX_OK; 2338 } 2339 2340 /* 2341 * queue the buffer 2342 */ 2343 spin_lock_irqsave(&card->card_lock, flags); 2344 port->txq[port->txqe] = skb; 2345 port->txqe++; 2346 if (port->txqe == FST_TXQ_DEPTH) 2347 port->txqe = 0; 2348 spin_unlock_irqrestore(&card->card_lock, flags); 2349 2350 /* Scehdule the bottom half which now does transmit processing */ 2351 fst_q_work_item(&fst_work_txq, card->card_no); 2352 tasklet_schedule(&fst_tx_task); 2353 2354 return NETDEV_TX_OK; 2355 } 2356 2357 /* 2358 * Card setup having checked hardware resources. 2359 * Should be pretty bizarre if we get an error here (kernel memory 2360 * exhaustion is one possibility). If we do see a problem we report it 2361 * via a printk and leave the corresponding interface and all that follow 2362 * disabled. 2363 */ 2364 static char *type_strings[] __devinitdata = { 2365 "no hardware", /* Should never be seen */ 2366 "FarSync T2P", 2367 "FarSync T4P", 2368 "FarSync T1U", 2369 "FarSync T2U", 2370 "FarSync T4U", 2371 "FarSync TE1" 2372 }; 2373 2374 static void __devinit 2375 fst_init_card(struct fst_card_info *card) 2376 { 2377 int i; 2378 int err; 2379 2380 /* We're working on a number of ports based on the card ID. If the 2381 * firmware detects something different later (should never happen) 2382 * we'll have to revise it in some way then. 2383 */ 2384 for (i = 0; i < card->nports; i++) { 2385 err = register_hdlc_device(card->ports[i].dev); 2386 if (err < 0) { 2387 int j; 2388 pr_err("Cannot register HDLC device for port %d (errno %d)\n", 2389 i, -err); 2390 for (j = i; j < card->nports; j++) { 2391 free_netdev(card->ports[j].dev); 2392 card->ports[j].dev = NULL; 2393 } 2394 card->nports = i; 2395 break; 2396 } 2397 } 2398 2399 pr_info("%s-%s: %s IRQ%d, %d ports\n", 2400 port_to_dev(&card->ports[0])->name, 2401 port_to_dev(&card->ports[card->nports - 1])->name, 2402 type_strings[card->type], card->irq, card->nports); 2403 } 2404 2405 static const struct net_device_ops fst_ops = { 2406 .ndo_open = fst_open, 2407 .ndo_stop = fst_close, 2408 .ndo_change_mtu = hdlc_change_mtu, 2409 .ndo_start_xmit = hdlc_start_xmit, 2410 .ndo_do_ioctl = fst_ioctl, 2411 .ndo_tx_timeout = fst_tx_timeout, 2412 }; 2413 2414 /* 2415 * Initialise card when detected. 2416 * Returns 0 to indicate success, or errno otherwise. 2417 */ 2418 static int __devinit 2419 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2420 { 2421 static int no_of_cards_added = 0; 2422 struct fst_card_info *card; 2423 int err = 0; 2424 int i; 2425 2426 printk_once(KERN_INFO 2427 pr_fmt("FarSync WAN driver " FST_USER_VERSION 2428 " (c) 2001-2004 FarSite Communications Ltd.\n")); 2429 #if FST_DEBUG 2430 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2431 #endif 2432 /* 2433 * We are going to be clever and allow certain cards not to be 2434 * configured. An exclude list can be provided in /etc/modules.conf 2435 */ 2436 if (fst_excluded_cards != 0) { 2437 /* 2438 * There are cards to exclude 2439 * 2440 */ 2441 for (i = 0; i < fst_excluded_cards; i++) { 2442 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { 2443 pr_info("FarSync PCI device %d not assigned\n", 2444 (pdev->devfn) >> 3); 2445 return -EBUSY; 2446 } 2447 } 2448 } 2449 2450 /* Allocate driver private data */ 2451 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL); 2452 if (card == NULL) { 2453 pr_err("FarSync card found but insufficient memory for driver storage\n"); 2454 return -ENOMEM; 2455 } 2456 2457 /* Try to enable the device */ 2458 if ((err = pci_enable_device(pdev)) != 0) { 2459 pr_err("Failed to enable card. Err %d\n", -err); 2460 kfree(card); 2461 return err; 2462 } 2463 2464 if ((err = pci_request_regions(pdev, "FarSync")) !=0) { 2465 pr_err("Failed to allocate regions. Err %d\n", -err); 2466 pci_disable_device(pdev); 2467 kfree(card); 2468 return err; 2469 } 2470 2471 /* Get virtual addresses of memory regions */ 2472 card->pci_conf = pci_resource_start(pdev, 1); 2473 card->phys_mem = pci_resource_start(pdev, 2); 2474 card->phys_ctlmem = pci_resource_start(pdev, 3); 2475 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { 2476 pr_err("Physical memory remap failed\n"); 2477 pci_release_regions(pdev); 2478 pci_disable_device(pdev); 2479 kfree(card); 2480 return -ENODEV; 2481 } 2482 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { 2483 pr_err("Control memory remap failed\n"); 2484 pci_release_regions(pdev); 2485 pci_disable_device(pdev); 2486 iounmap(card->mem); 2487 kfree(card); 2488 return -ENODEV; 2489 } 2490 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2491 2492 /* Register the interrupt handler */ 2493 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { 2494 pr_err("Unable to register interrupt %d\n", card->irq); 2495 pci_release_regions(pdev); 2496 pci_disable_device(pdev); 2497 iounmap(card->ctlmem); 2498 iounmap(card->mem); 2499 kfree(card); 2500 return -ENODEV; 2501 } 2502 2503 /* Record info we need */ 2504 card->irq = pdev->irq; 2505 card->type = ent->driver_data; 2506 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2507 (ent->driver_data == FST_TYPE_T4P)) 2508 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2509 if ((ent->driver_data == FST_TYPE_T1U) || 2510 (ent->driver_data == FST_TYPE_TE1)) 2511 card->nports = 1; 2512 else 2513 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2514 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2515 2516 card->state = FST_UNINIT; 2517 spin_lock_init ( &card->card_lock ); 2518 2519 for ( i = 0 ; i < card->nports ; i++ ) { 2520 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2521 hdlc_device *hdlc; 2522 if (!dev) { 2523 while (i--) 2524 free_netdev(card->ports[i].dev); 2525 pr_err("FarSync: out of memory\n"); 2526 free_irq(card->irq, card); 2527 pci_release_regions(pdev); 2528 pci_disable_device(pdev); 2529 iounmap(card->ctlmem); 2530 iounmap(card->mem); 2531 kfree(card); 2532 return -ENODEV; 2533 } 2534 card->ports[i].dev = dev; 2535 card->ports[i].card = card; 2536 card->ports[i].index = i; 2537 card->ports[i].run = 0; 2538 2539 hdlc = dev_to_hdlc(dev); 2540 2541 /* Fill in the net device info */ 2542 /* Since this is a PCI setup this is purely 2543 * informational. Give them the buffer addresses 2544 * and basic card I/O. 2545 */ 2546 dev->mem_start = card->phys_mem 2547 + BUF_OFFSET ( txBuffer[i][0][0]); 2548 dev->mem_end = card->phys_mem 2549 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); 2550 dev->base_addr = card->pci_conf; 2551 dev->irq = card->irq; 2552 2553 dev->netdev_ops = &fst_ops; 2554 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2555 dev->watchdog_timeo = FST_TX_TIMEOUT; 2556 hdlc->attach = fst_attach; 2557 hdlc->xmit = fst_start_xmit; 2558 } 2559 2560 card->device = pdev; 2561 2562 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2563 card->nports, card->irq); 2564 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2565 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2566 2567 /* Reset the card's processor */ 2568 fst_cpureset(card); 2569 card->state = FST_RESET; 2570 2571 /* Initialise DMA (if required) */ 2572 fst_init_dma(card); 2573 2574 /* Record driver data for later use */ 2575 pci_set_drvdata(pdev, card); 2576 2577 /* Remainder of card setup */ 2578 fst_card_array[no_of_cards_added] = card; 2579 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2580 fst_init_card(card); 2581 if (card->family == FST_FAMILY_TXU) { 2582 /* 2583 * Allocate a dma buffer for transmit and receives 2584 */ 2585 card->rx_dma_handle_host = 2586 pci_alloc_consistent(card->device, FST_MAX_MTU, 2587 &card->rx_dma_handle_card); 2588 if (card->rx_dma_handle_host == NULL) { 2589 pr_err("Could not allocate rx dma buffer\n"); 2590 fst_disable_intr(card); 2591 pci_release_regions(pdev); 2592 pci_disable_device(pdev); 2593 iounmap(card->ctlmem); 2594 iounmap(card->mem); 2595 kfree(card); 2596 return -ENOMEM; 2597 } 2598 card->tx_dma_handle_host = 2599 pci_alloc_consistent(card->device, FST_MAX_MTU, 2600 &card->tx_dma_handle_card); 2601 if (card->tx_dma_handle_host == NULL) { 2602 pr_err("Could not allocate tx dma buffer\n"); 2603 fst_disable_intr(card); 2604 pci_release_regions(pdev); 2605 pci_disable_device(pdev); 2606 iounmap(card->ctlmem); 2607 iounmap(card->mem); 2608 kfree(card); 2609 return -ENOMEM; 2610 } 2611 } 2612 return 0; /* Success */ 2613 } 2614 2615 /* 2616 * Cleanup and close down a card 2617 */ 2618 static void __devexit 2619 fst_remove_one(struct pci_dev *pdev) 2620 { 2621 struct fst_card_info *card; 2622 int i; 2623 2624 card = pci_get_drvdata(pdev); 2625 2626 for (i = 0; i < card->nports; i++) { 2627 struct net_device *dev = port_to_dev(&card->ports[i]); 2628 unregister_hdlc_device(dev); 2629 } 2630 2631 fst_disable_intr(card); 2632 free_irq(card->irq, card); 2633 2634 iounmap(card->ctlmem); 2635 iounmap(card->mem); 2636 pci_release_regions(pdev); 2637 if (card->family == FST_FAMILY_TXU) { 2638 /* 2639 * Free dma buffers 2640 */ 2641 pci_free_consistent(card->device, FST_MAX_MTU, 2642 card->rx_dma_handle_host, 2643 card->rx_dma_handle_card); 2644 pci_free_consistent(card->device, FST_MAX_MTU, 2645 card->tx_dma_handle_host, 2646 card->tx_dma_handle_card); 2647 } 2648 fst_card_array[card->card_no] = NULL; 2649 } 2650 2651 static struct pci_driver fst_driver = { 2652 .name = FST_NAME, 2653 .id_table = fst_pci_dev_id, 2654 .probe = fst_add_one, 2655 .remove = __devexit_p(fst_remove_one), 2656 .suspend = NULL, 2657 .resume = NULL, 2658 }; 2659 2660 static int __init 2661 fst_init(void) 2662 { 2663 int i; 2664 2665 for (i = 0; i < FST_MAX_CARDS; i++) 2666 fst_card_array[i] = NULL; 2667 spin_lock_init(&fst_work_q_lock); 2668 return pci_register_driver(&fst_driver); 2669 } 2670 2671 static void __exit 2672 fst_cleanup_module(void) 2673 { 2674 pr_info("FarSync WAN driver unloading\n"); 2675 pci_unregister_driver(&fst_driver); 2676 } 2677 2678 module_init(fst_init); 2679 module_exit(fst_cleanup_module); 2680