xref: /openbmc/linux/drivers/net/wan/farsync.c (revision 62eab49f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      FarSync WAN driver for Linux (2.6.x kernel version)
4  *
5  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6  *
7  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
8  *      www.farsite.co.uk
9  *
10  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
11  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/version.h>
19 #include <linux/pci.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/if.h>
27 #include <linux/hdlc.h>
28 #include <asm/io.h>
29 #include <linux/uaccess.h>
30 
31 #include "farsync.h"
32 
33 /*
34  *      Module info
35  */
36 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
37 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
38 MODULE_LICENSE("GPL");
39 
40 /*      Driver configuration and global parameters
41  *      ==========================================
42  */
43 
44 /*      Number of ports (per card) and cards supported
45  */
46 #define FST_MAX_PORTS           4
47 #define FST_MAX_CARDS           32
48 
49 /*      Default parameters for the link
50  */
51 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
52 					 * useful */
53 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
54 					 * of frames on the way down to the card
55 					 * so that we can keep the card busy
56 					 * and maximise throughput
57 					 */
58 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
59 					 * network layer */
60 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
61 					 * control from network layer */
62 #define FST_MAX_MTU             8000	/* Huge but possible */
63 #define FST_DEF_MTU             1500	/* Common sane value */
64 
65 #define FST_TX_TIMEOUT          (2*HZ)
66 
67 #ifdef ARPHRD_RAWHDLC
68 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
69 #else
70 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
71 #endif
72 
73 /*
74  * Modules parameters and associated variables
75  */
76 static int fst_txq_low = FST_LOW_WATER_MARK;
77 static int fst_txq_high = FST_HIGH_WATER_MARK;
78 static int fst_max_reads = 7;
79 static int fst_excluded_cards = 0;
80 static int fst_excluded_list[FST_MAX_CARDS];
81 
82 module_param(fst_txq_low, int, 0);
83 module_param(fst_txq_high, int, 0);
84 module_param(fst_max_reads, int, 0);
85 module_param(fst_excluded_cards, int, 0);
86 module_param_array(fst_excluded_list, int, NULL, 0);
87 
88 /*      Card shared memory layout
89  *      =========================
90  */
91 #pragma pack(1)
92 
93 /*      This information is derived in part from the FarSite FarSync Smc.h
94  *      file. Unfortunately various name clashes and the non-portability of the
95  *      bit field declarations in that file have meant that I have chosen to
96  *      recreate the information here.
97  *
98  *      The SMC (Shared Memory Configuration) has a version number that is
99  *      incremented every time there is a significant change. This number can
100  *      be used to check that we have not got out of step with the firmware
101  *      contained in the .CDE files.
102  */
103 #define SMC_VERSION 24
104 
105 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
106 
107 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
108 				 * configuration structure */
109 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
110 				 * buffers */
111 
112 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
113 #define LEN_RX_BUFFER 8192
114 
115 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
116 #define LEN_SMALL_RX_BUFFER 256
117 
118 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
119 #define NUM_RX_BUFFER 8
120 
121 /* Interrupt retry time in milliseconds */
122 #define INT_RETRY_TIME 2
123 
124 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
125  *      of buffer descriptors. The structure is almost identical to that used
126  *      in the LANCE Ethernet controllers. Details available as PDF from the
127  *      AMD web site: https://www.amd.com/products/epd/processors/\
128  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
129  */
130 struct txdesc {			/* Transmit descriptor */
131 	volatile u16 ladr;	/* Low order address of packet. This is a
132 				 * linear address in the Am186 memory space
133 				 */
134 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
135 				 * bits must be zero
136 				 */
137 	volatile u8 bits;	/* Status and config */
138 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
139 				 * Transmit terminal count interrupt enable in
140 				 * top bit.
141 				 */
142 	u16 unused;		/* Not used in Tx */
143 };
144 
145 struct rxdesc {			/* Receive descriptor */
146 	volatile u16 ladr;	/* Low order address of packet */
147 	volatile u8 hadr;	/* High order address */
148 	volatile u8 bits;	/* Status and config */
149 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
150 				 * Receive terminal count interrupt enable in
151 				 * top bit.
152 				 */
153 	volatile u16 mcnt;	/* Message byte count (15 bits) */
154 };
155 
156 /* Convert a length into the 15 bit 2's complement */
157 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
158 /* Since we need to set the high bit to enable the completion interrupt this
159  * can be made a lot simpler
160  */
161 #define cnv_bcnt(len)   (-(len))
162 
163 /* Status and config bits for the above */
164 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
165 #define TX_STP          0x02	/* Tx: start of packet */
166 #define TX_ENP          0x01	/* Tx: end of packet */
167 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
168 #define RX_FRAM         0x20	/* Rx: framing error */
169 #define RX_OFLO         0x10	/* Rx: overflow error */
170 #define RX_CRC          0x08	/* Rx: CRC error */
171 #define RX_HBUF         0x04	/* Rx: buffer error */
172 #define RX_STP          0x02	/* Rx: start of packet */
173 #define RX_ENP          0x01	/* Rx: end of packet */
174 
175 /* Interrupts from the card are caused by various events which are presented
176  * in a circular buffer as several events may be processed on one physical int
177  */
178 #define MAX_CIRBUFF     32
179 
180 struct cirbuff {
181 	u8 rdindex;		/* read, then increment and wrap */
182 	u8 wrindex;		/* write, then increment and wrap */
183 	u8 evntbuff[MAX_CIRBUFF];
184 };
185 
186 /* Interrupt event codes.
187  * Where appropriate the two low order bits indicate the port number
188  */
189 #define CTLA_CHG        0x18	/* Control signal changed */
190 #define CTLB_CHG        0x19
191 #define CTLC_CHG        0x1A
192 #define CTLD_CHG        0x1B
193 
194 #define INIT_CPLT       0x20	/* Initialisation complete */
195 #define INIT_FAIL       0x21	/* Initialisation failed */
196 
197 #define ABTA_SENT       0x24	/* Abort sent */
198 #define ABTB_SENT       0x25
199 #define ABTC_SENT       0x26
200 #define ABTD_SENT       0x27
201 
202 #define TXA_UNDF        0x28	/* Transmission underflow */
203 #define TXB_UNDF        0x29
204 #define TXC_UNDF        0x2A
205 #define TXD_UNDF        0x2B
206 
207 #define F56_INT         0x2C
208 #define M32_INT         0x2D
209 
210 #define TE1_ALMA        0x30
211 
212 /* Port physical configuration. See farsync.h for field values */
213 struct port_cfg {
214 	u16 lineInterface;	/* Physical interface type */
215 	u8 x25op;		/* Unused at present */
216 	u8 internalClock;	/* 1 => internal clock, 0 => external */
217 	u8 transparentMode;	/* 1 => on, 0 => off */
218 	u8 invertClock;		/* 0 => normal, 1 => inverted */
219 	u8 padBytes[6];		/* Padding */
220 	u32 lineSpeed;		/* Speed in bps */
221 };
222 
223 /* TE1 port physical configuration */
224 struct su_config {
225 	u32 dataRate;
226 	u8 clocking;
227 	u8 framing;
228 	u8 structure;
229 	u8 interface;
230 	u8 coding;
231 	u8 lineBuildOut;
232 	u8 equalizer;
233 	u8 transparentMode;
234 	u8 loopMode;
235 	u8 range;
236 	u8 txBufferMode;
237 	u8 rxBufferMode;
238 	u8 startingSlot;
239 	u8 losThreshold;
240 	u8 enableIdleCode;
241 	u8 idleCode;
242 	u8 spare[44];
243 };
244 
245 /* TE1 Status */
246 struct su_status {
247 	u32 receiveBufferDelay;
248 	u32 framingErrorCount;
249 	u32 codeViolationCount;
250 	u32 crcErrorCount;
251 	u32 lineAttenuation;
252 	u8 portStarted;
253 	u8 lossOfSignal;
254 	u8 receiveRemoteAlarm;
255 	u8 alarmIndicationSignal;
256 	u8 spare[40];
257 };
258 
259 /* Finally sling all the above together into the shared memory structure.
260  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
261  * evolving under NT for some time so I guess we're stuck with it.
262  * The structure starts at offset SMC_BASE.
263  * See farsync.h for some field values.
264  */
265 struct fst_shared {
266 	/* DMA descriptor rings */
267 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
268 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
269 
270 	/* Obsolete small buffers */
271 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
272 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
273 
274 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
275 				 * 0xFF => halted
276 				 */
277 
278 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
279 				 * set to 0xEE by host to acknowledge interrupt
280 				 */
281 
282 	u16 smcVersion;		/* Must match SMC_VERSION */
283 
284 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
285 				 * version, RR = revision and BB = build
286 				 */
287 
288 	u16 txa_done;		/* Obsolete completion flags */
289 	u16 rxa_done;
290 	u16 txb_done;
291 	u16 rxb_done;
292 	u16 txc_done;
293 	u16 rxc_done;
294 	u16 txd_done;
295 	u16 rxd_done;
296 
297 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
298 
299 	struct cirbuff interruptEvent;	/* interrupt causes */
300 
301 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
302 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
303 
304 	struct port_cfg portConfig[FST_MAX_PORTS];
305 
306 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
307 
308 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
309 
310 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
311 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
312 
313 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
314 	u16 cardMailbox[4];	/* Not used */
315 
316 	/* Number of times the card thinks the host has
317 	 * missed an interrupt by not acknowledging
318 	 * within 2mS (I guess NT has problems)
319 	 */
320 	u32 interruptRetryCount;
321 
322 	/* Driver private data used as an ID. We'll not
323 	 * use this as I'd rather keep such things
324 	 * in main memory rather than on the PCI bus
325 	 */
326 	u32 portHandle[FST_MAX_PORTS];
327 
328 	/* Count of Tx underflows for stats */
329 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
330 
331 	/* Debounced V.24 control input status */
332 	u32 v24DebouncedSts[FST_MAX_PORTS];
333 
334 	/* Adapter debounce timers. Don't touch */
335 	u32 ctsTimer[FST_MAX_PORTS];
336 	u32 ctsTimerRun[FST_MAX_PORTS];
337 	u32 dcdTimer[FST_MAX_PORTS];
338 	u32 dcdTimerRun[FST_MAX_PORTS];
339 
340 	u32 numberOfPorts;	/* Number of ports detected at startup */
341 
342 	u16 _reserved[64];
343 
344 	u16 cardMode;		/* Bit-mask to enable features:
345 				 * Bit 0: 1 enables LED identify mode
346 				 */
347 
348 	u16 portScheduleOffset;
349 
350 	struct su_config suConfig;	/* TE1 Bits */
351 	struct su_status suStatus;
352 
353 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
354 				 * the structure and marks the end of shared
355 				 * memory. Adapter code initializes it as
356 				 * END_SIG.
357 				 */
358 };
359 
360 /* endOfSmcSignature value */
361 #define END_SIG                 0x12345678
362 
363 /* Mailbox values. (portMailbox) */
364 #define NOP             0	/* No operation */
365 #define ACK             1	/* Positive acknowledgement to PC driver */
366 #define NAK             2	/* Negative acknowledgement to PC driver */
367 #define STARTPORT       3	/* Start an HDLC port */
368 #define STOPPORT        4	/* Stop an HDLC port */
369 #define ABORTTX         5	/* Abort the transmitter for a port */
370 #define SETV24O         6	/* Set V24 outputs */
371 
372 /* PLX Chip Register Offsets */
373 #define CNTRL_9052      0x50	/* Control Register */
374 #define CNTRL_9054      0x6c	/* Control Register */
375 
376 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
377 #define INTCSR_9054     0x68	/* Interrupt control/status register */
378 
379 /* 9054 DMA Registers */
380 /*
381  * Note that we will be using DMA Channel 0 for copying rx data
382  * and Channel 1 for copying tx data
383  */
384 #define DMAMODE0        0x80
385 #define DMAPADR0        0x84
386 #define DMALADR0        0x88
387 #define DMASIZ0         0x8c
388 #define DMADPR0         0x90
389 #define DMAMODE1        0x94
390 #define DMAPADR1        0x98
391 #define DMALADR1        0x9c
392 #define DMASIZ1         0xa0
393 #define DMADPR1         0xa4
394 #define DMACSR0         0xa8
395 #define DMACSR1         0xa9
396 #define DMAARB          0xac
397 #define DMATHR          0xb0
398 #define DMADAC0         0xb4
399 #define DMADAC1         0xb8
400 #define DMAMARBR        0xac
401 
402 #define FST_MIN_DMA_LEN 64
403 #define FST_RX_DMA_INT  0x01
404 #define FST_TX_DMA_INT  0x02
405 #define FST_CARD_INT    0x04
406 
407 /* Larger buffers are positioned in memory at offset BFM_BASE */
408 struct buf_window {
409 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
410 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
411 };
412 
413 /* Calculate offset of a buffer object within the shared memory window */
414 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
415 
416 #pragma pack()
417 
418 /*      Device driver private information
419  *      =================================
420  */
421 /*      Per port (line or channel) information
422  */
423 struct fst_port_info {
424         struct net_device *dev; /* Device struct - must be first */
425 	struct fst_card_info *card;	/* Card we're associated with */
426 	int index;		/* Port index on the card */
427 	int hwif;		/* Line hardware (lineInterface copy) */
428 	int run;		/* Port is running */
429 	int mode;		/* Normal or FarSync raw */
430 	int rxpos;		/* Next Rx buffer to use */
431 	int txpos;		/* Next Tx buffer to use */
432 	int txipos;		/* Next Tx buffer to check for free */
433 	int start;		/* Indication of start/stop to network */
434 	/*
435 	 * A sixteen entry transmit queue
436 	 */
437 	int txqs;		/* index to get next buffer to tx */
438 	int txqe;		/* index to queue next packet */
439 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
440 	int rxqdepth;
441 };
442 
443 /*      Per card information
444  */
445 struct fst_card_info {
446 	char __iomem *mem;	/* Card memory mapped to kernel space */
447 	char __iomem *ctlmem;	/* Control memory for PCI cards */
448 	unsigned int phys_mem;	/* Physical memory window address */
449 	unsigned int phys_ctlmem;	/* Physical control memory address */
450 	unsigned int irq;	/* Interrupt request line number */
451 	unsigned int nports;	/* Number of serial ports */
452 	unsigned int type;	/* Type index of card */
453 	unsigned int state;	/* State of card */
454 	spinlock_t card_lock;	/* Lock for SMP access */
455 	unsigned short pci_conf;	/* PCI card config in I/O space */
456 	/* Per port info */
457 	struct fst_port_info ports[FST_MAX_PORTS];
458 	struct pci_dev *device;	/* Information about the pci device */
459 	int card_no;		/* Inst of the card on the system */
460 	int family;		/* TxP or TxU */
461 	int dmarx_in_progress;
462 	int dmatx_in_progress;
463 	unsigned long int_count;
464 	unsigned long int_time_ave;
465 	void *rx_dma_handle_host;
466 	dma_addr_t rx_dma_handle_card;
467 	void *tx_dma_handle_host;
468 	dma_addr_t tx_dma_handle_card;
469 	struct sk_buff *dma_skb_rx;
470 	struct fst_port_info *dma_port_rx;
471 	struct fst_port_info *dma_port_tx;
472 	int dma_len_rx;
473 	int dma_len_tx;
474 	int dma_txpos;
475 	int dma_rxpos;
476 };
477 
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P)  ((P)->dev)
481 
482 
483 /*
484  *      Shared memory window access macros
485  *
486  *      We have a nice memory based structure above, which could be directly
487  *      mapped on i386 but might not work on other architectures unless we use
488  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
489  *      physical offsets so we have to convert. The only saving grace is that
490  *      this should all collapse back to a simple indirection eventually.
491  */
492 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
493 
494 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
495 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
497 
498 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
499 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
501 
502 /*
503  *      Debug support
504  */
505 #if FST_DEBUG
506 
507 static int fst_debug_mask = { FST_DEBUG };
508 
509 /* Most common debug activity is to print something if the corresponding bit
510  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
511  * support variable numbers of macro parameters. The inverted if prevents us
512  * eating someone else's else clause.
513  */
514 #define dbg(F, fmt, args...)					\
515 do {								\
516 	if (fst_debug_mask & (F))				\
517 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
518 } while (0)
519 #else
520 #define dbg(F, fmt, args...)					\
521 do {								\
522 	if (0)							\
523 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
524 } while (0)
525 #endif
526 
527 /*
528  *      PCI ID lookup table
529  */
530 static const struct pci_device_id fst_pci_dev_id[] = {
531 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
532 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
533 
534 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
535 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
536 
537 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
538 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
539 
540 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
541 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
542 
543 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
544 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
545 
546 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
547 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
548 
549 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
550 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 	{0,}			/* End */
552 };
553 
554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
555 
556 /*
557  *      Device Driver Work Queues
558  *
559  *      So that we don't spend too much time processing events in the
560  *      Interrupt Service routine, we will declare a work queue per Card
561  *      and make the ISR schedule a task in the queue for later execution.
562  *      In the 2.4 Kernel we used to use the immediate queue for BH's
563  *      Now that they are gone, tasklets seem to be much better than work
564  *      queues.
565  */
566 
567 static void do_bottom_half_tx(struct fst_card_info *card);
568 static void do_bottom_half_rx(struct fst_card_info *card);
569 static void fst_process_tx_work_q(struct tasklet_struct *unused);
570 static void fst_process_int_work_q(struct tasklet_struct *unused);
571 
572 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q);
573 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q);
574 
575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
576 static spinlock_t fst_work_q_lock;
577 static u64 fst_work_txq;
578 static u64 fst_work_intq;
579 
580 static void
581 fst_q_work_item(u64 * queue, int card_index)
582 {
583 	unsigned long flags;
584 	u64 mask;
585 
586 	/*
587 	 * Grab the queue exclusively
588 	 */
589 	spin_lock_irqsave(&fst_work_q_lock, flags);
590 
591 	/*
592 	 * Making an entry in the queue is simply a matter of setting
593 	 * a bit for the card indicating that there is work to do in the
594 	 * bottom half for the card.  Note the limitation of 64 cards.
595 	 * That ought to be enough
596 	 */
597 	mask = (u64)1 << card_index;
598 	*queue |= mask;
599 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
600 }
601 
602 static void
603 fst_process_tx_work_q(struct tasklet_struct *unused)
604 {
605 	unsigned long flags;
606 	u64 work_txq;
607 	int i;
608 
609 	/*
610 	 * Grab the queue exclusively
611 	 */
612 	dbg(DBG_TX, "fst_process_tx_work_q\n");
613 	spin_lock_irqsave(&fst_work_q_lock, flags);
614 	work_txq = fst_work_txq;
615 	fst_work_txq = 0;
616 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
617 
618 	/*
619 	 * Call the bottom half for each card with work waiting
620 	 */
621 	for (i = 0; i < FST_MAX_CARDS; i++) {
622 		if (work_txq & 0x01) {
623 			if (fst_card_array[i] != NULL) {
624 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
625 				do_bottom_half_tx(fst_card_array[i]);
626 			}
627 		}
628 		work_txq = work_txq >> 1;
629 	}
630 }
631 
632 static void
633 fst_process_int_work_q(struct tasklet_struct *unused)
634 {
635 	unsigned long flags;
636 	u64 work_intq;
637 	int i;
638 
639 	/*
640 	 * Grab the queue exclusively
641 	 */
642 	dbg(DBG_INTR, "fst_process_int_work_q\n");
643 	spin_lock_irqsave(&fst_work_q_lock, flags);
644 	work_intq = fst_work_intq;
645 	fst_work_intq = 0;
646 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
647 
648 	/*
649 	 * Call the bottom half for each card with work waiting
650 	 */
651 	for (i = 0; i < FST_MAX_CARDS; i++) {
652 		if (work_intq & 0x01) {
653 			if (fst_card_array[i] != NULL) {
654 				dbg(DBG_INTR,
655 				    "Calling rx & tx bh for card %d\n", i);
656 				do_bottom_half_rx(fst_card_array[i]);
657 				do_bottom_half_tx(fst_card_array[i]);
658 			}
659 		}
660 		work_intq = work_intq >> 1;
661 	}
662 }
663 
664 /*      Card control functions
665  *      ======================
666  */
667 /*      Place the processor in reset state
668  *
669  * Used to be a simple write to card control space but a glitch in the latest
670  * AMD Am186CH processor means that we now have to do it by asserting and de-
671  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
672  * at offset 9052_CNTRL.  Note the updates for the TXU.
673  */
674 static inline void
675 fst_cpureset(struct fst_card_info *card)
676 {
677 	unsigned char interrupt_line_register;
678 	unsigned int regval;
679 
680 	if (card->family == FST_FAMILY_TXU) {
681 		if (pci_read_config_byte
682 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
683 			dbg(DBG_ASS,
684 			    "Error in reading interrupt line register\n");
685 		}
686 		/*
687 		 * Assert PLX software reset and Am186 hardware reset
688 		 * and then deassert the PLX software reset but 186 still in reset
689 		 */
690 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
691 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
692 		/*
693 		 * We are delaying here to allow the 9054 to reset itself
694 		 */
695 		usleep_range(10, 20);
696 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
697 		/*
698 		 * We are delaying here to allow the 9054 to reload its eeprom
699 		 */
700 		usleep_range(10, 20);
701 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
702 
703 		if (pci_write_config_byte
704 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
705 			dbg(DBG_ASS,
706 			    "Error in writing interrupt line register\n");
707 		}
708 
709 	} else {
710 		regval = inl(card->pci_conf + CNTRL_9052);
711 
712 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
713 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
714 	}
715 }
716 
717 /*      Release the processor from reset
718  */
719 static inline void
720 fst_cpurelease(struct fst_card_info *card)
721 {
722 	if (card->family == FST_FAMILY_TXU) {
723 		/*
724 		 * Force posted writes to complete
725 		 */
726 		(void) readb(card->mem);
727 
728 		/*
729 		 * Release LRESET DO = 1
730 		 * Then release Local Hold, DO = 1
731 		 */
732 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
733 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
734 	} else {
735 		(void) readb(card->ctlmem);
736 	}
737 }
738 
739 /*      Clear the cards interrupt flag
740  */
741 static inline void
742 fst_clear_intr(struct fst_card_info *card)
743 {
744 	if (card->family == FST_FAMILY_TXU) {
745 		(void) readb(card->ctlmem);
746 	} else {
747 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
748 		 */
749 		outw(0x0543, card->pci_conf + INTCSR_9052);
750 	}
751 }
752 
753 /*      Enable card interrupts
754  */
755 static inline void
756 fst_enable_intr(struct fst_card_info *card)
757 {
758 	if (card->family == FST_FAMILY_TXU) {
759 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
760 	} else {
761 		outw(0x0543, card->pci_conf + INTCSR_9052);
762 	}
763 }
764 
765 /*      Disable card interrupts
766  */
767 static inline void
768 fst_disable_intr(struct fst_card_info *card)
769 {
770 	if (card->family == FST_FAMILY_TXU) {
771 		outl(0x00000000, card->pci_conf + INTCSR_9054);
772 	} else {
773 		outw(0x0000, card->pci_conf + INTCSR_9052);
774 	}
775 }
776 
777 /*      Process the result of trying to pass a received frame up the stack
778  */
779 static void
780 fst_process_rx_status(int rx_status, char *name)
781 {
782 	switch (rx_status) {
783 	case NET_RX_SUCCESS:
784 		{
785 			/*
786 			 * Nothing to do here
787 			 */
788 			break;
789 		}
790 	case NET_RX_DROP:
791 		{
792 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
793 			break;
794 		}
795 	}
796 }
797 
798 /*      Initilaise DMA for PLX 9054
799  */
800 static inline void
801 fst_init_dma(struct fst_card_info *card)
802 {
803 	/*
804 	 * This is only required for the PLX 9054
805 	 */
806 	if (card->family == FST_FAMILY_TXU) {
807 	        pci_set_master(card->device);
808 		outl(0x00020441, card->pci_conf + DMAMODE0);
809 		outl(0x00020441, card->pci_conf + DMAMODE1);
810 		outl(0x0, card->pci_conf + DMATHR);
811 	}
812 }
813 
814 /*      Tx dma complete interrupt
815  */
816 static void
817 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
818 		    int len, int txpos)
819 {
820 	struct net_device *dev = port_to_dev(port);
821 
822 	/*
823 	 * Everything is now set, just tell the card to go
824 	 */
825 	dbg(DBG_TX, "fst_tx_dma_complete\n");
826 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
827 		DMA_OWN | TX_STP | TX_ENP);
828 	dev->stats.tx_packets++;
829 	dev->stats.tx_bytes += len;
830 	netif_trans_update(dev);
831 }
832 
833 /*
834  * Mark it for our own raw sockets interface
835  */
836 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
837 {
838 	skb->dev = dev;
839 	skb_reset_mac_header(skb);
840 	skb->pkt_type = PACKET_HOST;
841 	return htons(ETH_P_CUST);
842 }
843 
844 /*      Rx dma complete interrupt
845  */
846 static void
847 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
848 		    int len, struct sk_buff *skb, int rxp)
849 {
850 	struct net_device *dev = port_to_dev(port);
851 	int pi;
852 	int rx_status;
853 
854 	dbg(DBG_TX, "fst_rx_dma_complete\n");
855 	pi = port->index;
856 	skb_put_data(skb, card->rx_dma_handle_host, len);
857 
858 	/* Reset buffer descriptor */
859 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
860 
861 	/* Update stats */
862 	dev->stats.rx_packets++;
863 	dev->stats.rx_bytes += len;
864 
865 	/* Push upstream */
866 	dbg(DBG_RX, "Pushing the frame up the stack\n");
867 	if (port->mode == FST_RAW)
868 		skb->protocol = farsync_type_trans(skb, dev);
869 	else
870 		skb->protocol = hdlc_type_trans(skb, dev);
871 	rx_status = netif_rx(skb);
872 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
873 	if (rx_status == NET_RX_DROP)
874 		dev->stats.rx_dropped++;
875 }
876 
877 /*
878  *      Receive a frame through the DMA
879  */
880 static inline void
881 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882 {
883 	/*
884 	 * This routine will setup the DMA and start it
885 	 */
886 
887 	dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
888 	if (card->dmarx_in_progress) {
889 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
890 	}
891 
892 	outl(dma, card->pci_conf + DMAPADR0);	/* Copy to here */
893 	outl(mem, card->pci_conf + DMALADR0);	/* from here */
894 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
895 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
896 
897 	/*
898 	 * We use the dmarx_in_progress flag to flag the channel as busy
899 	 */
900 	card->dmarx_in_progress = 1;
901 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
902 }
903 
904 /*
905  *      Send a frame through the DMA
906  */
907 static inline void
908 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
909 {
910 	/*
911 	 * This routine will setup the DMA and start it.
912 	 */
913 
914 	dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
915 	if (card->dmatx_in_progress) {
916 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
917 	}
918 
919 	outl(dma, card->pci_conf + DMAPADR1);	/* Copy from here */
920 	outl(mem, card->pci_conf + DMALADR1);	/* to here */
921 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
922 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
923 
924 	/*
925 	 * We use the dmatx_in_progress to flag the channel as busy
926 	 */
927 	card->dmatx_in_progress = 1;
928 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
929 }
930 
931 /*      Issue a Mailbox command for a port.
932  *      Note we issue them on a fire and forget basis, not expecting to see an
933  *      error and not waiting for completion.
934  */
935 static void
936 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
937 {
938 	struct fst_card_info *card;
939 	unsigned short mbval;
940 	unsigned long flags;
941 	int safety;
942 
943 	card = port->card;
944 	spin_lock_irqsave(&card->card_lock, flags);
945 	mbval = FST_RDW(card, portMailbox[port->index][0]);
946 
947 	safety = 0;
948 	/* Wait for any previous command to complete */
949 	while (mbval > NAK) {
950 		spin_unlock_irqrestore(&card->card_lock, flags);
951 		schedule_timeout_uninterruptible(1);
952 		spin_lock_irqsave(&card->card_lock, flags);
953 
954 		if (++safety > 2000) {
955 			pr_err("Mailbox safety timeout\n");
956 			break;
957 		}
958 
959 		mbval = FST_RDW(card, portMailbox[port->index][0]);
960 	}
961 	if (safety > 0) {
962 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
963 	}
964 	if (mbval == NAK) {
965 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
966 	}
967 
968 	FST_WRW(card, portMailbox[port->index][0], cmd);
969 
970 	if (cmd == ABORTTX || cmd == STARTPORT) {
971 		port->txpos = 0;
972 		port->txipos = 0;
973 		port->start = 0;
974 	}
975 
976 	spin_unlock_irqrestore(&card->card_lock, flags);
977 }
978 
979 /*      Port output signals control
980  */
981 static inline void
982 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
983 {
984 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
985 	FST_WRL(port->card, v24OpSts[port->index], outputs);
986 
987 	if (port->run)
988 		fst_issue_cmd(port, SETV24O);
989 }
990 
991 static inline void
992 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
993 {
994 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
995 	FST_WRL(port->card, v24OpSts[port->index], outputs);
996 
997 	if (port->run)
998 		fst_issue_cmd(port, SETV24O);
999 }
1000 
1001 /*
1002  *      Setup port Rx buffers
1003  */
1004 static void
1005 fst_rx_config(struct fst_port_info *port)
1006 {
1007 	int i;
1008 	int pi;
1009 	unsigned int offset;
1010 	unsigned long flags;
1011 	struct fst_card_info *card;
1012 
1013 	pi = port->index;
1014 	card = port->card;
1015 	spin_lock_irqsave(&card->card_lock, flags);
1016 	for (i = 0; i < NUM_RX_BUFFER; i++) {
1017 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1018 
1019 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1020 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1021 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1022 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1023 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1024 	}
1025 	port->rxpos = 0;
1026 	spin_unlock_irqrestore(&card->card_lock, flags);
1027 }
1028 
1029 /*
1030  *      Setup port Tx buffers
1031  */
1032 static void
1033 fst_tx_config(struct fst_port_info *port)
1034 {
1035 	int i;
1036 	int pi;
1037 	unsigned int offset;
1038 	unsigned long flags;
1039 	struct fst_card_info *card;
1040 
1041 	pi = port->index;
1042 	card = port->card;
1043 	spin_lock_irqsave(&card->card_lock, flags);
1044 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1045 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1046 
1047 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1048 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1049 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1050 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1051 	}
1052 	port->txpos = 0;
1053 	port->txipos = 0;
1054 	port->start = 0;
1055 	spin_unlock_irqrestore(&card->card_lock, flags);
1056 }
1057 
1058 /*      TE1 Alarm change interrupt event
1059  */
1060 static void
1061 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1062 {
1063 	u8 los;
1064 	u8 rra;
1065 	u8 ais;
1066 
1067 	los = FST_RDB(card, suStatus.lossOfSignal);
1068 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1069 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1070 
1071 	if (los) {
1072 		/*
1073 		 * Lost the link
1074 		 */
1075 		if (netif_carrier_ok(port_to_dev(port))) {
1076 			dbg(DBG_INTR, "Net carrier off\n");
1077 			netif_carrier_off(port_to_dev(port));
1078 		}
1079 	} else {
1080 		/*
1081 		 * Link available
1082 		 */
1083 		if (!netif_carrier_ok(port_to_dev(port))) {
1084 			dbg(DBG_INTR, "Net carrier on\n");
1085 			netif_carrier_on(port_to_dev(port));
1086 		}
1087 	}
1088 
1089 	if (los)
1090 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1091 	else
1092 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1093 	if (rra)
1094 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1095 	else
1096 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1097 
1098 	if (ais)
1099 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1100 	else
1101 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1102 }
1103 
1104 /*      Control signal change interrupt event
1105  */
1106 static void
1107 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1108 {
1109 	int signals;
1110 
1111 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1112 
1113 	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1114 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1115 		if (!netif_carrier_ok(port_to_dev(port))) {
1116 			dbg(DBG_INTR, "DCD active\n");
1117 			netif_carrier_on(port_to_dev(port));
1118 		}
1119 	} else {
1120 		if (netif_carrier_ok(port_to_dev(port))) {
1121 			dbg(DBG_INTR, "DCD lost\n");
1122 			netif_carrier_off(port_to_dev(port));
1123 		}
1124 	}
1125 }
1126 
1127 /*      Log Rx Errors
1128  */
1129 static void
1130 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1131 		 unsigned char dmabits, int rxp, unsigned short len)
1132 {
1133 	struct net_device *dev = port_to_dev(port);
1134 
1135 	/*
1136 	 * Increment the appropriate error counter
1137 	 */
1138 	dev->stats.rx_errors++;
1139 	if (dmabits & RX_OFLO) {
1140 		dev->stats.rx_fifo_errors++;
1141 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1142 		    card->card_no, port->index, rxp);
1143 	}
1144 	if (dmabits & RX_CRC) {
1145 		dev->stats.rx_crc_errors++;
1146 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1147 		    card->card_no, port->index);
1148 	}
1149 	if (dmabits & RX_FRAM) {
1150 		dev->stats.rx_frame_errors++;
1151 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1152 		    card->card_no, port->index);
1153 	}
1154 	if (dmabits == (RX_STP | RX_ENP)) {
1155 		dev->stats.rx_length_errors++;
1156 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1157 		    len, card->card_no, port->index);
1158 	}
1159 }
1160 
1161 /*      Rx Error Recovery
1162  */
1163 static void
1164 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1165 		     unsigned char dmabits, int rxp, unsigned short len)
1166 {
1167 	int i;
1168 	int pi;
1169 
1170 	pi = port->index;
1171 	/*
1172 	 * Discard buffer descriptors until we see the start of the
1173 	 * next frame.  Note that for long frames this could be in
1174 	 * a subsequent interrupt.
1175 	 */
1176 	i = 0;
1177 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1178 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1179 		rxp = (rxp+1) % NUM_RX_BUFFER;
1180 		if (++i > NUM_RX_BUFFER) {
1181 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1182 			    " than we have\n");
1183 			break;
1184 		}
1185 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1186 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1187 	}
1188 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1189 
1190 	/* Discard the terminal buffer */
1191 	if (!(dmabits & DMA_OWN)) {
1192 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1193 		rxp = (rxp+1) % NUM_RX_BUFFER;
1194 	}
1195 	port->rxpos = rxp;
1196 	return;
1197 
1198 }
1199 
1200 /*      Rx complete interrupt
1201  */
1202 static void
1203 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1204 {
1205 	unsigned char dmabits;
1206 	int pi;
1207 	int rxp;
1208 	int rx_status;
1209 	unsigned short len;
1210 	struct sk_buff *skb;
1211 	struct net_device *dev = port_to_dev(port);
1212 
1213 	/* Check we have a buffer to process */
1214 	pi = port->index;
1215 	rxp = port->rxpos;
1216 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1217 	if (dmabits & DMA_OWN) {
1218 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1219 		    pi, rxp);
1220 		return;
1221 	}
1222 	if (card->dmarx_in_progress) {
1223 		return;
1224 	}
1225 
1226 	/* Get buffer length */
1227 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1228 	/* Discard the CRC */
1229 	len -= 2;
1230 	if (len == 0) {
1231 		/*
1232 		 * This seems to happen on the TE1 interface sometimes
1233 		 * so throw the frame away and log the event.
1234 		 */
1235 		pr_err("Frame received with 0 length. Card %d Port %d\n",
1236 		       card->card_no, port->index);
1237 		/* Return descriptor to card */
1238 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1239 
1240 		rxp = (rxp+1) % NUM_RX_BUFFER;
1241 		port->rxpos = rxp;
1242 		return;
1243 	}
1244 
1245 	/* Check buffer length and for other errors. We insist on one packet
1246 	 * in one buffer. This simplifies things greatly and since we've
1247 	 * allocated 8K it shouldn't be a real world limitation
1248 	 */
1249 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1250 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1251 		fst_log_rx_error(card, port, dmabits, rxp, len);
1252 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1253 		return;
1254 	}
1255 
1256 	/* Allocate SKB */
1257 	if ((skb = dev_alloc_skb(len)) == NULL) {
1258 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1259 
1260 		dev->stats.rx_dropped++;
1261 
1262 		/* Return descriptor to card */
1263 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1264 
1265 		rxp = (rxp+1) % NUM_RX_BUFFER;
1266 		port->rxpos = rxp;
1267 		return;
1268 	}
1269 
1270 	/*
1271 	 * We know the length we need to receive, len.
1272 	 * It's not worth using the DMA for reads of less than
1273 	 * FST_MIN_DMA_LEN
1274 	 */
1275 
1276 	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1277 		memcpy_fromio(skb_put(skb, len),
1278 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1279 			      len);
1280 
1281 		/* Reset buffer descriptor */
1282 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1283 
1284 		/* Update stats */
1285 		dev->stats.rx_packets++;
1286 		dev->stats.rx_bytes += len;
1287 
1288 		/* Push upstream */
1289 		dbg(DBG_RX, "Pushing frame up the stack\n");
1290 		if (port->mode == FST_RAW)
1291 			skb->protocol = farsync_type_trans(skb, dev);
1292 		else
1293 			skb->protocol = hdlc_type_trans(skb, dev);
1294 		rx_status = netif_rx(skb);
1295 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1296 		if (rx_status == NET_RX_DROP)
1297 			dev->stats.rx_dropped++;
1298 	} else {
1299 		card->dma_skb_rx = skb;
1300 		card->dma_port_rx = port;
1301 		card->dma_len_rx = len;
1302 		card->dma_rxpos = rxp;
1303 		fst_rx_dma(card, card->rx_dma_handle_card,
1304 			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1305 	}
1306 	if (rxp != port->rxpos) {
1307 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1308 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1309 	}
1310 	rxp = (rxp+1) % NUM_RX_BUFFER;
1311 	port->rxpos = rxp;
1312 }
1313 
1314 /*
1315  *      The bottom halfs to the ISR
1316  *
1317  */
1318 
1319 static void
1320 do_bottom_half_tx(struct fst_card_info *card)
1321 {
1322 	struct fst_port_info *port;
1323 	int pi;
1324 	int txq_length;
1325 	struct sk_buff *skb;
1326 	unsigned long flags;
1327 	struct net_device *dev;
1328 
1329 	/*
1330 	 *  Find a free buffer for the transmit
1331 	 *  Step through each port on this card
1332 	 */
1333 
1334 	dbg(DBG_TX, "do_bottom_half_tx\n");
1335 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1336 		if (!port->run)
1337 			continue;
1338 
1339 		dev = port_to_dev(port);
1340 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1341 			 DMA_OWN) &&
1342 		       !(card->dmatx_in_progress)) {
1343 			/*
1344 			 * There doesn't seem to be a txdone event per-se
1345 			 * We seem to have to deduce it, by checking the DMA_OWN
1346 			 * bit on the next buffer we think we can use
1347 			 */
1348 			spin_lock_irqsave(&card->card_lock, flags);
1349 			if ((txq_length = port->txqe - port->txqs) < 0) {
1350 				/*
1351 				 * This is the case where one has wrapped and the
1352 				 * maths gives us a negative number
1353 				 */
1354 				txq_length = txq_length + FST_TXQ_DEPTH;
1355 			}
1356 			spin_unlock_irqrestore(&card->card_lock, flags);
1357 			if (txq_length > 0) {
1358 				/*
1359 				 * There is something to send
1360 				 */
1361 				spin_lock_irqsave(&card->card_lock, flags);
1362 				skb = port->txq[port->txqs];
1363 				port->txqs++;
1364 				if (port->txqs == FST_TXQ_DEPTH) {
1365 					port->txqs = 0;
1366 				}
1367 				spin_unlock_irqrestore(&card->card_lock, flags);
1368 				/*
1369 				 * copy the data and set the required indicators on the
1370 				 * card.
1371 				 */
1372 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1373 					cnv_bcnt(skb->len));
1374 				if ((skb->len < FST_MIN_DMA_LEN) ||
1375 				    (card->family == FST_FAMILY_TXP)) {
1376 					/* Enqueue the packet with normal io */
1377 					memcpy_toio(card->mem +
1378 						    BUF_OFFSET(txBuffer[pi]
1379 							       [port->
1380 								txpos][0]),
1381 						    skb->data, skb->len);
1382 					FST_WRB(card,
1383 						txDescrRing[pi][port->txpos].
1384 						bits,
1385 						DMA_OWN | TX_STP | TX_ENP);
1386 					dev->stats.tx_packets++;
1387 					dev->stats.tx_bytes += skb->len;
1388 					netif_trans_update(dev);
1389 				} else {
1390 					/* Or do it through dma */
1391 					memcpy(card->tx_dma_handle_host,
1392 					       skb->data, skb->len);
1393 					card->dma_port_tx = port;
1394 					card->dma_len_tx = skb->len;
1395 					card->dma_txpos = port->txpos;
1396 					fst_tx_dma(card,
1397 						   card->tx_dma_handle_card,
1398 						   BUF_OFFSET(txBuffer[pi]
1399 							      [port->txpos][0]),
1400 						   skb->len);
1401 				}
1402 				if (++port->txpos >= NUM_TX_BUFFER)
1403 					port->txpos = 0;
1404 				/*
1405 				 * If we have flow control on, can we now release it?
1406 				 */
1407 				if (port->start) {
1408 					if (txq_length < fst_txq_low) {
1409 						netif_wake_queue(port_to_dev
1410 								 (port));
1411 						port->start = 0;
1412 					}
1413 				}
1414 				dev_kfree_skb(skb);
1415 			} else {
1416 				/*
1417 				 * Nothing to send so break out of the while loop
1418 				 */
1419 				break;
1420 			}
1421 		}
1422 	}
1423 }
1424 
1425 static void
1426 do_bottom_half_rx(struct fst_card_info *card)
1427 {
1428 	struct fst_port_info *port;
1429 	int pi;
1430 	int rx_count = 0;
1431 
1432 	/* Check for rx completions on all ports on this card */
1433 	dbg(DBG_RX, "do_bottom_half_rx\n");
1434 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1435 		if (!port->run)
1436 			continue;
1437 
1438 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1439 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1440 			if (rx_count > fst_max_reads) {
1441 				/*
1442 				 * Don't spend forever in receive processing
1443 				 * Schedule another event
1444 				 */
1445 				fst_q_work_item(&fst_work_intq, card->card_no);
1446 				tasklet_schedule(&fst_int_task);
1447 				break;	/* Leave the loop */
1448 			}
1449 			fst_intr_rx(card, port);
1450 			rx_count++;
1451 		}
1452 	}
1453 }
1454 
1455 /*
1456  *      The interrupt service routine
1457  *      Dev_id is our fst_card_info pointer
1458  */
1459 static irqreturn_t
1460 fst_intr(int dummy, void *dev_id)
1461 {
1462 	struct fst_card_info *card = dev_id;
1463 	struct fst_port_info *port;
1464 	int rdidx;		/* Event buffer indices */
1465 	int wridx;
1466 	int event;		/* Actual event for processing */
1467 	unsigned int dma_intcsr = 0;
1468 	unsigned int do_card_interrupt;
1469 	unsigned int int_retry_count;
1470 
1471 	/*
1472 	 * Check to see if the interrupt was for this card
1473 	 * return if not
1474 	 * Note that the call to clear the interrupt is important
1475 	 */
1476 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1477 	if (card->state != FST_RUNNING) {
1478 		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1479 		       card->card_no, card->state);
1480 
1481 		/*
1482 		 * It is possible to really be running, i.e. we have re-loaded
1483 		 * a running card
1484 		 * Clear and reprime the interrupt source
1485 		 */
1486 		fst_clear_intr(card);
1487 		return IRQ_HANDLED;
1488 	}
1489 
1490 	/* Clear and reprime the interrupt source */
1491 	fst_clear_intr(card);
1492 
1493 	/*
1494 	 * Is the interrupt for this card (handshake == 1)
1495 	 */
1496 	do_card_interrupt = 0;
1497 	if (FST_RDB(card, interruptHandshake) == 1) {
1498 		do_card_interrupt += FST_CARD_INT;
1499 		/* Set the software acknowledge */
1500 		FST_WRB(card, interruptHandshake, 0xEE);
1501 	}
1502 	if (card->family == FST_FAMILY_TXU) {
1503 		/*
1504 		 * Is it a DMA Interrupt
1505 		 */
1506 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1507 		if (dma_intcsr & 0x00200000) {
1508 			/*
1509 			 * DMA Channel 0 (Rx transfer complete)
1510 			 */
1511 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1512 			outb(0x8, card->pci_conf + DMACSR0);
1513 			fst_rx_dma_complete(card, card->dma_port_rx,
1514 					    card->dma_len_rx, card->dma_skb_rx,
1515 					    card->dma_rxpos);
1516 			card->dmarx_in_progress = 0;
1517 			do_card_interrupt += FST_RX_DMA_INT;
1518 		}
1519 		if (dma_intcsr & 0x00400000) {
1520 			/*
1521 			 * DMA Channel 1 (Tx transfer complete)
1522 			 */
1523 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1524 			outb(0x8, card->pci_conf + DMACSR1);
1525 			fst_tx_dma_complete(card, card->dma_port_tx,
1526 					    card->dma_len_tx, card->dma_txpos);
1527 			card->dmatx_in_progress = 0;
1528 			do_card_interrupt += FST_TX_DMA_INT;
1529 		}
1530 	}
1531 
1532 	/*
1533 	 * Have we been missing Interrupts
1534 	 */
1535 	int_retry_count = FST_RDL(card, interruptRetryCount);
1536 	if (int_retry_count) {
1537 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1538 		    card->card_no, int_retry_count);
1539 		FST_WRL(card, interruptRetryCount, 0);
1540 	}
1541 
1542 	if (!do_card_interrupt) {
1543 		return IRQ_HANDLED;
1544 	}
1545 
1546 	/* Scehdule the bottom half of the ISR */
1547 	fst_q_work_item(&fst_work_intq, card->card_no);
1548 	tasklet_schedule(&fst_int_task);
1549 
1550 	/* Drain the event queue */
1551 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1552 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1553 	while (rdidx != wridx) {
1554 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1555 		port = &card->ports[event & 0x03];
1556 
1557 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1558 
1559 		switch (event) {
1560 		case TE1_ALMA:
1561 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1562 			if (port->run)
1563 				fst_intr_te1_alarm(card, port);
1564 			break;
1565 
1566 		case CTLA_CHG:
1567 		case CTLB_CHG:
1568 		case CTLC_CHG:
1569 		case CTLD_CHG:
1570 			if (port->run)
1571 				fst_intr_ctlchg(card, port);
1572 			break;
1573 
1574 		case ABTA_SENT:
1575 		case ABTB_SENT:
1576 		case ABTC_SENT:
1577 		case ABTD_SENT:
1578 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1579 			break;
1580 
1581 		case TXA_UNDF:
1582 		case TXB_UNDF:
1583 		case TXC_UNDF:
1584 		case TXD_UNDF:
1585 			/* Difficult to see how we'd get this given that we
1586 			 * always load up the entire packet for DMA.
1587 			 */
1588 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1589 			port_to_dev(port)->stats.tx_errors++;
1590 			port_to_dev(port)->stats.tx_fifo_errors++;
1591 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1592 			    card->card_no, port->index);
1593 			break;
1594 
1595 		case INIT_CPLT:
1596 			dbg(DBG_INIT, "Card init OK intr\n");
1597 			break;
1598 
1599 		case INIT_FAIL:
1600 			dbg(DBG_INIT, "Card init FAILED intr\n");
1601 			card->state = FST_IFAILED;
1602 			break;
1603 
1604 		default:
1605 			pr_err("intr: unknown card event %d. ignored\n", event);
1606 			break;
1607 		}
1608 
1609 		/* Bump and wrap the index */
1610 		if (++rdidx >= MAX_CIRBUFF)
1611 			rdidx = 0;
1612 	}
1613 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1614         return IRQ_HANDLED;
1615 }
1616 
1617 /*      Check that the shared memory configuration is one that we can handle
1618  *      and that some basic parameters are correct
1619  */
1620 static void
1621 check_started_ok(struct fst_card_info *card)
1622 {
1623 	int i;
1624 
1625 	/* Check structure version and end marker */
1626 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1627 		pr_err("Bad shared memory version %d expected %d\n",
1628 		       FST_RDW(card, smcVersion), SMC_VERSION);
1629 		card->state = FST_BADVERSION;
1630 		return;
1631 	}
1632 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1633 		pr_err("Missing shared memory signature\n");
1634 		card->state = FST_BADVERSION;
1635 		return;
1636 	}
1637 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1638 	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1639 		card->state = FST_RUNNING;
1640 	} else if (i == 0xFF) {
1641 		pr_err("Firmware initialisation failed. Card halted\n");
1642 		card->state = FST_HALTED;
1643 		return;
1644 	} else if (i != 0x00) {
1645 		pr_err("Unknown firmware status 0x%x\n", i);
1646 		card->state = FST_HALTED;
1647 		return;
1648 	}
1649 
1650 	/* Finally check the number of ports reported by firmware against the
1651 	 * number we assumed at card detection. Should never happen with
1652 	 * existing firmware etc so we just report it for the moment.
1653 	 */
1654 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1655 		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1656 			card->card_no,
1657 			FST_RDL(card, numberOfPorts), card->nports);
1658 	}
1659 }
1660 
1661 static int
1662 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1663 		   struct fstioc_info *info)
1664 {
1665 	int err;
1666 	unsigned char my_framing;
1667 
1668 	/* Set things according to the user set valid flags
1669 	 * Several of the old options have been invalidated/replaced by the
1670 	 * generic hdlc package.
1671 	 */
1672 	err = 0;
1673 	if (info->valid & FSTVAL_PROTO) {
1674 		if (info->proto == FST_RAW)
1675 			port->mode = FST_RAW;
1676 		else
1677 			port->mode = FST_GEN_HDLC;
1678 	}
1679 
1680 	if (info->valid & FSTVAL_CABLE)
1681 		err = -EINVAL;
1682 
1683 	if (info->valid & FSTVAL_SPEED)
1684 		err = -EINVAL;
1685 
1686 	if (info->valid & FSTVAL_PHASE)
1687 		FST_WRB(card, portConfig[port->index].invertClock,
1688 			info->invertClock);
1689 	if (info->valid & FSTVAL_MODE)
1690 		FST_WRW(card, cardMode, info->cardMode);
1691 	if (info->valid & FSTVAL_TE1) {
1692 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1693 		FST_WRB(card, suConfig.clocking, info->clockSource);
1694 		my_framing = FRAMING_E1;
1695 		if (info->framing == E1)
1696 			my_framing = FRAMING_E1;
1697 		if (info->framing == T1)
1698 			my_framing = FRAMING_T1;
1699 		if (info->framing == J1)
1700 			my_framing = FRAMING_J1;
1701 		FST_WRB(card, suConfig.framing, my_framing);
1702 		FST_WRB(card, suConfig.structure, info->structure);
1703 		FST_WRB(card, suConfig.interface, info->interface);
1704 		FST_WRB(card, suConfig.coding, info->coding);
1705 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1706 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1707 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1708 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1709 		FST_WRB(card, suConfig.range, info->range);
1710 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1711 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1712 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1713 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1714 		if (info->idleCode)
1715 			FST_WRB(card, suConfig.enableIdleCode, 1);
1716 		else
1717 			FST_WRB(card, suConfig.enableIdleCode, 0);
1718 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1719 #if FST_DEBUG
1720 		if (info->valid & FSTVAL_TE1) {
1721 			printk("Setting TE1 data\n");
1722 			printk("Line Speed = %d\n", info->lineSpeed);
1723 			printk("Start slot = %d\n", info->startingSlot);
1724 			printk("Clock source = %d\n", info->clockSource);
1725 			printk("Framing = %d\n", my_framing);
1726 			printk("Structure = %d\n", info->structure);
1727 			printk("interface = %d\n", info->interface);
1728 			printk("Coding = %d\n", info->coding);
1729 			printk("Line build out = %d\n", info->lineBuildOut);
1730 			printk("Equaliser = %d\n", info->equalizer);
1731 			printk("Transparent mode = %d\n",
1732 			       info->transparentMode);
1733 			printk("Loop mode = %d\n", info->loopMode);
1734 			printk("Range = %d\n", info->range);
1735 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1736 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1737 			printk("LOS Threshold = %d\n", info->losThreshold);
1738 			printk("Idle Code = %d\n", info->idleCode);
1739 		}
1740 #endif
1741 	}
1742 #if FST_DEBUG
1743 	if (info->valid & FSTVAL_DEBUG) {
1744 		fst_debug_mask = info->debug;
1745 	}
1746 #endif
1747 
1748 	return err;
1749 }
1750 
1751 static void
1752 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1753 		 struct fstioc_info *info)
1754 {
1755 	int i;
1756 
1757 	memset(info, 0, sizeof (struct fstioc_info));
1758 
1759 	i = port->index;
1760 	info->kernelVersion = LINUX_VERSION_CODE;
1761 	info->nports = card->nports;
1762 	info->type = card->type;
1763 	info->state = card->state;
1764 	info->proto = FST_GEN_HDLC;
1765 	info->index = i;
1766 #if FST_DEBUG
1767 	info->debug = fst_debug_mask;
1768 #endif
1769 
1770 	/* Only mark information as valid if card is running.
1771 	 * Copy the data anyway in case it is useful for diagnostics
1772 	 */
1773 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1774 #if FST_DEBUG
1775 	    | FSTVAL_DEBUG
1776 #endif
1777 	    ;
1778 
1779 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1780 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1781 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1782 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1783 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1784 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1785 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1786 	info->cableStatus = FST_RDW(card, cableStatus);
1787 	info->cardMode = FST_RDW(card, cardMode);
1788 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1789 
1790 	/*
1791 	 * The T2U can report cable presence for both A or B
1792 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1793 	 * do the mapping.
1794 	 */
1795 	if (card->family == FST_FAMILY_TXU) {
1796 		if (port->index == 0) {
1797 			/*
1798 			 * Port A
1799 			 */
1800 			info->cableStatus = info->cableStatus & 1;
1801 		} else {
1802 			/*
1803 			 * Port B
1804 			 */
1805 			info->cableStatus = info->cableStatus >> 1;
1806 			info->cableStatus = info->cableStatus & 1;
1807 		}
1808 	}
1809 	/*
1810 	 * Some additional bits if we are TE1
1811 	 */
1812 	if (card->type == FST_TYPE_TE1) {
1813 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1814 		info->clockSource = FST_RDB(card, suConfig.clocking);
1815 		info->framing = FST_RDB(card, suConfig.framing);
1816 		info->structure = FST_RDB(card, suConfig.structure);
1817 		info->interface = FST_RDB(card, suConfig.interface);
1818 		info->coding = FST_RDB(card, suConfig.coding);
1819 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1820 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1821 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1822 		info->range = FST_RDB(card, suConfig.range);
1823 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1824 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1825 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1826 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1827 		if (FST_RDB(card, suConfig.enableIdleCode))
1828 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1829 		else
1830 			info->idleCode = 0;
1831 		info->receiveBufferDelay =
1832 		    FST_RDL(card, suStatus.receiveBufferDelay);
1833 		info->framingErrorCount =
1834 		    FST_RDL(card, suStatus.framingErrorCount);
1835 		info->codeViolationCount =
1836 		    FST_RDL(card, suStatus.codeViolationCount);
1837 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1838 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1839 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1840 		info->receiveRemoteAlarm =
1841 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1842 		info->alarmIndicationSignal =
1843 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1844 	}
1845 }
1846 
1847 static int
1848 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1849 	      struct ifreq *ifr)
1850 {
1851 	sync_serial_settings sync;
1852 	int i;
1853 
1854 	if (ifr->ifr_settings.size != sizeof (sync)) {
1855 		return -ENOMEM;
1856 	}
1857 
1858 	if (copy_from_user
1859 	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1860 		return -EFAULT;
1861 	}
1862 
1863 	if (sync.loopback)
1864 		return -EINVAL;
1865 
1866 	i = port->index;
1867 
1868 	switch (ifr->ifr_settings.type) {
1869 	case IF_IFACE_V35:
1870 		FST_WRW(card, portConfig[i].lineInterface, V35);
1871 		port->hwif = V35;
1872 		break;
1873 
1874 	case IF_IFACE_V24:
1875 		FST_WRW(card, portConfig[i].lineInterface, V24);
1876 		port->hwif = V24;
1877 		break;
1878 
1879 	case IF_IFACE_X21:
1880 		FST_WRW(card, portConfig[i].lineInterface, X21);
1881 		port->hwif = X21;
1882 		break;
1883 
1884 	case IF_IFACE_X21D:
1885 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1886 		port->hwif = X21D;
1887 		break;
1888 
1889 	case IF_IFACE_T1:
1890 		FST_WRW(card, portConfig[i].lineInterface, T1);
1891 		port->hwif = T1;
1892 		break;
1893 
1894 	case IF_IFACE_E1:
1895 		FST_WRW(card, portConfig[i].lineInterface, E1);
1896 		port->hwif = E1;
1897 		break;
1898 
1899 	case IF_IFACE_SYNC_SERIAL:
1900 		break;
1901 
1902 	default:
1903 		return -EINVAL;
1904 	}
1905 
1906 	switch (sync.clock_type) {
1907 	case CLOCK_EXT:
1908 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1909 		break;
1910 
1911 	case CLOCK_INT:
1912 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1913 		break;
1914 
1915 	default:
1916 		return -EINVAL;
1917 	}
1918 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1919 	return 0;
1920 }
1921 
1922 static int
1923 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1924 	      struct ifreq *ifr)
1925 {
1926 	sync_serial_settings sync;
1927 	int i;
1928 
1929 	/* First check what line type is set, we'll default to reporting X.21
1930 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1931 	 * changed
1932 	 */
1933 	switch (port->hwif) {
1934 	case E1:
1935 		ifr->ifr_settings.type = IF_IFACE_E1;
1936 		break;
1937 	case T1:
1938 		ifr->ifr_settings.type = IF_IFACE_T1;
1939 		break;
1940 	case V35:
1941 		ifr->ifr_settings.type = IF_IFACE_V35;
1942 		break;
1943 	case V24:
1944 		ifr->ifr_settings.type = IF_IFACE_V24;
1945 		break;
1946 	case X21D:
1947 		ifr->ifr_settings.type = IF_IFACE_X21D;
1948 		break;
1949 	case X21:
1950 	default:
1951 		ifr->ifr_settings.type = IF_IFACE_X21;
1952 		break;
1953 	}
1954 	if (ifr->ifr_settings.size == 0) {
1955 		return 0;	/* only type requested */
1956 	}
1957 	if (ifr->ifr_settings.size < sizeof (sync)) {
1958 		return -ENOMEM;
1959 	}
1960 
1961 	i = port->index;
1962 	memset(&sync, 0, sizeof(sync));
1963 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1964 	/* Lucky card and linux use same encoding here */
1965 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1966 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1967 	sync.loopback = 0;
1968 
1969 	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1970 		return -EFAULT;
1971 	}
1972 
1973 	ifr->ifr_settings.size = sizeof (sync);
1974 	return 0;
1975 }
1976 
1977 static int
1978 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1979 {
1980 	struct fst_card_info *card;
1981 	struct fst_port_info *port;
1982 	struct fstioc_write wrthdr;
1983 	struct fstioc_info info;
1984 	unsigned long flags;
1985 	void *buf;
1986 
1987 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1988 
1989 	port = dev_to_port(dev);
1990 	card = port->card;
1991 
1992 	if (!capable(CAP_NET_ADMIN))
1993 		return -EPERM;
1994 
1995 	switch (cmd) {
1996 	case FSTCPURESET:
1997 		fst_cpureset(card);
1998 		card->state = FST_RESET;
1999 		return 0;
2000 
2001 	case FSTCPURELEASE:
2002 		fst_cpurelease(card);
2003 		card->state = FST_STARTING;
2004 		return 0;
2005 
2006 	case FSTWRITE:		/* Code write (download) */
2007 
2008 		/* First copy in the header with the length and offset of data
2009 		 * to write
2010 		 */
2011 		if (ifr->ifr_data == NULL) {
2012 			return -EINVAL;
2013 		}
2014 		if (copy_from_user(&wrthdr, ifr->ifr_data,
2015 				   sizeof (struct fstioc_write))) {
2016 			return -EFAULT;
2017 		}
2018 
2019 		/* Sanity check the parameters. We don't support partial writes
2020 		 * when going over the top
2021 		 */
2022 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2023 		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2024 			return -ENXIO;
2025 		}
2026 
2027 		/* Now copy the data to the card. */
2028 
2029 		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2030 				  wrthdr.size);
2031 		if (IS_ERR(buf))
2032 			return PTR_ERR(buf);
2033 
2034 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2035 		kfree(buf);
2036 
2037 		/* Writes to the memory of a card in the reset state constitute
2038 		 * a download
2039 		 */
2040 		if (card->state == FST_RESET) {
2041 			card->state = FST_DOWNLOAD;
2042 		}
2043 		return 0;
2044 
2045 	case FSTGETCONF:
2046 
2047 		/* If card has just been started check the shared memory config
2048 		 * version and marker
2049 		 */
2050 		if (card->state == FST_STARTING) {
2051 			check_started_ok(card);
2052 
2053 			/* If everything checked out enable card interrupts */
2054 			if (card->state == FST_RUNNING) {
2055 				spin_lock_irqsave(&card->card_lock, flags);
2056 				fst_enable_intr(card);
2057 				FST_WRB(card, interruptHandshake, 0xEE);
2058 				spin_unlock_irqrestore(&card->card_lock, flags);
2059 			}
2060 		}
2061 
2062 		if (ifr->ifr_data == NULL) {
2063 			return -EINVAL;
2064 		}
2065 
2066 		gather_conf_info(card, port, &info);
2067 
2068 		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2069 			return -EFAULT;
2070 		}
2071 		return 0;
2072 
2073 	case FSTSETCONF:
2074 
2075 		/*
2076 		 * Most of the settings have been moved to the generic ioctls
2077 		 * this just covers debug and board ident now
2078 		 */
2079 
2080 		if (card->state != FST_RUNNING) {
2081 			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2082 			       card->card_no, card->state);
2083 			return -EIO;
2084 		}
2085 		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2086 			return -EFAULT;
2087 		}
2088 
2089 		return set_conf_from_info(card, port, &info);
2090 
2091 	case SIOCWANDEV:
2092 		switch (ifr->ifr_settings.type) {
2093 		case IF_GET_IFACE:
2094 			return fst_get_iface(card, port, ifr);
2095 
2096 		case IF_IFACE_SYNC_SERIAL:
2097 		case IF_IFACE_V35:
2098 		case IF_IFACE_V24:
2099 		case IF_IFACE_X21:
2100 		case IF_IFACE_X21D:
2101 		case IF_IFACE_T1:
2102 		case IF_IFACE_E1:
2103 			return fst_set_iface(card, port, ifr);
2104 
2105 		case IF_PROTO_RAW:
2106 			port->mode = FST_RAW;
2107 			return 0;
2108 
2109 		case IF_GET_PROTO:
2110 			if (port->mode == FST_RAW) {
2111 				ifr->ifr_settings.type = IF_PROTO_RAW;
2112 				return 0;
2113 			}
2114 			return hdlc_ioctl(dev, ifr, cmd);
2115 
2116 		default:
2117 			port->mode = FST_GEN_HDLC;
2118 			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2119 			    ifr->ifr_settings.type);
2120 			return hdlc_ioctl(dev, ifr, cmd);
2121 		}
2122 
2123 	default:
2124 		/* Not one of ours. Pass through to HDLC package */
2125 		return hdlc_ioctl(dev, ifr, cmd);
2126 	}
2127 }
2128 
2129 static void
2130 fst_openport(struct fst_port_info *port)
2131 {
2132 	int signals;
2133 
2134 	/* Only init things if card is actually running. This allows open to
2135 	 * succeed for downloads etc.
2136 	 */
2137 	if (port->card->state == FST_RUNNING) {
2138 		if (port->run) {
2139 			dbg(DBG_OPEN, "open: found port already running\n");
2140 
2141 			fst_issue_cmd(port, STOPPORT);
2142 			port->run = 0;
2143 		}
2144 
2145 		fst_rx_config(port);
2146 		fst_tx_config(port);
2147 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2148 
2149 		fst_issue_cmd(port, STARTPORT);
2150 		port->run = 1;
2151 
2152 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2153 		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2154 			       ? IPSTS_INDICATE : IPSTS_DCD))
2155 			netif_carrier_on(port_to_dev(port));
2156 		else
2157 			netif_carrier_off(port_to_dev(port));
2158 
2159 		port->txqe = 0;
2160 		port->txqs = 0;
2161 	}
2162 
2163 }
2164 
2165 static void
2166 fst_closeport(struct fst_port_info *port)
2167 {
2168 	if (port->card->state == FST_RUNNING) {
2169 		if (port->run) {
2170 			port->run = 0;
2171 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2172 
2173 			fst_issue_cmd(port, STOPPORT);
2174 		} else {
2175 			dbg(DBG_OPEN, "close: port not running\n");
2176 		}
2177 	}
2178 }
2179 
2180 static int
2181 fst_open(struct net_device *dev)
2182 {
2183 	int err;
2184 	struct fst_port_info *port;
2185 
2186 	port = dev_to_port(dev);
2187 	if (!try_module_get(THIS_MODULE))
2188           return -EBUSY;
2189 
2190 	if (port->mode != FST_RAW) {
2191 		err = hdlc_open(dev);
2192 		if (err) {
2193 			module_put(THIS_MODULE);
2194 			return err;
2195 		}
2196 	}
2197 
2198 	fst_openport(port);
2199 	netif_wake_queue(dev);
2200 	return 0;
2201 }
2202 
2203 static int
2204 fst_close(struct net_device *dev)
2205 {
2206 	struct fst_port_info *port;
2207 	struct fst_card_info *card;
2208 	unsigned char tx_dma_done;
2209 	unsigned char rx_dma_done;
2210 
2211 	port = dev_to_port(dev);
2212 	card = port->card;
2213 
2214 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2215 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2216 	dbg(DBG_OPEN,
2217 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2218 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2219 	    rx_dma_done);
2220 
2221 	netif_stop_queue(dev);
2222 	fst_closeport(dev_to_port(dev));
2223 	if (port->mode != FST_RAW) {
2224 		hdlc_close(dev);
2225 	}
2226 	module_put(THIS_MODULE);
2227 	return 0;
2228 }
2229 
2230 static int
2231 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2232 {
2233 	/*
2234 	 * Setting currently fixed in FarSync card so we check and forget
2235 	 */
2236 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2237 		return -EINVAL;
2238 	return 0;
2239 }
2240 
2241 static void
2242 fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2243 {
2244 	struct fst_port_info *port;
2245 	struct fst_card_info *card;
2246 
2247 	port = dev_to_port(dev);
2248 	card = port->card;
2249 	dev->stats.tx_errors++;
2250 	dev->stats.tx_aborted_errors++;
2251 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2252 	    card->card_no, port->index);
2253 	fst_issue_cmd(port, ABORTTX);
2254 
2255 	netif_trans_update(dev);
2256 	netif_wake_queue(dev);
2257 	port->start = 0;
2258 }
2259 
2260 static netdev_tx_t
2261 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2262 {
2263 	struct fst_card_info *card;
2264 	struct fst_port_info *port;
2265 	unsigned long flags;
2266 	int txq_length;
2267 
2268 	port = dev_to_port(dev);
2269 	card = port->card;
2270 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2271 
2272 	/* Drop packet with error if we don't have carrier */
2273 	if (!netif_carrier_ok(dev)) {
2274 		dev_kfree_skb(skb);
2275 		dev->stats.tx_errors++;
2276 		dev->stats.tx_carrier_errors++;
2277 		dbg(DBG_ASS,
2278 		    "Tried to transmit but no carrier on card %d port %d\n",
2279 		    card->card_no, port->index);
2280 		return NETDEV_TX_OK;
2281 	}
2282 
2283 	/* Drop it if it's too big! MTU failure ? */
2284 	if (skb->len > LEN_TX_BUFFER) {
2285 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2286 		    LEN_TX_BUFFER);
2287 		dev_kfree_skb(skb);
2288 		dev->stats.tx_errors++;
2289 		return NETDEV_TX_OK;
2290 	}
2291 
2292 	/*
2293 	 * We are always going to queue the packet
2294 	 * so that the bottom half is the only place we tx from
2295 	 * Check there is room in the port txq
2296 	 */
2297 	spin_lock_irqsave(&card->card_lock, flags);
2298 	if ((txq_length = port->txqe - port->txqs) < 0) {
2299 		/*
2300 		 * This is the case where the next free has wrapped but the
2301 		 * last used hasn't
2302 		 */
2303 		txq_length = txq_length + FST_TXQ_DEPTH;
2304 	}
2305 	spin_unlock_irqrestore(&card->card_lock, flags);
2306 	if (txq_length > fst_txq_high) {
2307 		/*
2308 		 * We have got enough buffers in the pipeline.  Ask the network
2309 		 * layer to stop sending frames down
2310 		 */
2311 		netif_stop_queue(dev);
2312 		port->start = 1;	/* I'm using this to signal stop sent up */
2313 	}
2314 
2315 	if (txq_length == FST_TXQ_DEPTH - 1) {
2316 		/*
2317 		 * This shouldn't have happened but such is life
2318 		 */
2319 		dev_kfree_skb(skb);
2320 		dev->stats.tx_errors++;
2321 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2322 		    card->card_no, port->index);
2323 		return NETDEV_TX_OK;
2324 	}
2325 
2326 	/*
2327 	 * queue the buffer
2328 	 */
2329 	spin_lock_irqsave(&card->card_lock, flags);
2330 	port->txq[port->txqe] = skb;
2331 	port->txqe++;
2332 	if (port->txqe == FST_TXQ_DEPTH)
2333 		port->txqe = 0;
2334 	spin_unlock_irqrestore(&card->card_lock, flags);
2335 
2336 	/* Scehdule the bottom half which now does transmit processing */
2337 	fst_q_work_item(&fst_work_txq, card->card_no);
2338 	tasklet_schedule(&fst_tx_task);
2339 
2340 	return NETDEV_TX_OK;
2341 }
2342 
2343 /*
2344  *      Card setup having checked hardware resources.
2345  *      Should be pretty bizarre if we get an error here (kernel memory
2346  *      exhaustion is one possibility). If we do see a problem we report it
2347  *      via a printk and leave the corresponding interface and all that follow
2348  *      disabled.
2349  */
2350 static char *type_strings[] = {
2351 	"no hardware",		/* Should never be seen */
2352 	"FarSync T2P",
2353 	"FarSync T4P",
2354 	"FarSync T1U",
2355 	"FarSync T2U",
2356 	"FarSync T4U",
2357 	"FarSync TE1"
2358 };
2359 
2360 static int
2361 fst_init_card(struct fst_card_info *card)
2362 {
2363 	int i;
2364 	int err;
2365 
2366 	/* We're working on a number of ports based on the card ID. If the
2367 	 * firmware detects something different later (should never happen)
2368 	 * we'll have to revise it in some way then.
2369 	 */
2370 	for (i = 0; i < card->nports; i++) {
2371 		err = register_hdlc_device(card->ports[i].dev);
2372 		if (err < 0) {
2373 			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2374 				i, -err);
2375 			while (i--)
2376 				unregister_hdlc_device(card->ports[i].dev);
2377 			return err;
2378 		}
2379 	}
2380 
2381 	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2382 		port_to_dev(&card->ports[0])->name,
2383 		port_to_dev(&card->ports[card->nports - 1])->name,
2384 		type_strings[card->type], card->irq, card->nports);
2385 	return 0;
2386 }
2387 
2388 static const struct net_device_ops fst_ops = {
2389 	.ndo_open       = fst_open,
2390 	.ndo_stop       = fst_close,
2391 	.ndo_start_xmit = hdlc_start_xmit,
2392 	.ndo_do_ioctl   = fst_ioctl,
2393 	.ndo_tx_timeout = fst_tx_timeout,
2394 };
2395 
2396 /*
2397  *      Initialise card when detected.
2398  *      Returns 0 to indicate success, or errno otherwise.
2399  */
2400 static int
2401 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2402 {
2403 	static int no_of_cards_added = 0;
2404 	struct fst_card_info *card;
2405 	int err = 0;
2406 	int i;
2407 
2408 	printk_once(KERN_INFO
2409 		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2410 			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2411 #if FST_DEBUG
2412 	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2413 #endif
2414 	/*
2415 	 * We are going to be clever and allow certain cards not to be
2416 	 * configured.  An exclude list can be provided in /etc/modules.conf
2417 	 */
2418 	if (fst_excluded_cards != 0) {
2419 		/*
2420 		 * There are cards to exclude
2421 		 *
2422 		 */
2423 		for (i = 0; i < fst_excluded_cards; i++) {
2424 			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2425 				pr_info("FarSync PCI device %d not assigned\n",
2426 					(pdev->devfn) >> 3);
2427 				return -EBUSY;
2428 			}
2429 		}
2430 	}
2431 
2432 	/* Allocate driver private data */
2433 	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2434 	if (card == NULL)
2435 		return -ENOMEM;
2436 
2437 	/* Try to enable the device */
2438 	if ((err = pci_enable_device(pdev)) != 0) {
2439 		pr_err("Failed to enable card. Err %d\n", -err);
2440 		goto enable_fail;
2441 	}
2442 
2443 	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2444 		pr_err("Failed to allocate regions. Err %d\n", -err);
2445 		goto regions_fail;
2446 	}
2447 
2448 	/* Get virtual addresses of memory regions */
2449 	card->pci_conf = pci_resource_start(pdev, 1);
2450 	card->phys_mem = pci_resource_start(pdev, 2);
2451 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2452 	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2453 		pr_err("Physical memory remap failed\n");
2454 		err = -ENODEV;
2455 		goto ioremap_physmem_fail;
2456 	}
2457 	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2458 		pr_err("Control memory remap failed\n");
2459 		err = -ENODEV;
2460 		goto ioremap_ctlmem_fail;
2461 	}
2462 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2463 
2464 	/* Register the interrupt handler */
2465 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2466 		pr_err("Unable to register interrupt %d\n", card->irq);
2467 		err = -ENODEV;
2468 		goto irq_fail;
2469 	}
2470 
2471 	/* Record info we need */
2472 	card->irq = pdev->irq;
2473 	card->type = ent->driver_data;
2474 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2475 			(ent->driver_data == FST_TYPE_T4P))
2476 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2477 	if ((ent->driver_data == FST_TYPE_T1U) ||
2478 	    (ent->driver_data == FST_TYPE_TE1))
2479 		card->nports = 1;
2480 	else
2481 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2482 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2483 
2484 	card->state = FST_UNINIT;
2485         spin_lock_init ( &card->card_lock );
2486 
2487         for ( i = 0 ; i < card->nports ; i++ ) {
2488 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2489 		hdlc_device *hdlc;
2490 		if (!dev) {
2491 			while (i--)
2492 				free_netdev(card->ports[i].dev);
2493 			pr_err("FarSync: out of memory\n");
2494 			err = -ENOMEM;
2495 			goto hdlcdev_fail;
2496 		}
2497 		card->ports[i].dev    = dev;
2498                 card->ports[i].card   = card;
2499                 card->ports[i].index  = i;
2500                 card->ports[i].run    = 0;
2501 
2502 		hdlc = dev_to_hdlc(dev);
2503 
2504                 /* Fill in the net device info */
2505 		/* Since this is a PCI setup this is purely
2506 		 * informational. Give them the buffer addresses
2507 		 * and basic card I/O.
2508 		 */
2509                 dev->mem_start   = card->phys_mem
2510                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2511                 dev->mem_end     = card->phys_mem
2512                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2513                 dev->base_addr   = card->pci_conf;
2514                 dev->irq         = card->irq;
2515 
2516 		dev->netdev_ops = &fst_ops;
2517 		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2518 		dev->watchdog_timeo = FST_TX_TIMEOUT;
2519                 hdlc->attach = fst_attach;
2520                 hdlc->xmit   = fst_start_xmit;
2521 	}
2522 
2523 	card->device = pdev;
2524 
2525 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2526 	    card->nports, card->irq);
2527 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2528 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2529 
2530 	/* Reset the card's processor */
2531 	fst_cpureset(card);
2532 	card->state = FST_RESET;
2533 
2534 	/* Initialise DMA (if required) */
2535 	fst_init_dma(card);
2536 
2537 	/* Record driver data for later use */
2538 	pci_set_drvdata(pdev, card);
2539 
2540 	/* Remainder of card setup */
2541 	if (no_of_cards_added >= FST_MAX_CARDS) {
2542 		pr_err("FarSync: too many cards\n");
2543 		err = -ENOMEM;
2544 		goto card_array_fail;
2545 	}
2546 	fst_card_array[no_of_cards_added] = card;
2547 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2548 	err = fst_init_card(card);
2549 	if (err)
2550 		goto init_card_fail;
2551 	if (card->family == FST_FAMILY_TXU) {
2552 		/*
2553 		 * Allocate a dma buffer for transmit and receives
2554 		 */
2555 		card->rx_dma_handle_host =
2556 		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2557 				       &card->rx_dma_handle_card, GFP_KERNEL);
2558 		if (card->rx_dma_handle_host == NULL) {
2559 			pr_err("Could not allocate rx dma buffer\n");
2560 			err = -ENOMEM;
2561 			goto rx_dma_fail;
2562 		}
2563 		card->tx_dma_handle_host =
2564 		    dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2565 				       &card->tx_dma_handle_card, GFP_KERNEL);
2566 		if (card->tx_dma_handle_host == NULL) {
2567 			pr_err("Could not allocate tx dma buffer\n");
2568 			err = -ENOMEM;
2569 			goto tx_dma_fail;
2570 		}
2571 	}
2572 	return 0;		/* Success */
2573 
2574 tx_dma_fail:
2575 	dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2576 			  card->rx_dma_handle_host, card->rx_dma_handle_card);
2577 rx_dma_fail:
2578 	fst_disable_intr(card);
2579 	for (i = 0 ; i < card->nports ; i++)
2580 		unregister_hdlc_device(card->ports[i].dev);
2581 init_card_fail:
2582 	fst_card_array[card->card_no] = NULL;
2583 card_array_fail:
2584 	for (i = 0 ; i < card->nports ; i++)
2585 		free_netdev(card->ports[i].dev);
2586 hdlcdev_fail:
2587 	free_irq(card->irq, card);
2588 irq_fail:
2589 	iounmap(card->ctlmem);
2590 ioremap_ctlmem_fail:
2591 	iounmap(card->mem);
2592 ioremap_physmem_fail:
2593 	pci_release_regions(pdev);
2594 regions_fail:
2595 	pci_disable_device(pdev);
2596 enable_fail:
2597 	kfree(card);
2598 	return err;
2599 }
2600 
2601 /*
2602  *      Cleanup and close down a card
2603  */
2604 static void
2605 fst_remove_one(struct pci_dev *pdev)
2606 {
2607 	struct fst_card_info *card;
2608 	int i;
2609 
2610 	card = pci_get_drvdata(pdev);
2611 
2612 	for (i = 0; i < card->nports; i++) {
2613 		struct net_device *dev = port_to_dev(&card->ports[i]);
2614 		unregister_hdlc_device(dev);
2615 	}
2616 
2617 	fst_disable_intr(card);
2618 	free_irq(card->irq, card);
2619 
2620 	iounmap(card->ctlmem);
2621 	iounmap(card->mem);
2622 	pci_release_regions(pdev);
2623 	if (card->family == FST_FAMILY_TXU) {
2624 		/*
2625 		 * Free dma buffers
2626 		 */
2627 		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2628 				  card->rx_dma_handle_host,
2629 				  card->rx_dma_handle_card);
2630 		dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2631 				  card->tx_dma_handle_host,
2632 				  card->tx_dma_handle_card);
2633 	}
2634 	fst_card_array[card->card_no] = NULL;
2635 }
2636 
2637 static struct pci_driver fst_driver = {
2638 	.name		= FST_NAME,
2639 	.id_table	= fst_pci_dev_id,
2640 	.probe		= fst_add_one,
2641 	.remove		= fst_remove_one,
2642 };
2643 
2644 static int __init
2645 fst_init(void)
2646 {
2647 	int i;
2648 
2649 	for (i = 0; i < FST_MAX_CARDS; i++)
2650 		fst_card_array[i] = NULL;
2651 	spin_lock_init(&fst_work_q_lock);
2652 	return pci_register_driver(&fst_driver);
2653 }
2654 
2655 static void __exit
2656 fst_cleanup_module(void)
2657 {
2658 	pr_info("FarSync WAN driver unloading\n");
2659 	pci_unregister_driver(&fst_driver);
2660 }
2661 
2662 module_init(fst_init);
2663 module_exit(fst_cleanup_module);
2664