xref: /openbmc/linux/drivers/net/wan/farsync.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <linux/if.h>
31 #include <linux/hdlc.h>
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 
35 #include "farsync.h"
36 
37 /*
38  *      Module info
39  */
40 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
41 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
42 MODULE_LICENSE("GPL");
43 
44 /*      Driver configuration and global parameters
45  *      ==========================================
46  */
47 
48 /*      Number of ports (per card) and cards supported
49  */
50 #define FST_MAX_PORTS           4
51 #define FST_MAX_CARDS           32
52 
53 /*      Default parameters for the link
54  */
55 #define FST_TX_QUEUE_LEN        100	/* At 8Mbps a longer queue length is
56 					 * useful */
57 #define FST_TXQ_DEPTH           16	/* This one is for the buffering
58 					 * of frames on the way down to the card
59 					 * so that we can keep the card busy
60 					 * and maximise throughput
61 					 */
62 #define FST_HIGH_WATER_MARK     12	/* Point at which we flow control
63 					 * network layer */
64 #define FST_LOW_WATER_MARK      8	/* Point at which we remove flow
65 					 * control from network layer */
66 #define FST_MAX_MTU             8000	/* Huge but possible */
67 #define FST_DEF_MTU             1500	/* Common sane value */
68 
69 #define FST_TX_TIMEOUT          (2*HZ)
70 
71 #ifdef ARPHRD_RAWHDLC
72 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC	/* Raw frames */
73 #else
74 #define ARPHRD_MYTYPE   ARPHRD_HDLC	/* Cisco-HDLC (keepalives etc) */
75 #endif
76 
77 /*
78  * Modules parameters and associated variables
79  */
80 static int fst_txq_low = FST_LOW_WATER_MARK;
81 static int fst_txq_high = FST_HIGH_WATER_MARK;
82 static int fst_max_reads = 7;
83 static int fst_excluded_cards = 0;
84 static int fst_excluded_list[FST_MAX_CARDS];
85 
86 module_param(fst_txq_low, int, 0);
87 module_param(fst_txq_high, int, 0);
88 module_param(fst_max_reads, int, 0);
89 module_param(fst_excluded_cards, int, 0);
90 module_param_array(fst_excluded_list, int, NULL, 0);
91 
92 /*      Card shared memory layout
93  *      =========================
94  */
95 #pragma pack(1)
96 
97 /*      This information is derived in part from the FarSite FarSync Smc.h
98  *      file. Unfortunately various name clashes and the non-portability of the
99  *      bit field declarations in that file have meant that I have chosen to
100  *      recreate the information here.
101  *
102  *      The SMC (Shared Memory Configuration) has a version number that is
103  *      incremented every time there is a significant change. This number can
104  *      be used to check that we have not got out of step with the firmware
105  *      contained in the .CDE files.
106  */
107 #define SMC_VERSION 24
108 
109 #define FST_MEMSIZE 0x100000	/* Size of card memory (1Mb) */
110 
111 #define SMC_BASE 0x00002000L	/* Base offset of the shared memory window main
112 				 * configuration structure */
113 #define BFM_BASE 0x00010000L	/* Base offset of the shared memory window DMA
114 				 * buffers */
115 
116 #define LEN_TX_BUFFER 8192	/* Size of packet buffers */
117 #define LEN_RX_BUFFER 8192
118 
119 #define LEN_SMALL_TX_BUFFER 256	/* Size of obsolete buffs used for DOS diags */
120 #define LEN_SMALL_RX_BUFFER 256
121 
122 #define NUM_TX_BUFFER 2		/* Must be power of 2. Fixed by firmware */
123 #define NUM_RX_BUFFER 8
124 
125 /* Interrupt retry time in milliseconds */
126 #define INT_RETRY_TIME 2
127 
128 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
129  *      of buffer descriptors. The structure is almost identical to that used
130  *      in the LANCE Ethernet controllers. Details available as PDF from the
131  *      AMD web site: http://www.amd.com/products/epd/processors/\
132  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
133  */
134 struct txdesc {			/* Transmit descriptor */
135 	volatile u16 ladr;	/* Low order address of packet. This is a
136 				 * linear address in the Am186 memory space
137 				 */
138 	volatile u8 hadr;	/* High order address. Low 4 bits only, high 4
139 				 * bits must be zero
140 				 */
141 	volatile u8 bits;	/* Status and config */
142 	volatile u16 bcnt;	/* 2s complement of packet size in low 15 bits.
143 				 * Transmit terminal count interrupt enable in
144 				 * top bit.
145 				 */
146 	u16 unused;		/* Not used in Tx */
147 };
148 
149 struct rxdesc {			/* Receive descriptor */
150 	volatile u16 ladr;	/* Low order address of packet */
151 	volatile u8 hadr;	/* High order address */
152 	volatile u8 bits;	/* Status and config */
153 	volatile u16 bcnt;	/* 2s complement of buffer size in low 15 bits.
154 				 * Receive terminal count interrupt enable in
155 				 * top bit.
156 				 */
157 	volatile u16 mcnt;	/* Message byte count (15 bits) */
158 };
159 
160 /* Convert a length into the 15 bit 2's complement */
161 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
162 /* Since we need to set the high bit to enable the completion interrupt this
163  * can be made a lot simpler
164  */
165 #define cnv_bcnt(len)   (-(len))
166 
167 /* Status and config bits for the above */
168 #define DMA_OWN         0x80	/* SmartDMA owns the descriptor */
169 #define TX_STP          0x02	/* Tx: start of packet */
170 #define TX_ENP          0x01	/* Tx: end of packet */
171 #define RX_ERR          0x40	/* Rx: error (OR of next 4 bits) */
172 #define RX_FRAM         0x20	/* Rx: framing error */
173 #define RX_OFLO         0x10	/* Rx: overflow error */
174 #define RX_CRC          0x08	/* Rx: CRC error */
175 #define RX_HBUF         0x04	/* Rx: buffer error */
176 #define RX_STP          0x02	/* Rx: start of packet */
177 #define RX_ENP          0x01	/* Rx: end of packet */
178 
179 /* Interrupts from the card are caused by various events which are presented
180  * in a circular buffer as several events may be processed on one physical int
181  */
182 #define MAX_CIRBUFF     32
183 
184 struct cirbuff {
185 	u8 rdindex;		/* read, then increment and wrap */
186 	u8 wrindex;		/* write, then increment and wrap */
187 	u8 evntbuff[MAX_CIRBUFF];
188 };
189 
190 /* Interrupt event codes.
191  * Where appropriate the two low order bits indicate the port number
192  */
193 #define CTLA_CHG        0x18	/* Control signal changed */
194 #define CTLB_CHG        0x19
195 #define CTLC_CHG        0x1A
196 #define CTLD_CHG        0x1B
197 
198 #define INIT_CPLT       0x20	/* Initialisation complete */
199 #define INIT_FAIL       0x21	/* Initialisation failed */
200 
201 #define ABTA_SENT       0x24	/* Abort sent */
202 #define ABTB_SENT       0x25
203 #define ABTC_SENT       0x26
204 #define ABTD_SENT       0x27
205 
206 #define TXA_UNDF        0x28	/* Transmission underflow */
207 #define TXB_UNDF        0x29
208 #define TXC_UNDF        0x2A
209 #define TXD_UNDF        0x2B
210 
211 #define F56_INT         0x2C
212 #define M32_INT         0x2D
213 
214 #define TE1_ALMA        0x30
215 
216 /* Port physical configuration. See farsync.h for field values */
217 struct port_cfg {
218 	u16 lineInterface;	/* Physical interface type */
219 	u8 x25op;		/* Unused at present */
220 	u8 internalClock;	/* 1 => internal clock, 0 => external */
221 	u8 transparentMode;	/* 1 => on, 0 => off */
222 	u8 invertClock;		/* 0 => normal, 1 => inverted */
223 	u8 padBytes[6];		/* Padding */
224 	u32 lineSpeed;		/* Speed in bps */
225 };
226 
227 /* TE1 port physical configuration */
228 struct su_config {
229 	u32 dataRate;
230 	u8 clocking;
231 	u8 framing;
232 	u8 structure;
233 	u8 interface;
234 	u8 coding;
235 	u8 lineBuildOut;
236 	u8 equalizer;
237 	u8 transparentMode;
238 	u8 loopMode;
239 	u8 range;
240 	u8 txBufferMode;
241 	u8 rxBufferMode;
242 	u8 startingSlot;
243 	u8 losThreshold;
244 	u8 enableIdleCode;
245 	u8 idleCode;
246 	u8 spare[44];
247 };
248 
249 /* TE1 Status */
250 struct su_status {
251 	u32 receiveBufferDelay;
252 	u32 framingErrorCount;
253 	u32 codeViolationCount;
254 	u32 crcErrorCount;
255 	u32 lineAttenuation;
256 	u8 portStarted;
257 	u8 lossOfSignal;
258 	u8 receiveRemoteAlarm;
259 	u8 alarmIndicationSignal;
260 	u8 spare[40];
261 };
262 
263 /* Finally sling all the above together into the shared memory structure.
264  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
265  * evolving under NT for some time so I guess we're stuck with it.
266  * The structure starts at offset SMC_BASE.
267  * See farsync.h for some field values.
268  */
269 struct fst_shared {
270 	/* DMA descriptor rings */
271 	struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
272 	struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
273 
274 	/* Obsolete small buffers */
275 	u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
276 	u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
277 
278 	u8 taskStatus;		/* 0x00 => initialising, 0x01 => running,
279 				 * 0xFF => halted
280 				 */
281 
282 	u8 interruptHandshake;	/* Set to 0x01 by adapter to signal interrupt,
283 				 * set to 0xEE by host to acknowledge interrupt
284 				 */
285 
286 	u16 smcVersion;		/* Must match SMC_VERSION */
287 
288 	u32 smcFirmwareVersion;	/* 0xIIVVRRBB where II = product ID, VV = major
289 				 * version, RR = revision and BB = build
290 				 */
291 
292 	u16 txa_done;		/* Obsolete completion flags */
293 	u16 rxa_done;
294 	u16 txb_done;
295 	u16 rxb_done;
296 	u16 txc_done;
297 	u16 rxc_done;
298 	u16 txd_done;
299 	u16 rxd_done;
300 
301 	u16 mailbox[4];		/* Diagnostics mailbox. Not used */
302 
303 	struct cirbuff interruptEvent;	/* interrupt causes */
304 
305 	u32 v24IpSts[FST_MAX_PORTS];	/* V.24 control input status */
306 	u32 v24OpSts[FST_MAX_PORTS];	/* V.24 control output status */
307 
308 	struct port_cfg portConfig[FST_MAX_PORTS];
309 
310 	u16 clockStatus[FST_MAX_PORTS];	/* lsb: 0=> present, 1=> absent */
311 
312 	u16 cableStatus;	/* lsb: 0=> present, 1=> absent */
313 
314 	u16 txDescrIndex[FST_MAX_PORTS];	/* transmit descriptor ring index */
315 	u16 rxDescrIndex[FST_MAX_PORTS];	/* receive descriptor ring index */
316 
317 	u16 portMailbox[FST_MAX_PORTS][2];	/* command, modifier */
318 	u16 cardMailbox[4];	/* Not used */
319 
320 	/* Number of times the card thinks the host has
321 	 * missed an interrupt by not acknowledging
322 	 * within 2mS (I guess NT has problems)
323 	 */
324 	u32 interruptRetryCount;
325 
326 	/* Driver private data used as an ID. We'll not
327 	 * use this as I'd rather keep such things
328 	 * in main memory rather than on the PCI bus
329 	 */
330 	u32 portHandle[FST_MAX_PORTS];
331 
332 	/* Count of Tx underflows for stats */
333 	u32 transmitBufferUnderflow[FST_MAX_PORTS];
334 
335 	/* Debounced V.24 control input status */
336 	u32 v24DebouncedSts[FST_MAX_PORTS];
337 
338 	/* Adapter debounce timers. Don't touch */
339 	u32 ctsTimer[FST_MAX_PORTS];
340 	u32 ctsTimerRun[FST_MAX_PORTS];
341 	u32 dcdTimer[FST_MAX_PORTS];
342 	u32 dcdTimerRun[FST_MAX_PORTS];
343 
344 	u32 numberOfPorts;	/* Number of ports detected at startup */
345 
346 	u16 _reserved[64];
347 
348 	u16 cardMode;		/* Bit-mask to enable features:
349 				 * Bit 0: 1 enables LED identify mode
350 				 */
351 
352 	u16 portScheduleOffset;
353 
354 	struct su_config suConfig;	/* TE1 Bits */
355 	struct su_status suStatus;
356 
357 	u32 endOfSmcSignature;	/* endOfSmcSignature MUST be the last member of
358 				 * the structure and marks the end of shared
359 				 * memory. Adapter code initializes it as
360 				 * END_SIG.
361 				 */
362 };
363 
364 /* endOfSmcSignature value */
365 #define END_SIG                 0x12345678
366 
367 /* Mailbox values. (portMailbox) */
368 #define NOP             0	/* No operation */
369 #define ACK             1	/* Positive acknowledgement to PC driver */
370 #define NAK             2	/* Negative acknowledgement to PC driver */
371 #define STARTPORT       3	/* Start an HDLC port */
372 #define STOPPORT        4	/* Stop an HDLC port */
373 #define ABORTTX         5	/* Abort the transmitter for a port */
374 #define SETV24O         6	/* Set V24 outputs */
375 
376 /* PLX Chip Register Offsets */
377 #define CNTRL_9052      0x50	/* Control Register */
378 #define CNTRL_9054      0x6c	/* Control Register */
379 
380 #define INTCSR_9052     0x4c	/* Interrupt control/status register */
381 #define INTCSR_9054     0x68	/* Interrupt control/status register */
382 
383 /* 9054 DMA Registers */
384 /*
385  * Note that we will be using DMA Channel 0 for copying rx data
386  * and Channel 1 for copying tx data
387  */
388 #define DMAMODE0        0x80
389 #define DMAPADR0        0x84
390 #define DMALADR0        0x88
391 #define DMASIZ0         0x8c
392 #define DMADPR0         0x90
393 #define DMAMODE1        0x94
394 #define DMAPADR1        0x98
395 #define DMALADR1        0x9c
396 #define DMASIZ1         0xa0
397 #define DMADPR1         0xa4
398 #define DMACSR0         0xa8
399 #define DMACSR1         0xa9
400 #define DMAARB          0xac
401 #define DMATHR          0xb0
402 #define DMADAC0         0xb4
403 #define DMADAC1         0xb8
404 #define DMAMARBR        0xac
405 
406 #define FST_MIN_DMA_LEN 64
407 #define FST_RX_DMA_INT  0x01
408 #define FST_TX_DMA_INT  0x02
409 #define FST_CARD_INT    0x04
410 
411 /* Larger buffers are positioned in memory at offset BFM_BASE */
412 struct buf_window {
413 	u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
414 	u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
415 };
416 
417 /* Calculate offset of a buffer object within the shared memory window */
418 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
419 
420 #pragma pack()
421 
422 /*      Device driver private information
423  *      =================================
424  */
425 /*      Per port (line or channel) information
426  */
427 struct fst_port_info {
428         struct net_device *dev; /* Device struct - must be first */
429 	struct fst_card_info *card;	/* Card we're associated with */
430 	int index;		/* Port index on the card */
431 	int hwif;		/* Line hardware (lineInterface copy) */
432 	int run;		/* Port is running */
433 	int mode;		/* Normal or FarSync raw */
434 	int rxpos;		/* Next Rx buffer to use */
435 	int txpos;		/* Next Tx buffer to use */
436 	int txipos;		/* Next Tx buffer to check for free */
437 	int start;		/* Indication of start/stop to network */
438 	/*
439 	 * A sixteen entry transmit queue
440 	 */
441 	int txqs;		/* index to get next buffer to tx */
442 	int txqe;		/* index to queue next packet */
443 	struct sk_buff *txq[FST_TXQ_DEPTH];	/* The queue */
444 	int rxqdepth;
445 };
446 
447 /*      Per card information
448  */
449 struct fst_card_info {
450 	char __iomem *mem;	/* Card memory mapped to kernel space */
451 	char __iomem *ctlmem;	/* Control memory for PCI cards */
452 	unsigned int phys_mem;	/* Physical memory window address */
453 	unsigned int phys_ctlmem;	/* Physical control memory address */
454 	unsigned int irq;	/* Interrupt request line number */
455 	unsigned int nports;	/* Number of serial ports */
456 	unsigned int type;	/* Type index of card */
457 	unsigned int state;	/* State of card */
458 	spinlock_t card_lock;	/* Lock for SMP access */
459 	unsigned short pci_conf;	/* PCI card config in I/O space */
460 	/* Per port info */
461 	struct fst_port_info ports[FST_MAX_PORTS];
462 	struct pci_dev *device;	/* Information about the pci device */
463 	int card_no;		/* Inst of the card on the system */
464 	int family;		/* TxP or TxU */
465 	int dmarx_in_progress;
466 	int dmatx_in_progress;
467 	unsigned long int_count;
468 	unsigned long int_time_ave;
469 	void *rx_dma_handle_host;
470 	dma_addr_t rx_dma_handle_card;
471 	void *tx_dma_handle_host;
472 	dma_addr_t tx_dma_handle_card;
473 	struct sk_buff *dma_skb_rx;
474 	struct fst_port_info *dma_port_rx;
475 	struct fst_port_info *dma_port_tx;
476 	int dma_len_rx;
477 	int dma_len_tx;
478 	int dma_txpos;
479 	int dma_rxpos;
480 };
481 
482 /* Convert an HDLC device pointer into a port info pointer and similar */
483 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
484 #define port_to_dev(P)  ((P)->dev)
485 
486 
487 /*
488  *      Shared memory window access macros
489  *
490  *      We have a nice memory based structure above, which could be directly
491  *      mapped on i386 but might not work on other architectures unless we use
492  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
493  *      physical offsets so we have to convert. The only saving grace is that
494  *      this should all collapse back to a simple indirection eventually.
495  */
496 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
497 
498 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
500 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
501 
502 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
504 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
505 
506 /*
507  *      Debug support
508  */
509 #if FST_DEBUG
510 
511 static int fst_debug_mask = { FST_DEBUG };
512 
513 /* Most common debug activity is to print something if the corresponding bit
514  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
515  * support variable numbers of macro parameters. The inverted if prevents us
516  * eating someone else's else clause.
517  */
518 #define dbg(F, fmt, args...)					\
519 do {								\
520 	if (fst_debug_mask & (F))				\
521 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
522 } while (0)
523 #else
524 #define dbg(F, fmt, args...)					\
525 do {								\
526 	if (0)							\
527 		printk(KERN_DEBUG pr_fmt(fmt), ##args);		\
528 } while (0)
529 #endif
530 
531 /*
532  *      PCI ID lookup table
533  */
534 static const struct pci_device_id fst_pci_dev_id[] = {
535 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
536 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
537 
538 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
539 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
540 
541 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
542 	 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
543 
544 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
545 	 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
546 
547 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
548 	 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
549 
550 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
551 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
552 
553 	{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
554 	 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
555 	{0,}			/* End */
556 };
557 
558 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
559 
560 /*
561  *      Device Driver Work Queues
562  *
563  *      So that we don't spend too much time processing events in the
564  *      Interrupt Service routine, we will declare a work queue per Card
565  *      and make the ISR schedule a task in the queue for later execution.
566  *      In the 2.4 Kernel we used to use the immediate queue for BH's
567  *      Now that they are gone, tasklets seem to be much better than work
568  *      queues.
569  */
570 
571 static void do_bottom_half_tx(struct fst_card_info *card);
572 static void do_bottom_half_rx(struct fst_card_info *card);
573 static void fst_process_tx_work_q(unsigned long work_q);
574 static void fst_process_int_work_q(unsigned long work_q);
575 
576 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
577 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
578 
579 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
580 static spinlock_t fst_work_q_lock;
581 static u64 fst_work_txq;
582 static u64 fst_work_intq;
583 
584 static void
585 fst_q_work_item(u64 * queue, int card_index)
586 {
587 	unsigned long flags;
588 	u64 mask;
589 
590 	/*
591 	 * Grab the queue exclusively
592 	 */
593 	spin_lock_irqsave(&fst_work_q_lock, flags);
594 
595 	/*
596 	 * Making an entry in the queue is simply a matter of setting
597 	 * a bit for the card indicating that there is work to do in the
598 	 * bottom half for the card.  Note the limitation of 64 cards.
599 	 * That ought to be enough
600 	 */
601 	mask = (u64)1 << card_index;
602 	*queue |= mask;
603 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
604 }
605 
606 static void
607 fst_process_tx_work_q(unsigned long /*void **/work_q)
608 {
609 	unsigned long flags;
610 	u64 work_txq;
611 	int i;
612 
613 	/*
614 	 * Grab the queue exclusively
615 	 */
616 	dbg(DBG_TX, "fst_process_tx_work_q\n");
617 	spin_lock_irqsave(&fst_work_q_lock, flags);
618 	work_txq = fst_work_txq;
619 	fst_work_txq = 0;
620 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
621 
622 	/*
623 	 * Call the bottom half for each card with work waiting
624 	 */
625 	for (i = 0; i < FST_MAX_CARDS; i++) {
626 		if (work_txq & 0x01) {
627 			if (fst_card_array[i] != NULL) {
628 				dbg(DBG_TX, "Calling tx bh for card %d\n", i);
629 				do_bottom_half_tx(fst_card_array[i]);
630 			}
631 		}
632 		work_txq = work_txq >> 1;
633 	}
634 }
635 
636 static void
637 fst_process_int_work_q(unsigned long /*void **/work_q)
638 {
639 	unsigned long flags;
640 	u64 work_intq;
641 	int i;
642 
643 	/*
644 	 * Grab the queue exclusively
645 	 */
646 	dbg(DBG_INTR, "fst_process_int_work_q\n");
647 	spin_lock_irqsave(&fst_work_q_lock, flags);
648 	work_intq = fst_work_intq;
649 	fst_work_intq = 0;
650 	spin_unlock_irqrestore(&fst_work_q_lock, flags);
651 
652 	/*
653 	 * Call the bottom half for each card with work waiting
654 	 */
655 	for (i = 0; i < FST_MAX_CARDS; i++) {
656 		if (work_intq & 0x01) {
657 			if (fst_card_array[i] != NULL) {
658 				dbg(DBG_INTR,
659 				    "Calling rx & tx bh for card %d\n", i);
660 				do_bottom_half_rx(fst_card_array[i]);
661 				do_bottom_half_tx(fst_card_array[i]);
662 			}
663 		}
664 		work_intq = work_intq >> 1;
665 	}
666 }
667 
668 /*      Card control functions
669  *      ======================
670  */
671 /*      Place the processor in reset state
672  *
673  * Used to be a simple write to card control space but a glitch in the latest
674  * AMD Am186CH processor means that we now have to do it by asserting and de-
675  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
676  * at offset 9052_CNTRL.  Note the updates for the TXU.
677  */
678 static inline void
679 fst_cpureset(struct fst_card_info *card)
680 {
681 	unsigned char interrupt_line_register;
682 	unsigned int regval;
683 
684 	if (card->family == FST_FAMILY_TXU) {
685 		if (pci_read_config_byte
686 		    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 			dbg(DBG_ASS,
688 			    "Error in reading interrupt line register\n");
689 		}
690 		/*
691 		 * Assert PLX software reset and Am186 hardware reset
692 		 * and then deassert the PLX software reset but 186 still in reset
693 		 */
694 		outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 		/*
697 		 * We are delaying here to allow the 9054 to reset itself
698 		 */
699 		usleep_range(10, 20);
700 		outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
701 		/*
702 		 * We are delaying here to allow the 9054 to reload its eeprom
703 		 */
704 		usleep_range(10, 20);
705 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
706 
707 		if (pci_write_config_byte
708 		    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
709 			dbg(DBG_ASS,
710 			    "Error in writing interrupt line register\n");
711 		}
712 
713 	} else {
714 		regval = inl(card->pci_conf + CNTRL_9052);
715 
716 		outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
717 		outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
718 	}
719 }
720 
721 /*      Release the processor from reset
722  */
723 static inline void
724 fst_cpurelease(struct fst_card_info *card)
725 {
726 	if (card->family == FST_FAMILY_TXU) {
727 		/*
728 		 * Force posted writes to complete
729 		 */
730 		(void) readb(card->mem);
731 
732 		/*
733 		 * Release LRESET DO = 1
734 		 * Then release Local Hold, DO = 1
735 		 */
736 		outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
737 		outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
738 	} else {
739 		(void) readb(card->ctlmem);
740 	}
741 }
742 
743 /*      Clear the cards interrupt flag
744  */
745 static inline void
746 fst_clear_intr(struct fst_card_info *card)
747 {
748 	if (card->family == FST_FAMILY_TXU) {
749 		(void) readb(card->ctlmem);
750 	} else {
751 		/* Poke the appropriate PLX chip register (same as enabling interrupts)
752 		 */
753 		outw(0x0543, card->pci_conf + INTCSR_9052);
754 	}
755 }
756 
757 /*      Enable card interrupts
758  */
759 static inline void
760 fst_enable_intr(struct fst_card_info *card)
761 {
762 	if (card->family == FST_FAMILY_TXU) {
763 		outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
764 	} else {
765 		outw(0x0543, card->pci_conf + INTCSR_9052);
766 	}
767 }
768 
769 /*      Disable card interrupts
770  */
771 static inline void
772 fst_disable_intr(struct fst_card_info *card)
773 {
774 	if (card->family == FST_FAMILY_TXU) {
775 		outl(0x00000000, card->pci_conf + INTCSR_9054);
776 	} else {
777 		outw(0x0000, card->pci_conf + INTCSR_9052);
778 	}
779 }
780 
781 /*      Process the result of trying to pass a received frame up the stack
782  */
783 static void
784 fst_process_rx_status(int rx_status, char *name)
785 {
786 	switch (rx_status) {
787 	case NET_RX_SUCCESS:
788 		{
789 			/*
790 			 * Nothing to do here
791 			 */
792 			break;
793 		}
794 	case NET_RX_DROP:
795 		{
796 			dbg(DBG_ASS, "%s: Received packet dropped\n", name);
797 			break;
798 		}
799 	}
800 }
801 
802 /*      Initilaise DMA for PLX 9054
803  */
804 static inline void
805 fst_init_dma(struct fst_card_info *card)
806 {
807 	/*
808 	 * This is only required for the PLX 9054
809 	 */
810 	if (card->family == FST_FAMILY_TXU) {
811 	        pci_set_master(card->device);
812 		outl(0x00020441, card->pci_conf + DMAMODE0);
813 		outl(0x00020441, card->pci_conf + DMAMODE1);
814 		outl(0x0, card->pci_conf + DMATHR);
815 	}
816 }
817 
818 /*      Tx dma complete interrupt
819  */
820 static void
821 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
822 		    int len, int txpos)
823 {
824 	struct net_device *dev = port_to_dev(port);
825 
826 	/*
827 	 * Everything is now set, just tell the card to go
828 	 */
829 	dbg(DBG_TX, "fst_tx_dma_complete\n");
830 	FST_WRB(card, txDescrRing[port->index][txpos].bits,
831 		DMA_OWN | TX_STP | TX_ENP);
832 	dev->stats.tx_packets++;
833 	dev->stats.tx_bytes += len;
834 	netif_trans_update(dev);
835 }
836 
837 /*
838  * Mark it for our own raw sockets interface
839  */
840 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
841 {
842 	skb->dev = dev;
843 	skb_reset_mac_header(skb);
844 	skb->pkt_type = PACKET_HOST;
845 	return htons(ETH_P_CUST);
846 }
847 
848 /*      Rx dma complete interrupt
849  */
850 static void
851 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
852 		    int len, struct sk_buff *skb, int rxp)
853 {
854 	struct net_device *dev = port_to_dev(port);
855 	int pi;
856 	int rx_status;
857 
858 	dbg(DBG_TX, "fst_rx_dma_complete\n");
859 	pi = port->index;
860 	skb_put_data(skb, card->rx_dma_handle_host, len);
861 
862 	/* Reset buffer descriptor */
863 	FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
864 
865 	/* Update stats */
866 	dev->stats.rx_packets++;
867 	dev->stats.rx_bytes += len;
868 
869 	/* Push upstream */
870 	dbg(DBG_RX, "Pushing the frame up the stack\n");
871 	if (port->mode == FST_RAW)
872 		skb->protocol = farsync_type_trans(skb, dev);
873 	else
874 		skb->protocol = hdlc_type_trans(skb, dev);
875 	rx_status = netif_rx(skb);
876 	fst_process_rx_status(rx_status, port_to_dev(port)->name);
877 	if (rx_status == NET_RX_DROP)
878 		dev->stats.rx_dropped++;
879 }
880 
881 /*
882  *      Receive a frame through the DMA
883  */
884 static inline void
885 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
886 {
887 	/*
888 	 * This routine will setup the DMA and start it
889 	 */
890 
891 	dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
892 	if (card->dmarx_in_progress) {
893 		dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
894 	}
895 
896 	outl(dma, card->pci_conf + DMAPADR0);	/* Copy to here */
897 	outl(mem, card->pci_conf + DMALADR0);	/* from here */
898 	outl(len, card->pci_conf + DMASIZ0);	/* for this length */
899 	outl(0x00000000c, card->pci_conf + DMADPR0);	/* In this direction */
900 
901 	/*
902 	 * We use the dmarx_in_progress flag to flag the channel as busy
903 	 */
904 	card->dmarx_in_progress = 1;
905 	outb(0x03, card->pci_conf + DMACSR0);	/* Start the transfer */
906 }
907 
908 /*
909  *      Send a frame through the DMA
910  */
911 static inline void
912 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
913 {
914 	/*
915 	 * This routine will setup the DMA and start it.
916 	 */
917 
918 	dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
919 	if (card->dmatx_in_progress) {
920 		dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
921 	}
922 
923 	outl(dma, card->pci_conf + DMAPADR1);	/* Copy from here */
924 	outl(mem, card->pci_conf + DMALADR1);	/* to here */
925 	outl(len, card->pci_conf + DMASIZ1);	/* for this length */
926 	outl(0x000000004, card->pci_conf + DMADPR1);	/* In this direction */
927 
928 	/*
929 	 * We use the dmatx_in_progress to flag the channel as busy
930 	 */
931 	card->dmatx_in_progress = 1;
932 	outb(0x03, card->pci_conf + DMACSR1);	/* Start the transfer */
933 }
934 
935 /*      Issue a Mailbox command for a port.
936  *      Note we issue them on a fire and forget basis, not expecting to see an
937  *      error and not waiting for completion.
938  */
939 static void
940 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
941 {
942 	struct fst_card_info *card;
943 	unsigned short mbval;
944 	unsigned long flags;
945 	int safety;
946 
947 	card = port->card;
948 	spin_lock_irqsave(&card->card_lock, flags);
949 	mbval = FST_RDW(card, portMailbox[port->index][0]);
950 
951 	safety = 0;
952 	/* Wait for any previous command to complete */
953 	while (mbval > NAK) {
954 		spin_unlock_irqrestore(&card->card_lock, flags);
955 		schedule_timeout_uninterruptible(1);
956 		spin_lock_irqsave(&card->card_lock, flags);
957 
958 		if (++safety > 2000) {
959 			pr_err("Mailbox safety timeout\n");
960 			break;
961 		}
962 
963 		mbval = FST_RDW(card, portMailbox[port->index][0]);
964 	}
965 	if (safety > 0) {
966 		dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
967 	}
968 	if (mbval == NAK) {
969 		dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
970 	}
971 
972 	FST_WRW(card, portMailbox[port->index][0], cmd);
973 
974 	if (cmd == ABORTTX || cmd == STARTPORT) {
975 		port->txpos = 0;
976 		port->txipos = 0;
977 		port->start = 0;
978 	}
979 
980 	spin_unlock_irqrestore(&card->card_lock, flags);
981 }
982 
983 /*      Port output signals control
984  */
985 static inline void
986 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
987 {
988 	outputs |= FST_RDL(port->card, v24OpSts[port->index]);
989 	FST_WRL(port->card, v24OpSts[port->index], outputs);
990 
991 	if (port->run)
992 		fst_issue_cmd(port, SETV24O);
993 }
994 
995 static inline void
996 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
997 {
998 	outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
999 	FST_WRL(port->card, v24OpSts[port->index], outputs);
1000 
1001 	if (port->run)
1002 		fst_issue_cmd(port, SETV24O);
1003 }
1004 
1005 /*
1006  *      Setup port Rx buffers
1007  */
1008 static void
1009 fst_rx_config(struct fst_port_info *port)
1010 {
1011 	int i;
1012 	int pi;
1013 	unsigned int offset;
1014 	unsigned long flags;
1015 	struct fst_card_info *card;
1016 
1017 	pi = port->index;
1018 	card = port->card;
1019 	spin_lock_irqsave(&card->card_lock, flags);
1020 	for (i = 0; i < NUM_RX_BUFFER; i++) {
1021 		offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1022 
1023 		FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1024 		FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1025 		FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1026 		FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1027 		FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1028 	}
1029 	port->rxpos = 0;
1030 	spin_unlock_irqrestore(&card->card_lock, flags);
1031 }
1032 
1033 /*
1034  *      Setup port Tx buffers
1035  */
1036 static void
1037 fst_tx_config(struct fst_port_info *port)
1038 {
1039 	int i;
1040 	int pi;
1041 	unsigned int offset;
1042 	unsigned long flags;
1043 	struct fst_card_info *card;
1044 
1045 	pi = port->index;
1046 	card = port->card;
1047 	spin_lock_irqsave(&card->card_lock, flags);
1048 	for (i = 0; i < NUM_TX_BUFFER; i++) {
1049 		offset = BUF_OFFSET(txBuffer[pi][i][0]);
1050 
1051 		FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1052 		FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1053 		FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1054 		FST_WRB(card, txDescrRing[pi][i].bits, 0);
1055 	}
1056 	port->txpos = 0;
1057 	port->txipos = 0;
1058 	port->start = 0;
1059 	spin_unlock_irqrestore(&card->card_lock, flags);
1060 }
1061 
1062 /*      TE1 Alarm change interrupt event
1063  */
1064 static void
1065 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1066 {
1067 	u8 los;
1068 	u8 rra;
1069 	u8 ais;
1070 
1071 	los = FST_RDB(card, suStatus.lossOfSignal);
1072 	rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1073 	ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1074 
1075 	if (los) {
1076 		/*
1077 		 * Lost the link
1078 		 */
1079 		if (netif_carrier_ok(port_to_dev(port))) {
1080 			dbg(DBG_INTR, "Net carrier off\n");
1081 			netif_carrier_off(port_to_dev(port));
1082 		}
1083 	} else {
1084 		/*
1085 		 * Link available
1086 		 */
1087 		if (!netif_carrier_ok(port_to_dev(port))) {
1088 			dbg(DBG_INTR, "Net carrier on\n");
1089 			netif_carrier_on(port_to_dev(port));
1090 		}
1091 	}
1092 
1093 	if (los)
1094 		dbg(DBG_INTR, "Assert LOS Alarm\n");
1095 	else
1096 		dbg(DBG_INTR, "De-assert LOS Alarm\n");
1097 	if (rra)
1098 		dbg(DBG_INTR, "Assert RRA Alarm\n");
1099 	else
1100 		dbg(DBG_INTR, "De-assert RRA Alarm\n");
1101 
1102 	if (ais)
1103 		dbg(DBG_INTR, "Assert AIS Alarm\n");
1104 	else
1105 		dbg(DBG_INTR, "De-assert AIS Alarm\n");
1106 }
1107 
1108 /*      Control signal change interrupt event
1109  */
1110 static void
1111 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1112 {
1113 	int signals;
1114 
1115 	signals = FST_RDL(card, v24DebouncedSts[port->index]);
1116 
1117 	if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1118 		       ? IPSTS_INDICATE : IPSTS_DCD)) {
1119 		if (!netif_carrier_ok(port_to_dev(port))) {
1120 			dbg(DBG_INTR, "DCD active\n");
1121 			netif_carrier_on(port_to_dev(port));
1122 		}
1123 	} else {
1124 		if (netif_carrier_ok(port_to_dev(port))) {
1125 			dbg(DBG_INTR, "DCD lost\n");
1126 			netif_carrier_off(port_to_dev(port));
1127 		}
1128 	}
1129 }
1130 
1131 /*      Log Rx Errors
1132  */
1133 static void
1134 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1135 		 unsigned char dmabits, int rxp, unsigned short len)
1136 {
1137 	struct net_device *dev = port_to_dev(port);
1138 
1139 	/*
1140 	 * Increment the appropriate error counter
1141 	 */
1142 	dev->stats.rx_errors++;
1143 	if (dmabits & RX_OFLO) {
1144 		dev->stats.rx_fifo_errors++;
1145 		dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1146 		    card->card_no, port->index, rxp);
1147 	}
1148 	if (dmabits & RX_CRC) {
1149 		dev->stats.rx_crc_errors++;
1150 		dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1151 		    card->card_no, port->index);
1152 	}
1153 	if (dmabits & RX_FRAM) {
1154 		dev->stats.rx_frame_errors++;
1155 		dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1156 		    card->card_no, port->index);
1157 	}
1158 	if (dmabits == (RX_STP | RX_ENP)) {
1159 		dev->stats.rx_length_errors++;
1160 		dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1161 		    len, card->card_no, port->index);
1162 	}
1163 }
1164 
1165 /*      Rx Error Recovery
1166  */
1167 static void
1168 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1169 		     unsigned char dmabits, int rxp, unsigned short len)
1170 {
1171 	int i;
1172 	int pi;
1173 
1174 	pi = port->index;
1175 	/*
1176 	 * Discard buffer descriptors until we see the start of the
1177 	 * next frame.  Note that for long frames this could be in
1178 	 * a subsequent interrupt.
1179 	 */
1180 	i = 0;
1181 	while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1182 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1183 		rxp = (rxp+1) % NUM_RX_BUFFER;
1184 		if (++i > NUM_RX_BUFFER) {
1185 			dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1186 			    " than we have\n");
1187 			break;
1188 		}
1189 		dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1190 		dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1191 	}
1192 	dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1193 
1194 	/* Discard the terminal buffer */
1195 	if (!(dmabits & DMA_OWN)) {
1196 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1197 		rxp = (rxp+1) % NUM_RX_BUFFER;
1198 	}
1199 	port->rxpos = rxp;
1200 	return;
1201 
1202 }
1203 
1204 /*      Rx complete interrupt
1205  */
1206 static void
1207 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1208 {
1209 	unsigned char dmabits;
1210 	int pi;
1211 	int rxp;
1212 	int rx_status;
1213 	unsigned short len;
1214 	struct sk_buff *skb;
1215 	struct net_device *dev = port_to_dev(port);
1216 
1217 	/* Check we have a buffer to process */
1218 	pi = port->index;
1219 	rxp = port->rxpos;
1220 	dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1221 	if (dmabits & DMA_OWN) {
1222 		dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1223 		    pi, rxp);
1224 		return;
1225 	}
1226 	if (card->dmarx_in_progress) {
1227 		return;
1228 	}
1229 
1230 	/* Get buffer length */
1231 	len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1232 	/* Discard the CRC */
1233 	len -= 2;
1234 	if (len == 0) {
1235 		/*
1236 		 * This seems to happen on the TE1 interface sometimes
1237 		 * so throw the frame away and log the event.
1238 		 */
1239 		pr_err("Frame received with 0 length. Card %d Port %d\n",
1240 		       card->card_no, port->index);
1241 		/* Return descriptor to card */
1242 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1243 
1244 		rxp = (rxp+1) % NUM_RX_BUFFER;
1245 		port->rxpos = rxp;
1246 		return;
1247 	}
1248 
1249 	/* Check buffer length and for other errors. We insist on one packet
1250 	 * in one buffer. This simplifies things greatly and since we've
1251 	 * allocated 8K it shouldn't be a real world limitation
1252 	 */
1253 	dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1254 	if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1255 		fst_log_rx_error(card, port, dmabits, rxp, len);
1256 		fst_recover_rx_error(card, port, dmabits, rxp, len);
1257 		return;
1258 	}
1259 
1260 	/* Allocate SKB */
1261 	if ((skb = dev_alloc_skb(len)) == NULL) {
1262 		dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1263 
1264 		dev->stats.rx_dropped++;
1265 
1266 		/* Return descriptor to card */
1267 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1268 
1269 		rxp = (rxp+1) % NUM_RX_BUFFER;
1270 		port->rxpos = rxp;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * We know the length we need to receive, len.
1276 	 * It's not worth using the DMA for reads of less than
1277 	 * FST_MIN_DMA_LEN
1278 	 */
1279 
1280 	if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1281 		memcpy_fromio(skb_put(skb, len),
1282 			      card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1283 			      len);
1284 
1285 		/* Reset buffer descriptor */
1286 		FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1287 
1288 		/* Update stats */
1289 		dev->stats.rx_packets++;
1290 		dev->stats.rx_bytes += len;
1291 
1292 		/* Push upstream */
1293 		dbg(DBG_RX, "Pushing frame up the stack\n");
1294 		if (port->mode == FST_RAW)
1295 			skb->protocol = farsync_type_trans(skb, dev);
1296 		else
1297 			skb->protocol = hdlc_type_trans(skb, dev);
1298 		rx_status = netif_rx(skb);
1299 		fst_process_rx_status(rx_status, port_to_dev(port)->name);
1300 		if (rx_status == NET_RX_DROP)
1301 			dev->stats.rx_dropped++;
1302 	} else {
1303 		card->dma_skb_rx = skb;
1304 		card->dma_port_rx = port;
1305 		card->dma_len_rx = len;
1306 		card->dma_rxpos = rxp;
1307 		fst_rx_dma(card, card->rx_dma_handle_card,
1308 			   BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1309 	}
1310 	if (rxp != port->rxpos) {
1311 		dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1312 		dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1313 	}
1314 	rxp = (rxp+1) % NUM_RX_BUFFER;
1315 	port->rxpos = rxp;
1316 }
1317 
1318 /*
1319  *      The bottom halfs to the ISR
1320  *
1321  */
1322 
1323 static void
1324 do_bottom_half_tx(struct fst_card_info *card)
1325 {
1326 	struct fst_port_info *port;
1327 	int pi;
1328 	int txq_length;
1329 	struct sk_buff *skb;
1330 	unsigned long flags;
1331 	struct net_device *dev;
1332 
1333 	/*
1334 	 *  Find a free buffer for the transmit
1335 	 *  Step through each port on this card
1336 	 */
1337 
1338 	dbg(DBG_TX, "do_bottom_half_tx\n");
1339 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1340 		if (!port->run)
1341 			continue;
1342 
1343 		dev = port_to_dev(port);
1344 		while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1345 			 DMA_OWN) &&
1346 		       !(card->dmatx_in_progress)) {
1347 			/*
1348 			 * There doesn't seem to be a txdone event per-se
1349 			 * We seem to have to deduce it, by checking the DMA_OWN
1350 			 * bit on the next buffer we think we can use
1351 			 */
1352 			spin_lock_irqsave(&card->card_lock, flags);
1353 			if ((txq_length = port->txqe - port->txqs) < 0) {
1354 				/*
1355 				 * This is the case where one has wrapped and the
1356 				 * maths gives us a negative number
1357 				 */
1358 				txq_length = txq_length + FST_TXQ_DEPTH;
1359 			}
1360 			spin_unlock_irqrestore(&card->card_lock, flags);
1361 			if (txq_length > 0) {
1362 				/*
1363 				 * There is something to send
1364 				 */
1365 				spin_lock_irqsave(&card->card_lock, flags);
1366 				skb = port->txq[port->txqs];
1367 				port->txqs++;
1368 				if (port->txqs == FST_TXQ_DEPTH) {
1369 					port->txqs = 0;
1370 				}
1371 				spin_unlock_irqrestore(&card->card_lock, flags);
1372 				/*
1373 				 * copy the data and set the required indicators on the
1374 				 * card.
1375 				 */
1376 				FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1377 					cnv_bcnt(skb->len));
1378 				if ((skb->len < FST_MIN_DMA_LEN) ||
1379 				    (card->family == FST_FAMILY_TXP)) {
1380 					/* Enqueue the packet with normal io */
1381 					memcpy_toio(card->mem +
1382 						    BUF_OFFSET(txBuffer[pi]
1383 							       [port->
1384 								txpos][0]),
1385 						    skb->data, skb->len);
1386 					FST_WRB(card,
1387 						txDescrRing[pi][port->txpos].
1388 						bits,
1389 						DMA_OWN | TX_STP | TX_ENP);
1390 					dev->stats.tx_packets++;
1391 					dev->stats.tx_bytes += skb->len;
1392 					netif_trans_update(dev);
1393 				} else {
1394 					/* Or do it through dma */
1395 					memcpy(card->tx_dma_handle_host,
1396 					       skb->data, skb->len);
1397 					card->dma_port_tx = port;
1398 					card->dma_len_tx = skb->len;
1399 					card->dma_txpos = port->txpos;
1400 					fst_tx_dma(card,
1401 						   card->tx_dma_handle_card,
1402 						   BUF_OFFSET(txBuffer[pi]
1403 							      [port->txpos][0]),
1404 						   skb->len);
1405 				}
1406 				if (++port->txpos >= NUM_TX_BUFFER)
1407 					port->txpos = 0;
1408 				/*
1409 				 * If we have flow control on, can we now release it?
1410 				 */
1411 				if (port->start) {
1412 					if (txq_length < fst_txq_low) {
1413 						netif_wake_queue(port_to_dev
1414 								 (port));
1415 						port->start = 0;
1416 					}
1417 				}
1418 				dev_kfree_skb(skb);
1419 			} else {
1420 				/*
1421 				 * Nothing to send so break out of the while loop
1422 				 */
1423 				break;
1424 			}
1425 		}
1426 	}
1427 }
1428 
1429 static void
1430 do_bottom_half_rx(struct fst_card_info *card)
1431 {
1432 	struct fst_port_info *port;
1433 	int pi;
1434 	int rx_count = 0;
1435 
1436 	/* Check for rx completions on all ports on this card */
1437 	dbg(DBG_RX, "do_bottom_half_rx\n");
1438 	for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1439 		if (!port->run)
1440 			continue;
1441 
1442 		while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1443 			 & DMA_OWN) && !(card->dmarx_in_progress)) {
1444 			if (rx_count > fst_max_reads) {
1445 				/*
1446 				 * Don't spend forever in receive processing
1447 				 * Schedule another event
1448 				 */
1449 				fst_q_work_item(&fst_work_intq, card->card_no);
1450 				tasklet_schedule(&fst_int_task);
1451 				break;	/* Leave the loop */
1452 			}
1453 			fst_intr_rx(card, port);
1454 			rx_count++;
1455 		}
1456 	}
1457 }
1458 
1459 /*
1460  *      The interrupt service routine
1461  *      Dev_id is our fst_card_info pointer
1462  */
1463 static irqreturn_t
1464 fst_intr(int dummy, void *dev_id)
1465 {
1466 	struct fst_card_info *card = dev_id;
1467 	struct fst_port_info *port;
1468 	int rdidx;		/* Event buffer indices */
1469 	int wridx;
1470 	int event;		/* Actual event for processing */
1471 	unsigned int dma_intcsr = 0;
1472 	unsigned int do_card_interrupt;
1473 	unsigned int int_retry_count;
1474 
1475 	/*
1476 	 * Check to see if the interrupt was for this card
1477 	 * return if not
1478 	 * Note that the call to clear the interrupt is important
1479 	 */
1480 	dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1481 	if (card->state != FST_RUNNING) {
1482 		pr_err("Interrupt received for card %d in a non running state (%d)\n",
1483 		       card->card_no, card->state);
1484 
1485 		/*
1486 		 * It is possible to really be running, i.e. we have re-loaded
1487 		 * a running card
1488 		 * Clear and reprime the interrupt source
1489 		 */
1490 		fst_clear_intr(card);
1491 		return IRQ_HANDLED;
1492 	}
1493 
1494 	/* Clear and reprime the interrupt source */
1495 	fst_clear_intr(card);
1496 
1497 	/*
1498 	 * Is the interrupt for this card (handshake == 1)
1499 	 */
1500 	do_card_interrupt = 0;
1501 	if (FST_RDB(card, interruptHandshake) == 1) {
1502 		do_card_interrupt += FST_CARD_INT;
1503 		/* Set the software acknowledge */
1504 		FST_WRB(card, interruptHandshake, 0xEE);
1505 	}
1506 	if (card->family == FST_FAMILY_TXU) {
1507 		/*
1508 		 * Is it a DMA Interrupt
1509 		 */
1510 		dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1511 		if (dma_intcsr & 0x00200000) {
1512 			/*
1513 			 * DMA Channel 0 (Rx transfer complete)
1514 			 */
1515 			dbg(DBG_RX, "DMA Rx xfer complete\n");
1516 			outb(0x8, card->pci_conf + DMACSR0);
1517 			fst_rx_dma_complete(card, card->dma_port_rx,
1518 					    card->dma_len_rx, card->dma_skb_rx,
1519 					    card->dma_rxpos);
1520 			card->dmarx_in_progress = 0;
1521 			do_card_interrupt += FST_RX_DMA_INT;
1522 		}
1523 		if (dma_intcsr & 0x00400000) {
1524 			/*
1525 			 * DMA Channel 1 (Tx transfer complete)
1526 			 */
1527 			dbg(DBG_TX, "DMA Tx xfer complete\n");
1528 			outb(0x8, card->pci_conf + DMACSR1);
1529 			fst_tx_dma_complete(card, card->dma_port_tx,
1530 					    card->dma_len_tx, card->dma_txpos);
1531 			card->dmatx_in_progress = 0;
1532 			do_card_interrupt += FST_TX_DMA_INT;
1533 		}
1534 	}
1535 
1536 	/*
1537 	 * Have we been missing Interrupts
1538 	 */
1539 	int_retry_count = FST_RDL(card, interruptRetryCount);
1540 	if (int_retry_count) {
1541 		dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1542 		    card->card_no, int_retry_count);
1543 		FST_WRL(card, interruptRetryCount, 0);
1544 	}
1545 
1546 	if (!do_card_interrupt) {
1547 		return IRQ_HANDLED;
1548 	}
1549 
1550 	/* Scehdule the bottom half of the ISR */
1551 	fst_q_work_item(&fst_work_intq, card->card_no);
1552 	tasklet_schedule(&fst_int_task);
1553 
1554 	/* Drain the event queue */
1555 	rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1556 	wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1557 	while (rdidx != wridx) {
1558 		event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1559 		port = &card->ports[event & 0x03];
1560 
1561 		dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1562 
1563 		switch (event) {
1564 		case TE1_ALMA:
1565 			dbg(DBG_INTR, "TE1 Alarm intr\n");
1566 			if (port->run)
1567 				fst_intr_te1_alarm(card, port);
1568 			break;
1569 
1570 		case CTLA_CHG:
1571 		case CTLB_CHG:
1572 		case CTLC_CHG:
1573 		case CTLD_CHG:
1574 			if (port->run)
1575 				fst_intr_ctlchg(card, port);
1576 			break;
1577 
1578 		case ABTA_SENT:
1579 		case ABTB_SENT:
1580 		case ABTC_SENT:
1581 		case ABTD_SENT:
1582 			dbg(DBG_TX, "Abort complete port %d\n", port->index);
1583 			break;
1584 
1585 		case TXA_UNDF:
1586 		case TXB_UNDF:
1587 		case TXC_UNDF:
1588 		case TXD_UNDF:
1589 			/* Difficult to see how we'd get this given that we
1590 			 * always load up the entire packet for DMA.
1591 			 */
1592 			dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1593 			port_to_dev(port)->stats.tx_errors++;
1594 			port_to_dev(port)->stats.tx_fifo_errors++;
1595 			dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1596 			    card->card_no, port->index);
1597 			break;
1598 
1599 		case INIT_CPLT:
1600 			dbg(DBG_INIT, "Card init OK intr\n");
1601 			break;
1602 
1603 		case INIT_FAIL:
1604 			dbg(DBG_INIT, "Card init FAILED intr\n");
1605 			card->state = FST_IFAILED;
1606 			break;
1607 
1608 		default:
1609 			pr_err("intr: unknown card event %d. ignored\n", event);
1610 			break;
1611 		}
1612 
1613 		/* Bump and wrap the index */
1614 		if (++rdidx >= MAX_CIRBUFF)
1615 			rdidx = 0;
1616 	}
1617 	FST_WRB(card, interruptEvent.rdindex, rdidx);
1618         return IRQ_HANDLED;
1619 }
1620 
1621 /*      Check that the shared memory configuration is one that we can handle
1622  *      and that some basic parameters are correct
1623  */
1624 static void
1625 check_started_ok(struct fst_card_info *card)
1626 {
1627 	int i;
1628 
1629 	/* Check structure version and end marker */
1630 	if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1631 		pr_err("Bad shared memory version %d expected %d\n",
1632 		       FST_RDW(card, smcVersion), SMC_VERSION);
1633 		card->state = FST_BADVERSION;
1634 		return;
1635 	}
1636 	if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1637 		pr_err("Missing shared memory signature\n");
1638 		card->state = FST_BADVERSION;
1639 		return;
1640 	}
1641 	/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1642 	if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1643 		card->state = FST_RUNNING;
1644 	} else if (i == 0xFF) {
1645 		pr_err("Firmware initialisation failed. Card halted\n");
1646 		card->state = FST_HALTED;
1647 		return;
1648 	} else if (i != 0x00) {
1649 		pr_err("Unknown firmware status 0x%x\n", i);
1650 		card->state = FST_HALTED;
1651 		return;
1652 	}
1653 
1654 	/* Finally check the number of ports reported by firmware against the
1655 	 * number we assumed at card detection. Should never happen with
1656 	 * existing firmware etc so we just report it for the moment.
1657 	 */
1658 	if (FST_RDL(card, numberOfPorts) != card->nports) {
1659 		pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1660 			card->card_no,
1661 			FST_RDL(card, numberOfPorts), card->nports);
1662 	}
1663 }
1664 
1665 static int
1666 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1667 		   struct fstioc_info *info)
1668 {
1669 	int err;
1670 	unsigned char my_framing;
1671 
1672 	/* Set things according to the user set valid flags
1673 	 * Several of the old options have been invalidated/replaced by the
1674 	 * generic hdlc package.
1675 	 */
1676 	err = 0;
1677 	if (info->valid & FSTVAL_PROTO) {
1678 		if (info->proto == FST_RAW)
1679 			port->mode = FST_RAW;
1680 		else
1681 			port->mode = FST_GEN_HDLC;
1682 	}
1683 
1684 	if (info->valid & FSTVAL_CABLE)
1685 		err = -EINVAL;
1686 
1687 	if (info->valid & FSTVAL_SPEED)
1688 		err = -EINVAL;
1689 
1690 	if (info->valid & FSTVAL_PHASE)
1691 		FST_WRB(card, portConfig[port->index].invertClock,
1692 			info->invertClock);
1693 	if (info->valid & FSTVAL_MODE)
1694 		FST_WRW(card, cardMode, info->cardMode);
1695 	if (info->valid & FSTVAL_TE1) {
1696 		FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1697 		FST_WRB(card, suConfig.clocking, info->clockSource);
1698 		my_framing = FRAMING_E1;
1699 		if (info->framing == E1)
1700 			my_framing = FRAMING_E1;
1701 		if (info->framing == T1)
1702 			my_framing = FRAMING_T1;
1703 		if (info->framing == J1)
1704 			my_framing = FRAMING_J1;
1705 		FST_WRB(card, suConfig.framing, my_framing);
1706 		FST_WRB(card, suConfig.structure, info->structure);
1707 		FST_WRB(card, suConfig.interface, info->interface);
1708 		FST_WRB(card, suConfig.coding, info->coding);
1709 		FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1710 		FST_WRB(card, suConfig.equalizer, info->equalizer);
1711 		FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1712 		FST_WRB(card, suConfig.loopMode, info->loopMode);
1713 		FST_WRB(card, suConfig.range, info->range);
1714 		FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1715 		FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1716 		FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1717 		FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1718 		if (info->idleCode)
1719 			FST_WRB(card, suConfig.enableIdleCode, 1);
1720 		else
1721 			FST_WRB(card, suConfig.enableIdleCode, 0);
1722 		FST_WRB(card, suConfig.idleCode, info->idleCode);
1723 #if FST_DEBUG
1724 		if (info->valid & FSTVAL_TE1) {
1725 			printk("Setting TE1 data\n");
1726 			printk("Line Speed = %d\n", info->lineSpeed);
1727 			printk("Start slot = %d\n", info->startingSlot);
1728 			printk("Clock source = %d\n", info->clockSource);
1729 			printk("Framing = %d\n", my_framing);
1730 			printk("Structure = %d\n", info->structure);
1731 			printk("interface = %d\n", info->interface);
1732 			printk("Coding = %d\n", info->coding);
1733 			printk("Line build out = %d\n", info->lineBuildOut);
1734 			printk("Equaliser = %d\n", info->equalizer);
1735 			printk("Transparent mode = %d\n",
1736 			       info->transparentMode);
1737 			printk("Loop mode = %d\n", info->loopMode);
1738 			printk("Range = %d\n", info->range);
1739 			printk("Tx Buffer mode = %d\n", info->txBufferMode);
1740 			printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1741 			printk("LOS Threshold = %d\n", info->losThreshold);
1742 			printk("Idle Code = %d\n", info->idleCode);
1743 		}
1744 #endif
1745 	}
1746 #if FST_DEBUG
1747 	if (info->valid & FSTVAL_DEBUG) {
1748 		fst_debug_mask = info->debug;
1749 	}
1750 #endif
1751 
1752 	return err;
1753 }
1754 
1755 static void
1756 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1757 		 struct fstioc_info *info)
1758 {
1759 	int i;
1760 
1761 	memset(info, 0, sizeof (struct fstioc_info));
1762 
1763 	i = port->index;
1764 	info->kernelVersion = LINUX_VERSION_CODE;
1765 	info->nports = card->nports;
1766 	info->type = card->type;
1767 	info->state = card->state;
1768 	info->proto = FST_GEN_HDLC;
1769 	info->index = i;
1770 #if FST_DEBUG
1771 	info->debug = fst_debug_mask;
1772 #endif
1773 
1774 	/* Only mark information as valid if card is running.
1775 	 * Copy the data anyway in case it is useful for diagnostics
1776 	 */
1777 	info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1778 #if FST_DEBUG
1779 	    | FSTVAL_DEBUG
1780 #endif
1781 	    ;
1782 
1783 	info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1784 	info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1785 	info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1786 	info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1787 	info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1788 	info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1789 	info->clockStatus = FST_RDW(card, clockStatus[i]);
1790 	info->cableStatus = FST_RDW(card, cableStatus);
1791 	info->cardMode = FST_RDW(card, cardMode);
1792 	info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1793 
1794 	/*
1795 	 * The T2U can report cable presence for both A or B
1796 	 * in bits 0 and 1 of cableStatus.  See which port we are and
1797 	 * do the mapping.
1798 	 */
1799 	if (card->family == FST_FAMILY_TXU) {
1800 		if (port->index == 0) {
1801 			/*
1802 			 * Port A
1803 			 */
1804 			info->cableStatus = info->cableStatus & 1;
1805 		} else {
1806 			/*
1807 			 * Port B
1808 			 */
1809 			info->cableStatus = info->cableStatus >> 1;
1810 			info->cableStatus = info->cableStatus & 1;
1811 		}
1812 	}
1813 	/*
1814 	 * Some additional bits if we are TE1
1815 	 */
1816 	if (card->type == FST_TYPE_TE1) {
1817 		info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1818 		info->clockSource = FST_RDB(card, suConfig.clocking);
1819 		info->framing = FST_RDB(card, suConfig.framing);
1820 		info->structure = FST_RDB(card, suConfig.structure);
1821 		info->interface = FST_RDB(card, suConfig.interface);
1822 		info->coding = FST_RDB(card, suConfig.coding);
1823 		info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1824 		info->equalizer = FST_RDB(card, suConfig.equalizer);
1825 		info->loopMode = FST_RDB(card, suConfig.loopMode);
1826 		info->range = FST_RDB(card, suConfig.range);
1827 		info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1828 		info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1829 		info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1830 		info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1831 		if (FST_RDB(card, suConfig.enableIdleCode))
1832 			info->idleCode = FST_RDB(card, suConfig.idleCode);
1833 		else
1834 			info->idleCode = 0;
1835 		info->receiveBufferDelay =
1836 		    FST_RDL(card, suStatus.receiveBufferDelay);
1837 		info->framingErrorCount =
1838 		    FST_RDL(card, suStatus.framingErrorCount);
1839 		info->codeViolationCount =
1840 		    FST_RDL(card, suStatus.codeViolationCount);
1841 		info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1842 		info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1843 		info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1844 		info->receiveRemoteAlarm =
1845 		    FST_RDB(card, suStatus.receiveRemoteAlarm);
1846 		info->alarmIndicationSignal =
1847 		    FST_RDB(card, suStatus.alarmIndicationSignal);
1848 	}
1849 }
1850 
1851 static int
1852 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1853 	      struct ifreq *ifr)
1854 {
1855 	sync_serial_settings sync;
1856 	int i;
1857 
1858 	if (ifr->ifr_settings.size != sizeof (sync)) {
1859 		return -ENOMEM;
1860 	}
1861 
1862 	if (copy_from_user
1863 	    (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1864 		return -EFAULT;
1865 	}
1866 
1867 	if (sync.loopback)
1868 		return -EINVAL;
1869 
1870 	i = port->index;
1871 
1872 	switch (ifr->ifr_settings.type) {
1873 	case IF_IFACE_V35:
1874 		FST_WRW(card, portConfig[i].lineInterface, V35);
1875 		port->hwif = V35;
1876 		break;
1877 
1878 	case IF_IFACE_V24:
1879 		FST_WRW(card, portConfig[i].lineInterface, V24);
1880 		port->hwif = V24;
1881 		break;
1882 
1883 	case IF_IFACE_X21:
1884 		FST_WRW(card, portConfig[i].lineInterface, X21);
1885 		port->hwif = X21;
1886 		break;
1887 
1888 	case IF_IFACE_X21D:
1889 		FST_WRW(card, portConfig[i].lineInterface, X21D);
1890 		port->hwif = X21D;
1891 		break;
1892 
1893 	case IF_IFACE_T1:
1894 		FST_WRW(card, portConfig[i].lineInterface, T1);
1895 		port->hwif = T1;
1896 		break;
1897 
1898 	case IF_IFACE_E1:
1899 		FST_WRW(card, portConfig[i].lineInterface, E1);
1900 		port->hwif = E1;
1901 		break;
1902 
1903 	case IF_IFACE_SYNC_SERIAL:
1904 		break;
1905 
1906 	default:
1907 		return -EINVAL;
1908 	}
1909 
1910 	switch (sync.clock_type) {
1911 	case CLOCK_EXT:
1912 		FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1913 		break;
1914 
1915 	case CLOCK_INT:
1916 		FST_WRB(card, portConfig[i].internalClock, INTCLK);
1917 		break;
1918 
1919 	default:
1920 		return -EINVAL;
1921 	}
1922 	FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1923 	return 0;
1924 }
1925 
1926 static int
1927 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1928 	      struct ifreq *ifr)
1929 {
1930 	sync_serial_settings sync;
1931 	int i;
1932 
1933 	/* First check what line type is set, we'll default to reporting X.21
1934 	 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1935 	 * changed
1936 	 */
1937 	switch (port->hwif) {
1938 	case E1:
1939 		ifr->ifr_settings.type = IF_IFACE_E1;
1940 		break;
1941 	case T1:
1942 		ifr->ifr_settings.type = IF_IFACE_T1;
1943 		break;
1944 	case V35:
1945 		ifr->ifr_settings.type = IF_IFACE_V35;
1946 		break;
1947 	case V24:
1948 		ifr->ifr_settings.type = IF_IFACE_V24;
1949 		break;
1950 	case X21D:
1951 		ifr->ifr_settings.type = IF_IFACE_X21D;
1952 		break;
1953 	case X21:
1954 	default:
1955 		ifr->ifr_settings.type = IF_IFACE_X21;
1956 		break;
1957 	}
1958 	if (ifr->ifr_settings.size == 0) {
1959 		return 0;	/* only type requested */
1960 	}
1961 	if (ifr->ifr_settings.size < sizeof (sync)) {
1962 		return -ENOMEM;
1963 	}
1964 
1965 	i = port->index;
1966 	memset(&sync, 0, sizeof(sync));
1967 	sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1968 	/* Lucky card and linux use same encoding here */
1969 	sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1970 	    INTCLK ? CLOCK_INT : CLOCK_EXT;
1971 	sync.loopback = 0;
1972 
1973 	if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1974 		return -EFAULT;
1975 	}
1976 
1977 	ifr->ifr_settings.size = sizeof (sync);
1978 	return 0;
1979 }
1980 
1981 static int
1982 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1983 {
1984 	struct fst_card_info *card;
1985 	struct fst_port_info *port;
1986 	struct fstioc_write wrthdr;
1987 	struct fstioc_info info;
1988 	unsigned long flags;
1989 	void *buf;
1990 
1991 	dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1992 
1993 	port = dev_to_port(dev);
1994 	card = port->card;
1995 
1996 	if (!capable(CAP_NET_ADMIN))
1997 		return -EPERM;
1998 
1999 	switch (cmd) {
2000 	case FSTCPURESET:
2001 		fst_cpureset(card);
2002 		card->state = FST_RESET;
2003 		return 0;
2004 
2005 	case FSTCPURELEASE:
2006 		fst_cpurelease(card);
2007 		card->state = FST_STARTING;
2008 		return 0;
2009 
2010 	case FSTWRITE:		/* Code write (download) */
2011 
2012 		/* First copy in the header with the length and offset of data
2013 		 * to write
2014 		 */
2015 		if (ifr->ifr_data == NULL) {
2016 			return -EINVAL;
2017 		}
2018 		if (copy_from_user(&wrthdr, ifr->ifr_data,
2019 				   sizeof (struct fstioc_write))) {
2020 			return -EFAULT;
2021 		}
2022 
2023 		/* Sanity check the parameters. We don't support partial writes
2024 		 * when going over the top
2025 		 */
2026 		if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2027 		    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2028 			return -ENXIO;
2029 		}
2030 
2031 		/* Now copy the data to the card. */
2032 
2033 		buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2034 				  wrthdr.size);
2035 		if (IS_ERR(buf))
2036 			return PTR_ERR(buf);
2037 
2038 		memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2039 		kfree(buf);
2040 
2041 		/* Writes to the memory of a card in the reset state constitute
2042 		 * a download
2043 		 */
2044 		if (card->state == FST_RESET) {
2045 			card->state = FST_DOWNLOAD;
2046 		}
2047 		return 0;
2048 
2049 	case FSTGETCONF:
2050 
2051 		/* If card has just been started check the shared memory config
2052 		 * version and marker
2053 		 */
2054 		if (card->state == FST_STARTING) {
2055 			check_started_ok(card);
2056 
2057 			/* If everything checked out enable card interrupts */
2058 			if (card->state == FST_RUNNING) {
2059 				spin_lock_irqsave(&card->card_lock, flags);
2060 				fst_enable_intr(card);
2061 				FST_WRB(card, interruptHandshake, 0xEE);
2062 				spin_unlock_irqrestore(&card->card_lock, flags);
2063 			}
2064 		}
2065 
2066 		if (ifr->ifr_data == NULL) {
2067 			return -EINVAL;
2068 		}
2069 
2070 		gather_conf_info(card, port, &info);
2071 
2072 		if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2073 			return -EFAULT;
2074 		}
2075 		return 0;
2076 
2077 	case FSTSETCONF:
2078 
2079 		/*
2080 		 * Most of the settings have been moved to the generic ioctls
2081 		 * this just covers debug and board ident now
2082 		 */
2083 
2084 		if (card->state != FST_RUNNING) {
2085 			pr_err("Attempt to configure card %d in non-running state (%d)\n",
2086 			       card->card_no, card->state);
2087 			return -EIO;
2088 		}
2089 		if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2090 			return -EFAULT;
2091 		}
2092 
2093 		return set_conf_from_info(card, port, &info);
2094 
2095 	case SIOCWANDEV:
2096 		switch (ifr->ifr_settings.type) {
2097 		case IF_GET_IFACE:
2098 			return fst_get_iface(card, port, ifr);
2099 
2100 		case IF_IFACE_SYNC_SERIAL:
2101 		case IF_IFACE_V35:
2102 		case IF_IFACE_V24:
2103 		case IF_IFACE_X21:
2104 		case IF_IFACE_X21D:
2105 		case IF_IFACE_T1:
2106 		case IF_IFACE_E1:
2107 			return fst_set_iface(card, port, ifr);
2108 
2109 		case IF_PROTO_RAW:
2110 			port->mode = FST_RAW;
2111 			return 0;
2112 
2113 		case IF_GET_PROTO:
2114 			if (port->mode == FST_RAW) {
2115 				ifr->ifr_settings.type = IF_PROTO_RAW;
2116 				return 0;
2117 			}
2118 			return hdlc_ioctl(dev, ifr, cmd);
2119 
2120 		default:
2121 			port->mode = FST_GEN_HDLC;
2122 			dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2123 			    ifr->ifr_settings.type);
2124 			return hdlc_ioctl(dev, ifr, cmd);
2125 		}
2126 
2127 	default:
2128 		/* Not one of ours. Pass through to HDLC package */
2129 		return hdlc_ioctl(dev, ifr, cmd);
2130 	}
2131 }
2132 
2133 static void
2134 fst_openport(struct fst_port_info *port)
2135 {
2136 	int signals;
2137 	int txq_length;
2138 
2139 	/* Only init things if card is actually running. This allows open to
2140 	 * succeed for downloads etc.
2141 	 */
2142 	if (port->card->state == FST_RUNNING) {
2143 		if (port->run) {
2144 			dbg(DBG_OPEN, "open: found port already running\n");
2145 
2146 			fst_issue_cmd(port, STOPPORT);
2147 			port->run = 0;
2148 		}
2149 
2150 		fst_rx_config(port);
2151 		fst_tx_config(port);
2152 		fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2153 
2154 		fst_issue_cmd(port, STARTPORT);
2155 		port->run = 1;
2156 
2157 		signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2158 		if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2159 			       ? IPSTS_INDICATE : IPSTS_DCD))
2160 			netif_carrier_on(port_to_dev(port));
2161 		else
2162 			netif_carrier_off(port_to_dev(port));
2163 
2164 		txq_length = port->txqe - port->txqs;
2165 		port->txqe = 0;
2166 		port->txqs = 0;
2167 	}
2168 
2169 }
2170 
2171 static void
2172 fst_closeport(struct fst_port_info *port)
2173 {
2174 	if (port->card->state == FST_RUNNING) {
2175 		if (port->run) {
2176 			port->run = 0;
2177 			fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2178 
2179 			fst_issue_cmd(port, STOPPORT);
2180 		} else {
2181 			dbg(DBG_OPEN, "close: port not running\n");
2182 		}
2183 	}
2184 }
2185 
2186 static int
2187 fst_open(struct net_device *dev)
2188 {
2189 	int err;
2190 	struct fst_port_info *port;
2191 
2192 	port = dev_to_port(dev);
2193 	if (!try_module_get(THIS_MODULE))
2194           return -EBUSY;
2195 
2196 	if (port->mode != FST_RAW) {
2197 		err = hdlc_open(dev);
2198 		if (err) {
2199 			module_put(THIS_MODULE);
2200 			return err;
2201 		}
2202 	}
2203 
2204 	fst_openport(port);
2205 	netif_wake_queue(dev);
2206 	return 0;
2207 }
2208 
2209 static int
2210 fst_close(struct net_device *dev)
2211 {
2212 	struct fst_port_info *port;
2213 	struct fst_card_info *card;
2214 	unsigned char tx_dma_done;
2215 	unsigned char rx_dma_done;
2216 
2217 	port = dev_to_port(dev);
2218 	card = port->card;
2219 
2220 	tx_dma_done = inb(card->pci_conf + DMACSR1);
2221 	rx_dma_done = inb(card->pci_conf + DMACSR0);
2222 	dbg(DBG_OPEN,
2223 	    "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2224 	    card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2225 	    rx_dma_done);
2226 
2227 	netif_stop_queue(dev);
2228 	fst_closeport(dev_to_port(dev));
2229 	if (port->mode != FST_RAW) {
2230 		hdlc_close(dev);
2231 	}
2232 	module_put(THIS_MODULE);
2233 	return 0;
2234 }
2235 
2236 static int
2237 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2238 {
2239 	/*
2240 	 * Setting currently fixed in FarSync card so we check and forget
2241 	 */
2242 	if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2243 		return -EINVAL;
2244 	return 0;
2245 }
2246 
2247 static void
2248 fst_tx_timeout(struct net_device *dev)
2249 {
2250 	struct fst_port_info *port;
2251 	struct fst_card_info *card;
2252 
2253 	port = dev_to_port(dev);
2254 	card = port->card;
2255 	dev->stats.tx_errors++;
2256 	dev->stats.tx_aborted_errors++;
2257 	dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2258 	    card->card_no, port->index);
2259 	fst_issue_cmd(port, ABORTTX);
2260 
2261 	netif_trans_update(dev);
2262 	netif_wake_queue(dev);
2263 	port->start = 0;
2264 }
2265 
2266 static netdev_tx_t
2267 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2268 {
2269 	struct fst_card_info *card;
2270 	struct fst_port_info *port;
2271 	unsigned long flags;
2272 	int txq_length;
2273 
2274 	port = dev_to_port(dev);
2275 	card = port->card;
2276 	dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2277 
2278 	/* Drop packet with error if we don't have carrier */
2279 	if (!netif_carrier_ok(dev)) {
2280 		dev_kfree_skb(skb);
2281 		dev->stats.tx_errors++;
2282 		dev->stats.tx_carrier_errors++;
2283 		dbg(DBG_ASS,
2284 		    "Tried to transmit but no carrier on card %d port %d\n",
2285 		    card->card_no, port->index);
2286 		return NETDEV_TX_OK;
2287 	}
2288 
2289 	/* Drop it if it's too big! MTU failure ? */
2290 	if (skb->len > LEN_TX_BUFFER) {
2291 		dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2292 		    LEN_TX_BUFFER);
2293 		dev_kfree_skb(skb);
2294 		dev->stats.tx_errors++;
2295 		return NETDEV_TX_OK;
2296 	}
2297 
2298 	/*
2299 	 * We are always going to queue the packet
2300 	 * so that the bottom half is the only place we tx from
2301 	 * Check there is room in the port txq
2302 	 */
2303 	spin_lock_irqsave(&card->card_lock, flags);
2304 	if ((txq_length = port->txqe - port->txqs) < 0) {
2305 		/*
2306 		 * This is the case where the next free has wrapped but the
2307 		 * last used hasn't
2308 		 */
2309 		txq_length = txq_length + FST_TXQ_DEPTH;
2310 	}
2311 	spin_unlock_irqrestore(&card->card_lock, flags);
2312 	if (txq_length > fst_txq_high) {
2313 		/*
2314 		 * We have got enough buffers in the pipeline.  Ask the network
2315 		 * layer to stop sending frames down
2316 		 */
2317 		netif_stop_queue(dev);
2318 		port->start = 1;	/* I'm using this to signal stop sent up */
2319 	}
2320 
2321 	if (txq_length == FST_TXQ_DEPTH - 1) {
2322 		/*
2323 		 * This shouldn't have happened but such is life
2324 		 */
2325 		dev_kfree_skb(skb);
2326 		dev->stats.tx_errors++;
2327 		dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2328 		    card->card_no, port->index);
2329 		return NETDEV_TX_OK;
2330 	}
2331 
2332 	/*
2333 	 * queue the buffer
2334 	 */
2335 	spin_lock_irqsave(&card->card_lock, flags);
2336 	port->txq[port->txqe] = skb;
2337 	port->txqe++;
2338 	if (port->txqe == FST_TXQ_DEPTH)
2339 		port->txqe = 0;
2340 	spin_unlock_irqrestore(&card->card_lock, flags);
2341 
2342 	/* Scehdule the bottom half which now does transmit processing */
2343 	fst_q_work_item(&fst_work_txq, card->card_no);
2344 	tasklet_schedule(&fst_tx_task);
2345 
2346 	return NETDEV_TX_OK;
2347 }
2348 
2349 /*
2350  *      Card setup having checked hardware resources.
2351  *      Should be pretty bizarre if we get an error here (kernel memory
2352  *      exhaustion is one possibility). If we do see a problem we report it
2353  *      via a printk and leave the corresponding interface and all that follow
2354  *      disabled.
2355  */
2356 static char *type_strings[] = {
2357 	"no hardware",		/* Should never be seen */
2358 	"FarSync T2P",
2359 	"FarSync T4P",
2360 	"FarSync T1U",
2361 	"FarSync T2U",
2362 	"FarSync T4U",
2363 	"FarSync TE1"
2364 };
2365 
2366 static int
2367 fst_init_card(struct fst_card_info *card)
2368 {
2369 	int i;
2370 	int err;
2371 
2372 	/* We're working on a number of ports based on the card ID. If the
2373 	 * firmware detects something different later (should never happen)
2374 	 * we'll have to revise it in some way then.
2375 	 */
2376 	for (i = 0; i < card->nports; i++) {
2377 		err = register_hdlc_device(card->ports[i].dev);
2378 		if (err < 0) {
2379 			pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2380 				i, -err);
2381 			while (i--)
2382 				unregister_hdlc_device(card->ports[i].dev);
2383 			return err;
2384 		}
2385 	}
2386 
2387 	pr_info("%s-%s: %s IRQ%d, %d ports\n",
2388 		port_to_dev(&card->ports[0])->name,
2389 		port_to_dev(&card->ports[card->nports - 1])->name,
2390 		type_strings[card->type], card->irq, card->nports);
2391 	return 0;
2392 }
2393 
2394 static const struct net_device_ops fst_ops = {
2395 	.ndo_open       = fst_open,
2396 	.ndo_stop       = fst_close,
2397 	.ndo_start_xmit = hdlc_start_xmit,
2398 	.ndo_do_ioctl   = fst_ioctl,
2399 	.ndo_tx_timeout = fst_tx_timeout,
2400 };
2401 
2402 /*
2403  *      Initialise card when detected.
2404  *      Returns 0 to indicate success, or errno otherwise.
2405  */
2406 static int
2407 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2408 {
2409 	static int no_of_cards_added = 0;
2410 	struct fst_card_info *card;
2411 	int err = 0;
2412 	int i;
2413 
2414 	printk_once(KERN_INFO
2415 		    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2416 			   " (c) 2001-2004 FarSite Communications Ltd.\n"));
2417 #if FST_DEBUG
2418 	dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2419 #endif
2420 	/*
2421 	 * We are going to be clever and allow certain cards not to be
2422 	 * configured.  An exclude list can be provided in /etc/modules.conf
2423 	 */
2424 	if (fst_excluded_cards != 0) {
2425 		/*
2426 		 * There are cards to exclude
2427 		 *
2428 		 */
2429 		for (i = 0; i < fst_excluded_cards; i++) {
2430 			if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2431 				pr_info("FarSync PCI device %d not assigned\n",
2432 					(pdev->devfn) >> 3);
2433 				return -EBUSY;
2434 			}
2435 		}
2436 	}
2437 
2438 	/* Allocate driver private data */
2439 	card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2440 	if (card == NULL)
2441 		return -ENOMEM;
2442 
2443 	/* Try to enable the device */
2444 	if ((err = pci_enable_device(pdev)) != 0) {
2445 		pr_err("Failed to enable card. Err %d\n", -err);
2446 		goto enable_fail;
2447 	}
2448 
2449 	if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2450 		pr_err("Failed to allocate regions. Err %d\n", -err);
2451 		goto regions_fail;
2452 	}
2453 
2454 	/* Get virtual addresses of memory regions */
2455 	card->pci_conf = pci_resource_start(pdev, 1);
2456 	card->phys_mem = pci_resource_start(pdev, 2);
2457 	card->phys_ctlmem = pci_resource_start(pdev, 3);
2458 	if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2459 		pr_err("Physical memory remap failed\n");
2460 		err = -ENODEV;
2461 		goto ioremap_physmem_fail;
2462 	}
2463 	if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2464 		pr_err("Control memory remap failed\n");
2465 		err = -ENODEV;
2466 		goto ioremap_ctlmem_fail;
2467 	}
2468 	dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2469 
2470 	/* Register the interrupt handler */
2471 	if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2472 		pr_err("Unable to register interrupt %d\n", card->irq);
2473 		err = -ENODEV;
2474 		goto irq_fail;
2475 	}
2476 
2477 	/* Record info we need */
2478 	card->irq = pdev->irq;
2479 	card->type = ent->driver_data;
2480 	card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2481 			(ent->driver_data == FST_TYPE_T4P))
2482 	    ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2483 	if ((ent->driver_data == FST_TYPE_T1U) ||
2484 	    (ent->driver_data == FST_TYPE_TE1))
2485 		card->nports = 1;
2486 	else
2487 		card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2488 				(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2489 
2490 	card->state = FST_UNINIT;
2491         spin_lock_init ( &card->card_lock );
2492 
2493         for ( i = 0 ; i < card->nports ; i++ ) {
2494 		struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2495 		hdlc_device *hdlc;
2496 		if (!dev) {
2497 			while (i--)
2498 				free_netdev(card->ports[i].dev);
2499 			pr_err("FarSync: out of memory\n");
2500 			err = -ENOMEM;
2501 			goto hdlcdev_fail;
2502 		}
2503 		card->ports[i].dev    = dev;
2504                 card->ports[i].card   = card;
2505                 card->ports[i].index  = i;
2506                 card->ports[i].run    = 0;
2507 
2508 		hdlc = dev_to_hdlc(dev);
2509 
2510                 /* Fill in the net device info */
2511 		/* Since this is a PCI setup this is purely
2512 		 * informational. Give them the buffer addresses
2513 		 * and basic card I/O.
2514 		 */
2515                 dev->mem_start   = card->phys_mem
2516                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2517                 dev->mem_end     = card->phys_mem
2518                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2519                 dev->base_addr   = card->pci_conf;
2520                 dev->irq         = card->irq;
2521 
2522 		dev->netdev_ops = &fst_ops;
2523 		dev->tx_queue_len = FST_TX_QUEUE_LEN;
2524 		dev->watchdog_timeo = FST_TX_TIMEOUT;
2525                 hdlc->attach = fst_attach;
2526                 hdlc->xmit   = fst_start_xmit;
2527 	}
2528 
2529 	card->device = pdev;
2530 
2531 	dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2532 	    card->nports, card->irq);
2533 	dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2534 	    card->pci_conf, card->phys_mem, card->phys_ctlmem);
2535 
2536 	/* Reset the card's processor */
2537 	fst_cpureset(card);
2538 	card->state = FST_RESET;
2539 
2540 	/* Initialise DMA (if required) */
2541 	fst_init_dma(card);
2542 
2543 	/* Record driver data for later use */
2544 	pci_set_drvdata(pdev, card);
2545 
2546 	/* Remainder of card setup */
2547 	if (no_of_cards_added >= FST_MAX_CARDS) {
2548 		pr_err("FarSync: too many cards\n");
2549 		err = -ENOMEM;
2550 		goto card_array_fail;
2551 	}
2552 	fst_card_array[no_of_cards_added] = card;
2553 	card->card_no = no_of_cards_added++;	/* Record instance and bump it */
2554 	err = fst_init_card(card);
2555 	if (err)
2556 		goto init_card_fail;
2557 	if (card->family == FST_FAMILY_TXU) {
2558 		/*
2559 		 * Allocate a dma buffer for transmit and receives
2560 		 */
2561 		card->rx_dma_handle_host =
2562 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2563 					 &card->rx_dma_handle_card);
2564 		if (card->rx_dma_handle_host == NULL) {
2565 			pr_err("Could not allocate rx dma buffer\n");
2566 			err = -ENOMEM;
2567 			goto rx_dma_fail;
2568 		}
2569 		card->tx_dma_handle_host =
2570 		    pci_alloc_consistent(card->device, FST_MAX_MTU,
2571 					 &card->tx_dma_handle_card);
2572 		if (card->tx_dma_handle_host == NULL) {
2573 			pr_err("Could not allocate tx dma buffer\n");
2574 			err = -ENOMEM;
2575 			goto tx_dma_fail;
2576 		}
2577 	}
2578 	return 0;		/* Success */
2579 
2580 tx_dma_fail:
2581 	pci_free_consistent(card->device, FST_MAX_MTU,
2582 			    card->rx_dma_handle_host,
2583 			    card->rx_dma_handle_card);
2584 rx_dma_fail:
2585 	fst_disable_intr(card);
2586 	for (i = 0 ; i < card->nports ; i++)
2587 		unregister_hdlc_device(card->ports[i].dev);
2588 init_card_fail:
2589 	fst_card_array[card->card_no] = NULL;
2590 card_array_fail:
2591 	for (i = 0 ; i < card->nports ; i++)
2592 		free_netdev(card->ports[i].dev);
2593 hdlcdev_fail:
2594 	free_irq(card->irq, card);
2595 irq_fail:
2596 	iounmap(card->ctlmem);
2597 ioremap_ctlmem_fail:
2598 	iounmap(card->mem);
2599 ioremap_physmem_fail:
2600 	pci_release_regions(pdev);
2601 regions_fail:
2602 	pci_disable_device(pdev);
2603 enable_fail:
2604 	kfree(card);
2605 	return err;
2606 }
2607 
2608 /*
2609  *      Cleanup and close down a card
2610  */
2611 static void
2612 fst_remove_one(struct pci_dev *pdev)
2613 {
2614 	struct fst_card_info *card;
2615 	int i;
2616 
2617 	card = pci_get_drvdata(pdev);
2618 
2619 	for (i = 0; i < card->nports; i++) {
2620 		struct net_device *dev = port_to_dev(&card->ports[i]);
2621 		unregister_hdlc_device(dev);
2622 	}
2623 
2624 	fst_disable_intr(card);
2625 	free_irq(card->irq, card);
2626 
2627 	iounmap(card->ctlmem);
2628 	iounmap(card->mem);
2629 	pci_release_regions(pdev);
2630 	if (card->family == FST_FAMILY_TXU) {
2631 		/*
2632 		 * Free dma buffers
2633 		 */
2634 		pci_free_consistent(card->device, FST_MAX_MTU,
2635 				    card->rx_dma_handle_host,
2636 				    card->rx_dma_handle_card);
2637 		pci_free_consistent(card->device, FST_MAX_MTU,
2638 				    card->tx_dma_handle_host,
2639 				    card->tx_dma_handle_card);
2640 	}
2641 	fst_card_array[card->card_no] = NULL;
2642 }
2643 
2644 static struct pci_driver fst_driver = {
2645         .name		= FST_NAME,
2646         .id_table	= fst_pci_dev_id,
2647         .probe		= fst_add_one,
2648         .remove	= fst_remove_one,
2649         .suspend	= NULL,
2650         .resume	= NULL,
2651 };
2652 
2653 static int __init
2654 fst_init(void)
2655 {
2656 	int i;
2657 
2658 	for (i = 0; i < FST_MAX_CARDS; i++)
2659 		fst_card_array[i] = NULL;
2660 	spin_lock_init(&fst_work_q_lock);
2661 	return pci_register_driver(&fst_driver);
2662 }
2663 
2664 static void __exit
2665 fst_cleanup_module(void)
2666 {
2667 	pr_info("FarSync WAN driver unloading\n");
2668 	pci_unregister_driver(&fst_driver);
2669 }
2670 
2671 module_init(fst_init);
2672 module_exit(fst_cleanup_module);
2673