1 /* 2 * FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 * 14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/module.h> 21 #include <linux/kernel.h> 22 #include <linux/version.h> 23 #include <linux/pci.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/ioport.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/delay.h> 30 #include <linux/if.h> 31 #include <linux/hdlc.h> 32 #include <asm/io.h> 33 #include <asm/uaccess.h> 34 35 #include "farsync.h" 36 37 /* 38 * Module info 39 */ 40 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 41 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 42 MODULE_LICENSE("GPL"); 43 44 /* Driver configuration and global parameters 45 * ========================================== 46 */ 47 48 /* Number of ports (per card) and cards supported 49 */ 50 #define FST_MAX_PORTS 4 51 #define FST_MAX_CARDS 32 52 53 /* Default parameters for the link 54 */ 55 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 56 * useful */ 57 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 58 * of frames on the way down to the card 59 * so that we can keep the card busy 60 * and maximise throughput 61 */ 62 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 63 * network layer */ 64 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 65 * control from network layer */ 66 #define FST_MAX_MTU 8000 /* Huge but possible */ 67 #define FST_DEF_MTU 1500 /* Common sane value */ 68 69 #define FST_TX_TIMEOUT (2*HZ) 70 71 #ifdef ARPHRD_RAWHDLC 72 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 73 #else 74 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 75 #endif 76 77 /* 78 * Modules parameters and associated variables 79 */ 80 static int fst_txq_low = FST_LOW_WATER_MARK; 81 static int fst_txq_high = FST_HIGH_WATER_MARK; 82 static int fst_max_reads = 7; 83 static int fst_excluded_cards = 0; 84 static int fst_excluded_list[FST_MAX_CARDS]; 85 86 module_param(fst_txq_low, int, 0); 87 module_param(fst_txq_high, int, 0); 88 module_param(fst_max_reads, int, 0); 89 module_param(fst_excluded_cards, int, 0); 90 module_param_array(fst_excluded_list, int, NULL, 0); 91 92 /* Card shared memory layout 93 * ========================= 94 */ 95 #pragma pack(1) 96 97 /* This information is derived in part from the FarSite FarSync Smc.h 98 * file. Unfortunately various name clashes and the non-portability of the 99 * bit field declarations in that file have meant that I have chosen to 100 * recreate the information here. 101 * 102 * The SMC (Shared Memory Configuration) has a version number that is 103 * incremented every time there is a significant change. This number can 104 * be used to check that we have not got out of step with the firmware 105 * contained in the .CDE files. 106 */ 107 #define SMC_VERSION 24 108 109 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 110 111 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 112 * configuration structure */ 113 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 114 * buffers */ 115 116 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 117 #define LEN_RX_BUFFER 8192 118 119 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 120 #define LEN_SMALL_RX_BUFFER 256 121 122 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 123 #define NUM_RX_BUFFER 8 124 125 /* Interrupt retry time in milliseconds */ 126 #define INT_RETRY_TIME 2 127 128 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 129 * of buffer descriptors. The structure is almost identical to that used 130 * in the LANCE Ethernet controllers. Details available as PDF from the 131 * AMD web site: http://www.amd.com/products/epd/processors/\ 132 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 133 */ 134 struct txdesc { /* Transmit descriptor */ 135 volatile u16 ladr; /* Low order address of packet. This is a 136 * linear address in the Am186 memory space 137 */ 138 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 139 * bits must be zero 140 */ 141 volatile u8 bits; /* Status and config */ 142 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 143 * Transmit terminal count interrupt enable in 144 * top bit. 145 */ 146 u16 unused; /* Not used in Tx */ 147 }; 148 149 struct rxdesc { /* Receive descriptor */ 150 volatile u16 ladr; /* Low order address of packet */ 151 volatile u8 hadr; /* High order address */ 152 volatile u8 bits; /* Status and config */ 153 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 154 * Receive terminal count interrupt enable in 155 * top bit. 156 */ 157 volatile u16 mcnt; /* Message byte count (15 bits) */ 158 }; 159 160 /* Convert a length into the 15 bit 2's complement */ 161 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 162 /* Since we need to set the high bit to enable the completion interrupt this 163 * can be made a lot simpler 164 */ 165 #define cnv_bcnt(len) (-(len)) 166 167 /* Status and config bits for the above */ 168 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 169 #define TX_STP 0x02 /* Tx: start of packet */ 170 #define TX_ENP 0x01 /* Tx: end of packet */ 171 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 172 #define RX_FRAM 0x20 /* Rx: framing error */ 173 #define RX_OFLO 0x10 /* Rx: overflow error */ 174 #define RX_CRC 0x08 /* Rx: CRC error */ 175 #define RX_HBUF 0x04 /* Rx: buffer error */ 176 #define RX_STP 0x02 /* Rx: start of packet */ 177 #define RX_ENP 0x01 /* Rx: end of packet */ 178 179 /* Interrupts from the card are caused by various events which are presented 180 * in a circular buffer as several events may be processed on one physical int 181 */ 182 #define MAX_CIRBUFF 32 183 184 struct cirbuff { 185 u8 rdindex; /* read, then increment and wrap */ 186 u8 wrindex; /* write, then increment and wrap */ 187 u8 evntbuff[MAX_CIRBUFF]; 188 }; 189 190 /* Interrupt event codes. 191 * Where appropriate the two low order bits indicate the port number 192 */ 193 #define CTLA_CHG 0x18 /* Control signal changed */ 194 #define CTLB_CHG 0x19 195 #define CTLC_CHG 0x1A 196 #define CTLD_CHG 0x1B 197 198 #define INIT_CPLT 0x20 /* Initialisation complete */ 199 #define INIT_FAIL 0x21 /* Initialisation failed */ 200 201 #define ABTA_SENT 0x24 /* Abort sent */ 202 #define ABTB_SENT 0x25 203 #define ABTC_SENT 0x26 204 #define ABTD_SENT 0x27 205 206 #define TXA_UNDF 0x28 /* Transmission underflow */ 207 #define TXB_UNDF 0x29 208 #define TXC_UNDF 0x2A 209 #define TXD_UNDF 0x2B 210 211 #define F56_INT 0x2C 212 #define M32_INT 0x2D 213 214 #define TE1_ALMA 0x30 215 216 /* Port physical configuration. See farsync.h for field values */ 217 struct port_cfg { 218 u16 lineInterface; /* Physical interface type */ 219 u8 x25op; /* Unused at present */ 220 u8 internalClock; /* 1 => internal clock, 0 => external */ 221 u8 transparentMode; /* 1 => on, 0 => off */ 222 u8 invertClock; /* 0 => normal, 1 => inverted */ 223 u8 padBytes[6]; /* Padding */ 224 u32 lineSpeed; /* Speed in bps */ 225 }; 226 227 /* TE1 port physical configuration */ 228 struct su_config { 229 u32 dataRate; 230 u8 clocking; 231 u8 framing; 232 u8 structure; 233 u8 interface; 234 u8 coding; 235 u8 lineBuildOut; 236 u8 equalizer; 237 u8 transparentMode; 238 u8 loopMode; 239 u8 range; 240 u8 txBufferMode; 241 u8 rxBufferMode; 242 u8 startingSlot; 243 u8 losThreshold; 244 u8 enableIdleCode; 245 u8 idleCode; 246 u8 spare[44]; 247 }; 248 249 /* TE1 Status */ 250 struct su_status { 251 u32 receiveBufferDelay; 252 u32 framingErrorCount; 253 u32 codeViolationCount; 254 u32 crcErrorCount; 255 u32 lineAttenuation; 256 u8 portStarted; 257 u8 lossOfSignal; 258 u8 receiveRemoteAlarm; 259 u8 alarmIndicationSignal; 260 u8 spare[40]; 261 }; 262 263 /* Finally sling all the above together into the shared memory structure. 264 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 265 * evolving under NT for some time so I guess we're stuck with it. 266 * The structure starts at offset SMC_BASE. 267 * See farsync.h for some field values. 268 */ 269 struct fst_shared { 270 /* DMA descriptor rings */ 271 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 272 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 273 274 /* Obsolete small buffers */ 275 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 276 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 277 278 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 279 * 0xFF => halted 280 */ 281 282 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 283 * set to 0xEE by host to acknowledge interrupt 284 */ 285 286 u16 smcVersion; /* Must match SMC_VERSION */ 287 288 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 289 * version, RR = revision and BB = build 290 */ 291 292 u16 txa_done; /* Obsolete completion flags */ 293 u16 rxa_done; 294 u16 txb_done; 295 u16 rxb_done; 296 u16 txc_done; 297 u16 rxc_done; 298 u16 txd_done; 299 u16 rxd_done; 300 301 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 302 303 struct cirbuff interruptEvent; /* interrupt causes */ 304 305 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 306 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 307 308 struct port_cfg portConfig[FST_MAX_PORTS]; 309 310 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 311 312 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 313 314 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 315 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 316 317 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 318 u16 cardMailbox[4]; /* Not used */ 319 320 /* Number of times the card thinks the host has 321 * missed an interrupt by not acknowledging 322 * within 2mS (I guess NT has problems) 323 */ 324 u32 interruptRetryCount; 325 326 /* Driver private data used as an ID. We'll not 327 * use this as I'd rather keep such things 328 * in main memory rather than on the PCI bus 329 */ 330 u32 portHandle[FST_MAX_PORTS]; 331 332 /* Count of Tx underflows for stats */ 333 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 334 335 /* Debounced V.24 control input status */ 336 u32 v24DebouncedSts[FST_MAX_PORTS]; 337 338 /* Adapter debounce timers. Don't touch */ 339 u32 ctsTimer[FST_MAX_PORTS]; 340 u32 ctsTimerRun[FST_MAX_PORTS]; 341 u32 dcdTimer[FST_MAX_PORTS]; 342 u32 dcdTimerRun[FST_MAX_PORTS]; 343 344 u32 numberOfPorts; /* Number of ports detected at startup */ 345 346 u16 _reserved[64]; 347 348 u16 cardMode; /* Bit-mask to enable features: 349 * Bit 0: 1 enables LED identify mode 350 */ 351 352 u16 portScheduleOffset; 353 354 struct su_config suConfig; /* TE1 Bits */ 355 struct su_status suStatus; 356 357 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 358 * the structure and marks the end of shared 359 * memory. Adapter code initializes it as 360 * END_SIG. 361 */ 362 }; 363 364 /* endOfSmcSignature value */ 365 #define END_SIG 0x12345678 366 367 /* Mailbox values. (portMailbox) */ 368 #define NOP 0 /* No operation */ 369 #define ACK 1 /* Positive acknowledgement to PC driver */ 370 #define NAK 2 /* Negative acknowledgement to PC driver */ 371 #define STARTPORT 3 /* Start an HDLC port */ 372 #define STOPPORT 4 /* Stop an HDLC port */ 373 #define ABORTTX 5 /* Abort the transmitter for a port */ 374 #define SETV24O 6 /* Set V24 outputs */ 375 376 /* PLX Chip Register Offsets */ 377 #define CNTRL_9052 0x50 /* Control Register */ 378 #define CNTRL_9054 0x6c /* Control Register */ 379 380 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 381 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 382 383 /* 9054 DMA Registers */ 384 /* 385 * Note that we will be using DMA Channel 0 for copying rx data 386 * and Channel 1 for copying tx data 387 */ 388 #define DMAMODE0 0x80 389 #define DMAPADR0 0x84 390 #define DMALADR0 0x88 391 #define DMASIZ0 0x8c 392 #define DMADPR0 0x90 393 #define DMAMODE1 0x94 394 #define DMAPADR1 0x98 395 #define DMALADR1 0x9c 396 #define DMASIZ1 0xa0 397 #define DMADPR1 0xa4 398 #define DMACSR0 0xa8 399 #define DMACSR1 0xa9 400 #define DMAARB 0xac 401 #define DMATHR 0xb0 402 #define DMADAC0 0xb4 403 #define DMADAC1 0xb8 404 #define DMAMARBR 0xac 405 406 #define FST_MIN_DMA_LEN 64 407 #define FST_RX_DMA_INT 0x01 408 #define FST_TX_DMA_INT 0x02 409 #define FST_CARD_INT 0x04 410 411 /* Larger buffers are positioned in memory at offset BFM_BASE */ 412 struct buf_window { 413 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 414 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 415 }; 416 417 /* Calculate offset of a buffer object within the shared memory window */ 418 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 419 420 #pragma pack() 421 422 /* Device driver private information 423 * ================================= 424 */ 425 /* Per port (line or channel) information 426 */ 427 struct fst_port_info { 428 struct net_device *dev; /* Device struct - must be first */ 429 struct fst_card_info *card; /* Card we're associated with */ 430 int index; /* Port index on the card */ 431 int hwif; /* Line hardware (lineInterface copy) */ 432 int run; /* Port is running */ 433 int mode; /* Normal or FarSync raw */ 434 int rxpos; /* Next Rx buffer to use */ 435 int txpos; /* Next Tx buffer to use */ 436 int txipos; /* Next Tx buffer to check for free */ 437 int start; /* Indication of start/stop to network */ 438 /* 439 * A sixteen entry transmit queue 440 */ 441 int txqs; /* index to get next buffer to tx */ 442 int txqe; /* index to queue next packet */ 443 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 444 int rxqdepth; 445 }; 446 447 /* Per card information 448 */ 449 struct fst_card_info { 450 char __iomem *mem; /* Card memory mapped to kernel space */ 451 char __iomem *ctlmem; /* Control memory for PCI cards */ 452 unsigned int phys_mem; /* Physical memory window address */ 453 unsigned int phys_ctlmem; /* Physical control memory address */ 454 unsigned int irq; /* Interrupt request line number */ 455 unsigned int nports; /* Number of serial ports */ 456 unsigned int type; /* Type index of card */ 457 unsigned int state; /* State of card */ 458 spinlock_t card_lock; /* Lock for SMP access */ 459 unsigned short pci_conf; /* PCI card config in I/O space */ 460 /* Per port info */ 461 struct fst_port_info ports[FST_MAX_PORTS]; 462 struct pci_dev *device; /* Information about the pci device */ 463 int card_no; /* Inst of the card on the system */ 464 int family; /* TxP or TxU */ 465 int dmarx_in_progress; 466 int dmatx_in_progress; 467 unsigned long int_count; 468 unsigned long int_time_ave; 469 void *rx_dma_handle_host; 470 dma_addr_t rx_dma_handle_card; 471 void *tx_dma_handle_host; 472 dma_addr_t tx_dma_handle_card; 473 struct sk_buff *dma_skb_rx; 474 struct fst_port_info *dma_port_rx; 475 struct fst_port_info *dma_port_tx; 476 int dma_len_rx; 477 int dma_len_tx; 478 int dma_txpos; 479 int dma_rxpos; 480 }; 481 482 /* Convert an HDLC device pointer into a port info pointer and similar */ 483 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 484 #define port_to_dev(P) ((P)->dev) 485 486 487 /* 488 * Shared memory window access macros 489 * 490 * We have a nice memory based structure above, which could be directly 491 * mapped on i386 but might not work on other architectures unless we use 492 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 493 * physical offsets so we have to convert. The only saving grace is that 494 * this should all collapse back to a simple indirection eventually. 495 */ 496 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 497 498 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) 499 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) 500 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) 501 502 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) 503 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) 504 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) 505 506 /* 507 * Debug support 508 */ 509 #if FST_DEBUG 510 511 static int fst_debug_mask = { FST_DEBUG }; 512 513 /* Most common debug activity is to print something if the corresponding bit 514 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 515 * support variable numbers of macro parameters. The inverted if prevents us 516 * eating someone else's else clause. 517 */ 518 #define dbg(F, fmt, args...) \ 519 do { \ 520 if (fst_debug_mask & (F)) \ 521 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 522 } while (0) 523 #else 524 #define dbg(F, fmt, args...) \ 525 do { \ 526 if (0) \ 527 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 528 } while (0) 529 #endif 530 531 /* 532 * PCI ID lookup table 533 */ 534 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = { 535 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 536 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 537 538 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 539 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 540 541 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 542 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 543 544 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 545 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 546 547 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 548 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 549 550 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 551 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 552 553 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 554 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 555 {0,} /* End */ 556 }; 557 558 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 559 560 /* 561 * Device Driver Work Queues 562 * 563 * So that we don't spend too much time processing events in the 564 * Interrupt Service routine, we will declare a work queue per Card 565 * and make the ISR schedule a task in the queue for later execution. 566 * In the 2.4 Kernel we used to use the immediate queue for BH's 567 * Now that they are gone, tasklets seem to be much better than work 568 * queues. 569 */ 570 571 static void do_bottom_half_tx(struct fst_card_info *card); 572 static void do_bottom_half_rx(struct fst_card_info *card); 573 static void fst_process_tx_work_q(unsigned long work_q); 574 static void fst_process_int_work_q(unsigned long work_q); 575 576 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); 577 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); 578 579 static struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 580 static spinlock_t fst_work_q_lock; 581 static u64 fst_work_txq; 582 static u64 fst_work_intq; 583 584 static void 585 fst_q_work_item(u64 * queue, int card_index) 586 { 587 unsigned long flags; 588 u64 mask; 589 590 /* 591 * Grab the queue exclusively 592 */ 593 spin_lock_irqsave(&fst_work_q_lock, flags); 594 595 /* 596 * Making an entry in the queue is simply a matter of setting 597 * a bit for the card indicating that there is work to do in the 598 * bottom half for the card. Note the limitation of 64 cards. 599 * That ought to be enough 600 */ 601 mask = (u64)1 << card_index; 602 *queue |= mask; 603 spin_unlock_irqrestore(&fst_work_q_lock, flags); 604 } 605 606 static void 607 fst_process_tx_work_q(unsigned long /*void **/work_q) 608 { 609 unsigned long flags; 610 u64 work_txq; 611 int i; 612 613 /* 614 * Grab the queue exclusively 615 */ 616 dbg(DBG_TX, "fst_process_tx_work_q\n"); 617 spin_lock_irqsave(&fst_work_q_lock, flags); 618 work_txq = fst_work_txq; 619 fst_work_txq = 0; 620 spin_unlock_irqrestore(&fst_work_q_lock, flags); 621 622 /* 623 * Call the bottom half for each card with work waiting 624 */ 625 for (i = 0; i < FST_MAX_CARDS; i++) { 626 if (work_txq & 0x01) { 627 if (fst_card_array[i] != NULL) { 628 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 629 do_bottom_half_tx(fst_card_array[i]); 630 } 631 } 632 work_txq = work_txq >> 1; 633 } 634 } 635 636 static void 637 fst_process_int_work_q(unsigned long /*void **/work_q) 638 { 639 unsigned long flags; 640 u64 work_intq; 641 int i; 642 643 /* 644 * Grab the queue exclusively 645 */ 646 dbg(DBG_INTR, "fst_process_int_work_q\n"); 647 spin_lock_irqsave(&fst_work_q_lock, flags); 648 work_intq = fst_work_intq; 649 fst_work_intq = 0; 650 spin_unlock_irqrestore(&fst_work_q_lock, flags); 651 652 /* 653 * Call the bottom half for each card with work waiting 654 */ 655 for (i = 0; i < FST_MAX_CARDS; i++) { 656 if (work_intq & 0x01) { 657 if (fst_card_array[i] != NULL) { 658 dbg(DBG_INTR, 659 "Calling rx & tx bh for card %d\n", i); 660 do_bottom_half_rx(fst_card_array[i]); 661 do_bottom_half_tx(fst_card_array[i]); 662 } 663 } 664 work_intq = work_intq >> 1; 665 } 666 } 667 668 /* Card control functions 669 * ====================== 670 */ 671 /* Place the processor in reset state 672 * 673 * Used to be a simple write to card control space but a glitch in the latest 674 * AMD Am186CH processor means that we now have to do it by asserting and de- 675 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 676 * at offset 9052_CNTRL. Note the updates for the TXU. 677 */ 678 static inline void 679 fst_cpureset(struct fst_card_info *card) 680 { 681 unsigned char interrupt_line_register; 682 unsigned int regval; 683 684 if (card->family == FST_FAMILY_TXU) { 685 if (pci_read_config_byte 686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 687 dbg(DBG_ASS, 688 "Error in reading interrupt line register\n"); 689 } 690 /* 691 * Assert PLX software reset and Am186 hardware reset 692 * and then deassert the PLX software reset but 186 still in reset 693 */ 694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 696 /* 697 * We are delaying here to allow the 9054 to reset itself 698 */ 699 usleep_range(10, 20); 700 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 701 /* 702 * We are delaying here to allow the 9054 to reload its eeprom 703 */ 704 usleep_range(10, 20); 705 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 706 707 if (pci_write_config_byte 708 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 709 dbg(DBG_ASS, 710 "Error in writing interrupt line register\n"); 711 } 712 713 } else { 714 regval = inl(card->pci_conf + CNTRL_9052); 715 716 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 717 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 718 } 719 } 720 721 /* Release the processor from reset 722 */ 723 static inline void 724 fst_cpurelease(struct fst_card_info *card) 725 { 726 if (card->family == FST_FAMILY_TXU) { 727 /* 728 * Force posted writes to complete 729 */ 730 (void) readb(card->mem); 731 732 /* 733 * Release LRESET DO = 1 734 * Then release Local Hold, DO = 1 735 */ 736 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 737 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 738 } else { 739 (void) readb(card->ctlmem); 740 } 741 } 742 743 /* Clear the cards interrupt flag 744 */ 745 static inline void 746 fst_clear_intr(struct fst_card_info *card) 747 { 748 if (card->family == FST_FAMILY_TXU) { 749 (void) readb(card->ctlmem); 750 } else { 751 /* Poke the appropriate PLX chip register (same as enabling interrupts) 752 */ 753 outw(0x0543, card->pci_conf + INTCSR_9052); 754 } 755 } 756 757 /* Enable card interrupts 758 */ 759 static inline void 760 fst_enable_intr(struct fst_card_info *card) 761 { 762 if (card->family == FST_FAMILY_TXU) { 763 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 764 } else { 765 outw(0x0543, card->pci_conf + INTCSR_9052); 766 } 767 } 768 769 /* Disable card interrupts 770 */ 771 static inline void 772 fst_disable_intr(struct fst_card_info *card) 773 { 774 if (card->family == FST_FAMILY_TXU) { 775 outl(0x00000000, card->pci_conf + INTCSR_9054); 776 } else { 777 outw(0x0000, card->pci_conf + INTCSR_9052); 778 } 779 } 780 781 /* Process the result of trying to pass a received frame up the stack 782 */ 783 static void 784 fst_process_rx_status(int rx_status, char *name) 785 { 786 switch (rx_status) { 787 case NET_RX_SUCCESS: 788 { 789 /* 790 * Nothing to do here 791 */ 792 break; 793 } 794 case NET_RX_DROP: 795 { 796 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 797 break; 798 } 799 } 800 } 801 802 /* Initilaise DMA for PLX 9054 803 */ 804 static inline void 805 fst_init_dma(struct fst_card_info *card) 806 { 807 /* 808 * This is only required for the PLX 9054 809 */ 810 if (card->family == FST_FAMILY_TXU) { 811 pci_set_master(card->device); 812 outl(0x00020441, card->pci_conf + DMAMODE0); 813 outl(0x00020441, card->pci_conf + DMAMODE1); 814 outl(0x0, card->pci_conf + DMATHR); 815 } 816 } 817 818 /* Tx dma complete interrupt 819 */ 820 static void 821 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 822 int len, int txpos) 823 { 824 struct net_device *dev = port_to_dev(port); 825 826 /* 827 * Everything is now set, just tell the card to go 828 */ 829 dbg(DBG_TX, "fst_tx_dma_complete\n"); 830 FST_WRB(card, txDescrRing[port->index][txpos].bits, 831 DMA_OWN | TX_STP | TX_ENP); 832 dev->stats.tx_packets++; 833 dev->stats.tx_bytes += len; 834 dev->trans_start = jiffies; 835 } 836 837 /* 838 * Mark it for our own raw sockets interface 839 */ 840 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev) 841 { 842 skb->dev = dev; 843 skb_reset_mac_header(skb); 844 skb->pkt_type = PACKET_HOST; 845 return htons(ETH_P_CUST); 846 } 847 848 /* Rx dma complete interrupt 849 */ 850 static void 851 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 852 int len, struct sk_buff *skb, int rxp) 853 { 854 struct net_device *dev = port_to_dev(port); 855 int pi; 856 int rx_status; 857 858 dbg(DBG_TX, "fst_rx_dma_complete\n"); 859 pi = port->index; 860 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); 861 862 /* Reset buffer descriptor */ 863 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 864 865 /* Update stats */ 866 dev->stats.rx_packets++; 867 dev->stats.rx_bytes += len; 868 869 /* Push upstream */ 870 dbg(DBG_RX, "Pushing the frame up the stack\n"); 871 if (port->mode == FST_RAW) 872 skb->protocol = farsync_type_trans(skb, dev); 873 else 874 skb->protocol = hdlc_type_trans(skb, dev); 875 rx_status = netif_rx(skb); 876 fst_process_rx_status(rx_status, port_to_dev(port)->name); 877 if (rx_status == NET_RX_DROP) 878 dev->stats.rx_dropped++; 879 } 880 881 /* 882 * Receive a frame through the DMA 883 */ 884 static inline void 885 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len) 886 { 887 /* 888 * This routine will setup the DMA and start it 889 */ 890 891 dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len); 892 if (card->dmarx_in_progress) { 893 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 894 } 895 896 outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */ 897 outl(mem, card->pci_conf + DMALADR0); /* from here */ 898 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 899 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 900 901 /* 902 * We use the dmarx_in_progress flag to flag the channel as busy 903 */ 904 card->dmarx_in_progress = 1; 905 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 906 } 907 908 /* 909 * Send a frame through the DMA 910 */ 911 static inline void 912 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len) 913 { 914 /* 915 * This routine will setup the DMA and start it. 916 */ 917 918 dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len); 919 if (card->dmatx_in_progress) { 920 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 921 } 922 923 outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */ 924 outl(mem, card->pci_conf + DMALADR1); /* to here */ 925 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 926 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 927 928 /* 929 * We use the dmatx_in_progress to flag the channel as busy 930 */ 931 card->dmatx_in_progress = 1; 932 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 933 } 934 935 /* Issue a Mailbox command for a port. 936 * Note we issue them on a fire and forget basis, not expecting to see an 937 * error and not waiting for completion. 938 */ 939 static void 940 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 941 { 942 struct fst_card_info *card; 943 unsigned short mbval; 944 unsigned long flags; 945 int safety; 946 947 card = port->card; 948 spin_lock_irqsave(&card->card_lock, flags); 949 mbval = FST_RDW(card, portMailbox[port->index][0]); 950 951 safety = 0; 952 /* Wait for any previous command to complete */ 953 while (mbval > NAK) { 954 spin_unlock_irqrestore(&card->card_lock, flags); 955 schedule_timeout_uninterruptible(1); 956 spin_lock_irqsave(&card->card_lock, flags); 957 958 if (++safety > 2000) { 959 pr_err("Mailbox safety timeout\n"); 960 break; 961 } 962 963 mbval = FST_RDW(card, portMailbox[port->index][0]); 964 } 965 if (safety > 0) { 966 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 967 } 968 if (mbval == NAK) { 969 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 970 } 971 972 FST_WRW(card, portMailbox[port->index][0], cmd); 973 974 if (cmd == ABORTTX || cmd == STARTPORT) { 975 port->txpos = 0; 976 port->txipos = 0; 977 port->start = 0; 978 } 979 980 spin_unlock_irqrestore(&card->card_lock, flags); 981 } 982 983 /* Port output signals control 984 */ 985 static inline void 986 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 987 { 988 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 989 FST_WRL(port->card, v24OpSts[port->index], outputs); 990 991 if (port->run) 992 fst_issue_cmd(port, SETV24O); 993 } 994 995 static inline void 996 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 997 { 998 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 999 FST_WRL(port->card, v24OpSts[port->index], outputs); 1000 1001 if (port->run) 1002 fst_issue_cmd(port, SETV24O); 1003 } 1004 1005 /* 1006 * Setup port Rx buffers 1007 */ 1008 static void 1009 fst_rx_config(struct fst_port_info *port) 1010 { 1011 int i; 1012 int pi; 1013 unsigned int offset; 1014 unsigned long flags; 1015 struct fst_card_info *card; 1016 1017 pi = port->index; 1018 card = port->card; 1019 spin_lock_irqsave(&card->card_lock, flags); 1020 for (i = 0; i < NUM_RX_BUFFER; i++) { 1021 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 1022 1023 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); 1024 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1025 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 1026 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 1027 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 1028 } 1029 port->rxpos = 0; 1030 spin_unlock_irqrestore(&card->card_lock, flags); 1031 } 1032 1033 /* 1034 * Setup port Tx buffers 1035 */ 1036 static void 1037 fst_tx_config(struct fst_port_info *port) 1038 { 1039 int i; 1040 int pi; 1041 unsigned int offset; 1042 unsigned long flags; 1043 struct fst_card_info *card; 1044 1045 pi = port->index; 1046 card = port->card; 1047 spin_lock_irqsave(&card->card_lock, flags); 1048 for (i = 0; i < NUM_TX_BUFFER; i++) { 1049 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1050 1051 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); 1052 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1053 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1054 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1055 } 1056 port->txpos = 0; 1057 port->txipos = 0; 1058 port->start = 0; 1059 spin_unlock_irqrestore(&card->card_lock, flags); 1060 } 1061 1062 /* TE1 Alarm change interrupt event 1063 */ 1064 static void 1065 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1066 { 1067 u8 los; 1068 u8 rra; 1069 u8 ais; 1070 1071 los = FST_RDB(card, suStatus.lossOfSignal); 1072 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1073 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1074 1075 if (los) { 1076 /* 1077 * Lost the link 1078 */ 1079 if (netif_carrier_ok(port_to_dev(port))) { 1080 dbg(DBG_INTR, "Net carrier off\n"); 1081 netif_carrier_off(port_to_dev(port)); 1082 } 1083 } else { 1084 /* 1085 * Link available 1086 */ 1087 if (!netif_carrier_ok(port_to_dev(port))) { 1088 dbg(DBG_INTR, "Net carrier on\n"); 1089 netif_carrier_on(port_to_dev(port)); 1090 } 1091 } 1092 1093 if (los) 1094 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1095 else 1096 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1097 if (rra) 1098 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1099 else 1100 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1101 1102 if (ais) 1103 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1104 else 1105 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1106 } 1107 1108 /* Control signal change interrupt event 1109 */ 1110 static void 1111 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1112 { 1113 int signals; 1114 1115 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1116 1117 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 1118 ? IPSTS_INDICATE : IPSTS_DCD)) { 1119 if (!netif_carrier_ok(port_to_dev(port))) { 1120 dbg(DBG_INTR, "DCD active\n"); 1121 netif_carrier_on(port_to_dev(port)); 1122 } 1123 } else { 1124 if (netif_carrier_ok(port_to_dev(port))) { 1125 dbg(DBG_INTR, "DCD lost\n"); 1126 netif_carrier_off(port_to_dev(port)); 1127 } 1128 } 1129 } 1130 1131 /* Log Rx Errors 1132 */ 1133 static void 1134 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1135 unsigned char dmabits, int rxp, unsigned short len) 1136 { 1137 struct net_device *dev = port_to_dev(port); 1138 1139 /* 1140 * Increment the appropriate error counter 1141 */ 1142 dev->stats.rx_errors++; 1143 if (dmabits & RX_OFLO) { 1144 dev->stats.rx_fifo_errors++; 1145 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1146 card->card_no, port->index, rxp); 1147 } 1148 if (dmabits & RX_CRC) { 1149 dev->stats.rx_crc_errors++; 1150 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1151 card->card_no, port->index); 1152 } 1153 if (dmabits & RX_FRAM) { 1154 dev->stats.rx_frame_errors++; 1155 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1156 card->card_no, port->index); 1157 } 1158 if (dmabits == (RX_STP | RX_ENP)) { 1159 dev->stats.rx_length_errors++; 1160 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1161 len, card->card_no, port->index); 1162 } 1163 } 1164 1165 /* Rx Error Recovery 1166 */ 1167 static void 1168 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1169 unsigned char dmabits, int rxp, unsigned short len) 1170 { 1171 int i; 1172 int pi; 1173 1174 pi = port->index; 1175 /* 1176 * Discard buffer descriptors until we see the start of the 1177 * next frame. Note that for long frames this could be in 1178 * a subsequent interrupt. 1179 */ 1180 i = 0; 1181 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1182 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1183 rxp = (rxp+1) % NUM_RX_BUFFER; 1184 if (++i > NUM_RX_BUFFER) { 1185 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1186 " than we have\n"); 1187 break; 1188 } 1189 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1190 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1191 } 1192 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1193 1194 /* Discard the terminal buffer */ 1195 if (!(dmabits & DMA_OWN)) { 1196 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1197 rxp = (rxp+1) % NUM_RX_BUFFER; 1198 } 1199 port->rxpos = rxp; 1200 return; 1201 1202 } 1203 1204 /* Rx complete interrupt 1205 */ 1206 static void 1207 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1208 { 1209 unsigned char dmabits; 1210 int pi; 1211 int rxp; 1212 int rx_status; 1213 unsigned short len; 1214 struct sk_buff *skb; 1215 struct net_device *dev = port_to_dev(port); 1216 1217 /* Check we have a buffer to process */ 1218 pi = port->index; 1219 rxp = port->rxpos; 1220 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1221 if (dmabits & DMA_OWN) { 1222 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1223 pi, rxp); 1224 return; 1225 } 1226 if (card->dmarx_in_progress) { 1227 return; 1228 } 1229 1230 /* Get buffer length */ 1231 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1232 /* Discard the CRC */ 1233 len -= 2; 1234 if (len == 0) { 1235 /* 1236 * This seems to happen on the TE1 interface sometimes 1237 * so throw the frame away and log the event. 1238 */ 1239 pr_err("Frame received with 0 length. Card %d Port %d\n", 1240 card->card_no, port->index); 1241 /* Return descriptor to card */ 1242 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1243 1244 rxp = (rxp+1) % NUM_RX_BUFFER; 1245 port->rxpos = rxp; 1246 return; 1247 } 1248 1249 /* Check buffer length and for other errors. We insist on one packet 1250 * in one buffer. This simplifies things greatly and since we've 1251 * allocated 8K it shouldn't be a real world limitation 1252 */ 1253 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1254 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1255 fst_log_rx_error(card, port, dmabits, rxp, len); 1256 fst_recover_rx_error(card, port, dmabits, rxp, len); 1257 return; 1258 } 1259 1260 /* Allocate SKB */ 1261 if ((skb = dev_alloc_skb(len)) == NULL) { 1262 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1263 1264 dev->stats.rx_dropped++; 1265 1266 /* Return descriptor to card */ 1267 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1268 1269 rxp = (rxp+1) % NUM_RX_BUFFER; 1270 port->rxpos = rxp; 1271 return; 1272 } 1273 1274 /* 1275 * We know the length we need to receive, len. 1276 * It's not worth using the DMA for reads of less than 1277 * FST_MIN_DMA_LEN 1278 */ 1279 1280 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { 1281 memcpy_fromio(skb_put(skb, len), 1282 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1283 len); 1284 1285 /* Reset buffer descriptor */ 1286 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1287 1288 /* Update stats */ 1289 dev->stats.rx_packets++; 1290 dev->stats.rx_bytes += len; 1291 1292 /* Push upstream */ 1293 dbg(DBG_RX, "Pushing frame up the stack\n"); 1294 if (port->mode == FST_RAW) 1295 skb->protocol = farsync_type_trans(skb, dev); 1296 else 1297 skb->protocol = hdlc_type_trans(skb, dev); 1298 rx_status = netif_rx(skb); 1299 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1300 if (rx_status == NET_RX_DROP) 1301 dev->stats.rx_dropped++; 1302 } else { 1303 card->dma_skb_rx = skb; 1304 card->dma_port_rx = port; 1305 card->dma_len_rx = len; 1306 card->dma_rxpos = rxp; 1307 fst_rx_dma(card, card->rx_dma_handle_card, 1308 BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1309 } 1310 if (rxp != port->rxpos) { 1311 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1312 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1313 } 1314 rxp = (rxp+1) % NUM_RX_BUFFER; 1315 port->rxpos = rxp; 1316 } 1317 1318 /* 1319 * The bottom halfs to the ISR 1320 * 1321 */ 1322 1323 static void 1324 do_bottom_half_tx(struct fst_card_info *card) 1325 { 1326 struct fst_port_info *port; 1327 int pi; 1328 int txq_length; 1329 struct sk_buff *skb; 1330 unsigned long flags; 1331 struct net_device *dev; 1332 1333 /* 1334 * Find a free buffer for the transmit 1335 * Step through each port on this card 1336 */ 1337 1338 dbg(DBG_TX, "do_bottom_half_tx\n"); 1339 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1340 if (!port->run) 1341 continue; 1342 1343 dev = port_to_dev(port); 1344 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1345 DMA_OWN) && 1346 !(card->dmatx_in_progress)) { 1347 /* 1348 * There doesn't seem to be a txdone event per-se 1349 * We seem to have to deduce it, by checking the DMA_OWN 1350 * bit on the next buffer we think we can use 1351 */ 1352 spin_lock_irqsave(&card->card_lock, flags); 1353 if ((txq_length = port->txqe - port->txqs) < 0) { 1354 /* 1355 * This is the case where one has wrapped and the 1356 * maths gives us a negative number 1357 */ 1358 txq_length = txq_length + FST_TXQ_DEPTH; 1359 } 1360 spin_unlock_irqrestore(&card->card_lock, flags); 1361 if (txq_length > 0) { 1362 /* 1363 * There is something to send 1364 */ 1365 spin_lock_irqsave(&card->card_lock, flags); 1366 skb = port->txq[port->txqs]; 1367 port->txqs++; 1368 if (port->txqs == FST_TXQ_DEPTH) { 1369 port->txqs = 0; 1370 } 1371 spin_unlock_irqrestore(&card->card_lock, flags); 1372 /* 1373 * copy the data and set the required indicators on the 1374 * card. 1375 */ 1376 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1377 cnv_bcnt(skb->len)); 1378 if ((skb->len < FST_MIN_DMA_LEN) || 1379 (card->family == FST_FAMILY_TXP)) { 1380 /* Enqueue the packet with normal io */ 1381 memcpy_toio(card->mem + 1382 BUF_OFFSET(txBuffer[pi] 1383 [port-> 1384 txpos][0]), 1385 skb->data, skb->len); 1386 FST_WRB(card, 1387 txDescrRing[pi][port->txpos]. 1388 bits, 1389 DMA_OWN | TX_STP | TX_ENP); 1390 dev->stats.tx_packets++; 1391 dev->stats.tx_bytes += skb->len; 1392 dev->trans_start = jiffies; 1393 } else { 1394 /* Or do it through dma */ 1395 memcpy(card->tx_dma_handle_host, 1396 skb->data, skb->len); 1397 card->dma_port_tx = port; 1398 card->dma_len_tx = skb->len; 1399 card->dma_txpos = port->txpos; 1400 fst_tx_dma(card, 1401 card->tx_dma_handle_card, 1402 BUF_OFFSET(txBuffer[pi] 1403 [port->txpos][0]), 1404 skb->len); 1405 } 1406 if (++port->txpos >= NUM_TX_BUFFER) 1407 port->txpos = 0; 1408 /* 1409 * If we have flow control on, can we now release it? 1410 */ 1411 if (port->start) { 1412 if (txq_length < fst_txq_low) { 1413 netif_wake_queue(port_to_dev 1414 (port)); 1415 port->start = 0; 1416 } 1417 } 1418 dev_kfree_skb(skb); 1419 } else { 1420 /* 1421 * Nothing to send so break out of the while loop 1422 */ 1423 break; 1424 } 1425 } 1426 } 1427 } 1428 1429 static void 1430 do_bottom_half_rx(struct fst_card_info *card) 1431 { 1432 struct fst_port_info *port; 1433 int pi; 1434 int rx_count = 0; 1435 1436 /* Check for rx completions on all ports on this card */ 1437 dbg(DBG_RX, "do_bottom_half_rx\n"); 1438 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1439 if (!port->run) 1440 continue; 1441 1442 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1443 & DMA_OWN) && !(card->dmarx_in_progress)) { 1444 if (rx_count > fst_max_reads) { 1445 /* 1446 * Don't spend forever in receive processing 1447 * Schedule another event 1448 */ 1449 fst_q_work_item(&fst_work_intq, card->card_no); 1450 tasklet_schedule(&fst_int_task); 1451 break; /* Leave the loop */ 1452 } 1453 fst_intr_rx(card, port); 1454 rx_count++; 1455 } 1456 } 1457 } 1458 1459 /* 1460 * The interrupt service routine 1461 * Dev_id is our fst_card_info pointer 1462 */ 1463 static irqreturn_t 1464 fst_intr(int dummy, void *dev_id) 1465 { 1466 struct fst_card_info *card = dev_id; 1467 struct fst_port_info *port; 1468 int rdidx; /* Event buffer indices */ 1469 int wridx; 1470 int event; /* Actual event for processing */ 1471 unsigned int dma_intcsr = 0; 1472 unsigned int do_card_interrupt; 1473 unsigned int int_retry_count; 1474 1475 /* 1476 * Check to see if the interrupt was for this card 1477 * return if not 1478 * Note that the call to clear the interrupt is important 1479 */ 1480 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card); 1481 if (card->state != FST_RUNNING) { 1482 pr_err("Interrupt received for card %d in a non running state (%d)\n", 1483 card->card_no, card->state); 1484 1485 /* 1486 * It is possible to really be running, i.e. we have re-loaded 1487 * a running card 1488 * Clear and reprime the interrupt source 1489 */ 1490 fst_clear_intr(card); 1491 return IRQ_HANDLED; 1492 } 1493 1494 /* Clear and reprime the interrupt source */ 1495 fst_clear_intr(card); 1496 1497 /* 1498 * Is the interrupt for this card (handshake == 1) 1499 */ 1500 do_card_interrupt = 0; 1501 if (FST_RDB(card, interruptHandshake) == 1) { 1502 do_card_interrupt += FST_CARD_INT; 1503 /* Set the software acknowledge */ 1504 FST_WRB(card, interruptHandshake, 0xEE); 1505 } 1506 if (card->family == FST_FAMILY_TXU) { 1507 /* 1508 * Is it a DMA Interrupt 1509 */ 1510 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1511 if (dma_intcsr & 0x00200000) { 1512 /* 1513 * DMA Channel 0 (Rx transfer complete) 1514 */ 1515 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1516 outb(0x8, card->pci_conf + DMACSR0); 1517 fst_rx_dma_complete(card, card->dma_port_rx, 1518 card->dma_len_rx, card->dma_skb_rx, 1519 card->dma_rxpos); 1520 card->dmarx_in_progress = 0; 1521 do_card_interrupt += FST_RX_DMA_INT; 1522 } 1523 if (dma_intcsr & 0x00400000) { 1524 /* 1525 * DMA Channel 1 (Tx transfer complete) 1526 */ 1527 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1528 outb(0x8, card->pci_conf + DMACSR1); 1529 fst_tx_dma_complete(card, card->dma_port_tx, 1530 card->dma_len_tx, card->dma_txpos); 1531 card->dmatx_in_progress = 0; 1532 do_card_interrupt += FST_TX_DMA_INT; 1533 } 1534 } 1535 1536 /* 1537 * Have we been missing Interrupts 1538 */ 1539 int_retry_count = FST_RDL(card, interruptRetryCount); 1540 if (int_retry_count) { 1541 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1542 card->card_no, int_retry_count); 1543 FST_WRL(card, interruptRetryCount, 0); 1544 } 1545 1546 if (!do_card_interrupt) { 1547 return IRQ_HANDLED; 1548 } 1549 1550 /* Scehdule the bottom half of the ISR */ 1551 fst_q_work_item(&fst_work_intq, card->card_no); 1552 tasklet_schedule(&fst_int_task); 1553 1554 /* Drain the event queue */ 1555 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1556 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1557 while (rdidx != wridx) { 1558 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1559 port = &card->ports[event & 0x03]; 1560 1561 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1562 1563 switch (event) { 1564 case TE1_ALMA: 1565 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1566 if (port->run) 1567 fst_intr_te1_alarm(card, port); 1568 break; 1569 1570 case CTLA_CHG: 1571 case CTLB_CHG: 1572 case CTLC_CHG: 1573 case CTLD_CHG: 1574 if (port->run) 1575 fst_intr_ctlchg(card, port); 1576 break; 1577 1578 case ABTA_SENT: 1579 case ABTB_SENT: 1580 case ABTC_SENT: 1581 case ABTD_SENT: 1582 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1583 break; 1584 1585 case TXA_UNDF: 1586 case TXB_UNDF: 1587 case TXC_UNDF: 1588 case TXD_UNDF: 1589 /* Difficult to see how we'd get this given that we 1590 * always load up the entire packet for DMA. 1591 */ 1592 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1593 port_to_dev(port)->stats.tx_errors++; 1594 port_to_dev(port)->stats.tx_fifo_errors++; 1595 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1596 card->card_no, port->index); 1597 break; 1598 1599 case INIT_CPLT: 1600 dbg(DBG_INIT, "Card init OK intr\n"); 1601 break; 1602 1603 case INIT_FAIL: 1604 dbg(DBG_INIT, "Card init FAILED intr\n"); 1605 card->state = FST_IFAILED; 1606 break; 1607 1608 default: 1609 pr_err("intr: unknown card event %d. ignored\n", event); 1610 break; 1611 } 1612 1613 /* Bump and wrap the index */ 1614 if (++rdidx >= MAX_CIRBUFF) 1615 rdidx = 0; 1616 } 1617 FST_WRB(card, interruptEvent.rdindex, rdidx); 1618 return IRQ_HANDLED; 1619 } 1620 1621 /* Check that the shared memory configuration is one that we can handle 1622 * and that some basic parameters are correct 1623 */ 1624 static void 1625 check_started_ok(struct fst_card_info *card) 1626 { 1627 int i; 1628 1629 /* Check structure version and end marker */ 1630 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1631 pr_err("Bad shared memory version %d expected %d\n", 1632 FST_RDW(card, smcVersion), SMC_VERSION); 1633 card->state = FST_BADVERSION; 1634 return; 1635 } 1636 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1637 pr_err("Missing shared memory signature\n"); 1638 card->state = FST_BADVERSION; 1639 return; 1640 } 1641 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1642 if ((i = FST_RDB(card, taskStatus)) == 0x01) { 1643 card->state = FST_RUNNING; 1644 } else if (i == 0xFF) { 1645 pr_err("Firmware initialisation failed. Card halted\n"); 1646 card->state = FST_HALTED; 1647 return; 1648 } else if (i != 0x00) { 1649 pr_err("Unknown firmware status 0x%x\n", i); 1650 card->state = FST_HALTED; 1651 return; 1652 } 1653 1654 /* Finally check the number of ports reported by firmware against the 1655 * number we assumed at card detection. Should never happen with 1656 * existing firmware etc so we just report it for the moment. 1657 */ 1658 if (FST_RDL(card, numberOfPorts) != card->nports) { 1659 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n", 1660 card->card_no, 1661 FST_RDL(card, numberOfPorts), card->nports); 1662 } 1663 } 1664 1665 static int 1666 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1667 struct fstioc_info *info) 1668 { 1669 int err; 1670 unsigned char my_framing; 1671 1672 /* Set things according to the user set valid flags 1673 * Several of the old options have been invalidated/replaced by the 1674 * generic hdlc package. 1675 */ 1676 err = 0; 1677 if (info->valid & FSTVAL_PROTO) { 1678 if (info->proto == FST_RAW) 1679 port->mode = FST_RAW; 1680 else 1681 port->mode = FST_GEN_HDLC; 1682 } 1683 1684 if (info->valid & FSTVAL_CABLE) 1685 err = -EINVAL; 1686 1687 if (info->valid & FSTVAL_SPEED) 1688 err = -EINVAL; 1689 1690 if (info->valid & FSTVAL_PHASE) 1691 FST_WRB(card, portConfig[port->index].invertClock, 1692 info->invertClock); 1693 if (info->valid & FSTVAL_MODE) 1694 FST_WRW(card, cardMode, info->cardMode); 1695 if (info->valid & FSTVAL_TE1) { 1696 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1697 FST_WRB(card, suConfig.clocking, info->clockSource); 1698 my_framing = FRAMING_E1; 1699 if (info->framing == E1) 1700 my_framing = FRAMING_E1; 1701 if (info->framing == T1) 1702 my_framing = FRAMING_T1; 1703 if (info->framing == J1) 1704 my_framing = FRAMING_J1; 1705 FST_WRB(card, suConfig.framing, my_framing); 1706 FST_WRB(card, suConfig.structure, info->structure); 1707 FST_WRB(card, suConfig.interface, info->interface); 1708 FST_WRB(card, suConfig.coding, info->coding); 1709 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1710 FST_WRB(card, suConfig.equalizer, info->equalizer); 1711 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1712 FST_WRB(card, suConfig.loopMode, info->loopMode); 1713 FST_WRB(card, suConfig.range, info->range); 1714 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1715 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1716 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1717 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1718 if (info->idleCode) 1719 FST_WRB(card, suConfig.enableIdleCode, 1); 1720 else 1721 FST_WRB(card, suConfig.enableIdleCode, 0); 1722 FST_WRB(card, suConfig.idleCode, info->idleCode); 1723 #if FST_DEBUG 1724 if (info->valid & FSTVAL_TE1) { 1725 printk("Setting TE1 data\n"); 1726 printk("Line Speed = %d\n", info->lineSpeed); 1727 printk("Start slot = %d\n", info->startingSlot); 1728 printk("Clock source = %d\n", info->clockSource); 1729 printk("Framing = %d\n", my_framing); 1730 printk("Structure = %d\n", info->structure); 1731 printk("interface = %d\n", info->interface); 1732 printk("Coding = %d\n", info->coding); 1733 printk("Line build out = %d\n", info->lineBuildOut); 1734 printk("Equaliser = %d\n", info->equalizer); 1735 printk("Transparent mode = %d\n", 1736 info->transparentMode); 1737 printk("Loop mode = %d\n", info->loopMode); 1738 printk("Range = %d\n", info->range); 1739 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1740 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1741 printk("LOS Threshold = %d\n", info->losThreshold); 1742 printk("Idle Code = %d\n", info->idleCode); 1743 } 1744 #endif 1745 } 1746 #if FST_DEBUG 1747 if (info->valid & FSTVAL_DEBUG) { 1748 fst_debug_mask = info->debug; 1749 } 1750 #endif 1751 1752 return err; 1753 } 1754 1755 static void 1756 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1757 struct fstioc_info *info) 1758 { 1759 int i; 1760 1761 memset(info, 0, sizeof (struct fstioc_info)); 1762 1763 i = port->index; 1764 info->kernelVersion = LINUX_VERSION_CODE; 1765 info->nports = card->nports; 1766 info->type = card->type; 1767 info->state = card->state; 1768 info->proto = FST_GEN_HDLC; 1769 info->index = i; 1770 #if FST_DEBUG 1771 info->debug = fst_debug_mask; 1772 #endif 1773 1774 /* Only mark information as valid if card is running. 1775 * Copy the data anyway in case it is useful for diagnostics 1776 */ 1777 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1778 #if FST_DEBUG 1779 | FSTVAL_DEBUG 1780 #endif 1781 ; 1782 1783 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1784 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1785 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1786 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1787 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1788 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1789 info->clockStatus = FST_RDW(card, clockStatus[i]); 1790 info->cableStatus = FST_RDW(card, cableStatus); 1791 info->cardMode = FST_RDW(card, cardMode); 1792 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1793 1794 /* 1795 * The T2U can report cable presence for both A or B 1796 * in bits 0 and 1 of cableStatus. See which port we are and 1797 * do the mapping. 1798 */ 1799 if (card->family == FST_FAMILY_TXU) { 1800 if (port->index == 0) { 1801 /* 1802 * Port A 1803 */ 1804 info->cableStatus = info->cableStatus & 1; 1805 } else { 1806 /* 1807 * Port B 1808 */ 1809 info->cableStatus = info->cableStatus >> 1; 1810 info->cableStatus = info->cableStatus & 1; 1811 } 1812 } 1813 /* 1814 * Some additional bits if we are TE1 1815 */ 1816 if (card->type == FST_TYPE_TE1) { 1817 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1818 info->clockSource = FST_RDB(card, suConfig.clocking); 1819 info->framing = FST_RDB(card, suConfig.framing); 1820 info->structure = FST_RDB(card, suConfig.structure); 1821 info->interface = FST_RDB(card, suConfig.interface); 1822 info->coding = FST_RDB(card, suConfig.coding); 1823 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1824 info->equalizer = FST_RDB(card, suConfig.equalizer); 1825 info->loopMode = FST_RDB(card, suConfig.loopMode); 1826 info->range = FST_RDB(card, suConfig.range); 1827 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1828 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1829 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1830 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1831 if (FST_RDB(card, suConfig.enableIdleCode)) 1832 info->idleCode = FST_RDB(card, suConfig.idleCode); 1833 else 1834 info->idleCode = 0; 1835 info->receiveBufferDelay = 1836 FST_RDL(card, suStatus.receiveBufferDelay); 1837 info->framingErrorCount = 1838 FST_RDL(card, suStatus.framingErrorCount); 1839 info->codeViolationCount = 1840 FST_RDL(card, suStatus.codeViolationCount); 1841 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1842 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1843 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1844 info->receiveRemoteAlarm = 1845 FST_RDB(card, suStatus.receiveRemoteAlarm); 1846 info->alarmIndicationSignal = 1847 FST_RDB(card, suStatus.alarmIndicationSignal); 1848 } 1849 } 1850 1851 static int 1852 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1853 struct ifreq *ifr) 1854 { 1855 sync_serial_settings sync; 1856 int i; 1857 1858 if (ifr->ifr_settings.size != sizeof (sync)) { 1859 return -ENOMEM; 1860 } 1861 1862 if (copy_from_user 1863 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { 1864 return -EFAULT; 1865 } 1866 1867 if (sync.loopback) 1868 return -EINVAL; 1869 1870 i = port->index; 1871 1872 switch (ifr->ifr_settings.type) { 1873 case IF_IFACE_V35: 1874 FST_WRW(card, portConfig[i].lineInterface, V35); 1875 port->hwif = V35; 1876 break; 1877 1878 case IF_IFACE_V24: 1879 FST_WRW(card, portConfig[i].lineInterface, V24); 1880 port->hwif = V24; 1881 break; 1882 1883 case IF_IFACE_X21: 1884 FST_WRW(card, portConfig[i].lineInterface, X21); 1885 port->hwif = X21; 1886 break; 1887 1888 case IF_IFACE_X21D: 1889 FST_WRW(card, portConfig[i].lineInterface, X21D); 1890 port->hwif = X21D; 1891 break; 1892 1893 case IF_IFACE_T1: 1894 FST_WRW(card, portConfig[i].lineInterface, T1); 1895 port->hwif = T1; 1896 break; 1897 1898 case IF_IFACE_E1: 1899 FST_WRW(card, portConfig[i].lineInterface, E1); 1900 port->hwif = E1; 1901 break; 1902 1903 case IF_IFACE_SYNC_SERIAL: 1904 break; 1905 1906 default: 1907 return -EINVAL; 1908 } 1909 1910 switch (sync.clock_type) { 1911 case CLOCK_EXT: 1912 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1913 break; 1914 1915 case CLOCK_INT: 1916 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1917 break; 1918 1919 default: 1920 return -EINVAL; 1921 } 1922 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1923 return 0; 1924 } 1925 1926 static int 1927 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1928 struct ifreq *ifr) 1929 { 1930 sync_serial_settings sync; 1931 int i; 1932 1933 /* First check what line type is set, we'll default to reporting X.21 1934 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1935 * changed 1936 */ 1937 switch (port->hwif) { 1938 case E1: 1939 ifr->ifr_settings.type = IF_IFACE_E1; 1940 break; 1941 case T1: 1942 ifr->ifr_settings.type = IF_IFACE_T1; 1943 break; 1944 case V35: 1945 ifr->ifr_settings.type = IF_IFACE_V35; 1946 break; 1947 case V24: 1948 ifr->ifr_settings.type = IF_IFACE_V24; 1949 break; 1950 case X21D: 1951 ifr->ifr_settings.type = IF_IFACE_X21D; 1952 break; 1953 case X21: 1954 default: 1955 ifr->ifr_settings.type = IF_IFACE_X21; 1956 break; 1957 } 1958 if (ifr->ifr_settings.size == 0) { 1959 return 0; /* only type requested */ 1960 } 1961 if (ifr->ifr_settings.size < sizeof (sync)) { 1962 return -ENOMEM; 1963 } 1964 1965 i = port->index; 1966 memset(&sync, 0, sizeof(sync)); 1967 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 1968 /* Lucky card and linux use same encoding here */ 1969 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 1970 INTCLK ? CLOCK_INT : CLOCK_EXT; 1971 sync.loopback = 0; 1972 1973 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { 1974 return -EFAULT; 1975 } 1976 1977 ifr->ifr_settings.size = sizeof (sync); 1978 return 0; 1979 } 1980 1981 static int 1982 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1983 { 1984 struct fst_card_info *card; 1985 struct fst_port_info *port; 1986 struct fstioc_write wrthdr; 1987 struct fstioc_info info; 1988 unsigned long flags; 1989 void *buf; 1990 1991 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 1992 1993 port = dev_to_port(dev); 1994 card = port->card; 1995 1996 if (!capable(CAP_NET_ADMIN)) 1997 return -EPERM; 1998 1999 switch (cmd) { 2000 case FSTCPURESET: 2001 fst_cpureset(card); 2002 card->state = FST_RESET; 2003 return 0; 2004 2005 case FSTCPURELEASE: 2006 fst_cpurelease(card); 2007 card->state = FST_STARTING; 2008 return 0; 2009 2010 case FSTWRITE: /* Code write (download) */ 2011 2012 /* First copy in the header with the length and offset of data 2013 * to write 2014 */ 2015 if (ifr->ifr_data == NULL) { 2016 return -EINVAL; 2017 } 2018 if (copy_from_user(&wrthdr, ifr->ifr_data, 2019 sizeof (struct fstioc_write))) { 2020 return -EFAULT; 2021 } 2022 2023 /* Sanity check the parameters. We don't support partial writes 2024 * when going over the top 2025 */ 2026 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE || 2027 wrthdr.size + wrthdr.offset > FST_MEMSIZE) { 2028 return -ENXIO; 2029 } 2030 2031 /* Now copy the data to the card. */ 2032 2033 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write), 2034 wrthdr.size); 2035 if (IS_ERR(buf)) 2036 return PTR_ERR(buf); 2037 2038 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size); 2039 kfree(buf); 2040 2041 /* Writes to the memory of a card in the reset state constitute 2042 * a download 2043 */ 2044 if (card->state == FST_RESET) { 2045 card->state = FST_DOWNLOAD; 2046 } 2047 return 0; 2048 2049 case FSTGETCONF: 2050 2051 /* If card has just been started check the shared memory config 2052 * version and marker 2053 */ 2054 if (card->state == FST_STARTING) { 2055 check_started_ok(card); 2056 2057 /* If everything checked out enable card interrupts */ 2058 if (card->state == FST_RUNNING) { 2059 spin_lock_irqsave(&card->card_lock, flags); 2060 fst_enable_intr(card); 2061 FST_WRB(card, interruptHandshake, 0xEE); 2062 spin_unlock_irqrestore(&card->card_lock, flags); 2063 } 2064 } 2065 2066 if (ifr->ifr_data == NULL) { 2067 return -EINVAL; 2068 } 2069 2070 gather_conf_info(card, port, &info); 2071 2072 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { 2073 return -EFAULT; 2074 } 2075 return 0; 2076 2077 case FSTSETCONF: 2078 2079 /* 2080 * Most of the settings have been moved to the generic ioctls 2081 * this just covers debug and board ident now 2082 */ 2083 2084 if (card->state != FST_RUNNING) { 2085 pr_err("Attempt to configure card %d in non-running state (%d)\n", 2086 card->card_no, card->state); 2087 return -EIO; 2088 } 2089 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { 2090 return -EFAULT; 2091 } 2092 2093 return set_conf_from_info(card, port, &info); 2094 2095 case SIOCWANDEV: 2096 switch (ifr->ifr_settings.type) { 2097 case IF_GET_IFACE: 2098 return fst_get_iface(card, port, ifr); 2099 2100 case IF_IFACE_SYNC_SERIAL: 2101 case IF_IFACE_V35: 2102 case IF_IFACE_V24: 2103 case IF_IFACE_X21: 2104 case IF_IFACE_X21D: 2105 case IF_IFACE_T1: 2106 case IF_IFACE_E1: 2107 return fst_set_iface(card, port, ifr); 2108 2109 case IF_PROTO_RAW: 2110 port->mode = FST_RAW; 2111 return 0; 2112 2113 case IF_GET_PROTO: 2114 if (port->mode == FST_RAW) { 2115 ifr->ifr_settings.type = IF_PROTO_RAW; 2116 return 0; 2117 } 2118 return hdlc_ioctl(dev, ifr, cmd); 2119 2120 default: 2121 port->mode = FST_GEN_HDLC; 2122 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2123 ifr->ifr_settings.type); 2124 return hdlc_ioctl(dev, ifr, cmd); 2125 } 2126 2127 default: 2128 /* Not one of ours. Pass through to HDLC package */ 2129 return hdlc_ioctl(dev, ifr, cmd); 2130 } 2131 } 2132 2133 static void 2134 fst_openport(struct fst_port_info *port) 2135 { 2136 int signals; 2137 int txq_length; 2138 2139 /* Only init things if card is actually running. This allows open to 2140 * succeed for downloads etc. 2141 */ 2142 if (port->card->state == FST_RUNNING) { 2143 if (port->run) { 2144 dbg(DBG_OPEN, "open: found port already running\n"); 2145 2146 fst_issue_cmd(port, STOPPORT); 2147 port->run = 0; 2148 } 2149 2150 fst_rx_config(port); 2151 fst_tx_config(port); 2152 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2153 2154 fst_issue_cmd(port, STARTPORT); 2155 port->run = 1; 2156 2157 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2158 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 2159 ? IPSTS_INDICATE : IPSTS_DCD)) 2160 netif_carrier_on(port_to_dev(port)); 2161 else 2162 netif_carrier_off(port_to_dev(port)); 2163 2164 txq_length = port->txqe - port->txqs; 2165 port->txqe = 0; 2166 port->txqs = 0; 2167 } 2168 2169 } 2170 2171 static void 2172 fst_closeport(struct fst_port_info *port) 2173 { 2174 if (port->card->state == FST_RUNNING) { 2175 if (port->run) { 2176 port->run = 0; 2177 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2178 2179 fst_issue_cmd(port, STOPPORT); 2180 } else { 2181 dbg(DBG_OPEN, "close: port not running\n"); 2182 } 2183 } 2184 } 2185 2186 static int 2187 fst_open(struct net_device *dev) 2188 { 2189 int err; 2190 struct fst_port_info *port; 2191 2192 port = dev_to_port(dev); 2193 if (!try_module_get(THIS_MODULE)) 2194 return -EBUSY; 2195 2196 if (port->mode != FST_RAW) { 2197 err = hdlc_open(dev); 2198 if (err) { 2199 module_put(THIS_MODULE); 2200 return err; 2201 } 2202 } 2203 2204 fst_openport(port); 2205 netif_wake_queue(dev); 2206 return 0; 2207 } 2208 2209 static int 2210 fst_close(struct net_device *dev) 2211 { 2212 struct fst_port_info *port; 2213 struct fst_card_info *card; 2214 unsigned char tx_dma_done; 2215 unsigned char rx_dma_done; 2216 2217 port = dev_to_port(dev); 2218 card = port->card; 2219 2220 tx_dma_done = inb(card->pci_conf + DMACSR1); 2221 rx_dma_done = inb(card->pci_conf + DMACSR0); 2222 dbg(DBG_OPEN, 2223 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2224 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2225 rx_dma_done); 2226 2227 netif_stop_queue(dev); 2228 fst_closeport(dev_to_port(dev)); 2229 if (port->mode != FST_RAW) { 2230 hdlc_close(dev); 2231 } 2232 module_put(THIS_MODULE); 2233 return 0; 2234 } 2235 2236 static int 2237 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2238 { 2239 /* 2240 * Setting currently fixed in FarSync card so we check and forget 2241 */ 2242 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2243 return -EINVAL; 2244 return 0; 2245 } 2246 2247 static void 2248 fst_tx_timeout(struct net_device *dev) 2249 { 2250 struct fst_port_info *port; 2251 struct fst_card_info *card; 2252 2253 port = dev_to_port(dev); 2254 card = port->card; 2255 dev->stats.tx_errors++; 2256 dev->stats.tx_aborted_errors++; 2257 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2258 card->card_no, port->index); 2259 fst_issue_cmd(port, ABORTTX); 2260 2261 dev->trans_start = jiffies; 2262 netif_wake_queue(dev); 2263 port->start = 0; 2264 } 2265 2266 static netdev_tx_t 2267 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2268 { 2269 struct fst_card_info *card; 2270 struct fst_port_info *port; 2271 unsigned long flags; 2272 int txq_length; 2273 2274 port = dev_to_port(dev); 2275 card = port->card; 2276 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2277 2278 /* Drop packet with error if we don't have carrier */ 2279 if (!netif_carrier_ok(dev)) { 2280 dev_kfree_skb(skb); 2281 dev->stats.tx_errors++; 2282 dev->stats.tx_carrier_errors++; 2283 dbg(DBG_ASS, 2284 "Tried to transmit but no carrier on card %d port %d\n", 2285 card->card_no, port->index); 2286 return NETDEV_TX_OK; 2287 } 2288 2289 /* Drop it if it's too big! MTU failure ? */ 2290 if (skb->len > LEN_TX_BUFFER) { 2291 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2292 LEN_TX_BUFFER); 2293 dev_kfree_skb(skb); 2294 dev->stats.tx_errors++; 2295 return NETDEV_TX_OK; 2296 } 2297 2298 /* 2299 * We are always going to queue the packet 2300 * so that the bottom half is the only place we tx from 2301 * Check there is room in the port txq 2302 */ 2303 spin_lock_irqsave(&card->card_lock, flags); 2304 if ((txq_length = port->txqe - port->txqs) < 0) { 2305 /* 2306 * This is the case where the next free has wrapped but the 2307 * last used hasn't 2308 */ 2309 txq_length = txq_length + FST_TXQ_DEPTH; 2310 } 2311 spin_unlock_irqrestore(&card->card_lock, flags); 2312 if (txq_length > fst_txq_high) { 2313 /* 2314 * We have got enough buffers in the pipeline. Ask the network 2315 * layer to stop sending frames down 2316 */ 2317 netif_stop_queue(dev); 2318 port->start = 1; /* I'm using this to signal stop sent up */ 2319 } 2320 2321 if (txq_length == FST_TXQ_DEPTH - 1) { 2322 /* 2323 * This shouldn't have happened but such is life 2324 */ 2325 dev_kfree_skb(skb); 2326 dev->stats.tx_errors++; 2327 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2328 card->card_no, port->index); 2329 return NETDEV_TX_OK; 2330 } 2331 2332 /* 2333 * queue the buffer 2334 */ 2335 spin_lock_irqsave(&card->card_lock, flags); 2336 port->txq[port->txqe] = skb; 2337 port->txqe++; 2338 if (port->txqe == FST_TXQ_DEPTH) 2339 port->txqe = 0; 2340 spin_unlock_irqrestore(&card->card_lock, flags); 2341 2342 /* Scehdule the bottom half which now does transmit processing */ 2343 fst_q_work_item(&fst_work_txq, card->card_no); 2344 tasklet_schedule(&fst_tx_task); 2345 2346 return NETDEV_TX_OK; 2347 } 2348 2349 /* 2350 * Card setup having checked hardware resources. 2351 * Should be pretty bizarre if we get an error here (kernel memory 2352 * exhaustion is one possibility). If we do see a problem we report it 2353 * via a printk and leave the corresponding interface and all that follow 2354 * disabled. 2355 */ 2356 static char *type_strings[] = { 2357 "no hardware", /* Should never be seen */ 2358 "FarSync T2P", 2359 "FarSync T4P", 2360 "FarSync T1U", 2361 "FarSync T2U", 2362 "FarSync T4U", 2363 "FarSync TE1" 2364 }; 2365 2366 static int 2367 fst_init_card(struct fst_card_info *card) 2368 { 2369 int i; 2370 int err; 2371 2372 /* We're working on a number of ports based on the card ID. If the 2373 * firmware detects something different later (should never happen) 2374 * we'll have to revise it in some way then. 2375 */ 2376 for (i = 0; i < card->nports; i++) { 2377 err = register_hdlc_device(card->ports[i].dev); 2378 if (err < 0) { 2379 pr_err("Cannot register HDLC device for port %d (errno %d)\n", 2380 i, -err); 2381 while (i--) 2382 unregister_hdlc_device(card->ports[i].dev); 2383 return err; 2384 } 2385 } 2386 2387 pr_info("%s-%s: %s IRQ%d, %d ports\n", 2388 port_to_dev(&card->ports[0])->name, 2389 port_to_dev(&card->ports[card->nports - 1])->name, 2390 type_strings[card->type], card->irq, card->nports); 2391 return 0; 2392 } 2393 2394 static const struct net_device_ops fst_ops = { 2395 .ndo_open = fst_open, 2396 .ndo_stop = fst_close, 2397 .ndo_change_mtu = hdlc_change_mtu, 2398 .ndo_start_xmit = hdlc_start_xmit, 2399 .ndo_do_ioctl = fst_ioctl, 2400 .ndo_tx_timeout = fst_tx_timeout, 2401 }; 2402 2403 /* 2404 * Initialise card when detected. 2405 * Returns 0 to indicate success, or errno otherwise. 2406 */ 2407 static int 2408 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2409 { 2410 static int no_of_cards_added = 0; 2411 struct fst_card_info *card; 2412 int err = 0; 2413 int i; 2414 2415 printk_once(KERN_INFO 2416 pr_fmt("FarSync WAN driver " FST_USER_VERSION 2417 " (c) 2001-2004 FarSite Communications Ltd.\n")); 2418 #if FST_DEBUG 2419 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2420 #endif 2421 /* 2422 * We are going to be clever and allow certain cards not to be 2423 * configured. An exclude list can be provided in /etc/modules.conf 2424 */ 2425 if (fst_excluded_cards != 0) { 2426 /* 2427 * There are cards to exclude 2428 * 2429 */ 2430 for (i = 0; i < fst_excluded_cards; i++) { 2431 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { 2432 pr_info("FarSync PCI device %d not assigned\n", 2433 (pdev->devfn) >> 3); 2434 return -EBUSY; 2435 } 2436 } 2437 } 2438 2439 /* Allocate driver private data */ 2440 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL); 2441 if (card == NULL) 2442 return -ENOMEM; 2443 2444 /* Try to enable the device */ 2445 if ((err = pci_enable_device(pdev)) != 0) { 2446 pr_err("Failed to enable card. Err %d\n", -err); 2447 goto enable_fail; 2448 } 2449 2450 if ((err = pci_request_regions(pdev, "FarSync")) !=0) { 2451 pr_err("Failed to allocate regions. Err %d\n", -err); 2452 goto regions_fail; 2453 } 2454 2455 /* Get virtual addresses of memory regions */ 2456 card->pci_conf = pci_resource_start(pdev, 1); 2457 card->phys_mem = pci_resource_start(pdev, 2); 2458 card->phys_ctlmem = pci_resource_start(pdev, 3); 2459 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { 2460 pr_err("Physical memory remap failed\n"); 2461 err = -ENODEV; 2462 goto ioremap_physmem_fail; 2463 } 2464 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { 2465 pr_err("Control memory remap failed\n"); 2466 err = -ENODEV; 2467 goto ioremap_ctlmem_fail; 2468 } 2469 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2470 2471 /* Register the interrupt handler */ 2472 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) { 2473 pr_err("Unable to register interrupt %d\n", card->irq); 2474 err = -ENODEV; 2475 goto irq_fail; 2476 } 2477 2478 /* Record info we need */ 2479 card->irq = pdev->irq; 2480 card->type = ent->driver_data; 2481 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2482 (ent->driver_data == FST_TYPE_T4P)) 2483 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2484 if ((ent->driver_data == FST_TYPE_T1U) || 2485 (ent->driver_data == FST_TYPE_TE1)) 2486 card->nports = 1; 2487 else 2488 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2489 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2490 2491 card->state = FST_UNINIT; 2492 spin_lock_init ( &card->card_lock ); 2493 2494 for ( i = 0 ; i < card->nports ; i++ ) { 2495 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2496 hdlc_device *hdlc; 2497 if (!dev) { 2498 while (i--) 2499 free_netdev(card->ports[i].dev); 2500 pr_err("FarSync: out of memory\n"); 2501 err = -ENOMEM; 2502 goto hdlcdev_fail; 2503 } 2504 card->ports[i].dev = dev; 2505 card->ports[i].card = card; 2506 card->ports[i].index = i; 2507 card->ports[i].run = 0; 2508 2509 hdlc = dev_to_hdlc(dev); 2510 2511 /* Fill in the net device info */ 2512 /* Since this is a PCI setup this is purely 2513 * informational. Give them the buffer addresses 2514 * and basic card I/O. 2515 */ 2516 dev->mem_start = card->phys_mem 2517 + BUF_OFFSET ( txBuffer[i][0][0]); 2518 dev->mem_end = card->phys_mem 2519 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); 2520 dev->base_addr = card->pci_conf; 2521 dev->irq = card->irq; 2522 2523 dev->netdev_ops = &fst_ops; 2524 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2525 dev->watchdog_timeo = FST_TX_TIMEOUT; 2526 hdlc->attach = fst_attach; 2527 hdlc->xmit = fst_start_xmit; 2528 } 2529 2530 card->device = pdev; 2531 2532 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2533 card->nports, card->irq); 2534 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2535 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2536 2537 /* Reset the card's processor */ 2538 fst_cpureset(card); 2539 card->state = FST_RESET; 2540 2541 /* Initialise DMA (if required) */ 2542 fst_init_dma(card); 2543 2544 /* Record driver data for later use */ 2545 pci_set_drvdata(pdev, card); 2546 2547 /* Remainder of card setup */ 2548 if (no_of_cards_added >= FST_MAX_CARDS) { 2549 pr_err("FarSync: too many cards\n"); 2550 err = -ENOMEM; 2551 goto card_array_fail; 2552 } 2553 fst_card_array[no_of_cards_added] = card; 2554 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2555 err = fst_init_card(card); 2556 if (err) 2557 goto init_card_fail; 2558 if (card->family == FST_FAMILY_TXU) { 2559 /* 2560 * Allocate a dma buffer for transmit and receives 2561 */ 2562 card->rx_dma_handle_host = 2563 pci_alloc_consistent(card->device, FST_MAX_MTU, 2564 &card->rx_dma_handle_card); 2565 if (card->rx_dma_handle_host == NULL) { 2566 pr_err("Could not allocate rx dma buffer\n"); 2567 err = -ENOMEM; 2568 goto rx_dma_fail; 2569 } 2570 card->tx_dma_handle_host = 2571 pci_alloc_consistent(card->device, FST_MAX_MTU, 2572 &card->tx_dma_handle_card); 2573 if (card->tx_dma_handle_host == NULL) { 2574 pr_err("Could not allocate tx dma buffer\n"); 2575 err = -ENOMEM; 2576 goto tx_dma_fail; 2577 } 2578 } 2579 return 0; /* Success */ 2580 2581 tx_dma_fail: 2582 pci_free_consistent(card->device, FST_MAX_MTU, 2583 card->rx_dma_handle_host, 2584 card->rx_dma_handle_card); 2585 rx_dma_fail: 2586 fst_disable_intr(card); 2587 for (i = 0 ; i < card->nports ; i++) 2588 unregister_hdlc_device(card->ports[i].dev); 2589 init_card_fail: 2590 fst_card_array[card->card_no] = NULL; 2591 card_array_fail: 2592 for (i = 0 ; i < card->nports ; i++) 2593 free_netdev(card->ports[i].dev); 2594 hdlcdev_fail: 2595 free_irq(card->irq, card); 2596 irq_fail: 2597 iounmap(card->ctlmem); 2598 ioremap_ctlmem_fail: 2599 iounmap(card->mem); 2600 ioremap_physmem_fail: 2601 pci_release_regions(pdev); 2602 regions_fail: 2603 pci_disable_device(pdev); 2604 enable_fail: 2605 kfree(card); 2606 return err; 2607 } 2608 2609 /* 2610 * Cleanup and close down a card 2611 */ 2612 static void 2613 fst_remove_one(struct pci_dev *pdev) 2614 { 2615 struct fst_card_info *card; 2616 int i; 2617 2618 card = pci_get_drvdata(pdev); 2619 2620 for (i = 0; i < card->nports; i++) { 2621 struct net_device *dev = port_to_dev(&card->ports[i]); 2622 unregister_hdlc_device(dev); 2623 } 2624 2625 fst_disable_intr(card); 2626 free_irq(card->irq, card); 2627 2628 iounmap(card->ctlmem); 2629 iounmap(card->mem); 2630 pci_release_regions(pdev); 2631 if (card->family == FST_FAMILY_TXU) { 2632 /* 2633 * Free dma buffers 2634 */ 2635 pci_free_consistent(card->device, FST_MAX_MTU, 2636 card->rx_dma_handle_host, 2637 card->rx_dma_handle_card); 2638 pci_free_consistent(card->device, FST_MAX_MTU, 2639 card->tx_dma_handle_host, 2640 card->tx_dma_handle_card); 2641 } 2642 fst_card_array[card->card_no] = NULL; 2643 } 2644 2645 static struct pci_driver fst_driver = { 2646 .name = FST_NAME, 2647 .id_table = fst_pci_dev_id, 2648 .probe = fst_add_one, 2649 .remove = fst_remove_one, 2650 .suspend = NULL, 2651 .resume = NULL, 2652 }; 2653 2654 static int __init 2655 fst_init(void) 2656 { 2657 int i; 2658 2659 for (i = 0; i < FST_MAX_CARDS; i++) 2660 fst_card_array[i] = NULL; 2661 spin_lock_init(&fst_work_q_lock); 2662 return pci_register_driver(&fst_driver); 2663 } 2664 2665 static void __exit 2666 fst_cleanup_module(void) 2667 { 2668 pr_info("FarSync WAN driver unloading\n"); 2669 pci_unregister_driver(&fst_driver); 2670 } 2671 2672 module_init(fst_init); 2673 module_exit(fst_cleanup_module); 2674