xref: /openbmc/linux/drivers/net/vrf.c (revision fee6d4c777a125e56de9370db3b2bf359bf958d6)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_route.h>
34 #include <net/rtnetlink.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 
39 #define DRV_NAME	"vrf"
40 #define DRV_VERSION	"1.0"
41 
42 #define vrf_master_get_rcu(dev) \
43 	((struct net_device *)rcu_dereference(dev->rx_handler_data))
44 
45 struct slave {
46 	struct list_head        list;
47 	struct net_device       *dev;
48 };
49 
50 struct slave_queue {
51 	struct list_head        all_slaves;
52 };
53 
54 struct net_vrf {
55 	struct slave_queue      queue;
56 	struct rtable           *rth;
57 	u32                     tb_id;
58 };
59 
60 struct pcpu_dstats {
61 	u64			tx_pkts;
62 	u64			tx_bytes;
63 	u64			tx_drps;
64 	u64			rx_pkts;
65 	u64			rx_bytes;
66 	struct u64_stats_sync	syncp;
67 };
68 
69 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
70 {
71 	return dst;
72 }
73 
74 static int vrf_ip_local_out(struct sk_buff *skb)
75 {
76 	return ip_local_out(skb);
77 }
78 
79 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
80 {
81 	/* TO-DO: return max ethernet size? */
82 	return dst->dev->mtu;
83 }
84 
85 static void vrf_dst_destroy(struct dst_entry *dst)
86 {
87 	/* our dst lives forever - or until the device is closed */
88 }
89 
90 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
91 {
92 	return 65535 - 40;
93 }
94 
95 static struct dst_ops vrf_dst_ops = {
96 	.family		= AF_INET,
97 	.local_out	= vrf_ip_local_out,
98 	.check		= vrf_ip_check,
99 	.mtu		= vrf_v4_mtu,
100 	.destroy	= vrf_dst_destroy,
101 	.default_advmss	= vrf_default_advmss,
102 };
103 
104 static bool is_ip_rx_frame(struct sk_buff *skb)
105 {
106 	switch (skb->protocol) {
107 	case htons(ETH_P_IP):
108 	case htons(ETH_P_IPV6):
109 		return true;
110 	}
111 	return false;
112 }
113 
114 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
115 {
116 	vrf_dev->stats.tx_errors++;
117 	kfree_skb(skb);
118 }
119 
120 /* note: already called with rcu_read_lock */
121 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
122 {
123 	struct sk_buff *skb = *pskb;
124 
125 	if (is_ip_rx_frame(skb)) {
126 		struct net_device *dev = vrf_master_get_rcu(skb->dev);
127 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
128 
129 		u64_stats_update_begin(&dstats->syncp);
130 		dstats->rx_pkts++;
131 		dstats->rx_bytes += skb->len;
132 		u64_stats_update_end(&dstats->syncp);
133 
134 		skb->dev = dev;
135 
136 		return RX_HANDLER_ANOTHER;
137 	}
138 	return RX_HANDLER_PASS;
139 }
140 
141 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
142 						 struct rtnl_link_stats64 *stats)
143 {
144 	int i;
145 
146 	for_each_possible_cpu(i) {
147 		const struct pcpu_dstats *dstats;
148 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
149 		unsigned int start;
150 
151 		dstats = per_cpu_ptr(dev->dstats, i);
152 		do {
153 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
154 			tbytes = dstats->tx_bytes;
155 			tpkts = dstats->tx_pkts;
156 			tdrops = dstats->tx_drps;
157 			rbytes = dstats->rx_bytes;
158 			rpkts = dstats->rx_pkts;
159 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
160 		stats->tx_bytes += tbytes;
161 		stats->tx_packets += tpkts;
162 		stats->tx_dropped += tdrops;
163 		stats->rx_bytes += rbytes;
164 		stats->rx_packets += rpkts;
165 	}
166 	return stats;
167 }
168 
169 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
170 					   struct net_device *dev)
171 {
172 	vrf_tx_error(dev, skb);
173 	return NET_XMIT_DROP;
174 }
175 
176 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
177 			    struct net_device *vrf_dev)
178 {
179 	struct rtable *rt;
180 	int err = 1;
181 
182 	rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
183 	if (IS_ERR(rt))
184 		goto out;
185 
186 	/* TO-DO: what about broadcast ? */
187 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
188 		ip_rt_put(rt);
189 		goto out;
190 	}
191 
192 	skb_dst_drop(skb);
193 	skb_dst_set(skb, &rt->dst);
194 	err = 0;
195 out:
196 	return err;
197 }
198 
199 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
200 					   struct net_device *vrf_dev)
201 {
202 	struct iphdr *ip4h = ip_hdr(skb);
203 	int ret = NET_XMIT_DROP;
204 	struct flowi4 fl4 = {
205 		/* needed to match OIF rule */
206 		.flowi4_oif = vrf_dev->ifindex,
207 		.flowi4_iif = LOOPBACK_IFINDEX,
208 		.flowi4_tos = RT_TOS(ip4h->tos),
209 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
210 				FLOWI_FLAG_SKIP_NH_OIF,
211 		.daddr = ip4h->daddr,
212 	};
213 
214 	if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
215 		goto err;
216 
217 	if (!ip4h->saddr) {
218 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
219 					       RT_SCOPE_LINK);
220 	}
221 
222 	ret = ip_local_out(skb);
223 	if (unlikely(net_xmit_eval(ret)))
224 		vrf_dev->stats.tx_errors++;
225 	else
226 		ret = NET_XMIT_SUCCESS;
227 
228 out:
229 	return ret;
230 err:
231 	vrf_tx_error(vrf_dev, skb);
232 	goto out;
233 }
234 
235 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
236 {
237 	/* strip the ethernet header added for pass through VRF device */
238 	__skb_pull(skb, skb_network_offset(skb));
239 
240 	switch (skb->protocol) {
241 	case htons(ETH_P_IP):
242 		return vrf_process_v4_outbound(skb, dev);
243 	case htons(ETH_P_IPV6):
244 		return vrf_process_v6_outbound(skb, dev);
245 	default:
246 		vrf_tx_error(dev, skb);
247 		return NET_XMIT_DROP;
248 	}
249 }
250 
251 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
252 {
253 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
254 
255 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
256 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
257 
258 		u64_stats_update_begin(&dstats->syncp);
259 		dstats->tx_pkts++;
260 		dstats->tx_bytes += skb->len;
261 		u64_stats_update_end(&dstats->syncp);
262 	} else {
263 		this_cpu_inc(dev->dstats->tx_drps);
264 	}
265 
266 	return ret;
267 }
268 
269 /* modelled after ip_finish_output2 */
270 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
271 {
272 	struct dst_entry *dst = skb_dst(skb);
273 	struct rtable *rt = (struct rtable *)dst;
274 	struct net_device *dev = dst->dev;
275 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
276 	struct neighbour *neigh;
277 	u32 nexthop;
278 	int ret = -EINVAL;
279 
280 	/* Be paranoid, rather than too clever. */
281 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
282 		struct sk_buff *skb2;
283 
284 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
285 		if (!skb2) {
286 			ret = -ENOMEM;
287 			goto err;
288 		}
289 		if (skb->sk)
290 			skb_set_owner_w(skb2, skb->sk);
291 
292 		consume_skb(skb);
293 		skb = skb2;
294 	}
295 
296 	rcu_read_lock_bh();
297 
298 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
299 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
300 	if (unlikely(!neigh))
301 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
302 	if (!IS_ERR(neigh))
303 		ret = dst_neigh_output(dst, neigh, skb);
304 
305 	rcu_read_unlock_bh();
306 err:
307 	if (unlikely(ret < 0))
308 		vrf_tx_error(skb->dev, skb);
309 	return ret;
310 }
311 
312 static int vrf_output(struct sock *sk, struct sk_buff *skb)
313 {
314 	struct net_device *dev = skb_dst(skb)->dev;
315 	struct net *net = dev_net(dev);
316 
317 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
318 
319 	skb->dev = dev;
320 	skb->protocol = htons(ETH_P_IP);
321 
322 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
323 			    net, sk, skb, NULL, dev,
324 			    vrf_finish_output,
325 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
326 }
327 
328 static void vrf_rtable_destroy(struct net_vrf *vrf)
329 {
330 	struct dst_entry *dst = (struct dst_entry *)vrf->rth;
331 
332 	dst_destroy(dst);
333 	vrf->rth = NULL;
334 }
335 
336 static struct rtable *vrf_rtable_create(struct net_device *dev)
337 {
338 	struct net_vrf *vrf = netdev_priv(dev);
339 	struct rtable *rth;
340 
341 	rth = dst_alloc(&vrf_dst_ops, dev, 2,
342 			DST_OBSOLETE_NONE,
343 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
344 	if (rth) {
345 		rth->dst.output	= vrf_output;
346 		rth->rt_genid	= rt_genid_ipv4(dev_net(dev));
347 		rth->rt_flags	= 0;
348 		rth->rt_type	= RTN_UNICAST;
349 		rth->rt_is_input = 0;
350 		rth->rt_iif	= 0;
351 		rth->rt_pmtu	= 0;
352 		rth->rt_gateway	= 0;
353 		rth->rt_uses_gateway = 0;
354 		rth->rt_table_id = vrf->tb_id;
355 		INIT_LIST_HEAD(&rth->rt_uncached);
356 		rth->rt_uncached_list = NULL;
357 	}
358 
359 	return rth;
360 }
361 
362 /**************************** device handling ********************/
363 
364 /* cycle interface to flush neighbor cache and move routes across tables */
365 static void cycle_netdev(struct net_device *dev)
366 {
367 	unsigned int flags = dev->flags;
368 	int ret;
369 
370 	if (!netif_running(dev))
371 		return;
372 
373 	ret = dev_change_flags(dev, flags & ~IFF_UP);
374 	if (ret >= 0)
375 		ret = dev_change_flags(dev, flags);
376 
377 	if (ret < 0) {
378 		netdev_err(dev,
379 			   "Failed to cycle device %s; route tables might be wrong!\n",
380 			   dev->name);
381 	}
382 }
383 
384 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue,
385 					  struct net_device *dev)
386 {
387 	struct list_head *head = &queue->all_slaves;
388 	struct slave *slave;
389 
390 	list_for_each_entry(slave, head, list) {
391 		if (slave->dev == dev)
392 			return slave;
393 	}
394 
395 	return NULL;
396 }
397 
398 /* inverse of __vrf_insert_slave */
399 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave)
400 {
401 	list_del(&slave->list);
402 }
403 
404 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave)
405 {
406 	list_add(&slave->list, &queue->all_slaves);
407 }
408 
409 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
410 {
411 	struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL);
412 	struct net_vrf *vrf = netdev_priv(dev);
413 	struct slave_queue *queue = &vrf->queue;
414 	int ret = -ENOMEM;
415 
416 	if (!slave)
417 		goto out_fail;
418 
419 	slave->dev = port_dev;
420 
421 	/* register the packet handler for slave ports */
422 	ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
423 	if (ret) {
424 		netdev_err(port_dev,
425 			   "Device %s failed to register rx_handler\n",
426 			   port_dev->name);
427 		goto out_fail;
428 	}
429 
430 	ret = netdev_master_upper_dev_link(port_dev, dev);
431 	if (ret < 0)
432 		goto out_unregister;
433 
434 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
435 	__vrf_insert_slave(queue, slave);
436 	cycle_netdev(port_dev);
437 
438 	return 0;
439 
440 out_unregister:
441 	netdev_rx_handler_unregister(port_dev);
442 out_fail:
443 	kfree(slave);
444 	return ret;
445 }
446 
447 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
448 {
449 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
450 		return -EINVAL;
451 
452 	return do_vrf_add_slave(dev, port_dev);
453 }
454 
455 /* inverse of do_vrf_add_slave */
456 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
457 {
458 	struct net_vrf *vrf = netdev_priv(dev);
459 	struct slave_queue *queue = &vrf->queue;
460 	struct slave *slave;
461 
462 	netdev_upper_dev_unlink(port_dev, dev);
463 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
464 
465 	netdev_rx_handler_unregister(port_dev);
466 
467 	cycle_netdev(port_dev);
468 
469 	slave = __vrf_find_slave_dev(queue, port_dev);
470 	if (slave)
471 		__vrf_remove_slave(queue, slave);
472 
473 	kfree(slave);
474 
475 	return 0;
476 }
477 
478 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
479 {
480 	return do_vrf_del_slave(dev, port_dev);
481 }
482 
483 static void vrf_dev_uninit(struct net_device *dev)
484 {
485 	struct net_vrf *vrf = netdev_priv(dev);
486 	struct slave_queue *queue = &vrf->queue;
487 	struct list_head *head = &queue->all_slaves;
488 	struct slave *slave, *next;
489 
490 	vrf_rtable_destroy(vrf);
491 
492 	list_for_each_entry_safe(slave, next, head, list)
493 		vrf_del_slave(dev, slave->dev);
494 
495 	free_percpu(dev->dstats);
496 	dev->dstats = NULL;
497 }
498 
499 static int vrf_dev_init(struct net_device *dev)
500 {
501 	struct net_vrf *vrf = netdev_priv(dev);
502 
503 	INIT_LIST_HEAD(&vrf->queue.all_slaves);
504 
505 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
506 	if (!dev->dstats)
507 		goto out_nomem;
508 
509 	/* create the default dst which points back to us */
510 	vrf->rth = vrf_rtable_create(dev);
511 	if (!vrf->rth)
512 		goto out_stats;
513 
514 	dev->flags = IFF_MASTER | IFF_NOARP;
515 
516 	return 0;
517 
518 out_stats:
519 	free_percpu(dev->dstats);
520 	dev->dstats = NULL;
521 out_nomem:
522 	return -ENOMEM;
523 }
524 
525 static const struct net_device_ops vrf_netdev_ops = {
526 	.ndo_init		= vrf_dev_init,
527 	.ndo_uninit		= vrf_dev_uninit,
528 	.ndo_start_xmit		= vrf_xmit,
529 	.ndo_get_stats64	= vrf_get_stats64,
530 	.ndo_add_slave		= vrf_add_slave,
531 	.ndo_del_slave		= vrf_del_slave,
532 };
533 
534 static u32 vrf_fib_table(const struct net_device *dev)
535 {
536 	struct net_vrf *vrf = netdev_priv(dev);
537 
538 	return vrf->tb_id;
539 }
540 
541 static struct rtable *vrf_get_rtable(const struct net_device *dev,
542 				     const struct flowi4 *fl4)
543 {
544 	struct rtable *rth = NULL;
545 
546 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
547 		struct net_vrf *vrf = netdev_priv(dev);
548 
549 		rth = vrf->rth;
550 		atomic_inc(&rth->dst.__refcnt);
551 	}
552 
553 	return rth;
554 }
555 
556 static const struct l3mdev_ops vrf_l3mdev_ops = {
557 	.l3mdev_fib_table	= vrf_fib_table,
558 	.l3mdev_get_rtable	= vrf_get_rtable,
559 };
560 
561 static void vrf_get_drvinfo(struct net_device *dev,
562 			    struct ethtool_drvinfo *info)
563 {
564 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
565 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
566 }
567 
568 static const struct ethtool_ops vrf_ethtool_ops = {
569 	.get_drvinfo	= vrf_get_drvinfo,
570 };
571 
572 static void vrf_setup(struct net_device *dev)
573 {
574 	ether_setup(dev);
575 
576 	/* Initialize the device structure. */
577 	dev->netdev_ops = &vrf_netdev_ops;
578 	dev->l3mdev_ops = &vrf_l3mdev_ops;
579 	dev->ethtool_ops = &vrf_ethtool_ops;
580 	dev->destructor = free_netdev;
581 
582 	/* Fill in device structure with ethernet-generic values. */
583 	eth_hw_addr_random(dev);
584 
585 	/* don't acquire vrf device's netif_tx_lock when transmitting */
586 	dev->features |= NETIF_F_LLTX;
587 
588 	/* don't allow vrf devices to change network namespaces. */
589 	dev->features |= NETIF_F_NETNS_LOCAL;
590 }
591 
592 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
593 {
594 	if (tb[IFLA_ADDRESS]) {
595 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
596 			return -EINVAL;
597 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
598 			return -EADDRNOTAVAIL;
599 	}
600 	return 0;
601 }
602 
603 static void vrf_dellink(struct net_device *dev, struct list_head *head)
604 {
605 	unregister_netdevice_queue(dev, head);
606 }
607 
608 static int vrf_newlink(struct net *src_net, struct net_device *dev,
609 		       struct nlattr *tb[], struct nlattr *data[])
610 {
611 	struct net_vrf *vrf = netdev_priv(dev);
612 	int err;
613 
614 	if (!data || !data[IFLA_VRF_TABLE])
615 		return -EINVAL;
616 
617 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
618 
619 	dev->priv_flags |= IFF_L3MDEV_MASTER;
620 
621 	err = register_netdevice(dev);
622 	if (err < 0)
623 		goto out_fail;
624 
625 	return 0;
626 
627 out_fail:
628 	free_netdev(dev);
629 	return err;
630 }
631 
632 static size_t vrf_nl_getsize(const struct net_device *dev)
633 {
634 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
635 }
636 
637 static int vrf_fillinfo(struct sk_buff *skb,
638 			const struct net_device *dev)
639 {
640 	struct net_vrf *vrf = netdev_priv(dev);
641 
642 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
643 }
644 
645 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
646 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
647 };
648 
649 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
650 	.kind		= DRV_NAME,
651 	.priv_size	= sizeof(struct net_vrf),
652 
653 	.get_size	= vrf_nl_getsize,
654 	.policy		= vrf_nl_policy,
655 	.validate	= vrf_validate,
656 	.fill_info	= vrf_fillinfo,
657 
658 	.newlink	= vrf_newlink,
659 	.dellink	= vrf_dellink,
660 	.setup		= vrf_setup,
661 	.maxtype	= IFLA_VRF_MAX,
662 };
663 
664 static int vrf_device_event(struct notifier_block *unused,
665 			    unsigned long event, void *ptr)
666 {
667 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
668 
669 	/* only care about unregister events to drop slave references */
670 	if (event == NETDEV_UNREGISTER) {
671 		struct net_device *vrf_dev;
672 
673 		if (!netif_is_l3_slave(dev))
674 			goto out;
675 
676 		vrf_dev = netdev_master_upper_dev_get(dev);
677 		vrf_del_slave(vrf_dev, dev);
678 	}
679 out:
680 	return NOTIFY_DONE;
681 }
682 
683 static struct notifier_block vrf_notifier_block __read_mostly = {
684 	.notifier_call = vrf_device_event,
685 };
686 
687 static int __init vrf_init_module(void)
688 {
689 	int rc;
690 
691 	vrf_dst_ops.kmem_cachep =
692 		kmem_cache_create("vrf_ip_dst_cache",
693 				  sizeof(struct rtable), 0,
694 				  SLAB_HWCACHE_ALIGN,
695 				  NULL);
696 
697 	if (!vrf_dst_ops.kmem_cachep)
698 		return -ENOMEM;
699 
700 	register_netdevice_notifier(&vrf_notifier_block);
701 
702 	rc = rtnl_link_register(&vrf_link_ops);
703 	if (rc < 0)
704 		goto error;
705 
706 	return 0;
707 
708 error:
709 	unregister_netdevice_notifier(&vrf_notifier_block);
710 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
711 	return rc;
712 }
713 
714 static void __exit vrf_cleanup_module(void)
715 {
716 	rtnl_link_unregister(&vrf_link_ops);
717 	unregister_netdevice_notifier(&vrf_notifier_block);
718 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
719 }
720 
721 module_init(vrf_init_module);
722 module_exit(vrf_cleanup_module);
723 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
724 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
725 MODULE_LICENSE("GPL");
726 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
727 MODULE_VERSION(DRV_VERSION);
728