1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 #include <net/fib_rules.h> 39 #include <net/netns/generic.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.0" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 static unsigned int vrf_net_id; 47 48 struct net_vrf { 49 struct rtable __rcu *rth; 50 struct rt6_info __rcu *rt6; 51 u32 tb_id; 52 }; 53 54 struct pcpu_dstats { 55 u64 tx_pkts; 56 u64 tx_bytes; 57 u64 tx_drps; 58 u64 rx_pkts; 59 u64 rx_bytes; 60 u64 rx_drps; 61 struct u64_stats_sync syncp; 62 }; 63 64 static void vrf_rx_stats(struct net_device *dev, int len) 65 { 66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 67 68 u64_stats_update_begin(&dstats->syncp); 69 dstats->rx_pkts++; 70 dstats->rx_bytes += len; 71 u64_stats_update_end(&dstats->syncp); 72 } 73 74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 75 { 76 vrf_dev->stats.tx_errors++; 77 kfree_skb(skb); 78 } 79 80 static void vrf_get_stats64(struct net_device *dev, 81 struct rtnl_link_stats64 *stats) 82 { 83 int i; 84 85 for_each_possible_cpu(i) { 86 const struct pcpu_dstats *dstats; 87 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 88 unsigned int start; 89 90 dstats = per_cpu_ptr(dev->dstats, i); 91 do { 92 start = u64_stats_fetch_begin_irq(&dstats->syncp); 93 tbytes = dstats->tx_bytes; 94 tpkts = dstats->tx_pkts; 95 tdrops = dstats->tx_drps; 96 rbytes = dstats->rx_bytes; 97 rpkts = dstats->rx_pkts; 98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 99 stats->tx_bytes += tbytes; 100 stats->tx_packets += tpkts; 101 stats->tx_dropped += tdrops; 102 stats->rx_bytes += rbytes; 103 stats->rx_packets += rpkts; 104 } 105 } 106 107 /* by default VRF devices do not have a qdisc and are expected 108 * to be created with only a single queue. 109 */ 110 static bool qdisc_tx_is_default(const struct net_device *dev) 111 { 112 struct netdev_queue *txq; 113 struct Qdisc *qdisc; 114 115 if (dev->num_tx_queues > 1) 116 return false; 117 118 txq = netdev_get_tx_queue(dev, 0); 119 qdisc = rcu_access_pointer(txq->qdisc); 120 121 return !qdisc->enqueue; 122 } 123 124 /* Local traffic destined to local address. Reinsert the packet to rx 125 * path, similar to loopback handling. 126 */ 127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 128 struct dst_entry *dst) 129 { 130 int len = skb->len; 131 132 skb_orphan(skb); 133 134 skb_dst_set(skb, dst); 135 136 /* set pkt_type to avoid skb hitting packet taps twice - 137 * once on Tx and again in Rx processing 138 */ 139 skb->pkt_type = PACKET_LOOPBACK; 140 141 skb->protocol = eth_type_trans(skb, dev); 142 143 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 144 vrf_rx_stats(dev, len); 145 else 146 this_cpu_inc(dev->dstats->rx_drps); 147 148 return NETDEV_TX_OK; 149 } 150 151 #if IS_ENABLED(CONFIG_IPV6) 152 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 153 struct sk_buff *skb) 154 { 155 int err; 156 157 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 158 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 159 160 if (likely(err == 1)) 161 err = dst_output(net, sk, skb); 162 163 return err; 164 } 165 166 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 167 struct net_device *dev) 168 { 169 const struct ipv6hdr *iph = ipv6_hdr(skb); 170 struct net *net = dev_net(skb->dev); 171 struct flowi6 fl6 = { 172 /* needed to match OIF rule */ 173 .flowi6_oif = dev->ifindex, 174 .flowi6_iif = LOOPBACK_IFINDEX, 175 .daddr = iph->daddr, 176 .saddr = iph->saddr, 177 .flowlabel = ip6_flowinfo(iph), 178 .flowi6_mark = skb->mark, 179 .flowi6_proto = iph->nexthdr, 180 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 181 }; 182 int ret = NET_XMIT_DROP; 183 struct dst_entry *dst; 184 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 185 186 dst = ip6_route_output(net, NULL, &fl6); 187 if (dst == dst_null) 188 goto err; 189 190 skb_dst_drop(skb); 191 192 /* if dst.dev is loopback or the VRF device again this is locally 193 * originated traffic destined to a local address. Short circuit 194 * to Rx path 195 */ 196 if (dst->dev == dev) 197 return vrf_local_xmit(skb, dev, dst); 198 199 skb_dst_set(skb, dst); 200 201 /* strip the ethernet header added for pass through VRF device */ 202 __skb_pull(skb, skb_network_offset(skb)); 203 204 ret = vrf_ip6_local_out(net, skb->sk, skb); 205 if (unlikely(net_xmit_eval(ret))) 206 dev->stats.tx_errors++; 207 else 208 ret = NET_XMIT_SUCCESS; 209 210 return ret; 211 err: 212 vrf_tx_error(dev, skb); 213 return NET_XMIT_DROP; 214 } 215 #else 216 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 217 struct net_device *dev) 218 { 219 vrf_tx_error(dev, skb); 220 return NET_XMIT_DROP; 221 } 222 #endif 223 224 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 225 static int vrf_ip_local_out(struct net *net, struct sock *sk, 226 struct sk_buff *skb) 227 { 228 int err; 229 230 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 231 skb, NULL, skb_dst(skb)->dev, dst_output); 232 if (likely(err == 1)) 233 err = dst_output(net, sk, skb); 234 235 return err; 236 } 237 238 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 239 struct net_device *vrf_dev) 240 { 241 struct iphdr *ip4h = ip_hdr(skb); 242 int ret = NET_XMIT_DROP; 243 struct flowi4 fl4 = { 244 /* needed to match OIF rule */ 245 .flowi4_oif = vrf_dev->ifindex, 246 .flowi4_iif = LOOPBACK_IFINDEX, 247 .flowi4_tos = RT_TOS(ip4h->tos), 248 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 249 .flowi4_proto = ip4h->protocol, 250 .daddr = ip4h->daddr, 251 .saddr = ip4h->saddr, 252 }; 253 struct net *net = dev_net(vrf_dev); 254 struct rtable *rt; 255 256 rt = ip_route_output_flow(net, &fl4, NULL); 257 if (IS_ERR(rt)) 258 goto err; 259 260 skb_dst_drop(skb); 261 262 /* if dst.dev is loopback or the VRF device again this is locally 263 * originated traffic destined to a local address. Short circuit 264 * to Rx path 265 */ 266 if (rt->dst.dev == vrf_dev) 267 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 268 269 skb_dst_set(skb, &rt->dst); 270 271 /* strip the ethernet header added for pass through VRF device */ 272 __skb_pull(skb, skb_network_offset(skb)); 273 274 if (!ip4h->saddr) { 275 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 276 RT_SCOPE_LINK); 277 } 278 279 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 280 if (unlikely(net_xmit_eval(ret))) 281 vrf_dev->stats.tx_errors++; 282 else 283 ret = NET_XMIT_SUCCESS; 284 285 out: 286 return ret; 287 err: 288 vrf_tx_error(vrf_dev, skb); 289 goto out; 290 } 291 292 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 293 { 294 switch (skb->protocol) { 295 case htons(ETH_P_IP): 296 return vrf_process_v4_outbound(skb, dev); 297 case htons(ETH_P_IPV6): 298 return vrf_process_v6_outbound(skb, dev); 299 default: 300 vrf_tx_error(dev, skb); 301 return NET_XMIT_DROP; 302 } 303 } 304 305 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 306 { 307 int len = skb->len; 308 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 309 310 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 311 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 312 313 u64_stats_update_begin(&dstats->syncp); 314 dstats->tx_pkts++; 315 dstats->tx_bytes += len; 316 u64_stats_update_end(&dstats->syncp); 317 } else { 318 this_cpu_inc(dev->dstats->tx_drps); 319 } 320 321 return ret; 322 } 323 324 static int vrf_finish_direct(struct net *net, struct sock *sk, 325 struct sk_buff *skb) 326 { 327 struct net_device *vrf_dev = skb->dev; 328 329 if (!list_empty(&vrf_dev->ptype_all) && 330 likely(skb_headroom(skb) >= ETH_HLEN)) { 331 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 332 333 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 334 eth_zero_addr(eth->h_dest); 335 eth->h_proto = skb->protocol; 336 337 rcu_read_lock_bh(); 338 dev_queue_xmit_nit(skb, vrf_dev); 339 rcu_read_unlock_bh(); 340 341 skb_pull(skb, ETH_HLEN); 342 } 343 344 return 1; 345 } 346 347 #if IS_ENABLED(CONFIG_IPV6) 348 /* modelled after ip6_finish_output2 */ 349 static int vrf_finish_output6(struct net *net, struct sock *sk, 350 struct sk_buff *skb) 351 { 352 struct dst_entry *dst = skb_dst(skb); 353 struct net_device *dev = dst->dev; 354 struct neighbour *neigh; 355 struct in6_addr *nexthop; 356 int ret; 357 358 nf_reset(skb); 359 360 skb->protocol = htons(ETH_P_IPV6); 361 skb->dev = dev; 362 363 rcu_read_lock_bh(); 364 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 365 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 366 if (unlikely(!neigh)) 367 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 368 if (!IS_ERR(neigh)) { 369 sock_confirm_neigh(skb, neigh); 370 ret = neigh_output(neigh, skb); 371 rcu_read_unlock_bh(); 372 return ret; 373 } 374 rcu_read_unlock_bh(); 375 376 IP6_INC_STATS(dev_net(dst->dev), 377 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 378 kfree_skb(skb); 379 return -EINVAL; 380 } 381 382 /* modelled after ip6_output */ 383 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 384 { 385 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 386 net, sk, skb, NULL, skb_dst(skb)->dev, 387 vrf_finish_output6, 388 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 389 } 390 391 /* set dst on skb to send packet to us via dev_xmit path. Allows 392 * packet to go through device based features such as qdisc, netfilter 393 * hooks and packet sockets with skb->dev set to vrf device. 394 */ 395 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 396 struct sk_buff *skb) 397 { 398 struct net_vrf *vrf = netdev_priv(vrf_dev); 399 struct dst_entry *dst = NULL; 400 struct rt6_info *rt6; 401 402 rcu_read_lock(); 403 404 rt6 = rcu_dereference(vrf->rt6); 405 if (likely(rt6)) { 406 dst = &rt6->dst; 407 dst_hold(dst); 408 } 409 410 rcu_read_unlock(); 411 412 if (unlikely(!dst)) { 413 vrf_tx_error(vrf_dev, skb); 414 return NULL; 415 } 416 417 skb_dst_drop(skb); 418 skb_dst_set(skb, dst); 419 420 return skb; 421 } 422 423 static int vrf_output6_direct(struct net *net, struct sock *sk, 424 struct sk_buff *skb) 425 { 426 skb->protocol = htons(ETH_P_IPV6); 427 428 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 429 net, sk, skb, NULL, skb->dev, 430 vrf_finish_direct, 431 !(IPCB(skb)->flags & IPSKB_REROUTED)); 432 } 433 434 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 435 struct sock *sk, 436 struct sk_buff *skb) 437 { 438 struct net *net = dev_net(vrf_dev); 439 int err; 440 441 skb->dev = vrf_dev; 442 443 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 444 skb, NULL, vrf_dev, vrf_output6_direct); 445 446 if (likely(err == 1)) 447 err = vrf_output6_direct(net, sk, skb); 448 449 /* reset skb device */ 450 if (likely(err == 1)) 451 nf_reset(skb); 452 else 453 skb = NULL; 454 455 return skb; 456 } 457 458 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 459 struct sock *sk, 460 struct sk_buff *skb) 461 { 462 /* don't divert link scope packets */ 463 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 464 return skb; 465 466 if (qdisc_tx_is_default(vrf_dev)) 467 return vrf_ip6_out_direct(vrf_dev, sk, skb); 468 469 return vrf_ip6_out_redirect(vrf_dev, skb); 470 } 471 472 /* holding rtnl */ 473 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 474 { 475 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 476 struct net *net = dev_net(dev); 477 struct dst_entry *dst; 478 479 RCU_INIT_POINTER(vrf->rt6, NULL); 480 synchronize_rcu(); 481 482 /* move dev in dst's to loopback so this VRF device can be deleted 483 * - based on dst_ifdown 484 */ 485 if (rt6) { 486 dst = &rt6->dst; 487 dev_put(dst->dev); 488 dst->dev = net->loopback_dev; 489 dev_hold(dst->dev); 490 dst_release(dst); 491 } 492 } 493 494 static int vrf_rt6_create(struct net_device *dev) 495 { 496 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM; 497 struct net_vrf *vrf = netdev_priv(dev); 498 struct net *net = dev_net(dev); 499 struct fib6_table *rt6i_table; 500 struct rt6_info *rt6; 501 int rc = -ENOMEM; 502 503 /* IPv6 can be CONFIG enabled and then disabled runtime */ 504 if (!ipv6_mod_enabled()) 505 return 0; 506 507 rt6i_table = fib6_new_table(net, vrf->tb_id); 508 if (!rt6i_table) 509 goto out; 510 511 /* create a dst for routing packets out a VRF device */ 512 rt6 = ip6_dst_alloc(net, dev, flags); 513 if (!rt6) 514 goto out; 515 516 rt6->rt6i_table = rt6i_table; 517 rt6->dst.output = vrf_output6; 518 519 rcu_assign_pointer(vrf->rt6, rt6); 520 521 rc = 0; 522 out: 523 return rc; 524 } 525 #else 526 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 527 struct sock *sk, 528 struct sk_buff *skb) 529 { 530 return skb; 531 } 532 533 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 534 { 535 } 536 537 static int vrf_rt6_create(struct net_device *dev) 538 { 539 return 0; 540 } 541 #endif 542 543 /* modelled after ip_finish_output2 */ 544 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 545 { 546 struct dst_entry *dst = skb_dst(skb); 547 struct rtable *rt = (struct rtable *)dst; 548 struct net_device *dev = dst->dev; 549 unsigned int hh_len = LL_RESERVED_SPACE(dev); 550 struct neighbour *neigh; 551 u32 nexthop; 552 int ret = -EINVAL; 553 554 nf_reset(skb); 555 556 /* Be paranoid, rather than too clever. */ 557 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 558 struct sk_buff *skb2; 559 560 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 561 if (!skb2) { 562 ret = -ENOMEM; 563 goto err; 564 } 565 if (skb->sk) 566 skb_set_owner_w(skb2, skb->sk); 567 568 consume_skb(skb); 569 skb = skb2; 570 } 571 572 rcu_read_lock_bh(); 573 574 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 575 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 576 if (unlikely(!neigh)) 577 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 578 if (!IS_ERR(neigh)) { 579 sock_confirm_neigh(skb, neigh); 580 ret = neigh_output(neigh, skb); 581 } 582 583 rcu_read_unlock_bh(); 584 err: 585 if (unlikely(ret < 0)) 586 vrf_tx_error(skb->dev, skb); 587 return ret; 588 } 589 590 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 591 { 592 struct net_device *dev = skb_dst(skb)->dev; 593 594 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 595 596 skb->dev = dev; 597 skb->protocol = htons(ETH_P_IP); 598 599 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 600 net, sk, skb, NULL, dev, 601 vrf_finish_output, 602 !(IPCB(skb)->flags & IPSKB_REROUTED)); 603 } 604 605 /* set dst on skb to send packet to us via dev_xmit path. Allows 606 * packet to go through device based features such as qdisc, netfilter 607 * hooks and packet sockets with skb->dev set to vrf device. 608 */ 609 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 610 struct sk_buff *skb) 611 { 612 struct net_vrf *vrf = netdev_priv(vrf_dev); 613 struct dst_entry *dst = NULL; 614 struct rtable *rth; 615 616 rcu_read_lock(); 617 618 rth = rcu_dereference(vrf->rth); 619 if (likely(rth)) { 620 dst = &rth->dst; 621 dst_hold(dst); 622 } 623 624 rcu_read_unlock(); 625 626 if (unlikely(!dst)) { 627 vrf_tx_error(vrf_dev, skb); 628 return NULL; 629 } 630 631 skb_dst_drop(skb); 632 skb_dst_set(skb, dst); 633 634 return skb; 635 } 636 637 static int vrf_output_direct(struct net *net, struct sock *sk, 638 struct sk_buff *skb) 639 { 640 skb->protocol = htons(ETH_P_IP); 641 642 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 643 net, sk, skb, NULL, skb->dev, 644 vrf_finish_direct, 645 !(IPCB(skb)->flags & IPSKB_REROUTED)); 646 } 647 648 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 649 struct sock *sk, 650 struct sk_buff *skb) 651 { 652 struct net *net = dev_net(vrf_dev); 653 int err; 654 655 skb->dev = vrf_dev; 656 657 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 658 skb, NULL, vrf_dev, vrf_output_direct); 659 660 if (likely(err == 1)) 661 err = vrf_output_direct(net, sk, skb); 662 663 /* reset skb device */ 664 if (likely(err == 1)) 665 nf_reset(skb); 666 else 667 skb = NULL; 668 669 return skb; 670 } 671 672 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 673 struct sock *sk, 674 struct sk_buff *skb) 675 { 676 /* don't divert multicast or local broadcast */ 677 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 678 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 679 return skb; 680 681 if (qdisc_tx_is_default(vrf_dev)) 682 return vrf_ip_out_direct(vrf_dev, sk, skb); 683 684 return vrf_ip_out_redirect(vrf_dev, skb); 685 } 686 687 /* called with rcu lock held */ 688 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 689 struct sock *sk, 690 struct sk_buff *skb, 691 u16 proto) 692 { 693 switch (proto) { 694 case AF_INET: 695 return vrf_ip_out(vrf_dev, sk, skb); 696 case AF_INET6: 697 return vrf_ip6_out(vrf_dev, sk, skb); 698 } 699 700 return skb; 701 } 702 703 /* holding rtnl */ 704 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 705 { 706 struct rtable *rth = rtnl_dereference(vrf->rth); 707 struct net *net = dev_net(dev); 708 struct dst_entry *dst; 709 710 RCU_INIT_POINTER(vrf->rth, NULL); 711 synchronize_rcu(); 712 713 /* move dev in dst's to loopback so this VRF device can be deleted 714 * - based on dst_ifdown 715 */ 716 if (rth) { 717 dst = &rth->dst; 718 dev_put(dst->dev); 719 dst->dev = net->loopback_dev; 720 dev_hold(dst->dev); 721 dst_release(dst); 722 } 723 } 724 725 static int vrf_rtable_create(struct net_device *dev) 726 { 727 struct net_vrf *vrf = netdev_priv(dev); 728 struct rtable *rth; 729 730 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 731 return -ENOMEM; 732 733 /* create a dst for routing packets out through a VRF device */ 734 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 735 if (!rth) 736 return -ENOMEM; 737 738 rth->dst.output = vrf_output; 739 rth->rt_table_id = vrf->tb_id; 740 741 rcu_assign_pointer(vrf->rth, rth); 742 743 return 0; 744 } 745 746 /**************************** device handling ********************/ 747 748 /* cycle interface to flush neighbor cache and move routes across tables */ 749 static void cycle_netdev(struct net_device *dev) 750 { 751 unsigned int flags = dev->flags; 752 int ret; 753 754 if (!netif_running(dev)) 755 return; 756 757 ret = dev_change_flags(dev, flags & ~IFF_UP); 758 if (ret >= 0) 759 ret = dev_change_flags(dev, flags); 760 761 if (ret < 0) { 762 netdev_err(dev, 763 "Failed to cycle device %s; route tables might be wrong!\n", 764 dev->name); 765 } 766 } 767 768 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 769 struct netlink_ext_ack *extack) 770 { 771 int ret; 772 773 /* do not allow loopback device to be enslaved to a VRF. 774 * The vrf device acts as the loopback for the vrf. 775 */ 776 if (port_dev == dev_net(dev)->loopback_dev) { 777 NL_SET_ERR_MSG(extack, 778 "Can not enslave loopback device to a VRF"); 779 return -EOPNOTSUPP; 780 } 781 782 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 783 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 784 if (ret < 0) 785 goto err; 786 787 cycle_netdev(port_dev); 788 789 return 0; 790 791 err: 792 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 793 return ret; 794 } 795 796 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 797 struct netlink_ext_ack *extack) 798 { 799 if (netif_is_l3_master(port_dev)) { 800 NL_SET_ERR_MSG(extack, 801 "Can not enslave an L3 master device to a VRF"); 802 return -EINVAL; 803 } 804 805 if (netif_is_l3_slave(port_dev)) 806 return -EINVAL; 807 808 return do_vrf_add_slave(dev, port_dev, extack); 809 } 810 811 /* inverse of do_vrf_add_slave */ 812 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 813 { 814 netdev_upper_dev_unlink(port_dev, dev); 815 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 816 817 cycle_netdev(port_dev); 818 819 return 0; 820 } 821 822 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 823 { 824 return do_vrf_del_slave(dev, port_dev); 825 } 826 827 static void vrf_dev_uninit(struct net_device *dev) 828 { 829 struct net_vrf *vrf = netdev_priv(dev); 830 831 vrf_rtable_release(dev, vrf); 832 vrf_rt6_release(dev, vrf); 833 834 free_percpu(dev->dstats); 835 dev->dstats = NULL; 836 } 837 838 static int vrf_dev_init(struct net_device *dev) 839 { 840 struct net_vrf *vrf = netdev_priv(dev); 841 842 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 843 if (!dev->dstats) 844 goto out_nomem; 845 846 /* create the default dst which points back to us */ 847 if (vrf_rtable_create(dev) != 0) 848 goto out_stats; 849 850 if (vrf_rt6_create(dev) != 0) 851 goto out_rth; 852 853 dev->flags = IFF_MASTER | IFF_NOARP; 854 855 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 856 dev->mtu = 64 * 1024; 857 858 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 859 dev->operstate = IF_OPER_UP; 860 netdev_lockdep_set_classes(dev); 861 return 0; 862 863 out_rth: 864 vrf_rtable_release(dev, vrf); 865 out_stats: 866 free_percpu(dev->dstats); 867 dev->dstats = NULL; 868 out_nomem: 869 return -ENOMEM; 870 } 871 872 static const struct net_device_ops vrf_netdev_ops = { 873 .ndo_init = vrf_dev_init, 874 .ndo_uninit = vrf_dev_uninit, 875 .ndo_start_xmit = vrf_xmit, 876 .ndo_get_stats64 = vrf_get_stats64, 877 .ndo_add_slave = vrf_add_slave, 878 .ndo_del_slave = vrf_del_slave, 879 }; 880 881 static u32 vrf_fib_table(const struct net_device *dev) 882 { 883 struct net_vrf *vrf = netdev_priv(dev); 884 885 return vrf->tb_id; 886 } 887 888 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 889 { 890 kfree_skb(skb); 891 return 0; 892 } 893 894 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 895 struct sk_buff *skb, 896 struct net_device *dev) 897 { 898 struct net *net = dev_net(dev); 899 900 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 901 skb = NULL; /* kfree_skb(skb) handled by nf code */ 902 903 return skb; 904 } 905 906 #if IS_ENABLED(CONFIG_IPV6) 907 /* neighbor handling is done with actual device; do not want 908 * to flip skb->dev for those ndisc packets. This really fails 909 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 910 * a start. 911 */ 912 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 913 { 914 const struct ipv6hdr *iph = ipv6_hdr(skb); 915 bool rc = false; 916 917 if (iph->nexthdr == NEXTHDR_ICMP) { 918 const struct icmp6hdr *icmph; 919 struct icmp6hdr _icmph; 920 921 icmph = skb_header_pointer(skb, sizeof(*iph), 922 sizeof(_icmph), &_icmph); 923 if (!icmph) 924 goto out; 925 926 switch (icmph->icmp6_type) { 927 case NDISC_ROUTER_SOLICITATION: 928 case NDISC_ROUTER_ADVERTISEMENT: 929 case NDISC_NEIGHBOUR_SOLICITATION: 930 case NDISC_NEIGHBOUR_ADVERTISEMENT: 931 case NDISC_REDIRECT: 932 rc = true; 933 break; 934 } 935 } 936 937 out: 938 return rc; 939 } 940 941 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 942 const struct net_device *dev, 943 struct flowi6 *fl6, 944 int ifindex, 945 int flags) 946 { 947 struct net_vrf *vrf = netdev_priv(dev); 948 struct fib6_table *table = NULL; 949 struct rt6_info *rt6; 950 951 rcu_read_lock(); 952 953 /* fib6_table does not have a refcnt and can not be freed */ 954 rt6 = rcu_dereference(vrf->rt6); 955 if (likely(rt6)) 956 table = rt6->rt6i_table; 957 958 rcu_read_unlock(); 959 960 if (!table) 961 return NULL; 962 963 return ip6_pol_route(net, table, ifindex, fl6, flags); 964 } 965 966 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 967 int ifindex) 968 { 969 const struct ipv6hdr *iph = ipv6_hdr(skb); 970 struct flowi6 fl6 = { 971 .flowi6_iif = ifindex, 972 .flowi6_mark = skb->mark, 973 .flowi6_proto = iph->nexthdr, 974 .daddr = iph->daddr, 975 .saddr = iph->saddr, 976 .flowlabel = ip6_flowinfo(iph), 977 }; 978 struct net *net = dev_net(vrf_dev); 979 struct rt6_info *rt6; 980 981 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, 982 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 983 if (unlikely(!rt6)) 984 return; 985 986 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 987 return; 988 989 skb_dst_set(skb, &rt6->dst); 990 } 991 992 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 993 struct sk_buff *skb) 994 { 995 int orig_iif = skb->skb_iif; 996 bool need_strict; 997 998 /* loopback traffic; do not push through packet taps again. 999 * Reset pkt_type for upper layers to process skb 1000 */ 1001 if (skb->pkt_type == PACKET_LOOPBACK) { 1002 skb->dev = vrf_dev; 1003 skb->skb_iif = vrf_dev->ifindex; 1004 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1005 skb->pkt_type = PACKET_HOST; 1006 goto out; 1007 } 1008 1009 /* if packet is NDISC or addressed to multicast or link-local 1010 * then keep the ingress interface 1011 */ 1012 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1013 if (!ipv6_ndisc_frame(skb) && !need_strict) { 1014 vrf_rx_stats(vrf_dev, skb->len); 1015 skb->dev = vrf_dev; 1016 skb->skb_iif = vrf_dev->ifindex; 1017 1018 if (!list_empty(&vrf_dev->ptype_all)) { 1019 skb_push(skb, skb->mac_len); 1020 dev_queue_xmit_nit(skb, vrf_dev); 1021 skb_pull(skb, skb->mac_len); 1022 } 1023 1024 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1025 } 1026 1027 if (need_strict) 1028 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1029 1030 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1031 out: 1032 return skb; 1033 } 1034 1035 #else 1036 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1037 struct sk_buff *skb) 1038 { 1039 return skb; 1040 } 1041 #endif 1042 1043 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1044 struct sk_buff *skb) 1045 { 1046 skb->dev = vrf_dev; 1047 skb->skb_iif = vrf_dev->ifindex; 1048 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1049 1050 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1051 goto out; 1052 1053 /* loopback traffic; do not push through packet taps again. 1054 * Reset pkt_type for upper layers to process skb 1055 */ 1056 if (skb->pkt_type == PACKET_LOOPBACK) { 1057 skb->pkt_type = PACKET_HOST; 1058 goto out; 1059 } 1060 1061 vrf_rx_stats(vrf_dev, skb->len); 1062 1063 if (!list_empty(&vrf_dev->ptype_all)) { 1064 skb_push(skb, skb->mac_len); 1065 dev_queue_xmit_nit(skb, vrf_dev); 1066 skb_pull(skb, skb->mac_len); 1067 } 1068 1069 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1070 out: 1071 return skb; 1072 } 1073 1074 /* called with rcu lock held */ 1075 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1076 struct sk_buff *skb, 1077 u16 proto) 1078 { 1079 switch (proto) { 1080 case AF_INET: 1081 return vrf_ip_rcv(vrf_dev, skb); 1082 case AF_INET6: 1083 return vrf_ip6_rcv(vrf_dev, skb); 1084 } 1085 1086 return skb; 1087 } 1088 1089 #if IS_ENABLED(CONFIG_IPV6) 1090 /* send to link-local or multicast address via interface enslaved to 1091 * VRF device. Force lookup to VRF table without changing flow struct 1092 */ 1093 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1094 struct flowi6 *fl6) 1095 { 1096 struct net *net = dev_net(dev); 1097 int flags = RT6_LOOKUP_F_IFACE; 1098 struct dst_entry *dst = NULL; 1099 struct rt6_info *rt; 1100 1101 /* VRF device does not have a link-local address and 1102 * sending packets to link-local or mcast addresses over 1103 * a VRF device does not make sense 1104 */ 1105 if (fl6->flowi6_oif == dev->ifindex) { 1106 dst = &net->ipv6.ip6_null_entry->dst; 1107 dst_hold(dst); 1108 return dst; 1109 } 1110 1111 if (!ipv6_addr_any(&fl6->saddr)) 1112 flags |= RT6_LOOKUP_F_HAS_SADDR; 1113 1114 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags); 1115 if (rt) 1116 dst = &rt->dst; 1117 1118 return dst; 1119 } 1120 #endif 1121 1122 static const struct l3mdev_ops vrf_l3mdev_ops = { 1123 .l3mdev_fib_table = vrf_fib_table, 1124 .l3mdev_l3_rcv = vrf_l3_rcv, 1125 .l3mdev_l3_out = vrf_l3_out, 1126 #if IS_ENABLED(CONFIG_IPV6) 1127 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1128 #endif 1129 }; 1130 1131 static void vrf_get_drvinfo(struct net_device *dev, 1132 struct ethtool_drvinfo *info) 1133 { 1134 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1135 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1136 } 1137 1138 static const struct ethtool_ops vrf_ethtool_ops = { 1139 .get_drvinfo = vrf_get_drvinfo, 1140 }; 1141 1142 static inline size_t vrf_fib_rule_nl_size(void) 1143 { 1144 size_t sz; 1145 1146 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1147 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1148 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1149 1150 return sz; 1151 } 1152 1153 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1154 { 1155 struct fib_rule_hdr *frh; 1156 struct nlmsghdr *nlh; 1157 struct sk_buff *skb; 1158 int err; 1159 1160 if (family == AF_INET6 && !ipv6_mod_enabled()) 1161 return 0; 1162 1163 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1164 if (!skb) 1165 return -ENOMEM; 1166 1167 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1168 if (!nlh) 1169 goto nla_put_failure; 1170 1171 /* rule only needs to appear once */ 1172 nlh->nlmsg_flags |= NLM_F_EXCL; 1173 1174 frh = nlmsg_data(nlh); 1175 memset(frh, 0, sizeof(*frh)); 1176 frh->family = family; 1177 frh->action = FR_ACT_TO_TBL; 1178 1179 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1180 goto nla_put_failure; 1181 1182 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1183 goto nla_put_failure; 1184 1185 nlmsg_end(skb, nlh); 1186 1187 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1188 skb->sk = dev_net(dev)->rtnl; 1189 if (add_it) { 1190 err = fib_nl_newrule(skb, nlh, NULL); 1191 if (err == -EEXIST) 1192 err = 0; 1193 } else { 1194 err = fib_nl_delrule(skb, nlh, NULL); 1195 if (err == -ENOENT) 1196 err = 0; 1197 } 1198 nlmsg_free(skb); 1199 1200 return err; 1201 1202 nla_put_failure: 1203 nlmsg_free(skb); 1204 1205 return -EMSGSIZE; 1206 } 1207 1208 static int vrf_add_fib_rules(const struct net_device *dev) 1209 { 1210 int err; 1211 1212 err = vrf_fib_rule(dev, AF_INET, true); 1213 if (err < 0) 1214 goto out_err; 1215 1216 err = vrf_fib_rule(dev, AF_INET6, true); 1217 if (err < 0) 1218 goto ipv6_err; 1219 1220 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1221 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1222 if (err < 0) 1223 goto ipmr_err; 1224 #endif 1225 1226 return 0; 1227 1228 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1229 ipmr_err: 1230 vrf_fib_rule(dev, AF_INET6, false); 1231 #endif 1232 1233 ipv6_err: 1234 vrf_fib_rule(dev, AF_INET, false); 1235 1236 out_err: 1237 netdev_err(dev, "Failed to add FIB rules.\n"); 1238 return err; 1239 } 1240 1241 static void vrf_setup(struct net_device *dev) 1242 { 1243 ether_setup(dev); 1244 1245 /* Initialize the device structure. */ 1246 dev->netdev_ops = &vrf_netdev_ops; 1247 dev->l3mdev_ops = &vrf_l3mdev_ops; 1248 dev->ethtool_ops = &vrf_ethtool_ops; 1249 dev->needs_free_netdev = true; 1250 1251 /* Fill in device structure with ethernet-generic values. */ 1252 eth_hw_addr_random(dev); 1253 1254 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1255 dev->features |= NETIF_F_LLTX; 1256 1257 /* don't allow vrf devices to change network namespaces. */ 1258 dev->features |= NETIF_F_NETNS_LOCAL; 1259 1260 /* does not make sense for a VLAN to be added to a vrf device */ 1261 dev->features |= NETIF_F_VLAN_CHALLENGED; 1262 1263 /* enable offload features */ 1264 dev->features |= NETIF_F_GSO_SOFTWARE; 1265 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM; 1266 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1267 1268 dev->hw_features = dev->features; 1269 dev->hw_enc_features = dev->features; 1270 1271 /* default to no qdisc; user can add if desired */ 1272 dev->priv_flags |= IFF_NO_QUEUE; 1273 } 1274 1275 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1276 struct netlink_ext_ack *extack) 1277 { 1278 if (tb[IFLA_ADDRESS]) { 1279 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1280 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1281 return -EINVAL; 1282 } 1283 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1284 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1285 return -EADDRNOTAVAIL; 1286 } 1287 } 1288 return 0; 1289 } 1290 1291 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1292 { 1293 struct net_device *port_dev; 1294 struct list_head *iter; 1295 1296 netdev_for_each_lower_dev(dev, port_dev, iter) 1297 vrf_del_slave(dev, port_dev); 1298 1299 unregister_netdevice_queue(dev, head); 1300 } 1301 1302 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1303 struct nlattr *tb[], struct nlattr *data[], 1304 struct netlink_ext_ack *extack) 1305 { 1306 struct net_vrf *vrf = netdev_priv(dev); 1307 bool *add_fib_rules; 1308 struct net *net; 1309 int err; 1310 1311 if (!data || !data[IFLA_VRF_TABLE]) { 1312 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1313 return -EINVAL; 1314 } 1315 1316 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1317 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1318 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1319 "Invalid VRF table id"); 1320 return -EINVAL; 1321 } 1322 1323 dev->priv_flags |= IFF_L3MDEV_MASTER; 1324 1325 err = register_netdevice(dev); 1326 if (err) 1327 goto out; 1328 1329 net = dev_net(dev); 1330 add_fib_rules = net_generic(net, vrf_net_id); 1331 if (*add_fib_rules) { 1332 err = vrf_add_fib_rules(dev); 1333 if (err) { 1334 unregister_netdevice(dev); 1335 goto out; 1336 } 1337 *add_fib_rules = false; 1338 } 1339 1340 out: 1341 return err; 1342 } 1343 1344 static size_t vrf_nl_getsize(const struct net_device *dev) 1345 { 1346 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1347 } 1348 1349 static int vrf_fillinfo(struct sk_buff *skb, 1350 const struct net_device *dev) 1351 { 1352 struct net_vrf *vrf = netdev_priv(dev); 1353 1354 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1355 } 1356 1357 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1358 const struct net_device *slave_dev) 1359 { 1360 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1361 } 1362 1363 static int vrf_fill_slave_info(struct sk_buff *skb, 1364 const struct net_device *vrf_dev, 1365 const struct net_device *slave_dev) 1366 { 1367 struct net_vrf *vrf = netdev_priv(vrf_dev); 1368 1369 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1370 return -EMSGSIZE; 1371 1372 return 0; 1373 } 1374 1375 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1376 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1377 }; 1378 1379 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1380 .kind = DRV_NAME, 1381 .priv_size = sizeof(struct net_vrf), 1382 1383 .get_size = vrf_nl_getsize, 1384 .policy = vrf_nl_policy, 1385 .validate = vrf_validate, 1386 .fill_info = vrf_fillinfo, 1387 1388 .get_slave_size = vrf_get_slave_size, 1389 .fill_slave_info = vrf_fill_slave_info, 1390 1391 .newlink = vrf_newlink, 1392 .dellink = vrf_dellink, 1393 .setup = vrf_setup, 1394 .maxtype = IFLA_VRF_MAX, 1395 }; 1396 1397 static int vrf_device_event(struct notifier_block *unused, 1398 unsigned long event, void *ptr) 1399 { 1400 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1401 1402 /* only care about unregister events to drop slave references */ 1403 if (event == NETDEV_UNREGISTER) { 1404 struct net_device *vrf_dev; 1405 1406 if (!netif_is_l3_slave(dev)) 1407 goto out; 1408 1409 vrf_dev = netdev_master_upper_dev_get(dev); 1410 vrf_del_slave(vrf_dev, dev); 1411 } 1412 out: 1413 return NOTIFY_DONE; 1414 } 1415 1416 static struct notifier_block vrf_notifier_block __read_mostly = { 1417 .notifier_call = vrf_device_event, 1418 }; 1419 1420 /* Initialize per network namespace state */ 1421 static int __net_init vrf_netns_init(struct net *net) 1422 { 1423 bool *add_fib_rules = net_generic(net, vrf_net_id); 1424 1425 *add_fib_rules = true; 1426 1427 return 0; 1428 } 1429 1430 static struct pernet_operations vrf_net_ops __net_initdata = { 1431 .init = vrf_netns_init, 1432 .id = &vrf_net_id, 1433 .size = sizeof(bool), 1434 }; 1435 1436 static int __init vrf_init_module(void) 1437 { 1438 int rc; 1439 1440 register_netdevice_notifier(&vrf_notifier_block); 1441 1442 rc = register_pernet_subsys(&vrf_net_ops); 1443 if (rc < 0) 1444 goto error; 1445 1446 rc = rtnl_link_register(&vrf_link_ops); 1447 if (rc < 0) { 1448 unregister_pernet_subsys(&vrf_net_ops); 1449 goto error; 1450 } 1451 1452 return 0; 1453 1454 error: 1455 unregister_netdevice_notifier(&vrf_notifier_block); 1456 return rc; 1457 } 1458 1459 module_init(vrf_init_module); 1460 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1461 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1462 MODULE_LICENSE("GPL"); 1463 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1464 MODULE_VERSION(DRV_VERSION); 1465