1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_route.h> 34 #include <net/rtnetlink.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/vrf.h> 38 39 #define DRV_NAME "vrf" 40 #define DRV_VERSION "1.0" 41 42 #define vrf_is_slave(dev) ((dev)->flags & IFF_SLAVE) 43 44 #define vrf_master_get_rcu(dev) \ 45 ((struct net_device *)rcu_dereference(dev->rx_handler_data)) 46 47 struct pcpu_dstats { 48 u64 tx_pkts; 49 u64 tx_bytes; 50 u64 tx_drps; 51 u64 rx_pkts; 52 u64 rx_bytes; 53 struct u64_stats_sync syncp; 54 }; 55 56 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie) 57 { 58 return dst; 59 } 60 61 static int vrf_ip_local_out(struct sk_buff *skb) 62 { 63 return ip_local_out(skb); 64 } 65 66 static unsigned int vrf_v4_mtu(const struct dst_entry *dst) 67 { 68 /* TO-DO: return max ethernet size? */ 69 return dst->dev->mtu; 70 } 71 72 static void vrf_dst_destroy(struct dst_entry *dst) 73 { 74 /* our dst lives forever - or until the device is closed */ 75 } 76 77 static unsigned int vrf_default_advmss(const struct dst_entry *dst) 78 { 79 return 65535 - 40; 80 } 81 82 static struct dst_ops vrf_dst_ops = { 83 .family = AF_INET, 84 .local_out = vrf_ip_local_out, 85 .check = vrf_ip_check, 86 .mtu = vrf_v4_mtu, 87 .destroy = vrf_dst_destroy, 88 .default_advmss = vrf_default_advmss, 89 }; 90 91 static bool is_ip_rx_frame(struct sk_buff *skb) 92 { 93 switch (skb->protocol) { 94 case htons(ETH_P_IP): 95 case htons(ETH_P_IPV6): 96 return true; 97 } 98 return false; 99 } 100 101 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 102 { 103 vrf_dev->stats.tx_errors++; 104 kfree_skb(skb); 105 } 106 107 /* note: already called with rcu_read_lock */ 108 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb) 109 { 110 struct sk_buff *skb = *pskb; 111 112 if (is_ip_rx_frame(skb)) { 113 struct net_device *dev = vrf_master_get_rcu(skb->dev); 114 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 115 116 u64_stats_update_begin(&dstats->syncp); 117 dstats->rx_pkts++; 118 dstats->rx_bytes += skb->len; 119 u64_stats_update_end(&dstats->syncp); 120 121 skb->dev = dev; 122 123 return RX_HANDLER_ANOTHER; 124 } 125 return RX_HANDLER_PASS; 126 } 127 128 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev, 129 struct rtnl_link_stats64 *stats) 130 { 131 int i; 132 133 for_each_possible_cpu(i) { 134 const struct pcpu_dstats *dstats; 135 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 136 unsigned int start; 137 138 dstats = per_cpu_ptr(dev->dstats, i); 139 do { 140 start = u64_stats_fetch_begin_irq(&dstats->syncp); 141 tbytes = dstats->tx_bytes; 142 tpkts = dstats->tx_pkts; 143 tdrops = dstats->tx_drps; 144 rbytes = dstats->rx_bytes; 145 rpkts = dstats->rx_pkts; 146 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 147 stats->tx_bytes += tbytes; 148 stats->tx_packets += tpkts; 149 stats->tx_dropped += tdrops; 150 stats->rx_bytes += rbytes; 151 stats->rx_packets += rpkts; 152 } 153 return stats; 154 } 155 156 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 157 struct net_device *dev) 158 { 159 vrf_tx_error(dev, skb); 160 return NET_XMIT_DROP; 161 } 162 163 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4, 164 struct net_device *vrf_dev) 165 { 166 struct rtable *rt; 167 int err = 1; 168 169 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL); 170 if (IS_ERR(rt)) 171 goto out; 172 173 /* TO-DO: what about broadcast ? */ 174 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { 175 ip_rt_put(rt); 176 goto out; 177 } 178 179 skb_dst_drop(skb); 180 skb_dst_set(skb, &rt->dst); 181 err = 0; 182 out: 183 return err; 184 } 185 186 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 187 struct net_device *vrf_dev) 188 { 189 struct iphdr *ip4h = ip_hdr(skb); 190 int ret = NET_XMIT_DROP; 191 struct flowi4 fl4 = { 192 /* needed to match OIF rule */ 193 .flowi4_oif = vrf_dev->ifindex, 194 .flowi4_iif = LOOPBACK_IFINDEX, 195 .flowi4_tos = RT_TOS(ip4h->tos), 196 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_VRFSRC, 197 .daddr = ip4h->daddr, 198 }; 199 200 if (vrf_send_v4_prep(skb, &fl4, vrf_dev)) 201 goto err; 202 203 if (!ip4h->saddr) { 204 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 205 RT_SCOPE_LINK); 206 } 207 208 ret = ip_local_out(skb); 209 if (unlikely(net_xmit_eval(ret))) 210 vrf_dev->stats.tx_errors++; 211 else 212 ret = NET_XMIT_SUCCESS; 213 214 out: 215 return ret; 216 err: 217 vrf_tx_error(vrf_dev, skb); 218 goto out; 219 } 220 221 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 222 { 223 /* strip the ethernet header added for pass through VRF device */ 224 __skb_pull(skb, skb_network_offset(skb)); 225 226 switch (skb->protocol) { 227 case htons(ETH_P_IP): 228 return vrf_process_v4_outbound(skb, dev); 229 case htons(ETH_P_IPV6): 230 return vrf_process_v6_outbound(skb, dev); 231 default: 232 vrf_tx_error(dev, skb); 233 return NET_XMIT_DROP; 234 } 235 } 236 237 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 238 { 239 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 240 241 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 242 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 243 244 u64_stats_update_begin(&dstats->syncp); 245 dstats->tx_pkts++; 246 dstats->tx_bytes += skb->len; 247 u64_stats_update_end(&dstats->syncp); 248 } else { 249 this_cpu_inc(dev->dstats->tx_drps); 250 } 251 252 return ret; 253 } 254 255 /* modelled after ip_finish_output2 */ 256 static int vrf_finish_output(struct sock *sk, struct sk_buff *skb) 257 { 258 struct dst_entry *dst = skb_dst(skb); 259 struct rtable *rt = (struct rtable *)dst; 260 struct net_device *dev = dst->dev; 261 unsigned int hh_len = LL_RESERVED_SPACE(dev); 262 struct neighbour *neigh; 263 u32 nexthop; 264 int ret = -EINVAL; 265 266 /* Be paranoid, rather than too clever. */ 267 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 268 struct sk_buff *skb2; 269 270 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 271 if (!skb2) { 272 ret = -ENOMEM; 273 goto err; 274 } 275 if (skb->sk) 276 skb_set_owner_w(skb2, skb->sk); 277 278 consume_skb(skb); 279 skb = skb2; 280 } 281 282 rcu_read_lock_bh(); 283 284 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 285 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 286 if (unlikely(!neigh)) 287 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 288 if (!IS_ERR(neigh)) 289 ret = dst_neigh_output(dst, neigh, skb); 290 291 rcu_read_unlock_bh(); 292 err: 293 if (unlikely(ret < 0)) 294 vrf_tx_error(skb->dev, skb); 295 return ret; 296 } 297 298 static int vrf_output(struct sock *sk, struct sk_buff *skb) 299 { 300 struct net_device *dev = skb_dst(skb)->dev; 301 302 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); 303 304 skb->dev = dev; 305 skb->protocol = htons(ETH_P_IP); 306 307 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, sk, skb, 308 NULL, dev, 309 vrf_finish_output, 310 !(IPCB(skb)->flags & IPSKB_REROUTED)); 311 } 312 313 static void vrf_rtable_destroy(struct net_vrf *vrf) 314 { 315 struct dst_entry *dst = (struct dst_entry *)vrf->rth; 316 317 dst_destroy(dst); 318 vrf->rth = NULL; 319 } 320 321 static struct rtable *vrf_rtable_create(struct net_device *dev) 322 { 323 struct net_vrf *vrf = netdev_priv(dev); 324 struct rtable *rth; 325 326 rth = dst_alloc(&vrf_dst_ops, dev, 2, 327 DST_OBSOLETE_NONE, 328 (DST_HOST | DST_NOPOLICY | DST_NOXFRM)); 329 if (rth) { 330 rth->dst.output = vrf_output; 331 rth->rt_genid = rt_genid_ipv4(dev_net(dev)); 332 rth->rt_flags = 0; 333 rth->rt_type = RTN_UNICAST; 334 rth->rt_is_input = 0; 335 rth->rt_iif = 0; 336 rth->rt_pmtu = 0; 337 rth->rt_gateway = 0; 338 rth->rt_uses_gateway = 0; 339 rth->rt_table_id = vrf->tb_id; 340 INIT_LIST_HEAD(&rth->rt_uncached); 341 rth->rt_uncached_list = NULL; 342 } 343 344 return rth; 345 } 346 347 /**************************** device handling ********************/ 348 349 /* cycle interface to flush neighbor cache and move routes across tables */ 350 static void cycle_netdev(struct net_device *dev) 351 { 352 unsigned int flags = dev->flags; 353 int ret; 354 355 if (!netif_running(dev)) 356 return; 357 358 ret = dev_change_flags(dev, flags & ~IFF_UP); 359 if (ret >= 0) 360 ret = dev_change_flags(dev, flags); 361 362 if (ret < 0) { 363 netdev_err(dev, 364 "Failed to cycle device %s; route tables might be wrong!\n", 365 dev->name); 366 } 367 } 368 369 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue, 370 struct net_device *dev) 371 { 372 struct list_head *head = &queue->all_slaves; 373 struct slave *slave; 374 375 list_for_each_entry(slave, head, list) { 376 if (slave->dev == dev) 377 return slave; 378 } 379 380 return NULL; 381 } 382 383 /* inverse of __vrf_insert_slave */ 384 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave) 385 { 386 list_del(&slave->list); 387 } 388 389 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave) 390 { 391 list_add(&slave->list, &queue->all_slaves); 392 } 393 394 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 395 { 396 struct net_vrf_dev *vrf_ptr = kmalloc(sizeof(*vrf_ptr), GFP_KERNEL); 397 struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL); 398 struct net_vrf *vrf = netdev_priv(dev); 399 struct slave_queue *queue = &vrf->queue; 400 int ret = -ENOMEM; 401 402 if (!slave || !vrf_ptr) 403 goto out_fail; 404 405 slave->dev = port_dev; 406 vrf_ptr->ifindex = dev->ifindex; 407 vrf_ptr->tb_id = vrf->tb_id; 408 409 /* register the packet handler for slave ports */ 410 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev); 411 if (ret) { 412 netdev_err(port_dev, 413 "Device %s failed to register rx_handler\n", 414 port_dev->name); 415 goto out_fail; 416 } 417 418 ret = netdev_master_upper_dev_link(port_dev, dev); 419 if (ret < 0) 420 goto out_unregister; 421 422 port_dev->flags |= IFF_SLAVE; 423 __vrf_insert_slave(queue, slave); 424 rcu_assign_pointer(port_dev->vrf_ptr, vrf_ptr); 425 cycle_netdev(port_dev); 426 427 return 0; 428 429 out_unregister: 430 netdev_rx_handler_unregister(port_dev); 431 out_fail: 432 kfree(vrf_ptr); 433 kfree(slave); 434 return ret; 435 } 436 437 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 438 { 439 if (netif_is_vrf(port_dev) || vrf_is_slave(port_dev)) 440 return -EINVAL; 441 442 return do_vrf_add_slave(dev, port_dev); 443 } 444 445 /* inverse of do_vrf_add_slave */ 446 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 447 { 448 struct net_vrf_dev *vrf_ptr = rtnl_dereference(port_dev->vrf_ptr); 449 struct net_vrf *vrf = netdev_priv(dev); 450 struct slave_queue *queue = &vrf->queue; 451 struct slave *slave; 452 453 RCU_INIT_POINTER(port_dev->vrf_ptr, NULL); 454 455 netdev_upper_dev_unlink(port_dev, dev); 456 port_dev->flags &= ~IFF_SLAVE; 457 458 netdev_rx_handler_unregister(port_dev); 459 460 /* after netdev_rx_handler_unregister for synchronize_rcu */ 461 kfree(vrf_ptr); 462 463 cycle_netdev(port_dev); 464 465 slave = __vrf_find_slave_dev(queue, port_dev); 466 if (slave) 467 __vrf_remove_slave(queue, slave); 468 469 kfree(slave); 470 471 return 0; 472 } 473 474 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 475 { 476 return do_vrf_del_slave(dev, port_dev); 477 } 478 479 static void vrf_dev_uninit(struct net_device *dev) 480 { 481 struct net_vrf *vrf = netdev_priv(dev); 482 struct slave_queue *queue = &vrf->queue; 483 struct list_head *head = &queue->all_slaves; 484 struct slave *slave, *next; 485 486 vrf_rtable_destroy(vrf); 487 488 list_for_each_entry_safe(slave, next, head, list) 489 vrf_del_slave(dev, slave->dev); 490 491 free_percpu(dev->dstats); 492 dev->dstats = NULL; 493 } 494 495 static int vrf_dev_init(struct net_device *dev) 496 { 497 struct net_vrf *vrf = netdev_priv(dev); 498 499 INIT_LIST_HEAD(&vrf->queue.all_slaves); 500 501 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 502 if (!dev->dstats) 503 goto out_nomem; 504 505 /* create the default dst which points back to us */ 506 vrf->rth = vrf_rtable_create(dev); 507 if (!vrf->rth) 508 goto out_stats; 509 510 dev->flags = IFF_MASTER | IFF_NOARP; 511 512 return 0; 513 514 out_stats: 515 free_percpu(dev->dstats); 516 dev->dstats = NULL; 517 out_nomem: 518 return -ENOMEM; 519 } 520 521 static const struct net_device_ops vrf_netdev_ops = { 522 .ndo_init = vrf_dev_init, 523 .ndo_uninit = vrf_dev_uninit, 524 .ndo_start_xmit = vrf_xmit, 525 .ndo_get_stats64 = vrf_get_stats64, 526 .ndo_add_slave = vrf_add_slave, 527 .ndo_del_slave = vrf_del_slave, 528 }; 529 530 static void vrf_get_drvinfo(struct net_device *dev, 531 struct ethtool_drvinfo *info) 532 { 533 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 534 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 535 } 536 537 static const struct ethtool_ops vrf_ethtool_ops = { 538 .get_drvinfo = vrf_get_drvinfo, 539 }; 540 541 static void vrf_setup(struct net_device *dev) 542 { 543 ether_setup(dev); 544 545 /* Initialize the device structure. */ 546 dev->netdev_ops = &vrf_netdev_ops; 547 dev->ethtool_ops = &vrf_ethtool_ops; 548 dev->destructor = free_netdev; 549 550 /* Fill in device structure with ethernet-generic values. */ 551 eth_hw_addr_random(dev); 552 553 /* don't acquire vrf device's netif_tx_lock when transmitting */ 554 dev->features |= NETIF_F_LLTX; 555 556 /* don't allow vrf devices to change network namespaces. */ 557 dev->features |= NETIF_F_NETNS_LOCAL; 558 } 559 560 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) 561 { 562 if (tb[IFLA_ADDRESS]) { 563 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 564 return -EINVAL; 565 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 566 return -EADDRNOTAVAIL; 567 } 568 return 0; 569 } 570 571 static void vrf_dellink(struct net_device *dev, struct list_head *head) 572 { 573 struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr); 574 575 RCU_INIT_POINTER(dev->vrf_ptr, NULL); 576 kfree_rcu(vrf_ptr, rcu); 577 unregister_netdevice_queue(dev, head); 578 } 579 580 static int vrf_newlink(struct net *src_net, struct net_device *dev, 581 struct nlattr *tb[], struct nlattr *data[]) 582 { 583 struct net_vrf *vrf = netdev_priv(dev); 584 struct net_vrf_dev *vrf_ptr; 585 int err; 586 587 if (!data || !data[IFLA_VRF_TABLE]) 588 return -EINVAL; 589 590 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 591 592 dev->priv_flags |= IFF_VRF_MASTER; 593 594 err = -ENOMEM; 595 vrf_ptr = kmalloc(sizeof(*dev->vrf_ptr), GFP_KERNEL); 596 if (!vrf_ptr) 597 goto out_fail; 598 599 vrf_ptr->ifindex = dev->ifindex; 600 vrf_ptr->tb_id = vrf->tb_id; 601 602 err = register_netdevice(dev); 603 if (err < 0) 604 goto out_fail; 605 606 rcu_assign_pointer(dev->vrf_ptr, vrf_ptr); 607 608 return 0; 609 610 out_fail: 611 kfree(vrf_ptr); 612 free_netdev(dev); 613 return err; 614 } 615 616 static size_t vrf_nl_getsize(const struct net_device *dev) 617 { 618 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 619 } 620 621 static int vrf_fillinfo(struct sk_buff *skb, 622 const struct net_device *dev) 623 { 624 struct net_vrf *vrf = netdev_priv(dev); 625 626 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 627 } 628 629 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 630 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 631 }; 632 633 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 634 .kind = DRV_NAME, 635 .priv_size = sizeof(struct net_vrf), 636 637 .get_size = vrf_nl_getsize, 638 .policy = vrf_nl_policy, 639 .validate = vrf_validate, 640 .fill_info = vrf_fillinfo, 641 642 .newlink = vrf_newlink, 643 .dellink = vrf_dellink, 644 .setup = vrf_setup, 645 .maxtype = IFLA_VRF_MAX, 646 }; 647 648 static int vrf_device_event(struct notifier_block *unused, 649 unsigned long event, void *ptr) 650 { 651 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 652 653 /* only care about unregister events to drop slave references */ 654 if (event == NETDEV_UNREGISTER) { 655 struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr); 656 struct net_device *vrf_dev; 657 658 if (!vrf_ptr || netif_is_vrf(dev)) 659 goto out; 660 661 vrf_dev = netdev_master_upper_dev_get(dev); 662 vrf_del_slave(vrf_dev, dev); 663 } 664 out: 665 return NOTIFY_DONE; 666 } 667 668 static struct notifier_block vrf_notifier_block __read_mostly = { 669 .notifier_call = vrf_device_event, 670 }; 671 672 static int __init vrf_init_module(void) 673 { 674 int rc; 675 676 vrf_dst_ops.kmem_cachep = 677 kmem_cache_create("vrf_ip_dst_cache", 678 sizeof(struct rtable), 0, 679 SLAB_HWCACHE_ALIGN, 680 NULL); 681 682 if (!vrf_dst_ops.kmem_cachep) 683 return -ENOMEM; 684 685 register_netdevice_notifier(&vrf_notifier_block); 686 687 rc = rtnl_link_register(&vrf_link_ops); 688 if (rc < 0) 689 goto error; 690 691 return 0; 692 693 error: 694 unregister_netdevice_notifier(&vrf_notifier_block); 695 kmem_cache_destroy(vrf_dst_ops.kmem_cachep); 696 return rc; 697 } 698 699 static void __exit vrf_cleanup_module(void) 700 { 701 rtnl_link_unregister(&vrf_link_ops); 702 unregister_netdevice_notifier(&vrf_notifier_block); 703 kmem_cache_destroy(vrf_dst_ops.kmem_cachep); 704 } 705 706 module_init(vrf_init_module); 707 module_exit(vrf_cleanup_module); 708 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 709 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 710 MODULE_LICENSE("GPL"); 711 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 712 MODULE_VERSION(DRV_VERSION); 713