xref: /openbmc/linux/drivers/net/vrf.c (revision e5c86679)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.0"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45 
46 struct net_vrf {
47 	struct rtable __rcu	*rth;
48 	struct rtable __rcu	*rth_local;
49 	struct rt6_info	__rcu	*rt6;
50 	struct rt6_info	__rcu	*rt6_local;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
80 static void vrf_get_stats64(struct net_device *dev,
81 			    struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 }
106 
107 /* Local traffic destined to local address. Reinsert the packet to rx
108  * path, similar to loopback handling.
109  */
110 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
111 			  struct dst_entry *dst)
112 {
113 	int len = skb->len;
114 
115 	skb_orphan(skb);
116 
117 	skb_dst_set(skb, dst);
118 	skb_dst_force(skb);
119 
120 	/* set pkt_type to avoid skb hitting packet taps twice -
121 	 * once on Tx and again in Rx processing
122 	 */
123 	skb->pkt_type = PACKET_LOOPBACK;
124 
125 	skb->protocol = eth_type_trans(skb, dev);
126 
127 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
128 		vrf_rx_stats(dev, len);
129 	else
130 		this_cpu_inc(dev->dstats->rx_drps);
131 
132 	return NETDEV_TX_OK;
133 }
134 
135 #if IS_ENABLED(CONFIG_IPV6)
136 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
137 			     struct sk_buff *skb)
138 {
139 	int err;
140 
141 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
142 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
143 
144 	if (likely(err == 1))
145 		err = dst_output(net, sk, skb);
146 
147 	return err;
148 }
149 
150 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
151 					   struct net_device *dev)
152 {
153 	const struct ipv6hdr *iph = ipv6_hdr(skb);
154 	struct net *net = dev_net(skb->dev);
155 	struct flowi6 fl6 = {
156 		/* needed to match OIF rule */
157 		.flowi6_oif = dev->ifindex,
158 		.flowi6_iif = LOOPBACK_IFINDEX,
159 		.daddr = iph->daddr,
160 		.saddr = iph->saddr,
161 		.flowlabel = ip6_flowinfo(iph),
162 		.flowi6_mark = skb->mark,
163 		.flowi6_proto = iph->nexthdr,
164 		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
165 	};
166 	int ret = NET_XMIT_DROP;
167 	struct dst_entry *dst;
168 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
169 
170 	dst = ip6_route_output(net, NULL, &fl6);
171 	if (dst == dst_null)
172 		goto err;
173 
174 	skb_dst_drop(skb);
175 
176 	/* if dst.dev is loopback or the VRF device again this is locally
177 	 * originated traffic destined to a local address. Short circuit
178 	 * to Rx path using our local dst
179 	 */
180 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
181 		struct net_vrf *vrf = netdev_priv(dev);
182 		struct rt6_info *rt6_local;
183 
184 		/* release looked up dst and use cached local dst */
185 		dst_release(dst);
186 
187 		rcu_read_lock();
188 
189 		rt6_local = rcu_dereference(vrf->rt6_local);
190 		if (unlikely(!rt6_local)) {
191 			rcu_read_unlock();
192 			goto err;
193 		}
194 
195 		/* Ordering issue: cached local dst is created on newlink
196 		 * before the IPv6 initialization. Using the local dst
197 		 * requires rt6i_idev to be set so make sure it is.
198 		 */
199 		if (unlikely(!rt6_local->rt6i_idev)) {
200 			rt6_local->rt6i_idev = in6_dev_get(dev);
201 			if (!rt6_local->rt6i_idev) {
202 				rcu_read_unlock();
203 				goto err;
204 			}
205 		}
206 
207 		dst = &rt6_local->dst;
208 		dst_hold(dst);
209 
210 		rcu_read_unlock();
211 
212 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
213 	}
214 
215 	skb_dst_set(skb, dst);
216 
217 	/* strip the ethernet header added for pass through VRF device */
218 	__skb_pull(skb, skb_network_offset(skb));
219 
220 	ret = vrf_ip6_local_out(net, skb->sk, skb);
221 	if (unlikely(net_xmit_eval(ret)))
222 		dev->stats.tx_errors++;
223 	else
224 		ret = NET_XMIT_SUCCESS;
225 
226 	return ret;
227 err:
228 	vrf_tx_error(dev, skb);
229 	return NET_XMIT_DROP;
230 }
231 #else
232 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
233 					   struct net_device *dev)
234 {
235 	vrf_tx_error(dev, skb);
236 	return NET_XMIT_DROP;
237 }
238 #endif
239 
240 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
241 static int vrf_ip_local_out(struct net *net, struct sock *sk,
242 			    struct sk_buff *skb)
243 {
244 	int err;
245 
246 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
247 		      skb, NULL, skb_dst(skb)->dev, dst_output);
248 	if (likely(err == 1))
249 		err = dst_output(net, sk, skb);
250 
251 	return err;
252 }
253 
254 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
255 					   struct net_device *vrf_dev)
256 {
257 	struct iphdr *ip4h = ip_hdr(skb);
258 	int ret = NET_XMIT_DROP;
259 	struct flowi4 fl4 = {
260 		/* needed to match OIF rule */
261 		.flowi4_oif = vrf_dev->ifindex,
262 		.flowi4_iif = LOOPBACK_IFINDEX,
263 		.flowi4_tos = RT_TOS(ip4h->tos),
264 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
265 		.flowi4_proto = ip4h->protocol,
266 		.daddr = ip4h->daddr,
267 		.saddr = ip4h->saddr,
268 	};
269 	struct net *net = dev_net(vrf_dev);
270 	struct rtable *rt;
271 
272 	rt = ip_route_output_flow(net, &fl4, NULL);
273 	if (IS_ERR(rt))
274 		goto err;
275 
276 	skb_dst_drop(skb);
277 
278 	/* if dst.dev is loopback or the VRF device again this is locally
279 	 * originated traffic destined to a local address. Short circuit
280 	 * to Rx path using our local dst
281 	 */
282 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
283 		struct net_vrf *vrf = netdev_priv(vrf_dev);
284 		struct rtable *rth_local;
285 		struct dst_entry *dst = NULL;
286 
287 		ip_rt_put(rt);
288 
289 		rcu_read_lock();
290 
291 		rth_local = rcu_dereference(vrf->rth_local);
292 		if (likely(rth_local)) {
293 			dst = &rth_local->dst;
294 			dst_hold(dst);
295 		}
296 
297 		rcu_read_unlock();
298 
299 		if (unlikely(!dst))
300 			goto err;
301 
302 		return vrf_local_xmit(skb, vrf_dev, dst);
303 	}
304 
305 	skb_dst_set(skb, &rt->dst);
306 
307 	/* strip the ethernet header added for pass through VRF device */
308 	__skb_pull(skb, skb_network_offset(skb));
309 
310 	if (!ip4h->saddr) {
311 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
312 					       RT_SCOPE_LINK);
313 	}
314 
315 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
316 	if (unlikely(net_xmit_eval(ret)))
317 		vrf_dev->stats.tx_errors++;
318 	else
319 		ret = NET_XMIT_SUCCESS;
320 
321 out:
322 	return ret;
323 err:
324 	vrf_tx_error(vrf_dev, skb);
325 	goto out;
326 }
327 
328 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
329 {
330 	switch (skb->protocol) {
331 	case htons(ETH_P_IP):
332 		return vrf_process_v4_outbound(skb, dev);
333 	case htons(ETH_P_IPV6):
334 		return vrf_process_v6_outbound(skb, dev);
335 	default:
336 		vrf_tx_error(dev, skb);
337 		return NET_XMIT_DROP;
338 	}
339 }
340 
341 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
342 {
343 	int len = skb->len;
344 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
345 
346 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
347 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
348 
349 		u64_stats_update_begin(&dstats->syncp);
350 		dstats->tx_pkts++;
351 		dstats->tx_bytes += len;
352 		u64_stats_update_end(&dstats->syncp);
353 	} else {
354 		this_cpu_inc(dev->dstats->tx_drps);
355 	}
356 
357 	return ret;
358 }
359 
360 #if IS_ENABLED(CONFIG_IPV6)
361 /* modelled after ip6_finish_output2 */
362 static int vrf_finish_output6(struct net *net, struct sock *sk,
363 			      struct sk_buff *skb)
364 {
365 	struct dst_entry *dst = skb_dst(skb);
366 	struct net_device *dev = dst->dev;
367 	struct neighbour *neigh;
368 	struct in6_addr *nexthop;
369 	int ret;
370 
371 	nf_reset(skb);
372 
373 	skb->protocol = htons(ETH_P_IPV6);
374 	skb->dev = dev;
375 
376 	rcu_read_lock_bh();
377 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
378 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
379 	if (unlikely(!neigh))
380 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
381 	if (!IS_ERR(neigh)) {
382 		sock_confirm_neigh(skb, neigh);
383 		ret = neigh_output(neigh, skb);
384 		rcu_read_unlock_bh();
385 		return ret;
386 	}
387 	rcu_read_unlock_bh();
388 
389 	IP6_INC_STATS(dev_net(dst->dev),
390 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
391 	kfree_skb(skb);
392 	return -EINVAL;
393 }
394 
395 /* modelled after ip6_output */
396 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
399 			    net, sk, skb, NULL, skb_dst(skb)->dev,
400 			    vrf_finish_output6,
401 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
402 }
403 
404 /* set dst on skb to send packet to us via dev_xmit path. Allows
405  * packet to go through device based features such as qdisc, netfilter
406  * hooks and packet sockets with skb->dev set to vrf device.
407  */
408 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
409 				   struct sock *sk,
410 				   struct sk_buff *skb)
411 {
412 	struct net_vrf *vrf = netdev_priv(vrf_dev);
413 	struct dst_entry *dst = NULL;
414 	struct rt6_info *rt6;
415 
416 	/* don't divert link scope packets */
417 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
418 		return skb;
419 
420 	rcu_read_lock();
421 
422 	rt6 = rcu_dereference(vrf->rt6);
423 	if (likely(rt6)) {
424 		dst = &rt6->dst;
425 		dst_hold(dst);
426 	}
427 
428 	rcu_read_unlock();
429 
430 	if (unlikely(!dst)) {
431 		vrf_tx_error(vrf_dev, skb);
432 		return NULL;
433 	}
434 
435 	skb_dst_drop(skb);
436 	skb_dst_set(skb, dst);
437 
438 	return skb;
439 }
440 
441 /* holding rtnl */
442 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
443 {
444 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
445 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
446 	struct net *net = dev_net(dev);
447 	struct dst_entry *dst;
448 
449 	RCU_INIT_POINTER(vrf->rt6, NULL);
450 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
451 	synchronize_rcu();
452 
453 	/* move dev in dst's to loopback so this VRF device can be deleted
454 	 * - based on dst_ifdown
455 	 */
456 	if (rt6) {
457 		dst = &rt6->dst;
458 		dev_put(dst->dev);
459 		dst->dev = net->loopback_dev;
460 		dev_hold(dst->dev);
461 		dst_release(dst);
462 	}
463 
464 	if (rt6_local) {
465 		if (rt6_local->rt6i_idev) {
466 			in6_dev_put(rt6_local->rt6i_idev);
467 			rt6_local->rt6i_idev = NULL;
468 		}
469 
470 		dst = &rt6_local->dst;
471 		dev_put(dst->dev);
472 		dst->dev = net->loopback_dev;
473 		dev_hold(dst->dev);
474 		dst_release(dst);
475 	}
476 }
477 
478 static int vrf_rt6_create(struct net_device *dev)
479 {
480 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
481 	struct net_vrf *vrf = netdev_priv(dev);
482 	struct net *net = dev_net(dev);
483 	struct fib6_table *rt6i_table;
484 	struct rt6_info *rt6, *rt6_local;
485 	int rc = -ENOMEM;
486 
487 	/* IPv6 can be CONFIG enabled and then disabled runtime */
488 	if (!ipv6_mod_enabled())
489 		return 0;
490 
491 	rt6i_table = fib6_new_table(net, vrf->tb_id);
492 	if (!rt6i_table)
493 		goto out;
494 
495 	/* create a dst for routing packets out a VRF device */
496 	rt6 = ip6_dst_alloc(net, dev, flags);
497 	if (!rt6)
498 		goto out;
499 
500 	dst_hold(&rt6->dst);
501 
502 	rt6->rt6i_table = rt6i_table;
503 	rt6->dst.output	= vrf_output6;
504 
505 	/* create a dst for local routing - packets sent locally
506 	 * to local address via the VRF device as a loopback
507 	 */
508 	rt6_local = ip6_dst_alloc(net, dev, flags);
509 	if (!rt6_local) {
510 		dst_release(&rt6->dst);
511 		goto out;
512 	}
513 
514 	dst_hold(&rt6_local->dst);
515 
516 	rt6_local->rt6i_idev  = in6_dev_get(dev);
517 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
518 	rt6_local->rt6i_table = rt6i_table;
519 	rt6_local->dst.input  = ip6_input;
520 
521 	rcu_assign_pointer(vrf->rt6, rt6);
522 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
523 
524 	rc = 0;
525 out:
526 	return rc;
527 }
528 #else
529 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
530 				   struct sock *sk,
531 				   struct sk_buff *skb)
532 {
533 	return skb;
534 }
535 
536 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
537 {
538 }
539 
540 static int vrf_rt6_create(struct net_device *dev)
541 {
542 	return 0;
543 }
544 #endif
545 
546 /* modelled after ip_finish_output2 */
547 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
548 {
549 	struct dst_entry *dst = skb_dst(skb);
550 	struct rtable *rt = (struct rtable *)dst;
551 	struct net_device *dev = dst->dev;
552 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
553 	struct neighbour *neigh;
554 	u32 nexthop;
555 	int ret = -EINVAL;
556 
557 	nf_reset(skb);
558 
559 	/* Be paranoid, rather than too clever. */
560 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
561 		struct sk_buff *skb2;
562 
563 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
564 		if (!skb2) {
565 			ret = -ENOMEM;
566 			goto err;
567 		}
568 		if (skb->sk)
569 			skb_set_owner_w(skb2, skb->sk);
570 
571 		consume_skb(skb);
572 		skb = skb2;
573 	}
574 
575 	rcu_read_lock_bh();
576 
577 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
578 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
579 	if (unlikely(!neigh))
580 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
581 	if (!IS_ERR(neigh)) {
582 		sock_confirm_neigh(skb, neigh);
583 		ret = neigh_output(neigh, skb);
584 	}
585 
586 	rcu_read_unlock_bh();
587 err:
588 	if (unlikely(ret < 0))
589 		vrf_tx_error(skb->dev, skb);
590 	return ret;
591 }
592 
593 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
594 {
595 	struct net_device *dev = skb_dst(skb)->dev;
596 
597 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
598 
599 	skb->dev = dev;
600 	skb->protocol = htons(ETH_P_IP);
601 
602 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
603 			    net, sk, skb, NULL, dev,
604 			    vrf_finish_output,
605 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
606 }
607 
608 /* set dst on skb to send packet to us via dev_xmit path. Allows
609  * packet to go through device based features such as qdisc, netfilter
610  * hooks and packet sockets with skb->dev set to vrf device.
611  */
612 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
613 				  struct sock *sk,
614 				  struct sk_buff *skb)
615 {
616 	struct net_vrf *vrf = netdev_priv(vrf_dev);
617 	struct dst_entry *dst = NULL;
618 	struct rtable *rth;
619 
620 	/* don't divert multicast */
621 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
622 		return skb;
623 
624 	rcu_read_lock();
625 
626 	rth = rcu_dereference(vrf->rth);
627 	if (likely(rth)) {
628 		dst = &rth->dst;
629 		dst_hold(dst);
630 	}
631 
632 	rcu_read_unlock();
633 
634 	if (unlikely(!dst)) {
635 		vrf_tx_error(vrf_dev, skb);
636 		return NULL;
637 	}
638 
639 	skb_dst_drop(skb);
640 	skb_dst_set(skb, dst);
641 
642 	return skb;
643 }
644 
645 /* called with rcu lock held */
646 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
647 				  struct sock *sk,
648 				  struct sk_buff *skb,
649 				  u16 proto)
650 {
651 	switch (proto) {
652 	case AF_INET:
653 		return vrf_ip_out(vrf_dev, sk, skb);
654 	case AF_INET6:
655 		return vrf_ip6_out(vrf_dev, sk, skb);
656 	}
657 
658 	return skb;
659 }
660 
661 /* holding rtnl */
662 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
663 {
664 	struct rtable *rth = rtnl_dereference(vrf->rth);
665 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
666 	struct net *net = dev_net(dev);
667 	struct dst_entry *dst;
668 
669 	RCU_INIT_POINTER(vrf->rth, NULL);
670 	RCU_INIT_POINTER(vrf->rth_local, NULL);
671 	synchronize_rcu();
672 
673 	/* move dev in dst's to loopback so this VRF device can be deleted
674 	 * - based on dst_ifdown
675 	 */
676 	if (rth) {
677 		dst = &rth->dst;
678 		dev_put(dst->dev);
679 		dst->dev = net->loopback_dev;
680 		dev_hold(dst->dev);
681 		dst_release(dst);
682 	}
683 
684 	if (rth_local) {
685 		dst = &rth_local->dst;
686 		dev_put(dst->dev);
687 		dst->dev = net->loopback_dev;
688 		dev_hold(dst->dev);
689 		dst_release(dst);
690 	}
691 }
692 
693 static int vrf_rtable_create(struct net_device *dev)
694 {
695 	struct net_vrf *vrf = netdev_priv(dev);
696 	struct rtable *rth, *rth_local;
697 
698 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
699 		return -ENOMEM;
700 
701 	/* create a dst for routing packets out through a VRF device */
702 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
703 	if (!rth)
704 		return -ENOMEM;
705 
706 	/* create a dst for local ingress routing - packets sent locally
707 	 * to local address via the VRF device as a loopback
708 	 */
709 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
710 	if (!rth_local) {
711 		dst_release(&rth->dst);
712 		return -ENOMEM;
713 	}
714 
715 	rth->dst.output	= vrf_output;
716 	rth->rt_table_id = vrf->tb_id;
717 
718 	rth_local->rt_table_id = vrf->tb_id;
719 
720 	rcu_assign_pointer(vrf->rth, rth);
721 	rcu_assign_pointer(vrf->rth_local, rth_local);
722 
723 	return 0;
724 }
725 
726 /**************************** device handling ********************/
727 
728 /* cycle interface to flush neighbor cache and move routes across tables */
729 static void cycle_netdev(struct net_device *dev)
730 {
731 	unsigned int flags = dev->flags;
732 	int ret;
733 
734 	if (!netif_running(dev))
735 		return;
736 
737 	ret = dev_change_flags(dev, flags & ~IFF_UP);
738 	if (ret >= 0)
739 		ret = dev_change_flags(dev, flags);
740 
741 	if (ret < 0) {
742 		netdev_err(dev,
743 			   "Failed to cycle device %s; route tables might be wrong!\n",
744 			   dev->name);
745 	}
746 }
747 
748 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
749 {
750 	int ret;
751 
752 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
753 	if (ret < 0)
754 		return ret;
755 
756 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
757 	cycle_netdev(port_dev);
758 
759 	return 0;
760 }
761 
762 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
763 {
764 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
765 		return -EINVAL;
766 
767 	return do_vrf_add_slave(dev, port_dev);
768 }
769 
770 /* inverse of do_vrf_add_slave */
771 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
772 {
773 	netdev_upper_dev_unlink(port_dev, dev);
774 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
775 
776 	cycle_netdev(port_dev);
777 
778 	return 0;
779 }
780 
781 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
782 {
783 	return do_vrf_del_slave(dev, port_dev);
784 }
785 
786 static void vrf_dev_uninit(struct net_device *dev)
787 {
788 	struct net_vrf *vrf = netdev_priv(dev);
789 	struct net_device *port_dev;
790 	struct list_head *iter;
791 
792 	vrf_rtable_release(dev, vrf);
793 	vrf_rt6_release(dev, vrf);
794 
795 	netdev_for_each_lower_dev(dev, port_dev, iter)
796 		vrf_del_slave(dev, port_dev);
797 
798 	free_percpu(dev->dstats);
799 	dev->dstats = NULL;
800 }
801 
802 static int vrf_dev_init(struct net_device *dev)
803 {
804 	struct net_vrf *vrf = netdev_priv(dev);
805 
806 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
807 	if (!dev->dstats)
808 		goto out_nomem;
809 
810 	/* create the default dst which points back to us */
811 	if (vrf_rtable_create(dev) != 0)
812 		goto out_stats;
813 
814 	if (vrf_rt6_create(dev) != 0)
815 		goto out_rth;
816 
817 	dev->flags = IFF_MASTER | IFF_NOARP;
818 
819 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
820 	dev->mtu = 64 * 1024;
821 
822 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
823 	dev->operstate = IF_OPER_UP;
824 	netdev_lockdep_set_classes(dev);
825 	return 0;
826 
827 out_rth:
828 	vrf_rtable_release(dev, vrf);
829 out_stats:
830 	free_percpu(dev->dstats);
831 	dev->dstats = NULL;
832 out_nomem:
833 	return -ENOMEM;
834 }
835 
836 static const struct net_device_ops vrf_netdev_ops = {
837 	.ndo_init		= vrf_dev_init,
838 	.ndo_uninit		= vrf_dev_uninit,
839 	.ndo_start_xmit		= vrf_xmit,
840 	.ndo_get_stats64	= vrf_get_stats64,
841 	.ndo_add_slave		= vrf_add_slave,
842 	.ndo_del_slave		= vrf_del_slave,
843 };
844 
845 static u32 vrf_fib_table(const struct net_device *dev)
846 {
847 	struct net_vrf *vrf = netdev_priv(dev);
848 
849 	return vrf->tb_id;
850 }
851 
852 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
853 {
854 	return 0;
855 }
856 
857 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
858 				      struct sk_buff *skb,
859 				      struct net_device *dev)
860 {
861 	struct net *net = dev_net(dev);
862 
863 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
864 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
865 
866 	return skb;
867 }
868 
869 #if IS_ENABLED(CONFIG_IPV6)
870 /* neighbor handling is done with actual device; do not want
871  * to flip skb->dev for those ndisc packets. This really fails
872  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
873  * a start.
874  */
875 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
876 {
877 	const struct ipv6hdr *iph = ipv6_hdr(skb);
878 	bool rc = false;
879 
880 	if (iph->nexthdr == NEXTHDR_ICMP) {
881 		const struct icmp6hdr *icmph;
882 		struct icmp6hdr _icmph;
883 
884 		icmph = skb_header_pointer(skb, sizeof(*iph),
885 					   sizeof(_icmph), &_icmph);
886 		if (!icmph)
887 			goto out;
888 
889 		switch (icmph->icmp6_type) {
890 		case NDISC_ROUTER_SOLICITATION:
891 		case NDISC_ROUTER_ADVERTISEMENT:
892 		case NDISC_NEIGHBOUR_SOLICITATION:
893 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
894 		case NDISC_REDIRECT:
895 			rc = true;
896 			break;
897 		}
898 	}
899 
900 out:
901 	return rc;
902 }
903 
904 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
905 					     const struct net_device *dev,
906 					     struct flowi6 *fl6,
907 					     int ifindex,
908 					     int flags)
909 {
910 	struct net_vrf *vrf = netdev_priv(dev);
911 	struct fib6_table *table = NULL;
912 	struct rt6_info *rt6;
913 
914 	rcu_read_lock();
915 
916 	/* fib6_table does not have a refcnt and can not be freed */
917 	rt6 = rcu_dereference(vrf->rt6);
918 	if (likely(rt6))
919 		table = rt6->rt6i_table;
920 
921 	rcu_read_unlock();
922 
923 	if (!table)
924 		return NULL;
925 
926 	return ip6_pol_route(net, table, ifindex, fl6, flags);
927 }
928 
929 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
930 			      int ifindex)
931 {
932 	const struct ipv6hdr *iph = ipv6_hdr(skb);
933 	struct flowi6 fl6 = {
934 		.daddr          = iph->daddr,
935 		.saddr          = iph->saddr,
936 		.flowlabel      = ip6_flowinfo(iph),
937 		.flowi6_mark    = skb->mark,
938 		.flowi6_proto   = iph->nexthdr,
939 		.flowi6_iif     = ifindex,
940 	};
941 	struct net *net = dev_net(vrf_dev);
942 	struct rt6_info *rt6;
943 
944 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
945 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
946 	if (unlikely(!rt6))
947 		return;
948 
949 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
950 		return;
951 
952 	skb_dst_set(skb, &rt6->dst);
953 }
954 
955 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
956 				   struct sk_buff *skb)
957 {
958 	int orig_iif = skb->skb_iif;
959 	bool need_strict;
960 
961 	/* loopback traffic; do not push through packet taps again.
962 	 * Reset pkt_type for upper layers to process skb
963 	 */
964 	if (skb->pkt_type == PACKET_LOOPBACK) {
965 		skb->dev = vrf_dev;
966 		skb->skb_iif = vrf_dev->ifindex;
967 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
968 		skb->pkt_type = PACKET_HOST;
969 		goto out;
970 	}
971 
972 	/* if packet is NDISC or addressed to multicast or link-local
973 	 * then keep the ingress interface
974 	 */
975 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
976 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
977 		vrf_rx_stats(vrf_dev, skb->len);
978 		skb->dev = vrf_dev;
979 		skb->skb_iif = vrf_dev->ifindex;
980 
981 		skb_push(skb, skb->mac_len);
982 		dev_queue_xmit_nit(skb, vrf_dev);
983 		skb_pull(skb, skb->mac_len);
984 
985 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
986 	}
987 
988 	if (need_strict)
989 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
990 
991 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
992 out:
993 	return skb;
994 }
995 
996 #else
997 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
998 				   struct sk_buff *skb)
999 {
1000 	return skb;
1001 }
1002 #endif
1003 
1004 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1005 				  struct sk_buff *skb)
1006 {
1007 	skb->dev = vrf_dev;
1008 	skb->skb_iif = vrf_dev->ifindex;
1009 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1010 
1011 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1012 		goto out;
1013 
1014 	/* loopback traffic; do not push through packet taps again.
1015 	 * Reset pkt_type for upper layers to process skb
1016 	 */
1017 	if (skb->pkt_type == PACKET_LOOPBACK) {
1018 		skb->pkt_type = PACKET_HOST;
1019 		goto out;
1020 	}
1021 
1022 	vrf_rx_stats(vrf_dev, skb->len);
1023 
1024 	skb_push(skb, skb->mac_len);
1025 	dev_queue_xmit_nit(skb, vrf_dev);
1026 	skb_pull(skb, skb->mac_len);
1027 
1028 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1029 out:
1030 	return skb;
1031 }
1032 
1033 /* called with rcu lock held */
1034 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1035 				  struct sk_buff *skb,
1036 				  u16 proto)
1037 {
1038 	switch (proto) {
1039 	case AF_INET:
1040 		return vrf_ip_rcv(vrf_dev, skb);
1041 	case AF_INET6:
1042 		return vrf_ip6_rcv(vrf_dev, skb);
1043 	}
1044 
1045 	return skb;
1046 }
1047 
1048 #if IS_ENABLED(CONFIG_IPV6)
1049 /* send to link-local or multicast address via interface enslaved to
1050  * VRF device. Force lookup to VRF table without changing flow struct
1051  */
1052 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1053 					      struct flowi6 *fl6)
1054 {
1055 	struct net *net = dev_net(dev);
1056 	int flags = RT6_LOOKUP_F_IFACE;
1057 	struct dst_entry *dst = NULL;
1058 	struct rt6_info *rt;
1059 
1060 	/* VRF device does not have a link-local address and
1061 	 * sending packets to link-local or mcast addresses over
1062 	 * a VRF device does not make sense
1063 	 */
1064 	if (fl6->flowi6_oif == dev->ifindex) {
1065 		dst = &net->ipv6.ip6_null_entry->dst;
1066 		dst_hold(dst);
1067 		return dst;
1068 	}
1069 
1070 	if (!ipv6_addr_any(&fl6->saddr))
1071 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1072 
1073 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1074 	if (rt)
1075 		dst = &rt->dst;
1076 
1077 	return dst;
1078 }
1079 #endif
1080 
1081 static const struct l3mdev_ops vrf_l3mdev_ops = {
1082 	.l3mdev_fib_table	= vrf_fib_table,
1083 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1084 	.l3mdev_l3_out		= vrf_l3_out,
1085 #if IS_ENABLED(CONFIG_IPV6)
1086 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1087 #endif
1088 };
1089 
1090 static void vrf_get_drvinfo(struct net_device *dev,
1091 			    struct ethtool_drvinfo *info)
1092 {
1093 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1094 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1095 }
1096 
1097 static const struct ethtool_ops vrf_ethtool_ops = {
1098 	.get_drvinfo	= vrf_get_drvinfo,
1099 };
1100 
1101 static inline size_t vrf_fib_rule_nl_size(void)
1102 {
1103 	size_t sz;
1104 
1105 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1106 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1107 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1108 
1109 	return sz;
1110 }
1111 
1112 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1113 {
1114 	struct fib_rule_hdr *frh;
1115 	struct nlmsghdr *nlh;
1116 	struct sk_buff *skb;
1117 	int err;
1118 
1119 	if (family == AF_INET6 && !ipv6_mod_enabled())
1120 		return 0;
1121 
1122 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1123 	if (!skb)
1124 		return -ENOMEM;
1125 
1126 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1127 	if (!nlh)
1128 		goto nla_put_failure;
1129 
1130 	/* rule only needs to appear once */
1131 	nlh->nlmsg_flags |= NLM_F_EXCL;
1132 
1133 	frh = nlmsg_data(nlh);
1134 	memset(frh, 0, sizeof(*frh));
1135 	frh->family = family;
1136 	frh->action = FR_ACT_TO_TBL;
1137 
1138 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1139 		goto nla_put_failure;
1140 
1141 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1142 		goto nla_put_failure;
1143 
1144 	nlmsg_end(skb, nlh);
1145 
1146 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1147 	skb->sk = dev_net(dev)->rtnl;
1148 	if (add_it) {
1149 		err = fib_nl_newrule(skb, nlh);
1150 		if (err == -EEXIST)
1151 			err = 0;
1152 	} else {
1153 		err = fib_nl_delrule(skb, nlh);
1154 		if (err == -ENOENT)
1155 			err = 0;
1156 	}
1157 	nlmsg_free(skb);
1158 
1159 	return err;
1160 
1161 nla_put_failure:
1162 	nlmsg_free(skb);
1163 
1164 	return -EMSGSIZE;
1165 }
1166 
1167 static int vrf_add_fib_rules(const struct net_device *dev)
1168 {
1169 	int err;
1170 
1171 	err = vrf_fib_rule(dev, AF_INET,  true);
1172 	if (err < 0)
1173 		goto out_err;
1174 
1175 	err = vrf_fib_rule(dev, AF_INET6, true);
1176 	if (err < 0)
1177 		goto ipv6_err;
1178 
1179 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1180 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1181 	if (err < 0)
1182 		goto ipmr_err;
1183 #endif
1184 
1185 	return 0;
1186 
1187 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1188 ipmr_err:
1189 	vrf_fib_rule(dev, AF_INET6,  false);
1190 #endif
1191 
1192 ipv6_err:
1193 	vrf_fib_rule(dev, AF_INET,  false);
1194 
1195 out_err:
1196 	netdev_err(dev, "Failed to add FIB rules.\n");
1197 	return err;
1198 }
1199 
1200 static void vrf_setup(struct net_device *dev)
1201 {
1202 	ether_setup(dev);
1203 
1204 	/* Initialize the device structure. */
1205 	dev->netdev_ops = &vrf_netdev_ops;
1206 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1207 	dev->ethtool_ops = &vrf_ethtool_ops;
1208 	dev->destructor = free_netdev;
1209 
1210 	/* Fill in device structure with ethernet-generic values. */
1211 	eth_hw_addr_random(dev);
1212 
1213 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1214 	dev->features |= NETIF_F_LLTX;
1215 
1216 	/* don't allow vrf devices to change network namespaces. */
1217 	dev->features |= NETIF_F_NETNS_LOCAL;
1218 
1219 	/* does not make sense for a VLAN to be added to a vrf device */
1220 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1221 
1222 	/* enable offload features */
1223 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1224 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1225 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1226 
1227 	dev->hw_features = dev->features;
1228 	dev->hw_enc_features = dev->features;
1229 
1230 	/* default to no qdisc; user can add if desired */
1231 	dev->priv_flags |= IFF_NO_QUEUE;
1232 }
1233 
1234 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1235 {
1236 	if (tb[IFLA_ADDRESS]) {
1237 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1238 			return -EINVAL;
1239 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1240 			return -EADDRNOTAVAIL;
1241 	}
1242 	return 0;
1243 }
1244 
1245 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1246 {
1247 	unregister_netdevice_queue(dev, head);
1248 }
1249 
1250 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1251 		       struct nlattr *tb[], struct nlattr *data[])
1252 {
1253 	struct net_vrf *vrf = netdev_priv(dev);
1254 	int err;
1255 
1256 	if (!data || !data[IFLA_VRF_TABLE])
1257 		return -EINVAL;
1258 
1259 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1260 	if (vrf->tb_id == RT_TABLE_UNSPEC)
1261 		return -EINVAL;
1262 
1263 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1264 
1265 	err = register_netdevice(dev);
1266 	if (err)
1267 		goto out;
1268 
1269 	if (add_fib_rules) {
1270 		err = vrf_add_fib_rules(dev);
1271 		if (err) {
1272 			unregister_netdevice(dev);
1273 			goto out;
1274 		}
1275 		add_fib_rules = false;
1276 	}
1277 
1278 out:
1279 	return err;
1280 }
1281 
1282 static size_t vrf_nl_getsize(const struct net_device *dev)
1283 {
1284 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1285 }
1286 
1287 static int vrf_fillinfo(struct sk_buff *skb,
1288 			const struct net_device *dev)
1289 {
1290 	struct net_vrf *vrf = netdev_priv(dev);
1291 
1292 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1293 }
1294 
1295 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1296 				 const struct net_device *slave_dev)
1297 {
1298 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1299 }
1300 
1301 static int vrf_fill_slave_info(struct sk_buff *skb,
1302 			       const struct net_device *vrf_dev,
1303 			       const struct net_device *slave_dev)
1304 {
1305 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1306 
1307 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1308 		return -EMSGSIZE;
1309 
1310 	return 0;
1311 }
1312 
1313 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1314 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1315 };
1316 
1317 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1318 	.kind		= DRV_NAME,
1319 	.priv_size	= sizeof(struct net_vrf),
1320 
1321 	.get_size	= vrf_nl_getsize,
1322 	.policy		= vrf_nl_policy,
1323 	.validate	= vrf_validate,
1324 	.fill_info	= vrf_fillinfo,
1325 
1326 	.get_slave_size  = vrf_get_slave_size,
1327 	.fill_slave_info = vrf_fill_slave_info,
1328 
1329 	.newlink	= vrf_newlink,
1330 	.dellink	= vrf_dellink,
1331 	.setup		= vrf_setup,
1332 	.maxtype	= IFLA_VRF_MAX,
1333 };
1334 
1335 static int vrf_device_event(struct notifier_block *unused,
1336 			    unsigned long event, void *ptr)
1337 {
1338 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1339 
1340 	/* only care about unregister events to drop slave references */
1341 	if (event == NETDEV_UNREGISTER) {
1342 		struct net_device *vrf_dev;
1343 
1344 		if (!netif_is_l3_slave(dev))
1345 			goto out;
1346 
1347 		vrf_dev = netdev_master_upper_dev_get(dev);
1348 		vrf_del_slave(vrf_dev, dev);
1349 	}
1350 out:
1351 	return NOTIFY_DONE;
1352 }
1353 
1354 static struct notifier_block vrf_notifier_block __read_mostly = {
1355 	.notifier_call = vrf_device_event,
1356 };
1357 
1358 static int __init vrf_init_module(void)
1359 {
1360 	int rc;
1361 
1362 	register_netdevice_notifier(&vrf_notifier_block);
1363 
1364 	rc = rtnl_link_register(&vrf_link_ops);
1365 	if (rc < 0)
1366 		goto error;
1367 
1368 	return 0;
1369 
1370 error:
1371 	unregister_netdevice_notifier(&vrf_notifier_block);
1372 	return rc;
1373 }
1374 
1375 module_init(vrf_init_module);
1376 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1377 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1378 MODULE_LICENSE("GPL");
1379 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1380 MODULE_VERSION(DRV_VERSION);
1381