xref: /openbmc/linux/drivers/net/vrf.c (revision cd2a9e62c8a3c5cae7691982667d79a0edc65283)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define RT_FL_TOS(oldflp4) \
41 	((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42 
43 #define DRV_NAME	"vrf"
44 #define DRV_VERSION	"1.0"
45 
46 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
47 static bool add_fib_rules = true;
48 
49 struct net_vrf {
50 	struct rtable __rcu	*rth;
51 	struct rtable __rcu	*rth_local;
52 	struct rt6_info	__rcu	*rt6;
53 	struct rt6_info	__rcu	*rt6_local;
54 	u32                     tb_id;
55 };
56 
57 struct pcpu_dstats {
58 	u64			tx_pkts;
59 	u64			tx_bytes;
60 	u64			tx_drps;
61 	u64			rx_pkts;
62 	u64			rx_bytes;
63 	u64			rx_drps;
64 	struct u64_stats_sync	syncp;
65 };
66 
67 static void vrf_rx_stats(struct net_device *dev, int len)
68 {
69 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
70 
71 	u64_stats_update_begin(&dstats->syncp);
72 	dstats->rx_pkts++;
73 	dstats->rx_bytes += len;
74 	u64_stats_update_end(&dstats->syncp);
75 }
76 
77 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
78 {
79 	vrf_dev->stats.tx_errors++;
80 	kfree_skb(skb);
81 }
82 
83 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
84 						 struct rtnl_link_stats64 *stats)
85 {
86 	int i;
87 
88 	for_each_possible_cpu(i) {
89 		const struct pcpu_dstats *dstats;
90 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
91 		unsigned int start;
92 
93 		dstats = per_cpu_ptr(dev->dstats, i);
94 		do {
95 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
96 			tbytes = dstats->tx_bytes;
97 			tpkts = dstats->tx_pkts;
98 			tdrops = dstats->tx_drps;
99 			rbytes = dstats->rx_bytes;
100 			rpkts = dstats->rx_pkts;
101 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
102 		stats->tx_bytes += tbytes;
103 		stats->tx_packets += tpkts;
104 		stats->tx_dropped += tdrops;
105 		stats->rx_bytes += rbytes;
106 		stats->rx_packets += rpkts;
107 	}
108 	return stats;
109 }
110 
111 /* Local traffic destined to local address. Reinsert the packet to rx
112  * path, similar to loopback handling.
113  */
114 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
115 			  struct dst_entry *dst)
116 {
117 	int len = skb->len;
118 
119 	skb_orphan(skb);
120 
121 	skb_dst_set(skb, dst);
122 	skb_dst_force(skb);
123 
124 	/* set pkt_type to avoid skb hitting packet taps twice -
125 	 * once on Tx and again in Rx processing
126 	 */
127 	skb->pkt_type = PACKET_LOOPBACK;
128 
129 	skb->protocol = eth_type_trans(skb, dev);
130 
131 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
132 		vrf_rx_stats(dev, len);
133 	else
134 		this_cpu_inc(dev->dstats->rx_drps);
135 
136 	return NETDEV_TX_OK;
137 }
138 
139 #if IS_ENABLED(CONFIG_IPV6)
140 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
141 					   struct net_device *dev)
142 {
143 	const struct ipv6hdr *iph = ipv6_hdr(skb);
144 	struct net *net = dev_net(skb->dev);
145 	struct flowi6 fl6 = {
146 		/* needed to match OIF rule */
147 		.flowi6_oif = dev->ifindex,
148 		.flowi6_iif = LOOPBACK_IFINDEX,
149 		.daddr = iph->daddr,
150 		.saddr = iph->saddr,
151 		.flowlabel = ip6_flowinfo(iph),
152 		.flowi6_mark = skb->mark,
153 		.flowi6_proto = iph->nexthdr,
154 		.flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
155 	};
156 	int ret = NET_XMIT_DROP;
157 	struct dst_entry *dst;
158 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
159 
160 	dst = ip6_route_output(net, NULL, &fl6);
161 	if (dst == dst_null)
162 		goto err;
163 
164 	skb_dst_drop(skb);
165 
166 	/* if dst.dev is loopback or the VRF device again this is locally
167 	 * originated traffic destined to a local address. Short circuit
168 	 * to Rx path using our local dst
169 	 */
170 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
171 		struct net_vrf *vrf = netdev_priv(dev);
172 		struct rt6_info *rt6_local;
173 
174 		/* release looked up dst and use cached local dst */
175 		dst_release(dst);
176 
177 		rcu_read_lock();
178 
179 		rt6_local = rcu_dereference(vrf->rt6_local);
180 		if (unlikely(!rt6_local)) {
181 			rcu_read_unlock();
182 			goto err;
183 		}
184 
185 		/* Ordering issue: cached local dst is created on newlink
186 		 * before the IPv6 initialization. Using the local dst
187 		 * requires rt6i_idev to be set so make sure it is.
188 		 */
189 		if (unlikely(!rt6_local->rt6i_idev)) {
190 			rt6_local->rt6i_idev = in6_dev_get(dev);
191 			if (!rt6_local->rt6i_idev) {
192 				rcu_read_unlock();
193 				goto err;
194 			}
195 		}
196 
197 		dst = &rt6_local->dst;
198 		dst_hold(dst);
199 
200 		rcu_read_unlock();
201 
202 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
203 	}
204 
205 	skb_dst_set(skb, dst);
206 
207 	/* strip the ethernet header added for pass through VRF device */
208 	__skb_pull(skb, skb_network_offset(skb));
209 
210 	ret = ip6_local_out(net, skb->sk, skb);
211 	if (unlikely(net_xmit_eval(ret)))
212 		dev->stats.tx_errors++;
213 	else
214 		ret = NET_XMIT_SUCCESS;
215 
216 	return ret;
217 err:
218 	vrf_tx_error(dev, skb);
219 	return NET_XMIT_DROP;
220 }
221 #else
222 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
223 					   struct net_device *dev)
224 {
225 	vrf_tx_error(dev, skb);
226 	return NET_XMIT_DROP;
227 }
228 #endif
229 
230 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
231 					   struct net_device *vrf_dev)
232 {
233 	struct iphdr *ip4h = ip_hdr(skb);
234 	int ret = NET_XMIT_DROP;
235 	struct flowi4 fl4 = {
236 		/* needed to match OIF rule */
237 		.flowi4_oif = vrf_dev->ifindex,
238 		.flowi4_iif = LOOPBACK_IFINDEX,
239 		.flowi4_tos = RT_TOS(ip4h->tos),
240 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
241 				FLOWI_FLAG_SKIP_NH_OIF,
242 		.daddr = ip4h->daddr,
243 	};
244 	struct net *net = dev_net(vrf_dev);
245 	struct rtable *rt;
246 
247 	rt = ip_route_output_flow(net, &fl4, NULL);
248 	if (IS_ERR(rt))
249 		goto err;
250 
251 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
252 		ip_rt_put(rt);
253 		goto err;
254 	}
255 
256 	skb_dst_drop(skb);
257 
258 	/* if dst.dev is loopback or the VRF device again this is locally
259 	 * originated traffic destined to a local address. Short circuit
260 	 * to Rx path using our local dst
261 	 */
262 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
263 		struct net_vrf *vrf = netdev_priv(vrf_dev);
264 		struct rtable *rth_local;
265 		struct dst_entry *dst = NULL;
266 
267 		ip_rt_put(rt);
268 
269 		rcu_read_lock();
270 
271 		rth_local = rcu_dereference(vrf->rth_local);
272 		if (likely(rth_local)) {
273 			dst = &rth_local->dst;
274 			dst_hold(dst);
275 		}
276 
277 		rcu_read_unlock();
278 
279 		if (unlikely(!dst))
280 			goto err;
281 
282 		return vrf_local_xmit(skb, vrf_dev, dst);
283 	}
284 
285 	skb_dst_set(skb, &rt->dst);
286 
287 	/* strip the ethernet header added for pass through VRF device */
288 	__skb_pull(skb, skb_network_offset(skb));
289 
290 	if (!ip4h->saddr) {
291 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
292 					       RT_SCOPE_LINK);
293 	}
294 
295 	ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
296 	if (unlikely(net_xmit_eval(ret)))
297 		vrf_dev->stats.tx_errors++;
298 	else
299 		ret = NET_XMIT_SUCCESS;
300 
301 out:
302 	return ret;
303 err:
304 	vrf_tx_error(vrf_dev, skb);
305 	goto out;
306 }
307 
308 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
309 {
310 	switch (skb->protocol) {
311 	case htons(ETH_P_IP):
312 		return vrf_process_v4_outbound(skb, dev);
313 	case htons(ETH_P_IPV6):
314 		return vrf_process_v6_outbound(skb, dev);
315 	default:
316 		vrf_tx_error(dev, skb);
317 		return NET_XMIT_DROP;
318 	}
319 }
320 
321 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
322 {
323 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
324 
325 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
326 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
327 
328 		u64_stats_update_begin(&dstats->syncp);
329 		dstats->tx_pkts++;
330 		dstats->tx_bytes += skb->len;
331 		u64_stats_update_end(&dstats->syncp);
332 	} else {
333 		this_cpu_inc(dev->dstats->tx_drps);
334 	}
335 
336 	return ret;
337 }
338 
339 #if IS_ENABLED(CONFIG_IPV6)
340 /* modelled after ip6_finish_output2 */
341 static int vrf_finish_output6(struct net *net, struct sock *sk,
342 			      struct sk_buff *skb)
343 {
344 	struct dst_entry *dst = skb_dst(skb);
345 	struct net_device *dev = dst->dev;
346 	struct neighbour *neigh;
347 	struct in6_addr *nexthop;
348 	int ret;
349 
350 	skb->protocol = htons(ETH_P_IPV6);
351 	skb->dev = dev;
352 
353 	rcu_read_lock_bh();
354 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
355 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
356 	if (unlikely(!neigh))
357 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
358 	if (!IS_ERR(neigh)) {
359 		ret = dst_neigh_output(dst, neigh, skb);
360 		rcu_read_unlock_bh();
361 		return ret;
362 	}
363 	rcu_read_unlock_bh();
364 
365 	IP6_INC_STATS(dev_net(dst->dev),
366 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
367 	kfree_skb(skb);
368 	return -EINVAL;
369 }
370 
371 /* modelled after ip6_output */
372 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
373 {
374 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
375 			    net, sk, skb, NULL, skb_dst(skb)->dev,
376 			    vrf_finish_output6,
377 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
378 }
379 
380 /* holding rtnl */
381 static void vrf_rt6_release(struct net_vrf *vrf)
382 {
383 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
384 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
385 
386 	RCU_INIT_POINTER(vrf->rt6, NULL);
387 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
388 	synchronize_rcu();
389 
390 	if (rt6)
391 		dst_release(&rt6->dst);
392 
393 	if (rt6_local) {
394 		if (rt6_local->rt6i_idev)
395 			in6_dev_put(rt6_local->rt6i_idev);
396 
397 		dst_release(&rt6_local->dst);
398 	}
399 }
400 
401 static int vrf_rt6_create(struct net_device *dev)
402 {
403 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
404 	struct net_vrf *vrf = netdev_priv(dev);
405 	struct net *net = dev_net(dev);
406 	struct fib6_table *rt6i_table;
407 	struct rt6_info *rt6, *rt6_local;
408 	int rc = -ENOMEM;
409 
410 	/* IPv6 can be CONFIG enabled and then disabled runtime */
411 	if (!ipv6_mod_enabled())
412 		return 0;
413 
414 	rt6i_table = fib6_new_table(net, vrf->tb_id);
415 	if (!rt6i_table)
416 		goto out;
417 
418 	/* create a dst for routing packets out a VRF device */
419 	rt6 = ip6_dst_alloc(net, dev, flags);
420 	if (!rt6)
421 		goto out;
422 
423 	dst_hold(&rt6->dst);
424 
425 	rt6->rt6i_table = rt6i_table;
426 	rt6->dst.output	= vrf_output6;
427 
428 	/* create a dst for local routing - packets sent locally
429 	 * to local address via the VRF device as a loopback
430 	 */
431 	rt6_local = ip6_dst_alloc(net, dev, flags);
432 	if (!rt6_local) {
433 		dst_release(&rt6->dst);
434 		goto out;
435 	}
436 
437 	dst_hold(&rt6_local->dst);
438 
439 	rt6_local->rt6i_idev  = in6_dev_get(dev);
440 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
441 	rt6_local->rt6i_table = rt6i_table;
442 	rt6_local->dst.input  = ip6_input;
443 
444 	rcu_assign_pointer(vrf->rt6, rt6);
445 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
446 
447 	rc = 0;
448 out:
449 	return rc;
450 }
451 #else
452 static void vrf_rt6_release(struct net_vrf *vrf)
453 {
454 }
455 
456 static int vrf_rt6_create(struct net_device *dev)
457 {
458 	return 0;
459 }
460 #endif
461 
462 /* modelled after ip_finish_output2 */
463 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
464 {
465 	struct dst_entry *dst = skb_dst(skb);
466 	struct rtable *rt = (struct rtable *)dst;
467 	struct net_device *dev = dst->dev;
468 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
469 	struct neighbour *neigh;
470 	u32 nexthop;
471 	int ret = -EINVAL;
472 
473 	/* Be paranoid, rather than too clever. */
474 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
475 		struct sk_buff *skb2;
476 
477 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
478 		if (!skb2) {
479 			ret = -ENOMEM;
480 			goto err;
481 		}
482 		if (skb->sk)
483 			skb_set_owner_w(skb2, skb->sk);
484 
485 		consume_skb(skb);
486 		skb = skb2;
487 	}
488 
489 	rcu_read_lock_bh();
490 
491 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
492 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
493 	if (unlikely(!neigh))
494 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
495 	if (!IS_ERR(neigh))
496 		ret = dst_neigh_output(dst, neigh, skb);
497 
498 	rcu_read_unlock_bh();
499 err:
500 	if (unlikely(ret < 0))
501 		vrf_tx_error(skb->dev, skb);
502 	return ret;
503 }
504 
505 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
506 {
507 	struct net_device *dev = skb_dst(skb)->dev;
508 
509 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
510 
511 	skb->dev = dev;
512 	skb->protocol = htons(ETH_P_IP);
513 
514 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
515 			    net, sk, skb, NULL, dev,
516 			    vrf_finish_output,
517 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
518 }
519 
520 /* holding rtnl */
521 static void vrf_rtable_release(struct net_vrf *vrf)
522 {
523 	struct rtable *rth = rtnl_dereference(vrf->rth);
524 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
525 
526 	RCU_INIT_POINTER(vrf->rth, NULL);
527 	RCU_INIT_POINTER(vrf->rth_local, NULL);
528 	synchronize_rcu();
529 
530 	if (rth)
531 		dst_release(&rth->dst);
532 
533 	if (rth_local)
534 		dst_release(&rth_local->dst);
535 }
536 
537 static int vrf_rtable_create(struct net_device *dev)
538 {
539 	struct net_vrf *vrf = netdev_priv(dev);
540 	struct rtable *rth, *rth_local;
541 
542 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
543 		return -ENOMEM;
544 
545 	/* create a dst for routing packets out through a VRF device */
546 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
547 	if (!rth)
548 		return -ENOMEM;
549 
550 	/* create a dst for local ingress routing - packets sent locally
551 	 * to local address via the VRF device as a loopback
552 	 */
553 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
554 	if (!rth_local) {
555 		dst_release(&rth->dst);
556 		return -ENOMEM;
557 	}
558 
559 	rth->dst.output	= vrf_output;
560 	rth->rt_table_id = vrf->tb_id;
561 
562 	rth_local->rt_table_id = vrf->tb_id;
563 
564 	rcu_assign_pointer(vrf->rth, rth);
565 	rcu_assign_pointer(vrf->rth_local, rth_local);
566 
567 	return 0;
568 }
569 
570 /**************************** device handling ********************/
571 
572 /* cycle interface to flush neighbor cache and move routes across tables */
573 static void cycle_netdev(struct net_device *dev)
574 {
575 	unsigned int flags = dev->flags;
576 	int ret;
577 
578 	if (!netif_running(dev))
579 		return;
580 
581 	ret = dev_change_flags(dev, flags & ~IFF_UP);
582 	if (ret >= 0)
583 		ret = dev_change_flags(dev, flags);
584 
585 	if (ret < 0) {
586 		netdev_err(dev,
587 			   "Failed to cycle device %s; route tables might be wrong!\n",
588 			   dev->name);
589 	}
590 }
591 
592 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
593 {
594 	int ret;
595 
596 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
597 	if (ret < 0)
598 		return ret;
599 
600 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
601 	cycle_netdev(port_dev);
602 
603 	return 0;
604 }
605 
606 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
607 {
608 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
609 		return -EINVAL;
610 
611 	return do_vrf_add_slave(dev, port_dev);
612 }
613 
614 /* inverse of do_vrf_add_slave */
615 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
616 {
617 	netdev_upper_dev_unlink(port_dev, dev);
618 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
619 
620 	cycle_netdev(port_dev);
621 
622 	return 0;
623 }
624 
625 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
626 {
627 	return do_vrf_del_slave(dev, port_dev);
628 }
629 
630 static void vrf_dev_uninit(struct net_device *dev)
631 {
632 	struct net_vrf *vrf = netdev_priv(dev);
633 	struct net_device *port_dev;
634 	struct list_head *iter;
635 
636 	vrf_rtable_release(vrf);
637 	vrf_rt6_release(vrf);
638 
639 	netdev_for_each_lower_dev(dev, port_dev, iter)
640 		vrf_del_slave(dev, port_dev);
641 
642 	free_percpu(dev->dstats);
643 	dev->dstats = NULL;
644 }
645 
646 static int vrf_dev_init(struct net_device *dev)
647 {
648 	struct net_vrf *vrf = netdev_priv(dev);
649 
650 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
651 	if (!dev->dstats)
652 		goto out_nomem;
653 
654 	/* create the default dst which points back to us */
655 	if (vrf_rtable_create(dev) != 0)
656 		goto out_stats;
657 
658 	if (vrf_rt6_create(dev) != 0)
659 		goto out_rth;
660 
661 	dev->flags = IFF_MASTER | IFF_NOARP;
662 
663 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
664 	dev->mtu = 64 * 1024;
665 
666 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
667 	dev->operstate = IF_OPER_UP;
668 	netdev_lockdep_set_classes(dev);
669 	return 0;
670 
671 out_rth:
672 	vrf_rtable_release(vrf);
673 out_stats:
674 	free_percpu(dev->dstats);
675 	dev->dstats = NULL;
676 out_nomem:
677 	return -ENOMEM;
678 }
679 
680 static const struct net_device_ops vrf_netdev_ops = {
681 	.ndo_init		= vrf_dev_init,
682 	.ndo_uninit		= vrf_dev_uninit,
683 	.ndo_start_xmit		= vrf_xmit,
684 	.ndo_get_stats64	= vrf_get_stats64,
685 	.ndo_add_slave		= vrf_add_slave,
686 	.ndo_del_slave		= vrf_del_slave,
687 };
688 
689 static u32 vrf_fib_table(const struct net_device *dev)
690 {
691 	struct net_vrf *vrf = netdev_priv(dev);
692 
693 	return vrf->tb_id;
694 }
695 
696 static struct rtable *vrf_get_rtable(const struct net_device *dev,
697 				     const struct flowi4 *fl4)
698 {
699 	struct rtable *rth = NULL;
700 
701 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
702 		struct net_vrf *vrf = netdev_priv(dev);
703 
704 		rcu_read_lock();
705 
706 		rth = rcu_dereference(vrf->rth);
707 		if (likely(rth))
708 			dst_hold(&rth->dst);
709 
710 		rcu_read_unlock();
711 	}
712 
713 	return rth;
714 }
715 
716 /* called under rcu_read_lock */
717 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
718 {
719 	struct fib_result res = { .tclassid = 0 };
720 	struct net *net = dev_net(dev);
721 	u32 orig_tos = fl4->flowi4_tos;
722 	u8 flags = fl4->flowi4_flags;
723 	u8 scope = fl4->flowi4_scope;
724 	u8 tos = RT_FL_TOS(fl4);
725 	int rc;
726 
727 	if (unlikely(!fl4->daddr))
728 		return 0;
729 
730 	fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
731 	fl4->flowi4_iif = LOOPBACK_IFINDEX;
732 	/* make sure oif is set to VRF device for lookup */
733 	fl4->flowi4_oif = dev->ifindex;
734 	fl4->flowi4_tos = tos & IPTOS_RT_MASK;
735 	fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
736 			     RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
737 
738 	rc = fib_lookup(net, fl4, &res, 0);
739 	if (!rc) {
740 		if (res.type == RTN_LOCAL)
741 			fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
742 		else
743 			fib_select_path(net, &res, fl4, -1);
744 	}
745 
746 	fl4->flowi4_flags = flags;
747 	fl4->flowi4_tos = orig_tos;
748 	fl4->flowi4_scope = scope;
749 
750 	return rc;
751 }
752 
753 #if IS_ENABLED(CONFIG_IPV6)
754 /* neighbor handling is done with actual device; do not want
755  * to flip skb->dev for those ndisc packets. This really fails
756  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
757  * a start.
758  */
759 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
760 {
761 	const struct ipv6hdr *iph = ipv6_hdr(skb);
762 	bool rc = false;
763 
764 	if (iph->nexthdr == NEXTHDR_ICMP) {
765 		const struct icmp6hdr *icmph;
766 		struct icmp6hdr _icmph;
767 
768 		icmph = skb_header_pointer(skb, sizeof(*iph),
769 					   sizeof(_icmph), &_icmph);
770 		if (!icmph)
771 			goto out;
772 
773 		switch (icmph->icmp6_type) {
774 		case NDISC_ROUTER_SOLICITATION:
775 		case NDISC_ROUTER_ADVERTISEMENT:
776 		case NDISC_NEIGHBOUR_SOLICITATION:
777 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
778 		case NDISC_REDIRECT:
779 			rc = true;
780 			break;
781 		}
782 	}
783 
784 out:
785 	return rc;
786 }
787 
788 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
789 				   struct sk_buff *skb)
790 {
791 	/* loopback traffic; do not push through packet taps again.
792 	 * Reset pkt_type for upper layers to process skb
793 	 */
794 	if (skb->pkt_type == PACKET_LOOPBACK) {
795 		skb->dev = vrf_dev;
796 		skb->skb_iif = vrf_dev->ifindex;
797 		skb->pkt_type = PACKET_HOST;
798 		goto out;
799 	}
800 
801 	/* if packet is NDISC keep the ingress interface */
802 	if (!ipv6_ndisc_frame(skb)) {
803 		skb->dev = vrf_dev;
804 		skb->skb_iif = vrf_dev->ifindex;
805 
806 		skb_push(skb, skb->mac_len);
807 		dev_queue_xmit_nit(skb, vrf_dev);
808 		skb_pull(skb, skb->mac_len);
809 
810 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
811 	}
812 
813 out:
814 	return skb;
815 }
816 
817 #else
818 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
819 				   struct sk_buff *skb)
820 {
821 	return skb;
822 }
823 #endif
824 
825 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
826 				  struct sk_buff *skb)
827 {
828 	skb->dev = vrf_dev;
829 	skb->skb_iif = vrf_dev->ifindex;
830 
831 	/* loopback traffic; do not push through packet taps again.
832 	 * Reset pkt_type for upper layers to process skb
833 	 */
834 	if (skb->pkt_type == PACKET_LOOPBACK) {
835 		skb->pkt_type = PACKET_HOST;
836 		goto out;
837 	}
838 
839 	skb_push(skb, skb->mac_len);
840 	dev_queue_xmit_nit(skb, vrf_dev);
841 	skb_pull(skb, skb->mac_len);
842 
843 out:
844 	return skb;
845 }
846 
847 /* called with rcu lock held */
848 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
849 				  struct sk_buff *skb,
850 				  u16 proto)
851 {
852 	switch (proto) {
853 	case AF_INET:
854 		return vrf_ip_rcv(vrf_dev, skb);
855 	case AF_INET6:
856 		return vrf_ip6_rcv(vrf_dev, skb);
857 	}
858 
859 	return skb;
860 }
861 
862 #if IS_ENABLED(CONFIG_IPV6)
863 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
864 					 struct flowi6 *fl6)
865 {
866 	struct dst_entry *dst = NULL;
867 
868 	if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
869 		struct net_vrf *vrf = netdev_priv(dev);
870 		struct rt6_info *rt;
871 
872 		rcu_read_lock();
873 
874 		rt = rcu_dereference(vrf->rt6);
875 		if (likely(rt)) {
876 			dst = &rt->dst;
877 			dst_hold(dst);
878 		}
879 
880 		rcu_read_unlock();
881 	}
882 
883 	return dst;
884 }
885 #endif
886 
887 static const struct l3mdev_ops vrf_l3mdev_ops = {
888 	.l3mdev_fib_table	= vrf_fib_table,
889 	.l3mdev_get_rtable	= vrf_get_rtable,
890 	.l3mdev_get_saddr	= vrf_get_saddr,
891 	.l3mdev_l3_rcv		= vrf_l3_rcv,
892 #if IS_ENABLED(CONFIG_IPV6)
893 	.l3mdev_get_rt6_dst	= vrf_get_rt6_dst,
894 #endif
895 };
896 
897 static void vrf_get_drvinfo(struct net_device *dev,
898 			    struct ethtool_drvinfo *info)
899 {
900 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
901 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
902 }
903 
904 static const struct ethtool_ops vrf_ethtool_ops = {
905 	.get_drvinfo	= vrf_get_drvinfo,
906 };
907 
908 static inline size_t vrf_fib_rule_nl_size(void)
909 {
910 	size_t sz;
911 
912 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
913 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
914 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
915 
916 	return sz;
917 }
918 
919 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
920 {
921 	struct fib_rule_hdr *frh;
922 	struct nlmsghdr *nlh;
923 	struct sk_buff *skb;
924 	int err;
925 
926 	if (family == AF_INET6 && !ipv6_mod_enabled())
927 		return 0;
928 
929 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
930 	if (!skb)
931 		return -ENOMEM;
932 
933 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
934 	if (!nlh)
935 		goto nla_put_failure;
936 
937 	/* rule only needs to appear once */
938 	nlh->nlmsg_flags &= NLM_F_EXCL;
939 
940 	frh = nlmsg_data(nlh);
941 	memset(frh, 0, sizeof(*frh));
942 	frh->family = family;
943 	frh->action = FR_ACT_TO_TBL;
944 
945 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
946 		goto nla_put_failure;
947 
948 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
949 		goto nla_put_failure;
950 
951 	nlmsg_end(skb, nlh);
952 
953 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
954 	skb->sk = dev_net(dev)->rtnl;
955 	if (add_it) {
956 		err = fib_nl_newrule(skb, nlh);
957 		if (err == -EEXIST)
958 			err = 0;
959 	} else {
960 		err = fib_nl_delrule(skb, nlh);
961 		if (err == -ENOENT)
962 			err = 0;
963 	}
964 	nlmsg_free(skb);
965 
966 	return err;
967 
968 nla_put_failure:
969 	nlmsg_free(skb);
970 
971 	return -EMSGSIZE;
972 }
973 
974 static int vrf_add_fib_rules(const struct net_device *dev)
975 {
976 	int err;
977 
978 	err = vrf_fib_rule(dev, AF_INET,  true);
979 	if (err < 0)
980 		goto out_err;
981 
982 	err = vrf_fib_rule(dev, AF_INET6, true);
983 	if (err < 0)
984 		goto ipv6_err;
985 
986 	return 0;
987 
988 ipv6_err:
989 	vrf_fib_rule(dev, AF_INET,  false);
990 
991 out_err:
992 	netdev_err(dev, "Failed to add FIB rules.\n");
993 	return err;
994 }
995 
996 static void vrf_setup(struct net_device *dev)
997 {
998 	ether_setup(dev);
999 
1000 	/* Initialize the device structure. */
1001 	dev->netdev_ops = &vrf_netdev_ops;
1002 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1003 	dev->ethtool_ops = &vrf_ethtool_ops;
1004 	dev->destructor = free_netdev;
1005 
1006 	/* Fill in device structure with ethernet-generic values. */
1007 	eth_hw_addr_random(dev);
1008 
1009 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1010 	dev->features |= NETIF_F_LLTX;
1011 
1012 	/* don't allow vrf devices to change network namespaces. */
1013 	dev->features |= NETIF_F_NETNS_LOCAL;
1014 }
1015 
1016 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1017 {
1018 	if (tb[IFLA_ADDRESS]) {
1019 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1020 			return -EINVAL;
1021 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1022 			return -EADDRNOTAVAIL;
1023 	}
1024 	return 0;
1025 }
1026 
1027 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1028 {
1029 	unregister_netdevice_queue(dev, head);
1030 }
1031 
1032 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1033 		       struct nlattr *tb[], struct nlattr *data[])
1034 {
1035 	struct net_vrf *vrf = netdev_priv(dev);
1036 	int err;
1037 
1038 	if (!data || !data[IFLA_VRF_TABLE])
1039 		return -EINVAL;
1040 
1041 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1042 
1043 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1044 
1045 	err = register_netdevice(dev);
1046 	if (err)
1047 		goto out;
1048 
1049 	if (add_fib_rules) {
1050 		err = vrf_add_fib_rules(dev);
1051 		if (err) {
1052 			unregister_netdevice(dev);
1053 			goto out;
1054 		}
1055 		add_fib_rules = false;
1056 	}
1057 
1058 out:
1059 	return err;
1060 }
1061 
1062 static size_t vrf_nl_getsize(const struct net_device *dev)
1063 {
1064 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1065 }
1066 
1067 static int vrf_fillinfo(struct sk_buff *skb,
1068 			const struct net_device *dev)
1069 {
1070 	struct net_vrf *vrf = netdev_priv(dev);
1071 
1072 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1073 }
1074 
1075 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1076 				 const struct net_device *slave_dev)
1077 {
1078 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1079 }
1080 
1081 static int vrf_fill_slave_info(struct sk_buff *skb,
1082 			       const struct net_device *vrf_dev,
1083 			       const struct net_device *slave_dev)
1084 {
1085 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1086 
1087 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1088 		return -EMSGSIZE;
1089 
1090 	return 0;
1091 }
1092 
1093 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1094 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1095 };
1096 
1097 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1098 	.kind		= DRV_NAME,
1099 	.priv_size	= sizeof(struct net_vrf),
1100 
1101 	.get_size	= vrf_nl_getsize,
1102 	.policy		= vrf_nl_policy,
1103 	.validate	= vrf_validate,
1104 	.fill_info	= vrf_fillinfo,
1105 
1106 	.get_slave_size  = vrf_get_slave_size,
1107 	.fill_slave_info = vrf_fill_slave_info,
1108 
1109 	.newlink	= vrf_newlink,
1110 	.dellink	= vrf_dellink,
1111 	.setup		= vrf_setup,
1112 	.maxtype	= IFLA_VRF_MAX,
1113 };
1114 
1115 static int vrf_device_event(struct notifier_block *unused,
1116 			    unsigned long event, void *ptr)
1117 {
1118 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1119 
1120 	/* only care about unregister events to drop slave references */
1121 	if (event == NETDEV_UNREGISTER) {
1122 		struct net_device *vrf_dev;
1123 
1124 		if (!netif_is_l3_slave(dev))
1125 			goto out;
1126 
1127 		vrf_dev = netdev_master_upper_dev_get(dev);
1128 		vrf_del_slave(vrf_dev, dev);
1129 	}
1130 out:
1131 	return NOTIFY_DONE;
1132 }
1133 
1134 static struct notifier_block vrf_notifier_block __read_mostly = {
1135 	.notifier_call = vrf_device_event,
1136 };
1137 
1138 static int __init vrf_init_module(void)
1139 {
1140 	int rc;
1141 
1142 	register_netdevice_notifier(&vrf_notifier_block);
1143 
1144 	rc = rtnl_link_register(&vrf_link_ops);
1145 	if (rc < 0)
1146 		goto error;
1147 
1148 	return 0;
1149 
1150 error:
1151 	unregister_netdevice_notifier(&vrf_notifier_block);
1152 	return rc;
1153 }
1154 
1155 module_init(vrf_init_module);
1156 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1157 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1158 MODULE_LICENSE("GPL");
1159 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1160 MODULE_VERSION(DRV_VERSION);
1161