xref: /openbmc/linux/drivers/net/vrf.c (revision bcd684aa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
38 
39 #define DRV_NAME	"vrf"
40 #define DRV_VERSION	"1.1"
41 
42 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
43 
44 #define HT_MAP_BITS	4
45 #define HASH_INITVAL	((u32)0xcafef00d)
46 
47 struct  vrf_map {
48 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 	spinlock_t vmap_lock;
50 
51 	/* shared_tables:
52 	 * count how many distinct tables do not comply with the strict mode
53 	 * requirement.
54 	 * shared_tables value must be 0 in order to enable the strict mode.
55 	 *
56 	 * example of the evolution of shared_tables:
57 	 *                                                        | time
58 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
59 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
60 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
61 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
62 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
63 	 *
64 	 * shared_tables is a "step function" (or "staircase function")
65 	 * and it is increased by one when the second vrf is associated to a
66 	 * table.
67 	 *
68 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 	 *
70 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 	 * value of shared_tables is still 1.
72 	 * This means that no matter how many new vrfs will register on the
73 	 * table 100, the shared_tables will not increase (considering only
74 	 * table 100).
75 	 *
76 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 	 *
78 	 * Looking at the value of shared_tables we can immediately know if
79 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 	 * can be enforced iff shared_tables = 0.
81 	 *
82 	 * Conversely, shared_tables is decreased when a vrf is de-associated
83 	 * from a table with exactly two associated vrfs.
84 	 */
85 	u32 shared_tables;
86 
87 	bool strict_mode;
88 };
89 
90 struct vrf_map_elem {
91 	struct hlist_node hnode;
92 	struct list_head vrf_list;  /* VRFs registered to this table */
93 
94 	u32 table_id;
95 	int users;
96 	int ifindex;
97 };
98 
99 static unsigned int vrf_net_id;
100 
101 /* per netns vrf data */
102 struct netns_vrf {
103 	/* protected by rtnl lock */
104 	bool add_fib_rules;
105 
106 	struct vrf_map vmap;
107 	struct ctl_table_header	*ctl_hdr;
108 };
109 
110 struct net_vrf {
111 	struct rtable __rcu	*rth;
112 	struct rt6_info	__rcu	*rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 	struct fib6_table	*fib6_table;
115 #endif
116 	u32                     tb_id;
117 
118 	struct list_head	me_list;   /* entry in vrf_map_elem */
119 	int			ifindex;
120 };
121 
122 struct pcpu_dstats {
123 	u64			tx_pkts;
124 	u64			tx_bytes;
125 	u64			tx_drps;
126 	u64			rx_pkts;
127 	u64			rx_bytes;
128 	u64			rx_drps;
129 	struct u64_stats_sync	syncp;
130 };
131 
132 static void vrf_rx_stats(struct net_device *dev, int len)
133 {
134 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135 
136 	u64_stats_update_begin(&dstats->syncp);
137 	dstats->rx_pkts++;
138 	dstats->rx_bytes += len;
139 	u64_stats_update_end(&dstats->syncp);
140 }
141 
142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 {
144 	vrf_dev->stats.tx_errors++;
145 	kfree_skb(skb);
146 }
147 
148 static void vrf_get_stats64(struct net_device *dev,
149 			    struct rtnl_link_stats64 *stats)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i) {
154 		const struct pcpu_dstats *dstats;
155 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 		unsigned int start;
157 
158 		dstats = per_cpu_ptr(dev->dstats, i);
159 		do {
160 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 			tbytes = dstats->tx_bytes;
162 			tpkts = dstats->tx_pkts;
163 			tdrops = dstats->tx_drps;
164 			rbytes = dstats->rx_bytes;
165 			rpkts = dstats->rx_pkts;
166 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 		stats->tx_bytes += tbytes;
168 		stats->tx_packets += tpkts;
169 		stats->tx_dropped += tdrops;
170 		stats->rx_bytes += rbytes;
171 		stats->rx_packets += rpkts;
172 	}
173 }
174 
175 static struct vrf_map *netns_vrf_map(struct net *net)
176 {
177 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178 
179 	return &nn_vrf->vmap;
180 }
181 
182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 {
184 	return netns_vrf_map(dev_net(dev));
185 }
186 
187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 {
189 	struct list_head *me_head = &me->vrf_list;
190 	struct net_vrf *vrf;
191 
192 	if (list_empty(me_head))
193 		return -ENODEV;
194 
195 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
196 
197 	return vrf->ifindex;
198 }
199 
200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 {
202 	struct vrf_map_elem *me;
203 
204 	me = kmalloc(sizeof(*me), flags);
205 	if (!me)
206 		return NULL;
207 
208 	return me;
209 }
210 
211 static void vrf_map_elem_free(struct vrf_map_elem *me)
212 {
213 	kfree(me);
214 }
215 
216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 			      int ifindex, int users)
218 {
219 	me->table_id = table_id;
220 	me->ifindex = ifindex;
221 	me->users = users;
222 	INIT_LIST_HEAD(&me->vrf_list);
223 }
224 
225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 						u32 table_id)
227 {
228 	struct vrf_map_elem *me;
229 	u32 key;
230 
231 	key = jhash_1word(table_id, HASH_INITVAL);
232 	hash_for_each_possible(vmap->ht, me, hnode, key) {
233 		if (me->table_id == table_id)
234 			return me;
235 	}
236 
237 	return NULL;
238 }
239 
240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 {
242 	u32 table_id = me->table_id;
243 	u32 key;
244 
245 	key = jhash_1word(table_id, HASH_INITVAL);
246 	hash_add(vmap->ht, &me->hnode, key);
247 }
248 
249 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 {
251 	hash_del(&me->hnode);
252 }
253 
254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 {
256 	spin_lock(&vmap->vmap_lock);
257 }
258 
259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 {
261 	spin_unlock(&vmap->vmap_lock);
262 }
263 
264 /* called with rtnl lock held */
265 static int
266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 {
268 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 	struct net_vrf *vrf = netdev_priv(dev);
270 	struct vrf_map_elem *new_me, *me;
271 	u32 table_id = vrf->tb_id;
272 	bool free_new_me = false;
273 	int users;
274 	int res;
275 
276 	/* we pre-allocate elements used in the spin-locked section (so that we
277 	 * keep the spinlock as short as possibile).
278 	 */
279 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 	if (!new_me)
281 		return -ENOMEM;
282 
283 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284 
285 	vrf_map_lock(vmap);
286 
287 	me = vrf_map_lookup_elem(vmap, table_id);
288 	if (!me) {
289 		me = new_me;
290 		vrf_map_add_elem(vmap, me);
291 		goto link_vrf;
292 	}
293 
294 	/* we already have an entry in the vrf_map, so it means there is (at
295 	 * least) a vrf registered on the specific table.
296 	 */
297 	free_new_me = true;
298 	if (vmap->strict_mode) {
299 		/* vrfs cannot share the same table */
300 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 		res = -EBUSY;
302 		goto unlock;
303 	}
304 
305 link_vrf:
306 	users = ++me->users;
307 	if (users == 2)
308 		++vmap->shared_tables;
309 
310 	list_add(&vrf->me_list, &me->vrf_list);
311 
312 	res = 0;
313 
314 unlock:
315 	vrf_map_unlock(vmap);
316 
317 	/* clean-up, if needed */
318 	if (free_new_me)
319 		vrf_map_elem_free(new_me);
320 
321 	return res;
322 }
323 
324 /* called with rtnl lock held */
325 static void vrf_map_unregister_dev(struct net_device *dev)
326 {
327 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 	struct net_vrf *vrf = netdev_priv(dev);
329 	u32 table_id = vrf->tb_id;
330 	struct vrf_map_elem *me;
331 	int users;
332 
333 	vrf_map_lock(vmap);
334 
335 	me = vrf_map_lookup_elem(vmap, table_id);
336 	if (!me)
337 		goto unlock;
338 
339 	list_del(&vrf->me_list);
340 
341 	users = --me->users;
342 	if (users == 1) {
343 		--vmap->shared_tables;
344 	} else if (users == 0) {
345 		vrf_map_del_elem(me);
346 
347 		/* no one will refer to this element anymore */
348 		vrf_map_elem_free(me);
349 	}
350 
351 unlock:
352 	vrf_map_unlock(vmap);
353 }
354 
355 /* return the vrf device index associated with the table_id */
356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 {
358 	struct vrf_map *vmap = netns_vrf_map(net);
359 	struct vrf_map_elem *me;
360 	int ifindex;
361 
362 	vrf_map_lock(vmap);
363 
364 	if (!vmap->strict_mode) {
365 		ifindex = -EPERM;
366 		goto unlock;
367 	}
368 
369 	me = vrf_map_lookup_elem(vmap, table_id);
370 	if (!me) {
371 		ifindex = -ENODEV;
372 		goto unlock;
373 	}
374 
375 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
376 
377 unlock:
378 	vrf_map_unlock(vmap);
379 
380 	return ifindex;
381 }
382 
383 /* by default VRF devices do not have a qdisc and are expected
384  * to be created with only a single queue.
385  */
386 static bool qdisc_tx_is_default(const struct net_device *dev)
387 {
388 	struct netdev_queue *txq;
389 	struct Qdisc *qdisc;
390 
391 	if (dev->num_tx_queues > 1)
392 		return false;
393 
394 	txq = netdev_get_tx_queue(dev, 0);
395 	qdisc = rcu_access_pointer(txq->qdisc);
396 
397 	return !qdisc->enqueue;
398 }
399 
400 /* Local traffic destined to local address. Reinsert the packet to rx
401  * path, similar to loopback handling.
402  */
403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 			  struct dst_entry *dst)
405 {
406 	int len = skb->len;
407 
408 	skb_orphan(skb);
409 
410 	skb_dst_set(skb, dst);
411 
412 	/* set pkt_type to avoid skb hitting packet taps twice -
413 	 * once on Tx and again in Rx processing
414 	 */
415 	skb->pkt_type = PACKET_LOOPBACK;
416 
417 	skb->protocol = eth_type_trans(skb, dev);
418 
419 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 		vrf_rx_stats(dev, len);
421 	else
422 		this_cpu_inc(dev->dstats->rx_drps);
423 
424 	return NETDEV_TX_OK;
425 }
426 
427 #if IS_ENABLED(CONFIG_IPV6)
428 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
429 			     struct sk_buff *skb)
430 {
431 	int err;
432 
433 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435 
436 	if (likely(err == 1))
437 		err = dst_output(net, sk, skb);
438 
439 	return err;
440 }
441 
442 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 					   struct net_device *dev)
444 {
445 	const struct ipv6hdr *iph;
446 	struct net *net = dev_net(skb->dev);
447 	struct flowi6 fl6;
448 	int ret = NET_XMIT_DROP;
449 	struct dst_entry *dst;
450 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451 
452 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
453 		goto err;
454 
455 	iph = ipv6_hdr(skb);
456 
457 	memset(&fl6, 0, sizeof(fl6));
458 	/* needed to match OIF rule */
459 	fl6.flowi6_oif = dev->ifindex;
460 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 	fl6.daddr = iph->daddr;
462 	fl6.saddr = iph->saddr;
463 	fl6.flowlabel = ip6_flowinfo(iph);
464 	fl6.flowi6_mark = skb->mark;
465 	fl6.flowi6_proto = iph->nexthdr;
466 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467 
468 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 	if (IS_ERR(dst) || dst == dst_null)
470 		goto err;
471 
472 	skb_dst_drop(skb);
473 
474 	/* if dst.dev is loopback or the VRF device again this is locally
475 	 * originated traffic destined to a local address. Short circuit
476 	 * to Rx path
477 	 */
478 	if (dst->dev == dev)
479 		return vrf_local_xmit(skb, dev, dst);
480 
481 	skb_dst_set(skb, dst);
482 
483 	/* strip the ethernet header added for pass through VRF device */
484 	__skb_pull(skb, skb_network_offset(skb));
485 
486 	ret = vrf_ip6_local_out(net, skb->sk, skb);
487 	if (unlikely(net_xmit_eval(ret)))
488 		dev->stats.tx_errors++;
489 	else
490 		ret = NET_XMIT_SUCCESS;
491 
492 	return ret;
493 err:
494 	vrf_tx_error(dev, skb);
495 	return NET_XMIT_DROP;
496 }
497 #else
498 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
499 					   struct net_device *dev)
500 {
501 	vrf_tx_error(dev, skb);
502 	return NET_XMIT_DROP;
503 }
504 #endif
505 
506 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
507 static int vrf_ip_local_out(struct net *net, struct sock *sk,
508 			    struct sk_buff *skb)
509 {
510 	int err;
511 
512 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
513 		      skb, NULL, skb_dst(skb)->dev, dst_output);
514 	if (likely(err == 1))
515 		err = dst_output(net, sk, skb);
516 
517 	return err;
518 }
519 
520 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
521 					   struct net_device *vrf_dev)
522 {
523 	struct iphdr *ip4h;
524 	int ret = NET_XMIT_DROP;
525 	struct flowi4 fl4;
526 	struct net *net = dev_net(vrf_dev);
527 	struct rtable *rt;
528 
529 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
530 		goto err;
531 
532 	ip4h = ip_hdr(skb);
533 
534 	memset(&fl4, 0, sizeof(fl4));
535 	/* needed to match OIF rule */
536 	fl4.flowi4_oif = vrf_dev->ifindex;
537 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
538 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
539 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
540 	fl4.flowi4_proto = ip4h->protocol;
541 	fl4.daddr = ip4h->daddr;
542 	fl4.saddr = ip4h->saddr;
543 
544 	rt = ip_route_output_flow(net, &fl4, NULL);
545 	if (IS_ERR(rt))
546 		goto err;
547 
548 	skb_dst_drop(skb);
549 
550 	/* if dst.dev is loopback or the VRF device again this is locally
551 	 * originated traffic destined to a local address. Short circuit
552 	 * to Rx path
553 	 */
554 	if (rt->dst.dev == vrf_dev)
555 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
556 
557 	skb_dst_set(skb, &rt->dst);
558 
559 	/* strip the ethernet header added for pass through VRF device */
560 	__skb_pull(skb, skb_network_offset(skb));
561 
562 	if (!ip4h->saddr) {
563 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
564 					       RT_SCOPE_LINK);
565 	}
566 
567 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
568 	if (unlikely(net_xmit_eval(ret)))
569 		vrf_dev->stats.tx_errors++;
570 	else
571 		ret = NET_XMIT_SUCCESS;
572 
573 out:
574 	return ret;
575 err:
576 	vrf_tx_error(vrf_dev, skb);
577 	goto out;
578 }
579 
580 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
581 {
582 	switch (skb->protocol) {
583 	case htons(ETH_P_IP):
584 		return vrf_process_v4_outbound(skb, dev);
585 	case htons(ETH_P_IPV6):
586 		return vrf_process_v6_outbound(skb, dev);
587 	default:
588 		vrf_tx_error(dev, skb);
589 		return NET_XMIT_DROP;
590 	}
591 }
592 
593 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
594 {
595 	int len = skb->len;
596 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
597 
598 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
599 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
600 
601 		u64_stats_update_begin(&dstats->syncp);
602 		dstats->tx_pkts++;
603 		dstats->tx_bytes += len;
604 		u64_stats_update_end(&dstats->syncp);
605 	} else {
606 		this_cpu_inc(dev->dstats->tx_drps);
607 	}
608 
609 	return ret;
610 }
611 
612 static void vrf_finish_direct(struct sk_buff *skb)
613 {
614 	struct net_device *vrf_dev = skb->dev;
615 
616 	if (!list_empty(&vrf_dev->ptype_all) &&
617 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
618 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
619 
620 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
621 		eth_zero_addr(eth->h_dest);
622 		eth->h_proto = skb->protocol;
623 
624 		rcu_read_lock_bh();
625 		dev_queue_xmit_nit(skb, vrf_dev);
626 		rcu_read_unlock_bh();
627 
628 		skb_pull(skb, ETH_HLEN);
629 	}
630 
631 	/* reset skb device */
632 	nf_reset_ct(skb);
633 }
634 
635 #if IS_ENABLED(CONFIG_IPV6)
636 /* modelled after ip6_finish_output2 */
637 static int vrf_finish_output6(struct net *net, struct sock *sk,
638 			      struct sk_buff *skb)
639 {
640 	struct dst_entry *dst = skb_dst(skb);
641 	struct net_device *dev = dst->dev;
642 	const struct in6_addr *nexthop;
643 	struct neighbour *neigh;
644 	int ret;
645 
646 	nf_reset_ct(skb);
647 
648 	skb->protocol = htons(ETH_P_IPV6);
649 	skb->dev = dev;
650 
651 	rcu_read_lock_bh();
652 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
653 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
654 	if (unlikely(!neigh))
655 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
656 	if (!IS_ERR(neigh)) {
657 		sock_confirm_neigh(skb, neigh);
658 		ret = neigh_output(neigh, skb, false);
659 		rcu_read_unlock_bh();
660 		return ret;
661 	}
662 	rcu_read_unlock_bh();
663 
664 	IP6_INC_STATS(dev_net(dst->dev),
665 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
666 	kfree_skb(skb);
667 	return -EINVAL;
668 }
669 
670 /* modelled after ip6_output */
671 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
672 {
673 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
674 			    net, sk, skb, NULL, skb_dst(skb)->dev,
675 			    vrf_finish_output6,
676 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
677 }
678 
679 /* set dst on skb to send packet to us via dev_xmit path. Allows
680  * packet to go through device based features such as qdisc, netfilter
681  * hooks and packet sockets with skb->dev set to vrf device.
682  */
683 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
684 					    struct sk_buff *skb)
685 {
686 	struct net_vrf *vrf = netdev_priv(vrf_dev);
687 	struct dst_entry *dst = NULL;
688 	struct rt6_info *rt6;
689 
690 	rcu_read_lock();
691 
692 	rt6 = rcu_dereference(vrf->rt6);
693 	if (likely(rt6)) {
694 		dst = &rt6->dst;
695 		dst_hold(dst);
696 	}
697 
698 	rcu_read_unlock();
699 
700 	if (unlikely(!dst)) {
701 		vrf_tx_error(vrf_dev, skb);
702 		return NULL;
703 	}
704 
705 	skb_dst_drop(skb);
706 	skb_dst_set(skb, dst);
707 
708 	return skb;
709 }
710 
711 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
712 				     struct sk_buff *skb)
713 {
714 	vrf_finish_direct(skb);
715 
716 	return vrf_ip6_local_out(net, sk, skb);
717 }
718 
719 static int vrf_output6_direct(struct net *net, struct sock *sk,
720 			      struct sk_buff *skb)
721 {
722 	int err = 1;
723 
724 	skb->protocol = htons(ETH_P_IPV6);
725 
726 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
727 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
728 			      NULL, skb->dev, vrf_output6_direct_finish);
729 
730 	if (likely(err == 1))
731 		vrf_finish_direct(skb);
732 
733 	return err;
734 }
735 
736 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
737 				     struct sk_buff *skb)
738 {
739 	int err;
740 
741 	err = vrf_output6_direct(net, sk, skb);
742 	if (likely(err == 1))
743 		err = vrf_ip6_local_out(net, sk, skb);
744 
745 	return err;
746 }
747 
748 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
749 					  struct sock *sk,
750 					  struct sk_buff *skb)
751 {
752 	struct net *net = dev_net(vrf_dev);
753 	int err;
754 
755 	skb->dev = vrf_dev;
756 
757 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
758 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
759 
760 	if (likely(err == 1))
761 		err = vrf_output6_direct(net, sk, skb);
762 
763 	if (likely(err == 1))
764 		return skb;
765 
766 	return NULL;
767 }
768 
769 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
770 				   struct sock *sk,
771 				   struct sk_buff *skb)
772 {
773 	/* don't divert link scope packets */
774 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
775 		return skb;
776 
777 	if (qdisc_tx_is_default(vrf_dev) ||
778 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
779 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
780 
781 	return vrf_ip6_out_redirect(vrf_dev, skb);
782 }
783 
784 /* holding rtnl */
785 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
786 {
787 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
788 	struct net *net = dev_net(dev);
789 	struct dst_entry *dst;
790 
791 	RCU_INIT_POINTER(vrf->rt6, NULL);
792 	synchronize_rcu();
793 
794 	/* move dev in dst's to loopback so this VRF device can be deleted
795 	 * - based on dst_ifdown
796 	 */
797 	if (rt6) {
798 		dst = &rt6->dst;
799 		dev_put(dst->dev);
800 		dst->dev = net->loopback_dev;
801 		dev_hold(dst->dev);
802 		dst_release(dst);
803 	}
804 }
805 
806 static int vrf_rt6_create(struct net_device *dev)
807 {
808 	int flags = DST_NOPOLICY | DST_NOXFRM;
809 	struct net_vrf *vrf = netdev_priv(dev);
810 	struct net *net = dev_net(dev);
811 	struct rt6_info *rt6;
812 	int rc = -ENOMEM;
813 
814 	/* IPv6 can be CONFIG enabled and then disabled runtime */
815 	if (!ipv6_mod_enabled())
816 		return 0;
817 
818 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
819 	if (!vrf->fib6_table)
820 		goto out;
821 
822 	/* create a dst for routing packets out a VRF device */
823 	rt6 = ip6_dst_alloc(net, dev, flags);
824 	if (!rt6)
825 		goto out;
826 
827 	rt6->dst.output	= vrf_output6;
828 
829 	rcu_assign_pointer(vrf->rt6, rt6);
830 
831 	rc = 0;
832 out:
833 	return rc;
834 }
835 #else
836 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
837 				   struct sock *sk,
838 				   struct sk_buff *skb)
839 {
840 	return skb;
841 }
842 
843 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
844 {
845 }
846 
847 static int vrf_rt6_create(struct net_device *dev)
848 {
849 	return 0;
850 }
851 #endif
852 
853 /* modelled after ip_finish_output2 */
854 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
855 {
856 	struct dst_entry *dst = skb_dst(skb);
857 	struct rtable *rt = (struct rtable *)dst;
858 	struct net_device *dev = dst->dev;
859 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
860 	struct neighbour *neigh;
861 	bool is_v6gw = false;
862 	int ret = -EINVAL;
863 
864 	nf_reset_ct(skb);
865 
866 	/* Be paranoid, rather than too clever. */
867 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
868 		struct sk_buff *skb2;
869 
870 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
871 		if (!skb2) {
872 			ret = -ENOMEM;
873 			goto err;
874 		}
875 		if (skb->sk)
876 			skb_set_owner_w(skb2, skb->sk);
877 
878 		consume_skb(skb);
879 		skb = skb2;
880 	}
881 
882 	rcu_read_lock_bh();
883 
884 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
885 	if (!IS_ERR(neigh)) {
886 		sock_confirm_neigh(skb, neigh);
887 		/* if crossing protocols, can not use the cached header */
888 		ret = neigh_output(neigh, skb, is_v6gw);
889 		rcu_read_unlock_bh();
890 		return ret;
891 	}
892 
893 	rcu_read_unlock_bh();
894 err:
895 	vrf_tx_error(skb->dev, skb);
896 	return ret;
897 }
898 
899 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
900 {
901 	struct net_device *dev = skb_dst(skb)->dev;
902 
903 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
904 
905 	skb->dev = dev;
906 	skb->protocol = htons(ETH_P_IP);
907 
908 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
909 			    net, sk, skb, NULL, dev,
910 			    vrf_finish_output,
911 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
912 }
913 
914 /* set dst on skb to send packet to us via dev_xmit path. Allows
915  * packet to go through device based features such as qdisc, netfilter
916  * hooks and packet sockets with skb->dev set to vrf device.
917  */
918 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
919 					   struct sk_buff *skb)
920 {
921 	struct net_vrf *vrf = netdev_priv(vrf_dev);
922 	struct dst_entry *dst = NULL;
923 	struct rtable *rth;
924 
925 	rcu_read_lock();
926 
927 	rth = rcu_dereference(vrf->rth);
928 	if (likely(rth)) {
929 		dst = &rth->dst;
930 		dst_hold(dst);
931 	}
932 
933 	rcu_read_unlock();
934 
935 	if (unlikely(!dst)) {
936 		vrf_tx_error(vrf_dev, skb);
937 		return NULL;
938 	}
939 
940 	skb_dst_drop(skb);
941 	skb_dst_set(skb, dst);
942 
943 	return skb;
944 }
945 
946 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
947 				    struct sk_buff *skb)
948 {
949 	vrf_finish_direct(skb);
950 
951 	return vrf_ip_local_out(net, sk, skb);
952 }
953 
954 static int vrf_output_direct(struct net *net, struct sock *sk,
955 			     struct sk_buff *skb)
956 {
957 	int err = 1;
958 
959 	skb->protocol = htons(ETH_P_IP);
960 
961 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
962 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
963 			      NULL, skb->dev, vrf_output_direct_finish);
964 
965 	if (likely(err == 1))
966 		vrf_finish_direct(skb);
967 
968 	return err;
969 }
970 
971 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
972 				    struct sk_buff *skb)
973 {
974 	int err;
975 
976 	err = vrf_output_direct(net, sk, skb);
977 	if (likely(err == 1))
978 		err = vrf_ip_local_out(net, sk, skb);
979 
980 	return err;
981 }
982 
983 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
984 					 struct sock *sk,
985 					 struct sk_buff *skb)
986 {
987 	struct net *net = dev_net(vrf_dev);
988 	int err;
989 
990 	skb->dev = vrf_dev;
991 
992 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
993 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
994 
995 	if (likely(err == 1))
996 		err = vrf_output_direct(net, sk, skb);
997 
998 	if (likely(err == 1))
999 		return skb;
1000 
1001 	return NULL;
1002 }
1003 
1004 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1005 				  struct sock *sk,
1006 				  struct sk_buff *skb)
1007 {
1008 	/* don't divert multicast or local broadcast */
1009 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1010 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1011 		return skb;
1012 
1013 	if (qdisc_tx_is_default(vrf_dev) ||
1014 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1015 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1016 
1017 	return vrf_ip_out_redirect(vrf_dev, skb);
1018 }
1019 
1020 /* called with rcu lock held */
1021 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1022 				  struct sock *sk,
1023 				  struct sk_buff *skb,
1024 				  u16 proto)
1025 {
1026 	switch (proto) {
1027 	case AF_INET:
1028 		return vrf_ip_out(vrf_dev, sk, skb);
1029 	case AF_INET6:
1030 		return vrf_ip6_out(vrf_dev, sk, skb);
1031 	}
1032 
1033 	return skb;
1034 }
1035 
1036 /* holding rtnl */
1037 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1038 {
1039 	struct rtable *rth = rtnl_dereference(vrf->rth);
1040 	struct net *net = dev_net(dev);
1041 	struct dst_entry *dst;
1042 
1043 	RCU_INIT_POINTER(vrf->rth, NULL);
1044 	synchronize_rcu();
1045 
1046 	/* move dev in dst's to loopback so this VRF device can be deleted
1047 	 * - based on dst_ifdown
1048 	 */
1049 	if (rth) {
1050 		dst = &rth->dst;
1051 		dev_put(dst->dev);
1052 		dst->dev = net->loopback_dev;
1053 		dev_hold(dst->dev);
1054 		dst_release(dst);
1055 	}
1056 }
1057 
1058 static int vrf_rtable_create(struct net_device *dev)
1059 {
1060 	struct net_vrf *vrf = netdev_priv(dev);
1061 	struct rtable *rth;
1062 
1063 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1064 		return -ENOMEM;
1065 
1066 	/* create a dst for routing packets out through a VRF device */
1067 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1068 	if (!rth)
1069 		return -ENOMEM;
1070 
1071 	rth->dst.output	= vrf_output;
1072 
1073 	rcu_assign_pointer(vrf->rth, rth);
1074 
1075 	return 0;
1076 }
1077 
1078 /**************************** device handling ********************/
1079 
1080 /* cycle interface to flush neighbor cache and move routes across tables */
1081 static void cycle_netdev(struct net_device *dev,
1082 			 struct netlink_ext_ack *extack)
1083 {
1084 	unsigned int flags = dev->flags;
1085 	int ret;
1086 
1087 	if (!netif_running(dev))
1088 		return;
1089 
1090 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1091 	if (ret >= 0)
1092 		ret = dev_change_flags(dev, flags, extack);
1093 
1094 	if (ret < 0) {
1095 		netdev_err(dev,
1096 			   "Failed to cycle device %s; route tables might be wrong!\n",
1097 			   dev->name);
1098 	}
1099 }
1100 
1101 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1102 			    struct netlink_ext_ack *extack)
1103 {
1104 	int ret;
1105 
1106 	/* do not allow loopback device to be enslaved to a VRF.
1107 	 * The vrf device acts as the loopback for the vrf.
1108 	 */
1109 	if (port_dev == dev_net(dev)->loopback_dev) {
1110 		NL_SET_ERR_MSG(extack,
1111 			       "Can not enslave loopback device to a VRF");
1112 		return -EOPNOTSUPP;
1113 	}
1114 
1115 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1116 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1117 	if (ret < 0)
1118 		goto err;
1119 
1120 	cycle_netdev(port_dev, extack);
1121 
1122 	return 0;
1123 
1124 err:
1125 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1126 	return ret;
1127 }
1128 
1129 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1130 			 struct netlink_ext_ack *extack)
1131 {
1132 	if (netif_is_l3_master(port_dev)) {
1133 		NL_SET_ERR_MSG(extack,
1134 			       "Can not enslave an L3 master device to a VRF");
1135 		return -EINVAL;
1136 	}
1137 
1138 	if (netif_is_l3_slave(port_dev))
1139 		return -EINVAL;
1140 
1141 	return do_vrf_add_slave(dev, port_dev, extack);
1142 }
1143 
1144 /* inverse of do_vrf_add_slave */
1145 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1146 {
1147 	netdev_upper_dev_unlink(port_dev, dev);
1148 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1149 
1150 	cycle_netdev(port_dev, NULL);
1151 
1152 	return 0;
1153 }
1154 
1155 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1156 {
1157 	return do_vrf_del_slave(dev, port_dev);
1158 }
1159 
1160 static void vrf_dev_uninit(struct net_device *dev)
1161 {
1162 	struct net_vrf *vrf = netdev_priv(dev);
1163 
1164 	vrf_rtable_release(dev, vrf);
1165 	vrf_rt6_release(dev, vrf);
1166 
1167 	free_percpu(dev->dstats);
1168 	dev->dstats = NULL;
1169 }
1170 
1171 static int vrf_dev_init(struct net_device *dev)
1172 {
1173 	struct net_vrf *vrf = netdev_priv(dev);
1174 
1175 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1176 	if (!dev->dstats)
1177 		goto out_nomem;
1178 
1179 	/* create the default dst which points back to us */
1180 	if (vrf_rtable_create(dev) != 0)
1181 		goto out_stats;
1182 
1183 	if (vrf_rt6_create(dev) != 0)
1184 		goto out_rth;
1185 
1186 	dev->flags = IFF_MASTER | IFF_NOARP;
1187 
1188 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
1189 	dev->mtu = 64 * 1024;
1190 
1191 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1192 	dev->operstate = IF_OPER_UP;
1193 	netdev_lockdep_set_classes(dev);
1194 	return 0;
1195 
1196 out_rth:
1197 	vrf_rtable_release(dev, vrf);
1198 out_stats:
1199 	free_percpu(dev->dstats);
1200 	dev->dstats = NULL;
1201 out_nomem:
1202 	return -ENOMEM;
1203 }
1204 
1205 static const struct net_device_ops vrf_netdev_ops = {
1206 	.ndo_init		= vrf_dev_init,
1207 	.ndo_uninit		= vrf_dev_uninit,
1208 	.ndo_start_xmit		= vrf_xmit,
1209 	.ndo_set_mac_address	= eth_mac_addr,
1210 	.ndo_get_stats64	= vrf_get_stats64,
1211 	.ndo_add_slave		= vrf_add_slave,
1212 	.ndo_del_slave		= vrf_del_slave,
1213 };
1214 
1215 static u32 vrf_fib_table(const struct net_device *dev)
1216 {
1217 	struct net_vrf *vrf = netdev_priv(dev);
1218 
1219 	return vrf->tb_id;
1220 }
1221 
1222 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1223 {
1224 	kfree_skb(skb);
1225 	return 0;
1226 }
1227 
1228 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1229 				      struct sk_buff *skb,
1230 				      struct net_device *dev)
1231 {
1232 	struct net *net = dev_net(dev);
1233 
1234 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1235 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1236 
1237 	return skb;
1238 }
1239 
1240 #if IS_ENABLED(CONFIG_IPV6)
1241 /* neighbor handling is done with actual device; do not want
1242  * to flip skb->dev for those ndisc packets. This really fails
1243  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1244  * a start.
1245  */
1246 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1247 {
1248 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1249 	bool rc = false;
1250 
1251 	if (iph->nexthdr == NEXTHDR_ICMP) {
1252 		const struct icmp6hdr *icmph;
1253 		struct icmp6hdr _icmph;
1254 
1255 		icmph = skb_header_pointer(skb, sizeof(*iph),
1256 					   sizeof(_icmph), &_icmph);
1257 		if (!icmph)
1258 			goto out;
1259 
1260 		switch (icmph->icmp6_type) {
1261 		case NDISC_ROUTER_SOLICITATION:
1262 		case NDISC_ROUTER_ADVERTISEMENT:
1263 		case NDISC_NEIGHBOUR_SOLICITATION:
1264 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1265 		case NDISC_REDIRECT:
1266 			rc = true;
1267 			break;
1268 		}
1269 	}
1270 
1271 out:
1272 	return rc;
1273 }
1274 
1275 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1276 					     const struct net_device *dev,
1277 					     struct flowi6 *fl6,
1278 					     int ifindex,
1279 					     const struct sk_buff *skb,
1280 					     int flags)
1281 {
1282 	struct net_vrf *vrf = netdev_priv(dev);
1283 
1284 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1285 }
1286 
1287 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1288 			      int ifindex)
1289 {
1290 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1291 	struct flowi6 fl6 = {
1292 		.flowi6_iif     = ifindex,
1293 		.flowi6_mark    = skb->mark,
1294 		.flowi6_proto   = iph->nexthdr,
1295 		.daddr          = iph->daddr,
1296 		.saddr          = iph->saddr,
1297 		.flowlabel      = ip6_flowinfo(iph),
1298 	};
1299 	struct net *net = dev_net(vrf_dev);
1300 	struct rt6_info *rt6;
1301 
1302 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1303 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1304 	if (unlikely(!rt6))
1305 		return;
1306 
1307 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1308 		return;
1309 
1310 	skb_dst_set(skb, &rt6->dst);
1311 }
1312 
1313 static int vrf_prepare_mac_header(struct sk_buff *skb,
1314 				  struct net_device *vrf_dev, u16 proto)
1315 {
1316 	struct ethhdr *eth;
1317 	int err;
1318 
1319 	/* in general, we do not know if there is enough space in the head of
1320 	 * the packet for hosting the mac header.
1321 	 */
1322 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1323 	if (unlikely(err))
1324 		/* no space in the skb head */
1325 		return -ENOBUFS;
1326 
1327 	__skb_push(skb, ETH_HLEN);
1328 	eth = (struct ethhdr *)skb->data;
1329 
1330 	skb_reset_mac_header(skb);
1331 
1332 	/* we set the ethernet destination and the source addresses to the
1333 	 * address of the VRF device.
1334 	 */
1335 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1336 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1337 	eth->h_proto = htons(proto);
1338 
1339 	/* the destination address of the Ethernet frame corresponds to the
1340 	 * address set on the VRF interface; therefore, the packet is intended
1341 	 * to be processed locally.
1342 	 */
1343 	skb->protocol = eth->h_proto;
1344 	skb->pkt_type = PACKET_HOST;
1345 
1346 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1347 
1348 	skb_pull_inline(skb, ETH_HLEN);
1349 
1350 	return 0;
1351 }
1352 
1353 /* prepare and add the mac header to the packet if it was not set previously.
1354  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1355  * If the mac header was already set, the original mac header is left
1356  * untouched and the function returns immediately.
1357  */
1358 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1359 				       struct net_device *vrf_dev,
1360 				       u16 proto)
1361 {
1362 	if (skb_mac_header_was_set(skb))
1363 		return 0;
1364 
1365 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1366 }
1367 
1368 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1369 				   struct sk_buff *skb)
1370 {
1371 	int orig_iif = skb->skb_iif;
1372 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1373 	bool is_ndisc = ipv6_ndisc_frame(skb);
1374 
1375 	/* loopback, multicast & non-ND link-local traffic; do not push through
1376 	 * packet taps again. Reset pkt_type for upper layers to process skb
1377 	 */
1378 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1379 		skb->dev = vrf_dev;
1380 		skb->skb_iif = vrf_dev->ifindex;
1381 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1382 		if (skb->pkt_type == PACKET_LOOPBACK)
1383 			skb->pkt_type = PACKET_HOST;
1384 		goto out;
1385 	}
1386 
1387 	/* if packet is NDISC then keep the ingress interface */
1388 	if (!is_ndisc) {
1389 		vrf_rx_stats(vrf_dev, skb->len);
1390 		skb->dev = vrf_dev;
1391 		skb->skb_iif = vrf_dev->ifindex;
1392 
1393 		if (!list_empty(&vrf_dev->ptype_all)) {
1394 			int err;
1395 
1396 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1397 							  ETH_P_IPV6);
1398 			if (likely(!err)) {
1399 				skb_push(skb, skb->mac_len);
1400 				dev_queue_xmit_nit(skb, vrf_dev);
1401 				skb_pull(skb, skb->mac_len);
1402 			}
1403 		}
1404 
1405 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1406 	}
1407 
1408 	if (need_strict)
1409 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1410 
1411 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1412 out:
1413 	return skb;
1414 }
1415 
1416 #else
1417 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1418 				   struct sk_buff *skb)
1419 {
1420 	return skb;
1421 }
1422 #endif
1423 
1424 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1425 				  struct sk_buff *skb)
1426 {
1427 	skb->dev = vrf_dev;
1428 	skb->skb_iif = vrf_dev->ifindex;
1429 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1430 
1431 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1432 		goto out;
1433 
1434 	/* loopback traffic; do not push through packet taps again.
1435 	 * Reset pkt_type for upper layers to process skb
1436 	 */
1437 	if (skb->pkt_type == PACKET_LOOPBACK) {
1438 		skb->pkt_type = PACKET_HOST;
1439 		goto out;
1440 	}
1441 
1442 	vrf_rx_stats(vrf_dev, skb->len);
1443 
1444 	if (!list_empty(&vrf_dev->ptype_all)) {
1445 		int err;
1446 
1447 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1448 		if (likely(!err)) {
1449 			skb_push(skb, skb->mac_len);
1450 			dev_queue_xmit_nit(skb, vrf_dev);
1451 			skb_pull(skb, skb->mac_len);
1452 		}
1453 	}
1454 
1455 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1456 out:
1457 	return skb;
1458 }
1459 
1460 /* called with rcu lock held */
1461 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1462 				  struct sk_buff *skb,
1463 				  u16 proto)
1464 {
1465 	switch (proto) {
1466 	case AF_INET:
1467 		return vrf_ip_rcv(vrf_dev, skb);
1468 	case AF_INET6:
1469 		return vrf_ip6_rcv(vrf_dev, skb);
1470 	}
1471 
1472 	return skb;
1473 }
1474 
1475 #if IS_ENABLED(CONFIG_IPV6)
1476 /* send to link-local or multicast address via interface enslaved to
1477  * VRF device. Force lookup to VRF table without changing flow struct
1478  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1479  * is taken on the dst by this function.
1480  */
1481 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1482 					      struct flowi6 *fl6)
1483 {
1484 	struct net *net = dev_net(dev);
1485 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1486 	struct dst_entry *dst = NULL;
1487 	struct rt6_info *rt;
1488 
1489 	/* VRF device does not have a link-local address and
1490 	 * sending packets to link-local or mcast addresses over
1491 	 * a VRF device does not make sense
1492 	 */
1493 	if (fl6->flowi6_oif == dev->ifindex) {
1494 		dst = &net->ipv6.ip6_null_entry->dst;
1495 		return dst;
1496 	}
1497 
1498 	if (!ipv6_addr_any(&fl6->saddr))
1499 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1500 
1501 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1502 	if (rt)
1503 		dst = &rt->dst;
1504 
1505 	return dst;
1506 }
1507 #endif
1508 
1509 static const struct l3mdev_ops vrf_l3mdev_ops = {
1510 	.l3mdev_fib_table	= vrf_fib_table,
1511 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1512 	.l3mdev_l3_out		= vrf_l3_out,
1513 #if IS_ENABLED(CONFIG_IPV6)
1514 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1515 #endif
1516 };
1517 
1518 static void vrf_get_drvinfo(struct net_device *dev,
1519 			    struct ethtool_drvinfo *info)
1520 {
1521 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1522 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1523 }
1524 
1525 static const struct ethtool_ops vrf_ethtool_ops = {
1526 	.get_drvinfo	= vrf_get_drvinfo,
1527 };
1528 
1529 static inline size_t vrf_fib_rule_nl_size(void)
1530 {
1531 	size_t sz;
1532 
1533 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1534 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1535 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1536 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1537 
1538 	return sz;
1539 }
1540 
1541 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1542 {
1543 	struct fib_rule_hdr *frh;
1544 	struct nlmsghdr *nlh;
1545 	struct sk_buff *skb;
1546 	int err;
1547 
1548 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1549 	    !ipv6_mod_enabled())
1550 		return 0;
1551 
1552 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1553 	if (!skb)
1554 		return -ENOMEM;
1555 
1556 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1557 	if (!nlh)
1558 		goto nla_put_failure;
1559 
1560 	/* rule only needs to appear once */
1561 	nlh->nlmsg_flags |= NLM_F_EXCL;
1562 
1563 	frh = nlmsg_data(nlh);
1564 	memset(frh, 0, sizeof(*frh));
1565 	frh->family = family;
1566 	frh->action = FR_ACT_TO_TBL;
1567 
1568 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1569 		goto nla_put_failure;
1570 
1571 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1572 		goto nla_put_failure;
1573 
1574 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1575 		goto nla_put_failure;
1576 
1577 	nlmsg_end(skb, nlh);
1578 
1579 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1580 	skb->sk = dev_net(dev)->rtnl;
1581 	if (add_it) {
1582 		err = fib_nl_newrule(skb, nlh, NULL);
1583 		if (err == -EEXIST)
1584 			err = 0;
1585 	} else {
1586 		err = fib_nl_delrule(skb, nlh, NULL);
1587 		if (err == -ENOENT)
1588 			err = 0;
1589 	}
1590 	nlmsg_free(skb);
1591 
1592 	return err;
1593 
1594 nla_put_failure:
1595 	nlmsg_free(skb);
1596 
1597 	return -EMSGSIZE;
1598 }
1599 
1600 static int vrf_add_fib_rules(const struct net_device *dev)
1601 {
1602 	int err;
1603 
1604 	err = vrf_fib_rule(dev, AF_INET,  true);
1605 	if (err < 0)
1606 		goto out_err;
1607 
1608 	err = vrf_fib_rule(dev, AF_INET6, true);
1609 	if (err < 0)
1610 		goto ipv6_err;
1611 
1612 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1613 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1614 	if (err < 0)
1615 		goto ipmr_err;
1616 #endif
1617 
1618 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1619 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1620 	if (err < 0)
1621 		goto ip6mr_err;
1622 #endif
1623 
1624 	return 0;
1625 
1626 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1627 ip6mr_err:
1628 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1629 #endif
1630 
1631 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1632 ipmr_err:
1633 	vrf_fib_rule(dev, AF_INET6,  false);
1634 #endif
1635 
1636 ipv6_err:
1637 	vrf_fib_rule(dev, AF_INET,  false);
1638 
1639 out_err:
1640 	netdev_err(dev, "Failed to add FIB rules.\n");
1641 	return err;
1642 }
1643 
1644 static void vrf_setup(struct net_device *dev)
1645 {
1646 	ether_setup(dev);
1647 
1648 	/* Initialize the device structure. */
1649 	dev->netdev_ops = &vrf_netdev_ops;
1650 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1651 	dev->ethtool_ops = &vrf_ethtool_ops;
1652 	dev->needs_free_netdev = true;
1653 
1654 	/* Fill in device structure with ethernet-generic values. */
1655 	eth_hw_addr_random(dev);
1656 
1657 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1658 	dev->features |= NETIF_F_LLTX;
1659 
1660 	/* don't allow vrf devices to change network namespaces. */
1661 	dev->features |= NETIF_F_NETNS_LOCAL;
1662 
1663 	/* does not make sense for a VLAN to be added to a vrf device */
1664 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1665 
1666 	/* enable offload features */
1667 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1668 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1669 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1670 
1671 	dev->hw_features = dev->features;
1672 	dev->hw_enc_features = dev->features;
1673 
1674 	/* default to no qdisc; user can add if desired */
1675 	dev->priv_flags |= IFF_NO_QUEUE;
1676 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1677 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1678 
1679 	/* VRF devices do not care about MTU, but if the MTU is set
1680 	 * too low then the ipv4 and ipv6 protocols are disabled
1681 	 * which breaks networking.
1682 	 */
1683 	dev->min_mtu = IPV6_MIN_MTU;
1684 	dev->max_mtu = ETH_MAX_MTU;
1685 }
1686 
1687 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1688 			struct netlink_ext_ack *extack)
1689 {
1690 	if (tb[IFLA_ADDRESS]) {
1691 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1692 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1693 			return -EINVAL;
1694 		}
1695 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1696 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1697 			return -EADDRNOTAVAIL;
1698 		}
1699 	}
1700 	return 0;
1701 }
1702 
1703 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1704 {
1705 	struct net_device *port_dev;
1706 	struct list_head *iter;
1707 
1708 	netdev_for_each_lower_dev(dev, port_dev, iter)
1709 		vrf_del_slave(dev, port_dev);
1710 
1711 	vrf_map_unregister_dev(dev);
1712 
1713 	unregister_netdevice_queue(dev, head);
1714 }
1715 
1716 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1717 		       struct nlattr *tb[], struct nlattr *data[],
1718 		       struct netlink_ext_ack *extack)
1719 {
1720 	struct net_vrf *vrf = netdev_priv(dev);
1721 	struct netns_vrf *nn_vrf;
1722 	bool *add_fib_rules;
1723 	struct net *net;
1724 	int err;
1725 
1726 	if (!data || !data[IFLA_VRF_TABLE]) {
1727 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1728 		return -EINVAL;
1729 	}
1730 
1731 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1732 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1733 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1734 				    "Invalid VRF table id");
1735 		return -EINVAL;
1736 	}
1737 
1738 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1739 
1740 	err = register_netdevice(dev);
1741 	if (err)
1742 		goto out;
1743 
1744 	/* mapping between table_id and vrf;
1745 	 * note: such binding could not be done in the dev init function
1746 	 * because dev->ifindex id is not available yet.
1747 	 */
1748 	vrf->ifindex = dev->ifindex;
1749 
1750 	err = vrf_map_register_dev(dev, extack);
1751 	if (err) {
1752 		unregister_netdevice(dev);
1753 		goto out;
1754 	}
1755 
1756 	net = dev_net(dev);
1757 	nn_vrf = net_generic(net, vrf_net_id);
1758 
1759 	add_fib_rules = &nn_vrf->add_fib_rules;
1760 	if (*add_fib_rules) {
1761 		err = vrf_add_fib_rules(dev);
1762 		if (err) {
1763 			vrf_map_unregister_dev(dev);
1764 			unregister_netdevice(dev);
1765 			goto out;
1766 		}
1767 		*add_fib_rules = false;
1768 	}
1769 
1770 out:
1771 	return err;
1772 }
1773 
1774 static size_t vrf_nl_getsize(const struct net_device *dev)
1775 {
1776 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1777 }
1778 
1779 static int vrf_fillinfo(struct sk_buff *skb,
1780 			const struct net_device *dev)
1781 {
1782 	struct net_vrf *vrf = netdev_priv(dev);
1783 
1784 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1785 }
1786 
1787 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1788 				 const struct net_device *slave_dev)
1789 {
1790 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1791 }
1792 
1793 static int vrf_fill_slave_info(struct sk_buff *skb,
1794 			       const struct net_device *vrf_dev,
1795 			       const struct net_device *slave_dev)
1796 {
1797 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1798 
1799 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1800 		return -EMSGSIZE;
1801 
1802 	return 0;
1803 }
1804 
1805 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1806 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1807 };
1808 
1809 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1810 	.kind		= DRV_NAME,
1811 	.priv_size	= sizeof(struct net_vrf),
1812 
1813 	.get_size	= vrf_nl_getsize,
1814 	.policy		= vrf_nl_policy,
1815 	.validate	= vrf_validate,
1816 	.fill_info	= vrf_fillinfo,
1817 
1818 	.get_slave_size  = vrf_get_slave_size,
1819 	.fill_slave_info = vrf_fill_slave_info,
1820 
1821 	.newlink	= vrf_newlink,
1822 	.dellink	= vrf_dellink,
1823 	.setup		= vrf_setup,
1824 	.maxtype	= IFLA_VRF_MAX,
1825 };
1826 
1827 static int vrf_device_event(struct notifier_block *unused,
1828 			    unsigned long event, void *ptr)
1829 {
1830 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1831 
1832 	/* only care about unregister events to drop slave references */
1833 	if (event == NETDEV_UNREGISTER) {
1834 		struct net_device *vrf_dev;
1835 
1836 		if (!netif_is_l3_slave(dev))
1837 			goto out;
1838 
1839 		vrf_dev = netdev_master_upper_dev_get(dev);
1840 		vrf_del_slave(vrf_dev, dev);
1841 	}
1842 out:
1843 	return NOTIFY_DONE;
1844 }
1845 
1846 static struct notifier_block vrf_notifier_block __read_mostly = {
1847 	.notifier_call = vrf_device_event,
1848 };
1849 
1850 static int vrf_map_init(struct vrf_map *vmap)
1851 {
1852 	spin_lock_init(&vmap->vmap_lock);
1853 	hash_init(vmap->ht);
1854 
1855 	vmap->strict_mode = false;
1856 
1857 	return 0;
1858 }
1859 
1860 #ifdef CONFIG_SYSCTL
1861 static bool vrf_strict_mode(struct vrf_map *vmap)
1862 {
1863 	bool strict_mode;
1864 
1865 	vrf_map_lock(vmap);
1866 	strict_mode = vmap->strict_mode;
1867 	vrf_map_unlock(vmap);
1868 
1869 	return strict_mode;
1870 }
1871 
1872 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1873 {
1874 	bool *cur_mode;
1875 	int res = 0;
1876 
1877 	vrf_map_lock(vmap);
1878 
1879 	cur_mode = &vmap->strict_mode;
1880 	if (*cur_mode == new_mode)
1881 		goto unlock;
1882 
1883 	if (*cur_mode) {
1884 		/* disable strict mode */
1885 		*cur_mode = false;
1886 	} else {
1887 		if (vmap->shared_tables) {
1888 			/* we cannot allow strict_mode because there are some
1889 			 * vrfs that share one or more tables.
1890 			 */
1891 			res = -EBUSY;
1892 			goto unlock;
1893 		}
1894 
1895 		/* no tables are shared among vrfs, so we can go back
1896 		 * to 1:1 association between a vrf with its table.
1897 		 */
1898 		*cur_mode = true;
1899 	}
1900 
1901 unlock:
1902 	vrf_map_unlock(vmap);
1903 
1904 	return res;
1905 }
1906 
1907 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1908 				    void *buffer, size_t *lenp, loff_t *ppos)
1909 {
1910 	struct net *net = (struct net *)table->extra1;
1911 	struct vrf_map *vmap = netns_vrf_map(net);
1912 	int proc_strict_mode = 0;
1913 	struct ctl_table tmp = {
1914 		.procname	= table->procname,
1915 		.data		= &proc_strict_mode,
1916 		.maxlen		= sizeof(int),
1917 		.mode		= table->mode,
1918 		.extra1		= SYSCTL_ZERO,
1919 		.extra2		= SYSCTL_ONE,
1920 	};
1921 	int ret;
1922 
1923 	if (!write)
1924 		proc_strict_mode = vrf_strict_mode(vmap);
1925 
1926 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1927 
1928 	if (write && ret == 0)
1929 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1930 
1931 	return ret;
1932 }
1933 
1934 static const struct ctl_table vrf_table[] = {
1935 	{
1936 		.procname	= "strict_mode",
1937 		.data		= NULL,
1938 		.maxlen		= sizeof(int),
1939 		.mode		= 0644,
1940 		.proc_handler	= vrf_shared_table_handler,
1941 		/* set by the vrf_netns_init */
1942 		.extra1		= NULL,
1943 	},
1944 	{ },
1945 };
1946 
1947 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1948 {
1949 	struct ctl_table *table;
1950 
1951 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1952 	if (!table)
1953 		return -ENOMEM;
1954 
1955 	/* init the extra1 parameter with the reference to current netns */
1956 	table[0].extra1 = net;
1957 
1958 	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1959 	if (!nn_vrf->ctl_hdr) {
1960 		kfree(table);
1961 		return -ENOMEM;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 static void vrf_netns_exit_sysctl(struct net *net)
1968 {
1969 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1970 	struct ctl_table *table;
1971 
1972 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1973 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1974 	kfree(table);
1975 }
1976 #else
1977 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1978 {
1979 	return 0;
1980 }
1981 
1982 static void vrf_netns_exit_sysctl(struct net *net)
1983 {
1984 }
1985 #endif
1986 
1987 /* Initialize per network namespace state */
1988 static int __net_init vrf_netns_init(struct net *net)
1989 {
1990 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1991 
1992 	nn_vrf->add_fib_rules = true;
1993 	vrf_map_init(&nn_vrf->vmap);
1994 
1995 	return vrf_netns_init_sysctl(net, nn_vrf);
1996 }
1997 
1998 static void __net_exit vrf_netns_exit(struct net *net)
1999 {
2000 	vrf_netns_exit_sysctl(net);
2001 }
2002 
2003 static struct pernet_operations vrf_net_ops __net_initdata = {
2004 	.init = vrf_netns_init,
2005 	.exit = vrf_netns_exit,
2006 	.id   = &vrf_net_id,
2007 	.size = sizeof(struct netns_vrf),
2008 };
2009 
2010 static int __init vrf_init_module(void)
2011 {
2012 	int rc;
2013 
2014 	register_netdevice_notifier(&vrf_notifier_block);
2015 
2016 	rc = register_pernet_subsys(&vrf_net_ops);
2017 	if (rc < 0)
2018 		goto error;
2019 
2020 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2021 					  vrf_ifindex_lookup_by_table_id);
2022 	if (rc < 0)
2023 		goto unreg_pernet;
2024 
2025 	rc = rtnl_link_register(&vrf_link_ops);
2026 	if (rc < 0)
2027 		goto table_lookup_unreg;
2028 
2029 	return 0;
2030 
2031 table_lookup_unreg:
2032 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2033 				       vrf_ifindex_lookup_by_table_id);
2034 
2035 unreg_pernet:
2036 	unregister_pernet_subsys(&vrf_net_ops);
2037 
2038 error:
2039 	unregister_netdevice_notifier(&vrf_notifier_block);
2040 	return rc;
2041 }
2042 
2043 module_init(vrf_init_module);
2044 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2045 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2046 MODULE_LICENSE("GPL");
2047 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2048 MODULE_VERSION(DRV_VERSION);
2049