1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 #include <net/fib_rules.h> 39 40 #define DRV_NAME "vrf" 41 #define DRV_VERSION "1.0" 42 43 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 44 static bool add_fib_rules = true; 45 46 struct net_vrf { 47 struct rtable __rcu *rth; 48 struct rtable __rcu *rth_local; 49 struct rt6_info __rcu *rt6; 50 struct rt6_info __rcu *rt6_local; 51 u32 tb_id; 52 }; 53 54 struct pcpu_dstats { 55 u64 tx_pkts; 56 u64 tx_bytes; 57 u64 tx_drps; 58 u64 rx_pkts; 59 u64 rx_bytes; 60 u64 rx_drps; 61 struct u64_stats_sync syncp; 62 }; 63 64 static void vrf_rx_stats(struct net_device *dev, int len) 65 { 66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 67 68 u64_stats_update_begin(&dstats->syncp); 69 dstats->rx_pkts++; 70 dstats->rx_bytes += len; 71 u64_stats_update_end(&dstats->syncp); 72 } 73 74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 75 { 76 vrf_dev->stats.tx_errors++; 77 kfree_skb(skb); 78 } 79 80 static void vrf_get_stats64(struct net_device *dev, 81 struct rtnl_link_stats64 *stats) 82 { 83 int i; 84 85 for_each_possible_cpu(i) { 86 const struct pcpu_dstats *dstats; 87 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 88 unsigned int start; 89 90 dstats = per_cpu_ptr(dev->dstats, i); 91 do { 92 start = u64_stats_fetch_begin_irq(&dstats->syncp); 93 tbytes = dstats->tx_bytes; 94 tpkts = dstats->tx_pkts; 95 tdrops = dstats->tx_drps; 96 rbytes = dstats->rx_bytes; 97 rpkts = dstats->rx_pkts; 98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 99 stats->tx_bytes += tbytes; 100 stats->tx_packets += tpkts; 101 stats->tx_dropped += tdrops; 102 stats->rx_bytes += rbytes; 103 stats->rx_packets += rpkts; 104 } 105 } 106 107 /* by default VRF devices do not have a qdisc and are expected 108 * to be created with only a single queue. 109 */ 110 static bool qdisc_tx_is_default(const struct net_device *dev) 111 { 112 struct netdev_queue *txq; 113 struct Qdisc *qdisc; 114 115 if (dev->num_tx_queues > 1) 116 return false; 117 118 txq = netdev_get_tx_queue(dev, 0); 119 qdisc = rcu_access_pointer(txq->qdisc); 120 121 return !qdisc->enqueue; 122 } 123 124 /* Local traffic destined to local address. Reinsert the packet to rx 125 * path, similar to loopback handling. 126 */ 127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 128 struct dst_entry *dst) 129 { 130 int len = skb->len; 131 132 skb_orphan(skb); 133 134 skb_dst_set(skb, dst); 135 skb_dst_force(skb); 136 137 /* set pkt_type to avoid skb hitting packet taps twice - 138 * once on Tx and again in Rx processing 139 */ 140 skb->pkt_type = PACKET_LOOPBACK; 141 142 skb->protocol = eth_type_trans(skb, dev); 143 144 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 145 vrf_rx_stats(dev, len); 146 else 147 this_cpu_inc(dev->dstats->rx_drps); 148 149 return NETDEV_TX_OK; 150 } 151 152 #if IS_ENABLED(CONFIG_IPV6) 153 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 154 struct sk_buff *skb) 155 { 156 int err; 157 158 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 159 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 160 161 if (likely(err == 1)) 162 err = dst_output(net, sk, skb); 163 164 return err; 165 } 166 167 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 168 struct net_device *dev) 169 { 170 const struct ipv6hdr *iph = ipv6_hdr(skb); 171 struct net *net = dev_net(skb->dev); 172 struct flowi6 fl6 = { 173 /* needed to match OIF rule */ 174 .flowi6_oif = dev->ifindex, 175 .flowi6_iif = LOOPBACK_IFINDEX, 176 .daddr = iph->daddr, 177 .saddr = iph->saddr, 178 .flowlabel = ip6_flowinfo(iph), 179 .flowi6_mark = skb->mark, 180 .flowi6_proto = iph->nexthdr, 181 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 182 }; 183 int ret = NET_XMIT_DROP; 184 struct dst_entry *dst; 185 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 186 187 dst = ip6_route_output(net, NULL, &fl6); 188 if (dst == dst_null) 189 goto err; 190 191 skb_dst_drop(skb); 192 193 /* if dst.dev is loopback or the VRF device again this is locally 194 * originated traffic destined to a local address. Short circuit 195 * to Rx path using our local dst 196 */ 197 if (dst->dev == net->loopback_dev || dst->dev == dev) { 198 struct net_vrf *vrf = netdev_priv(dev); 199 struct rt6_info *rt6_local; 200 201 /* release looked up dst and use cached local dst */ 202 dst_release(dst); 203 204 rcu_read_lock(); 205 206 rt6_local = rcu_dereference(vrf->rt6_local); 207 if (unlikely(!rt6_local)) { 208 rcu_read_unlock(); 209 goto err; 210 } 211 212 /* Ordering issue: cached local dst is created on newlink 213 * before the IPv6 initialization. Using the local dst 214 * requires rt6i_idev to be set so make sure it is. 215 */ 216 if (unlikely(!rt6_local->rt6i_idev)) { 217 rt6_local->rt6i_idev = in6_dev_get(dev); 218 if (!rt6_local->rt6i_idev) { 219 rcu_read_unlock(); 220 goto err; 221 } 222 } 223 224 dst = &rt6_local->dst; 225 dst_hold(dst); 226 227 rcu_read_unlock(); 228 229 return vrf_local_xmit(skb, dev, &rt6_local->dst); 230 } 231 232 skb_dst_set(skb, dst); 233 234 /* strip the ethernet header added for pass through VRF device */ 235 __skb_pull(skb, skb_network_offset(skb)); 236 237 ret = vrf_ip6_local_out(net, skb->sk, skb); 238 if (unlikely(net_xmit_eval(ret))) 239 dev->stats.tx_errors++; 240 else 241 ret = NET_XMIT_SUCCESS; 242 243 return ret; 244 err: 245 vrf_tx_error(dev, skb); 246 return NET_XMIT_DROP; 247 } 248 #else 249 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 250 struct net_device *dev) 251 { 252 vrf_tx_error(dev, skb); 253 return NET_XMIT_DROP; 254 } 255 #endif 256 257 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 258 static int vrf_ip_local_out(struct net *net, struct sock *sk, 259 struct sk_buff *skb) 260 { 261 int err; 262 263 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 264 skb, NULL, skb_dst(skb)->dev, dst_output); 265 if (likely(err == 1)) 266 err = dst_output(net, sk, skb); 267 268 return err; 269 } 270 271 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 272 struct net_device *vrf_dev) 273 { 274 struct iphdr *ip4h = ip_hdr(skb); 275 int ret = NET_XMIT_DROP; 276 struct flowi4 fl4 = { 277 /* needed to match OIF rule */ 278 .flowi4_oif = vrf_dev->ifindex, 279 .flowi4_iif = LOOPBACK_IFINDEX, 280 .flowi4_tos = RT_TOS(ip4h->tos), 281 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 282 .flowi4_proto = ip4h->protocol, 283 .daddr = ip4h->daddr, 284 .saddr = ip4h->saddr, 285 }; 286 struct net *net = dev_net(vrf_dev); 287 struct rtable *rt; 288 289 rt = ip_route_output_flow(net, &fl4, NULL); 290 if (IS_ERR(rt)) 291 goto err; 292 293 skb_dst_drop(skb); 294 295 /* if dst.dev is loopback or the VRF device again this is locally 296 * originated traffic destined to a local address. Short circuit 297 * to Rx path using our local dst 298 */ 299 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) { 300 struct net_vrf *vrf = netdev_priv(vrf_dev); 301 struct rtable *rth_local; 302 struct dst_entry *dst = NULL; 303 304 ip_rt_put(rt); 305 306 rcu_read_lock(); 307 308 rth_local = rcu_dereference(vrf->rth_local); 309 if (likely(rth_local)) { 310 dst = &rth_local->dst; 311 dst_hold(dst); 312 } 313 314 rcu_read_unlock(); 315 316 if (unlikely(!dst)) 317 goto err; 318 319 return vrf_local_xmit(skb, vrf_dev, dst); 320 } 321 322 skb_dst_set(skb, &rt->dst); 323 324 /* strip the ethernet header added for pass through VRF device */ 325 __skb_pull(skb, skb_network_offset(skb)); 326 327 if (!ip4h->saddr) { 328 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 329 RT_SCOPE_LINK); 330 } 331 332 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 333 if (unlikely(net_xmit_eval(ret))) 334 vrf_dev->stats.tx_errors++; 335 else 336 ret = NET_XMIT_SUCCESS; 337 338 out: 339 return ret; 340 err: 341 vrf_tx_error(vrf_dev, skb); 342 goto out; 343 } 344 345 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 346 { 347 switch (skb->protocol) { 348 case htons(ETH_P_IP): 349 return vrf_process_v4_outbound(skb, dev); 350 case htons(ETH_P_IPV6): 351 return vrf_process_v6_outbound(skb, dev); 352 default: 353 vrf_tx_error(dev, skb); 354 return NET_XMIT_DROP; 355 } 356 } 357 358 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 359 { 360 int len = skb->len; 361 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 362 363 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 364 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 365 366 u64_stats_update_begin(&dstats->syncp); 367 dstats->tx_pkts++; 368 dstats->tx_bytes += len; 369 u64_stats_update_end(&dstats->syncp); 370 } else { 371 this_cpu_inc(dev->dstats->tx_drps); 372 } 373 374 return ret; 375 } 376 377 static int vrf_finish_direct(struct net *net, struct sock *sk, 378 struct sk_buff *skb) 379 { 380 struct net_device *vrf_dev = skb->dev; 381 382 if (!list_empty(&vrf_dev->ptype_all) && 383 likely(skb_headroom(skb) >= ETH_HLEN)) { 384 struct ethhdr *eth = (struct ethhdr *)skb_push(skb, ETH_HLEN); 385 386 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 387 eth_zero_addr(eth->h_dest); 388 eth->h_proto = skb->protocol; 389 390 rcu_read_lock_bh(); 391 dev_queue_xmit_nit(skb, vrf_dev); 392 rcu_read_unlock_bh(); 393 394 skb_pull(skb, ETH_HLEN); 395 } 396 397 return 1; 398 } 399 400 #if IS_ENABLED(CONFIG_IPV6) 401 /* modelled after ip6_finish_output2 */ 402 static int vrf_finish_output6(struct net *net, struct sock *sk, 403 struct sk_buff *skb) 404 { 405 struct dst_entry *dst = skb_dst(skb); 406 struct net_device *dev = dst->dev; 407 struct neighbour *neigh; 408 struct in6_addr *nexthop; 409 int ret; 410 411 nf_reset(skb); 412 413 skb->protocol = htons(ETH_P_IPV6); 414 skb->dev = dev; 415 416 rcu_read_lock_bh(); 417 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 418 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 419 if (unlikely(!neigh)) 420 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 421 if (!IS_ERR(neigh)) { 422 sock_confirm_neigh(skb, neigh); 423 ret = neigh_output(neigh, skb); 424 rcu_read_unlock_bh(); 425 return ret; 426 } 427 rcu_read_unlock_bh(); 428 429 IP6_INC_STATS(dev_net(dst->dev), 430 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 431 kfree_skb(skb); 432 return -EINVAL; 433 } 434 435 /* modelled after ip6_output */ 436 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 437 { 438 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 439 net, sk, skb, NULL, skb_dst(skb)->dev, 440 vrf_finish_output6, 441 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 442 } 443 444 /* set dst on skb to send packet to us via dev_xmit path. Allows 445 * packet to go through device based features such as qdisc, netfilter 446 * hooks and packet sockets with skb->dev set to vrf device. 447 */ 448 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 449 struct sk_buff *skb) 450 { 451 struct net_vrf *vrf = netdev_priv(vrf_dev); 452 struct dst_entry *dst = NULL; 453 struct rt6_info *rt6; 454 455 rcu_read_lock(); 456 457 rt6 = rcu_dereference(vrf->rt6); 458 if (likely(rt6)) { 459 dst = &rt6->dst; 460 dst_hold(dst); 461 } 462 463 rcu_read_unlock(); 464 465 if (unlikely(!dst)) { 466 vrf_tx_error(vrf_dev, skb); 467 return NULL; 468 } 469 470 skb_dst_drop(skb); 471 skb_dst_set(skb, dst); 472 473 return skb; 474 } 475 476 static int vrf_output6_direct(struct net *net, struct sock *sk, 477 struct sk_buff *skb) 478 { 479 skb->protocol = htons(ETH_P_IPV6); 480 481 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 482 net, sk, skb, NULL, skb->dev, 483 vrf_finish_direct, 484 !(IPCB(skb)->flags & IPSKB_REROUTED)); 485 } 486 487 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 488 struct sock *sk, 489 struct sk_buff *skb) 490 { 491 struct net *net = dev_net(vrf_dev); 492 int err; 493 494 skb->dev = vrf_dev; 495 496 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 497 skb, NULL, vrf_dev, vrf_output6_direct); 498 499 if (likely(err == 1)) 500 err = vrf_output6_direct(net, sk, skb); 501 502 /* reset skb device */ 503 if (likely(err == 1)) 504 nf_reset(skb); 505 else 506 skb = NULL; 507 508 return skb; 509 } 510 511 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 512 struct sock *sk, 513 struct sk_buff *skb) 514 { 515 /* don't divert link scope packets */ 516 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 517 return skb; 518 519 if (qdisc_tx_is_default(vrf_dev)) 520 return vrf_ip6_out_direct(vrf_dev, sk, skb); 521 522 return vrf_ip6_out_redirect(vrf_dev, skb); 523 } 524 525 /* holding rtnl */ 526 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 527 { 528 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 529 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local); 530 struct net *net = dev_net(dev); 531 struct dst_entry *dst; 532 533 RCU_INIT_POINTER(vrf->rt6, NULL); 534 RCU_INIT_POINTER(vrf->rt6_local, NULL); 535 synchronize_rcu(); 536 537 /* move dev in dst's to loopback so this VRF device can be deleted 538 * - based on dst_ifdown 539 */ 540 if (rt6) { 541 dst = &rt6->dst; 542 dev_put(dst->dev); 543 dst->dev = net->loopback_dev; 544 dev_hold(dst->dev); 545 dst_release(dst); 546 } 547 548 if (rt6_local) { 549 if (rt6_local->rt6i_idev) { 550 in6_dev_put(rt6_local->rt6i_idev); 551 rt6_local->rt6i_idev = NULL; 552 } 553 554 dst = &rt6_local->dst; 555 dev_put(dst->dev); 556 dst->dev = net->loopback_dev; 557 dev_hold(dst->dev); 558 dst_release(dst); 559 } 560 } 561 562 static int vrf_rt6_create(struct net_device *dev) 563 { 564 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE; 565 struct net_vrf *vrf = netdev_priv(dev); 566 struct net *net = dev_net(dev); 567 struct fib6_table *rt6i_table; 568 struct rt6_info *rt6, *rt6_local; 569 int rc = -ENOMEM; 570 571 /* IPv6 can be CONFIG enabled and then disabled runtime */ 572 if (!ipv6_mod_enabled()) 573 return 0; 574 575 rt6i_table = fib6_new_table(net, vrf->tb_id); 576 if (!rt6i_table) 577 goto out; 578 579 /* create a dst for routing packets out a VRF device */ 580 rt6 = ip6_dst_alloc(net, dev, flags); 581 if (!rt6) 582 goto out; 583 584 dst_hold(&rt6->dst); 585 586 rt6->rt6i_table = rt6i_table; 587 rt6->dst.output = vrf_output6; 588 589 /* create a dst for local routing - packets sent locally 590 * to local address via the VRF device as a loopback 591 */ 592 rt6_local = ip6_dst_alloc(net, dev, flags); 593 if (!rt6_local) { 594 dst_release(&rt6->dst); 595 goto out; 596 } 597 598 dst_hold(&rt6_local->dst); 599 600 rt6_local->rt6i_idev = in6_dev_get(dev); 601 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL; 602 rt6_local->rt6i_table = rt6i_table; 603 rt6_local->dst.input = ip6_input; 604 605 rcu_assign_pointer(vrf->rt6, rt6); 606 rcu_assign_pointer(vrf->rt6_local, rt6_local); 607 608 rc = 0; 609 out: 610 return rc; 611 } 612 #else 613 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 614 struct sock *sk, 615 struct sk_buff *skb) 616 { 617 return skb; 618 } 619 620 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 621 { 622 } 623 624 static int vrf_rt6_create(struct net_device *dev) 625 { 626 return 0; 627 } 628 #endif 629 630 /* modelled after ip_finish_output2 */ 631 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 632 { 633 struct dst_entry *dst = skb_dst(skb); 634 struct rtable *rt = (struct rtable *)dst; 635 struct net_device *dev = dst->dev; 636 unsigned int hh_len = LL_RESERVED_SPACE(dev); 637 struct neighbour *neigh; 638 u32 nexthop; 639 int ret = -EINVAL; 640 641 nf_reset(skb); 642 643 /* Be paranoid, rather than too clever. */ 644 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 645 struct sk_buff *skb2; 646 647 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 648 if (!skb2) { 649 ret = -ENOMEM; 650 goto err; 651 } 652 if (skb->sk) 653 skb_set_owner_w(skb2, skb->sk); 654 655 consume_skb(skb); 656 skb = skb2; 657 } 658 659 rcu_read_lock_bh(); 660 661 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 662 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 663 if (unlikely(!neigh)) 664 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 665 if (!IS_ERR(neigh)) { 666 sock_confirm_neigh(skb, neigh); 667 ret = neigh_output(neigh, skb); 668 } 669 670 rcu_read_unlock_bh(); 671 err: 672 if (unlikely(ret < 0)) 673 vrf_tx_error(skb->dev, skb); 674 return ret; 675 } 676 677 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 678 { 679 struct net_device *dev = skb_dst(skb)->dev; 680 681 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 682 683 skb->dev = dev; 684 skb->protocol = htons(ETH_P_IP); 685 686 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 687 net, sk, skb, NULL, dev, 688 vrf_finish_output, 689 !(IPCB(skb)->flags & IPSKB_REROUTED)); 690 } 691 692 /* set dst on skb to send packet to us via dev_xmit path. Allows 693 * packet to go through device based features such as qdisc, netfilter 694 * hooks and packet sockets with skb->dev set to vrf device. 695 */ 696 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 697 struct sk_buff *skb) 698 { 699 struct net_vrf *vrf = netdev_priv(vrf_dev); 700 struct dst_entry *dst = NULL; 701 struct rtable *rth; 702 703 rcu_read_lock(); 704 705 rth = rcu_dereference(vrf->rth); 706 if (likely(rth)) { 707 dst = &rth->dst; 708 dst_hold(dst); 709 } 710 711 rcu_read_unlock(); 712 713 if (unlikely(!dst)) { 714 vrf_tx_error(vrf_dev, skb); 715 return NULL; 716 } 717 718 skb_dst_drop(skb); 719 skb_dst_set(skb, dst); 720 721 return skb; 722 } 723 724 static int vrf_output_direct(struct net *net, struct sock *sk, 725 struct sk_buff *skb) 726 { 727 skb->protocol = htons(ETH_P_IP); 728 729 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 730 net, sk, skb, NULL, skb->dev, 731 vrf_finish_direct, 732 !(IPCB(skb)->flags & IPSKB_REROUTED)); 733 } 734 735 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 736 struct sock *sk, 737 struct sk_buff *skb) 738 { 739 struct net *net = dev_net(vrf_dev); 740 int err; 741 742 skb->dev = vrf_dev; 743 744 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 745 skb, NULL, vrf_dev, vrf_output_direct); 746 747 if (likely(err == 1)) 748 err = vrf_output_direct(net, sk, skb); 749 750 /* reset skb device */ 751 if (likely(err == 1)) 752 nf_reset(skb); 753 else 754 skb = NULL; 755 756 return skb; 757 } 758 759 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 760 struct sock *sk, 761 struct sk_buff *skb) 762 { 763 /* don't divert multicast */ 764 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 765 return skb; 766 767 if (qdisc_tx_is_default(vrf_dev)) 768 return vrf_ip_out_direct(vrf_dev, sk, skb); 769 770 return vrf_ip_out_redirect(vrf_dev, skb); 771 } 772 773 /* called with rcu lock held */ 774 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 775 struct sock *sk, 776 struct sk_buff *skb, 777 u16 proto) 778 { 779 switch (proto) { 780 case AF_INET: 781 return vrf_ip_out(vrf_dev, sk, skb); 782 case AF_INET6: 783 return vrf_ip6_out(vrf_dev, sk, skb); 784 } 785 786 return skb; 787 } 788 789 /* holding rtnl */ 790 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 791 { 792 struct rtable *rth = rtnl_dereference(vrf->rth); 793 struct rtable *rth_local = rtnl_dereference(vrf->rth_local); 794 struct net *net = dev_net(dev); 795 struct dst_entry *dst; 796 797 RCU_INIT_POINTER(vrf->rth, NULL); 798 RCU_INIT_POINTER(vrf->rth_local, NULL); 799 synchronize_rcu(); 800 801 /* move dev in dst's to loopback so this VRF device can be deleted 802 * - based on dst_ifdown 803 */ 804 if (rth) { 805 dst = &rth->dst; 806 dev_put(dst->dev); 807 dst->dev = net->loopback_dev; 808 dev_hold(dst->dev); 809 dst_release(dst); 810 } 811 812 if (rth_local) { 813 dst = &rth_local->dst; 814 dev_put(dst->dev); 815 dst->dev = net->loopback_dev; 816 dev_hold(dst->dev); 817 dst_release(dst); 818 } 819 } 820 821 static int vrf_rtable_create(struct net_device *dev) 822 { 823 struct net_vrf *vrf = netdev_priv(dev); 824 struct rtable *rth, *rth_local; 825 826 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 827 return -ENOMEM; 828 829 /* create a dst for routing packets out through a VRF device */ 830 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 831 if (!rth) 832 return -ENOMEM; 833 834 /* create a dst for local ingress routing - packets sent locally 835 * to local address via the VRF device as a loopback 836 */ 837 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0); 838 if (!rth_local) { 839 dst_release(&rth->dst); 840 return -ENOMEM; 841 } 842 843 rth->dst.output = vrf_output; 844 rth->rt_table_id = vrf->tb_id; 845 846 rth_local->rt_table_id = vrf->tb_id; 847 848 rcu_assign_pointer(vrf->rth, rth); 849 rcu_assign_pointer(vrf->rth_local, rth_local); 850 851 return 0; 852 } 853 854 /**************************** device handling ********************/ 855 856 /* cycle interface to flush neighbor cache and move routes across tables */ 857 static void cycle_netdev(struct net_device *dev) 858 { 859 unsigned int flags = dev->flags; 860 int ret; 861 862 if (!netif_running(dev)) 863 return; 864 865 ret = dev_change_flags(dev, flags & ~IFF_UP); 866 if (ret >= 0) 867 ret = dev_change_flags(dev, flags); 868 869 if (ret < 0) { 870 netdev_err(dev, 871 "Failed to cycle device %s; route tables might be wrong!\n", 872 dev->name); 873 } 874 } 875 876 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 877 { 878 int ret; 879 880 /* do not allow loopback device to be enslaved to a VRF. 881 * The vrf device acts as the loopback for the vrf. 882 */ 883 if (port_dev == dev_net(dev)->loopback_dev) 884 return -EOPNOTSUPP; 885 886 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 887 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL); 888 if (ret < 0) 889 goto err; 890 891 cycle_netdev(port_dev); 892 893 return 0; 894 895 err: 896 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 897 return ret; 898 } 899 900 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 901 { 902 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev)) 903 return -EINVAL; 904 905 return do_vrf_add_slave(dev, port_dev); 906 } 907 908 /* inverse of do_vrf_add_slave */ 909 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 910 { 911 netdev_upper_dev_unlink(port_dev, dev); 912 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 913 914 cycle_netdev(port_dev); 915 916 return 0; 917 } 918 919 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 920 { 921 return do_vrf_del_slave(dev, port_dev); 922 } 923 924 static void vrf_dev_uninit(struct net_device *dev) 925 { 926 struct net_vrf *vrf = netdev_priv(dev); 927 struct net_device *port_dev; 928 struct list_head *iter; 929 930 vrf_rtable_release(dev, vrf); 931 vrf_rt6_release(dev, vrf); 932 933 netdev_for_each_lower_dev(dev, port_dev, iter) 934 vrf_del_slave(dev, port_dev); 935 936 free_percpu(dev->dstats); 937 dev->dstats = NULL; 938 } 939 940 static int vrf_dev_init(struct net_device *dev) 941 { 942 struct net_vrf *vrf = netdev_priv(dev); 943 944 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 945 if (!dev->dstats) 946 goto out_nomem; 947 948 /* create the default dst which points back to us */ 949 if (vrf_rtable_create(dev) != 0) 950 goto out_stats; 951 952 if (vrf_rt6_create(dev) != 0) 953 goto out_rth; 954 955 dev->flags = IFF_MASTER | IFF_NOARP; 956 957 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 958 dev->mtu = 64 * 1024; 959 960 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 961 dev->operstate = IF_OPER_UP; 962 netdev_lockdep_set_classes(dev); 963 return 0; 964 965 out_rth: 966 vrf_rtable_release(dev, vrf); 967 out_stats: 968 free_percpu(dev->dstats); 969 dev->dstats = NULL; 970 out_nomem: 971 return -ENOMEM; 972 } 973 974 static const struct net_device_ops vrf_netdev_ops = { 975 .ndo_init = vrf_dev_init, 976 .ndo_uninit = vrf_dev_uninit, 977 .ndo_start_xmit = vrf_xmit, 978 .ndo_get_stats64 = vrf_get_stats64, 979 .ndo_add_slave = vrf_add_slave, 980 .ndo_del_slave = vrf_del_slave, 981 }; 982 983 static u32 vrf_fib_table(const struct net_device *dev) 984 { 985 struct net_vrf *vrf = netdev_priv(dev); 986 987 return vrf->tb_id; 988 } 989 990 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 991 { 992 kfree_skb(skb); 993 return 0; 994 } 995 996 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 997 struct sk_buff *skb, 998 struct net_device *dev) 999 { 1000 struct net *net = dev_net(dev); 1001 1002 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 1003 skb = NULL; /* kfree_skb(skb) handled by nf code */ 1004 1005 return skb; 1006 } 1007 1008 #if IS_ENABLED(CONFIG_IPV6) 1009 /* neighbor handling is done with actual device; do not want 1010 * to flip skb->dev for those ndisc packets. This really fails 1011 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 1012 * a start. 1013 */ 1014 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 1015 { 1016 const struct ipv6hdr *iph = ipv6_hdr(skb); 1017 bool rc = false; 1018 1019 if (iph->nexthdr == NEXTHDR_ICMP) { 1020 const struct icmp6hdr *icmph; 1021 struct icmp6hdr _icmph; 1022 1023 icmph = skb_header_pointer(skb, sizeof(*iph), 1024 sizeof(_icmph), &_icmph); 1025 if (!icmph) 1026 goto out; 1027 1028 switch (icmph->icmp6_type) { 1029 case NDISC_ROUTER_SOLICITATION: 1030 case NDISC_ROUTER_ADVERTISEMENT: 1031 case NDISC_NEIGHBOUR_SOLICITATION: 1032 case NDISC_NEIGHBOUR_ADVERTISEMENT: 1033 case NDISC_REDIRECT: 1034 rc = true; 1035 break; 1036 } 1037 } 1038 1039 out: 1040 return rc; 1041 } 1042 1043 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 1044 const struct net_device *dev, 1045 struct flowi6 *fl6, 1046 int ifindex, 1047 int flags) 1048 { 1049 struct net_vrf *vrf = netdev_priv(dev); 1050 struct fib6_table *table = NULL; 1051 struct rt6_info *rt6; 1052 1053 rcu_read_lock(); 1054 1055 /* fib6_table does not have a refcnt and can not be freed */ 1056 rt6 = rcu_dereference(vrf->rt6); 1057 if (likely(rt6)) 1058 table = rt6->rt6i_table; 1059 1060 rcu_read_unlock(); 1061 1062 if (!table) 1063 return NULL; 1064 1065 return ip6_pol_route(net, table, ifindex, fl6, flags); 1066 } 1067 1068 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 1069 int ifindex) 1070 { 1071 const struct ipv6hdr *iph = ipv6_hdr(skb); 1072 struct flowi6 fl6 = { 1073 .daddr = iph->daddr, 1074 .saddr = iph->saddr, 1075 .flowlabel = ip6_flowinfo(iph), 1076 .flowi6_mark = skb->mark, 1077 .flowi6_proto = iph->nexthdr, 1078 .flowi6_iif = ifindex, 1079 }; 1080 struct net *net = dev_net(vrf_dev); 1081 struct rt6_info *rt6; 1082 1083 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, 1084 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 1085 if (unlikely(!rt6)) 1086 return; 1087 1088 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 1089 return; 1090 1091 skb_dst_set(skb, &rt6->dst); 1092 } 1093 1094 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1095 struct sk_buff *skb) 1096 { 1097 int orig_iif = skb->skb_iif; 1098 bool need_strict; 1099 1100 /* loopback traffic; do not push through packet taps again. 1101 * Reset pkt_type for upper layers to process skb 1102 */ 1103 if (skb->pkt_type == PACKET_LOOPBACK) { 1104 skb->dev = vrf_dev; 1105 skb->skb_iif = vrf_dev->ifindex; 1106 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1107 skb->pkt_type = PACKET_HOST; 1108 goto out; 1109 } 1110 1111 /* if packet is NDISC or addressed to multicast or link-local 1112 * then keep the ingress interface 1113 */ 1114 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1115 if (!ipv6_ndisc_frame(skb) && !need_strict) { 1116 vrf_rx_stats(vrf_dev, skb->len); 1117 skb->dev = vrf_dev; 1118 skb->skb_iif = vrf_dev->ifindex; 1119 1120 if (!list_empty(&vrf_dev->ptype_all)) { 1121 skb_push(skb, skb->mac_len); 1122 dev_queue_xmit_nit(skb, vrf_dev); 1123 skb_pull(skb, skb->mac_len); 1124 } 1125 1126 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1127 } 1128 1129 if (need_strict) 1130 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1131 1132 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1133 out: 1134 return skb; 1135 } 1136 1137 #else 1138 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1139 struct sk_buff *skb) 1140 { 1141 return skb; 1142 } 1143 #endif 1144 1145 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1146 struct sk_buff *skb) 1147 { 1148 skb->dev = vrf_dev; 1149 skb->skb_iif = vrf_dev->ifindex; 1150 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1151 1152 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1153 goto out; 1154 1155 /* loopback traffic; do not push through packet taps again. 1156 * Reset pkt_type for upper layers to process skb 1157 */ 1158 if (skb->pkt_type == PACKET_LOOPBACK) { 1159 skb->pkt_type = PACKET_HOST; 1160 goto out; 1161 } 1162 1163 vrf_rx_stats(vrf_dev, skb->len); 1164 1165 if (!list_empty(&vrf_dev->ptype_all)) { 1166 skb_push(skb, skb->mac_len); 1167 dev_queue_xmit_nit(skb, vrf_dev); 1168 skb_pull(skb, skb->mac_len); 1169 } 1170 1171 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1172 out: 1173 return skb; 1174 } 1175 1176 /* called with rcu lock held */ 1177 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1178 struct sk_buff *skb, 1179 u16 proto) 1180 { 1181 switch (proto) { 1182 case AF_INET: 1183 return vrf_ip_rcv(vrf_dev, skb); 1184 case AF_INET6: 1185 return vrf_ip6_rcv(vrf_dev, skb); 1186 } 1187 1188 return skb; 1189 } 1190 1191 #if IS_ENABLED(CONFIG_IPV6) 1192 /* send to link-local or multicast address via interface enslaved to 1193 * VRF device. Force lookup to VRF table without changing flow struct 1194 */ 1195 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1196 struct flowi6 *fl6) 1197 { 1198 struct net *net = dev_net(dev); 1199 int flags = RT6_LOOKUP_F_IFACE; 1200 struct dst_entry *dst = NULL; 1201 struct rt6_info *rt; 1202 1203 /* VRF device does not have a link-local address and 1204 * sending packets to link-local or mcast addresses over 1205 * a VRF device does not make sense 1206 */ 1207 if (fl6->flowi6_oif == dev->ifindex) { 1208 dst = &net->ipv6.ip6_null_entry->dst; 1209 dst_hold(dst); 1210 return dst; 1211 } 1212 1213 if (!ipv6_addr_any(&fl6->saddr)) 1214 flags |= RT6_LOOKUP_F_HAS_SADDR; 1215 1216 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags); 1217 if (rt) 1218 dst = &rt->dst; 1219 1220 return dst; 1221 } 1222 #endif 1223 1224 static const struct l3mdev_ops vrf_l3mdev_ops = { 1225 .l3mdev_fib_table = vrf_fib_table, 1226 .l3mdev_l3_rcv = vrf_l3_rcv, 1227 .l3mdev_l3_out = vrf_l3_out, 1228 #if IS_ENABLED(CONFIG_IPV6) 1229 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1230 #endif 1231 }; 1232 1233 static void vrf_get_drvinfo(struct net_device *dev, 1234 struct ethtool_drvinfo *info) 1235 { 1236 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1237 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1238 } 1239 1240 static const struct ethtool_ops vrf_ethtool_ops = { 1241 .get_drvinfo = vrf_get_drvinfo, 1242 }; 1243 1244 static inline size_t vrf_fib_rule_nl_size(void) 1245 { 1246 size_t sz; 1247 1248 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1249 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1250 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1251 1252 return sz; 1253 } 1254 1255 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1256 { 1257 struct fib_rule_hdr *frh; 1258 struct nlmsghdr *nlh; 1259 struct sk_buff *skb; 1260 int err; 1261 1262 if (family == AF_INET6 && !ipv6_mod_enabled()) 1263 return 0; 1264 1265 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1266 if (!skb) 1267 return -ENOMEM; 1268 1269 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1270 if (!nlh) 1271 goto nla_put_failure; 1272 1273 /* rule only needs to appear once */ 1274 nlh->nlmsg_flags |= NLM_F_EXCL; 1275 1276 frh = nlmsg_data(nlh); 1277 memset(frh, 0, sizeof(*frh)); 1278 frh->family = family; 1279 frh->action = FR_ACT_TO_TBL; 1280 1281 if (nla_put_u32(skb, FRA_L3MDEV, 1)) 1282 goto nla_put_failure; 1283 1284 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1285 goto nla_put_failure; 1286 1287 nlmsg_end(skb, nlh); 1288 1289 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1290 skb->sk = dev_net(dev)->rtnl; 1291 if (add_it) { 1292 err = fib_nl_newrule(skb, nlh, NULL); 1293 if (err == -EEXIST) 1294 err = 0; 1295 } else { 1296 err = fib_nl_delrule(skb, nlh, NULL); 1297 if (err == -ENOENT) 1298 err = 0; 1299 } 1300 nlmsg_free(skb); 1301 1302 return err; 1303 1304 nla_put_failure: 1305 nlmsg_free(skb); 1306 1307 return -EMSGSIZE; 1308 } 1309 1310 static int vrf_add_fib_rules(const struct net_device *dev) 1311 { 1312 int err; 1313 1314 err = vrf_fib_rule(dev, AF_INET, true); 1315 if (err < 0) 1316 goto out_err; 1317 1318 err = vrf_fib_rule(dev, AF_INET6, true); 1319 if (err < 0) 1320 goto ipv6_err; 1321 1322 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1323 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1324 if (err < 0) 1325 goto ipmr_err; 1326 #endif 1327 1328 return 0; 1329 1330 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1331 ipmr_err: 1332 vrf_fib_rule(dev, AF_INET6, false); 1333 #endif 1334 1335 ipv6_err: 1336 vrf_fib_rule(dev, AF_INET, false); 1337 1338 out_err: 1339 netdev_err(dev, "Failed to add FIB rules.\n"); 1340 return err; 1341 } 1342 1343 static void vrf_setup(struct net_device *dev) 1344 { 1345 ether_setup(dev); 1346 1347 /* Initialize the device structure. */ 1348 dev->netdev_ops = &vrf_netdev_ops; 1349 dev->l3mdev_ops = &vrf_l3mdev_ops; 1350 dev->ethtool_ops = &vrf_ethtool_ops; 1351 dev->destructor = free_netdev; 1352 1353 /* Fill in device structure with ethernet-generic values. */ 1354 eth_hw_addr_random(dev); 1355 1356 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1357 dev->features |= NETIF_F_LLTX; 1358 1359 /* don't allow vrf devices to change network namespaces. */ 1360 dev->features |= NETIF_F_NETNS_LOCAL; 1361 1362 /* does not make sense for a VLAN to be added to a vrf device */ 1363 dev->features |= NETIF_F_VLAN_CHALLENGED; 1364 1365 /* enable offload features */ 1366 dev->features |= NETIF_F_GSO_SOFTWARE; 1367 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM; 1368 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1369 1370 dev->hw_features = dev->features; 1371 dev->hw_enc_features = dev->features; 1372 1373 /* default to no qdisc; user can add if desired */ 1374 dev->priv_flags |= IFF_NO_QUEUE; 1375 } 1376 1377 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) 1378 { 1379 if (tb[IFLA_ADDRESS]) { 1380 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 1381 return -EINVAL; 1382 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 1383 return -EADDRNOTAVAIL; 1384 } 1385 return 0; 1386 } 1387 1388 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1389 { 1390 unregister_netdevice_queue(dev, head); 1391 } 1392 1393 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1394 struct nlattr *tb[], struct nlattr *data[]) 1395 { 1396 struct net_vrf *vrf = netdev_priv(dev); 1397 int err; 1398 1399 if (!data || !data[IFLA_VRF_TABLE]) 1400 return -EINVAL; 1401 1402 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1403 if (vrf->tb_id == RT_TABLE_UNSPEC) 1404 return -EINVAL; 1405 1406 dev->priv_flags |= IFF_L3MDEV_MASTER; 1407 1408 err = register_netdevice(dev); 1409 if (err) 1410 goto out; 1411 1412 if (add_fib_rules) { 1413 err = vrf_add_fib_rules(dev); 1414 if (err) { 1415 unregister_netdevice(dev); 1416 goto out; 1417 } 1418 add_fib_rules = false; 1419 } 1420 1421 out: 1422 return err; 1423 } 1424 1425 static size_t vrf_nl_getsize(const struct net_device *dev) 1426 { 1427 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1428 } 1429 1430 static int vrf_fillinfo(struct sk_buff *skb, 1431 const struct net_device *dev) 1432 { 1433 struct net_vrf *vrf = netdev_priv(dev); 1434 1435 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1436 } 1437 1438 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1439 const struct net_device *slave_dev) 1440 { 1441 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1442 } 1443 1444 static int vrf_fill_slave_info(struct sk_buff *skb, 1445 const struct net_device *vrf_dev, 1446 const struct net_device *slave_dev) 1447 { 1448 struct net_vrf *vrf = netdev_priv(vrf_dev); 1449 1450 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1451 return -EMSGSIZE; 1452 1453 return 0; 1454 } 1455 1456 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1457 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1458 }; 1459 1460 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1461 .kind = DRV_NAME, 1462 .priv_size = sizeof(struct net_vrf), 1463 1464 .get_size = vrf_nl_getsize, 1465 .policy = vrf_nl_policy, 1466 .validate = vrf_validate, 1467 .fill_info = vrf_fillinfo, 1468 1469 .get_slave_size = vrf_get_slave_size, 1470 .fill_slave_info = vrf_fill_slave_info, 1471 1472 .newlink = vrf_newlink, 1473 .dellink = vrf_dellink, 1474 .setup = vrf_setup, 1475 .maxtype = IFLA_VRF_MAX, 1476 }; 1477 1478 static int vrf_device_event(struct notifier_block *unused, 1479 unsigned long event, void *ptr) 1480 { 1481 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1482 1483 /* only care about unregister events to drop slave references */ 1484 if (event == NETDEV_UNREGISTER) { 1485 struct net_device *vrf_dev; 1486 1487 if (!netif_is_l3_slave(dev)) 1488 goto out; 1489 1490 vrf_dev = netdev_master_upper_dev_get(dev); 1491 vrf_del_slave(vrf_dev, dev); 1492 } 1493 out: 1494 return NOTIFY_DONE; 1495 } 1496 1497 static struct notifier_block vrf_notifier_block __read_mostly = { 1498 .notifier_call = vrf_device_event, 1499 }; 1500 1501 static int __init vrf_init_module(void) 1502 { 1503 int rc; 1504 1505 register_netdevice_notifier(&vrf_notifier_block); 1506 1507 rc = rtnl_link_register(&vrf_link_ops); 1508 if (rc < 0) 1509 goto error; 1510 1511 return 0; 1512 1513 error: 1514 unregister_netdevice_notifier(&vrf_notifier_block); 1515 return rc; 1516 } 1517 1518 module_init(vrf_init_module); 1519 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1520 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1521 MODULE_LICENSE("GPL"); 1522 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1523 MODULE_VERSION(DRV_VERSION); 1524