xref: /openbmc/linux/drivers/net/vrf.c (revision aac5987a)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.0"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45 
46 struct net_vrf {
47 	struct rtable __rcu	*rth;
48 	struct rtable __rcu	*rth_local;
49 	struct rt6_info	__rcu	*rt6;
50 	struct rt6_info	__rcu	*rt6_local;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
80 static void vrf_get_stats64(struct net_device *dev,
81 			    struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 }
106 
107 /* Local traffic destined to local address. Reinsert the packet to rx
108  * path, similar to loopback handling.
109  */
110 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
111 			  struct dst_entry *dst)
112 {
113 	int len = skb->len;
114 
115 	skb_orphan(skb);
116 
117 	skb_dst_set(skb, dst);
118 	skb_dst_force(skb);
119 
120 	/* set pkt_type to avoid skb hitting packet taps twice -
121 	 * once on Tx and again in Rx processing
122 	 */
123 	skb->pkt_type = PACKET_LOOPBACK;
124 
125 	skb->protocol = eth_type_trans(skb, dev);
126 
127 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
128 		vrf_rx_stats(dev, len);
129 	else
130 		this_cpu_inc(dev->dstats->rx_drps);
131 
132 	return NETDEV_TX_OK;
133 }
134 
135 #if IS_ENABLED(CONFIG_IPV6)
136 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
137 			     struct sk_buff *skb)
138 {
139 	int err;
140 
141 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
142 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
143 
144 	if (likely(err == 1))
145 		err = dst_output(net, sk, skb);
146 
147 	return err;
148 }
149 
150 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
151 					   struct net_device *dev)
152 {
153 	const struct ipv6hdr *iph = ipv6_hdr(skb);
154 	struct net *net = dev_net(skb->dev);
155 	struct flowi6 fl6 = {
156 		/* needed to match OIF rule */
157 		.flowi6_oif = dev->ifindex,
158 		.flowi6_iif = LOOPBACK_IFINDEX,
159 		.daddr = iph->daddr,
160 		.saddr = iph->saddr,
161 		.flowlabel = ip6_flowinfo(iph),
162 		.flowi6_mark = skb->mark,
163 		.flowi6_proto = iph->nexthdr,
164 		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
165 	};
166 	int ret = NET_XMIT_DROP;
167 	struct dst_entry *dst;
168 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
169 
170 	dst = ip6_route_output(net, NULL, &fl6);
171 	if (dst == dst_null)
172 		goto err;
173 
174 	skb_dst_drop(skb);
175 
176 	/* if dst.dev is loopback or the VRF device again this is locally
177 	 * originated traffic destined to a local address. Short circuit
178 	 * to Rx path using our local dst
179 	 */
180 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
181 		struct net_vrf *vrf = netdev_priv(dev);
182 		struct rt6_info *rt6_local;
183 
184 		/* release looked up dst and use cached local dst */
185 		dst_release(dst);
186 
187 		rcu_read_lock();
188 
189 		rt6_local = rcu_dereference(vrf->rt6_local);
190 		if (unlikely(!rt6_local)) {
191 			rcu_read_unlock();
192 			goto err;
193 		}
194 
195 		/* Ordering issue: cached local dst is created on newlink
196 		 * before the IPv6 initialization. Using the local dst
197 		 * requires rt6i_idev to be set so make sure it is.
198 		 */
199 		if (unlikely(!rt6_local->rt6i_idev)) {
200 			rt6_local->rt6i_idev = in6_dev_get(dev);
201 			if (!rt6_local->rt6i_idev) {
202 				rcu_read_unlock();
203 				goto err;
204 			}
205 		}
206 
207 		dst = &rt6_local->dst;
208 		dst_hold(dst);
209 
210 		rcu_read_unlock();
211 
212 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
213 	}
214 
215 	skb_dst_set(skb, dst);
216 
217 	/* strip the ethernet header added for pass through VRF device */
218 	__skb_pull(skb, skb_network_offset(skb));
219 
220 	ret = vrf_ip6_local_out(net, skb->sk, skb);
221 	if (unlikely(net_xmit_eval(ret)))
222 		dev->stats.tx_errors++;
223 	else
224 		ret = NET_XMIT_SUCCESS;
225 
226 	return ret;
227 err:
228 	vrf_tx_error(dev, skb);
229 	return NET_XMIT_DROP;
230 }
231 #else
232 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
233 					   struct net_device *dev)
234 {
235 	vrf_tx_error(dev, skb);
236 	return NET_XMIT_DROP;
237 }
238 #endif
239 
240 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
241 static int vrf_ip_local_out(struct net *net, struct sock *sk,
242 			    struct sk_buff *skb)
243 {
244 	int err;
245 
246 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
247 		      skb, NULL, skb_dst(skb)->dev, dst_output);
248 	if (likely(err == 1))
249 		err = dst_output(net, sk, skb);
250 
251 	return err;
252 }
253 
254 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
255 					   struct net_device *vrf_dev)
256 {
257 	struct iphdr *ip4h = ip_hdr(skb);
258 	int ret = NET_XMIT_DROP;
259 	struct flowi4 fl4 = {
260 		/* needed to match OIF rule */
261 		.flowi4_oif = vrf_dev->ifindex,
262 		.flowi4_iif = LOOPBACK_IFINDEX,
263 		.flowi4_tos = RT_TOS(ip4h->tos),
264 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
265 		.flowi4_proto = ip4h->protocol,
266 		.daddr = ip4h->daddr,
267 		.saddr = ip4h->saddr,
268 	};
269 	struct net *net = dev_net(vrf_dev);
270 	struct rtable *rt;
271 
272 	rt = ip_route_output_flow(net, &fl4, NULL);
273 	if (IS_ERR(rt))
274 		goto err;
275 
276 	skb_dst_drop(skb);
277 
278 	/* if dst.dev is loopback or the VRF device again this is locally
279 	 * originated traffic destined to a local address. Short circuit
280 	 * to Rx path using our local dst
281 	 */
282 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
283 		struct net_vrf *vrf = netdev_priv(vrf_dev);
284 		struct rtable *rth_local;
285 		struct dst_entry *dst = NULL;
286 
287 		ip_rt_put(rt);
288 
289 		rcu_read_lock();
290 
291 		rth_local = rcu_dereference(vrf->rth_local);
292 		if (likely(rth_local)) {
293 			dst = &rth_local->dst;
294 			dst_hold(dst);
295 		}
296 
297 		rcu_read_unlock();
298 
299 		if (unlikely(!dst))
300 			goto err;
301 
302 		return vrf_local_xmit(skb, vrf_dev, dst);
303 	}
304 
305 	skb_dst_set(skb, &rt->dst);
306 
307 	/* strip the ethernet header added for pass through VRF device */
308 	__skb_pull(skb, skb_network_offset(skb));
309 
310 	if (!ip4h->saddr) {
311 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
312 					       RT_SCOPE_LINK);
313 	}
314 
315 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
316 	if (unlikely(net_xmit_eval(ret)))
317 		vrf_dev->stats.tx_errors++;
318 	else
319 		ret = NET_XMIT_SUCCESS;
320 
321 out:
322 	return ret;
323 err:
324 	vrf_tx_error(vrf_dev, skb);
325 	goto out;
326 }
327 
328 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
329 {
330 	switch (skb->protocol) {
331 	case htons(ETH_P_IP):
332 		return vrf_process_v4_outbound(skb, dev);
333 	case htons(ETH_P_IPV6):
334 		return vrf_process_v6_outbound(skb, dev);
335 	default:
336 		vrf_tx_error(dev, skb);
337 		return NET_XMIT_DROP;
338 	}
339 }
340 
341 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
342 {
343 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
344 
345 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
346 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
347 
348 		u64_stats_update_begin(&dstats->syncp);
349 		dstats->tx_pkts++;
350 		dstats->tx_bytes += skb->len;
351 		u64_stats_update_end(&dstats->syncp);
352 	} else {
353 		this_cpu_inc(dev->dstats->tx_drps);
354 	}
355 
356 	return ret;
357 }
358 
359 #if IS_ENABLED(CONFIG_IPV6)
360 /* modelled after ip6_finish_output2 */
361 static int vrf_finish_output6(struct net *net, struct sock *sk,
362 			      struct sk_buff *skb)
363 {
364 	struct dst_entry *dst = skb_dst(skb);
365 	struct net_device *dev = dst->dev;
366 	struct neighbour *neigh;
367 	struct in6_addr *nexthop;
368 	int ret;
369 
370 	nf_reset(skb);
371 
372 	skb->protocol = htons(ETH_P_IPV6);
373 	skb->dev = dev;
374 
375 	rcu_read_lock_bh();
376 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
377 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
378 	if (unlikely(!neigh))
379 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
380 	if (!IS_ERR(neigh)) {
381 		sock_confirm_neigh(skb, neigh);
382 		ret = neigh_output(neigh, skb);
383 		rcu_read_unlock_bh();
384 		return ret;
385 	}
386 	rcu_read_unlock_bh();
387 
388 	IP6_INC_STATS(dev_net(dst->dev),
389 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
390 	kfree_skb(skb);
391 	return -EINVAL;
392 }
393 
394 /* modelled after ip6_output */
395 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
396 {
397 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
398 			    net, sk, skb, NULL, skb_dst(skb)->dev,
399 			    vrf_finish_output6,
400 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
401 }
402 
403 /* set dst on skb to send packet to us via dev_xmit path. Allows
404  * packet to go through device based features such as qdisc, netfilter
405  * hooks and packet sockets with skb->dev set to vrf device.
406  */
407 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
408 				   struct sock *sk,
409 				   struct sk_buff *skb)
410 {
411 	struct net_vrf *vrf = netdev_priv(vrf_dev);
412 	struct dst_entry *dst = NULL;
413 	struct rt6_info *rt6;
414 
415 	/* don't divert link scope packets */
416 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
417 		return skb;
418 
419 	rcu_read_lock();
420 
421 	rt6 = rcu_dereference(vrf->rt6);
422 	if (likely(rt6)) {
423 		dst = &rt6->dst;
424 		dst_hold(dst);
425 	}
426 
427 	rcu_read_unlock();
428 
429 	if (unlikely(!dst)) {
430 		vrf_tx_error(vrf_dev, skb);
431 		return NULL;
432 	}
433 
434 	skb_dst_drop(skb);
435 	skb_dst_set(skb, dst);
436 
437 	return skb;
438 }
439 
440 /* holding rtnl */
441 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
442 {
443 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
444 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
445 	struct net *net = dev_net(dev);
446 	struct dst_entry *dst;
447 
448 	RCU_INIT_POINTER(vrf->rt6, NULL);
449 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
450 	synchronize_rcu();
451 
452 	/* move dev in dst's to loopback so this VRF device can be deleted
453 	 * - based on dst_ifdown
454 	 */
455 	if (rt6) {
456 		dst = &rt6->dst;
457 		dev_put(dst->dev);
458 		dst->dev = net->loopback_dev;
459 		dev_hold(dst->dev);
460 		dst_release(dst);
461 	}
462 
463 	if (rt6_local) {
464 		if (rt6_local->rt6i_idev)
465 			in6_dev_put(rt6_local->rt6i_idev);
466 
467 		dst = &rt6_local->dst;
468 		dev_put(dst->dev);
469 		dst->dev = net->loopback_dev;
470 		dev_hold(dst->dev);
471 		dst_release(dst);
472 	}
473 }
474 
475 static int vrf_rt6_create(struct net_device *dev)
476 {
477 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
478 	struct net_vrf *vrf = netdev_priv(dev);
479 	struct net *net = dev_net(dev);
480 	struct fib6_table *rt6i_table;
481 	struct rt6_info *rt6, *rt6_local;
482 	int rc = -ENOMEM;
483 
484 	/* IPv6 can be CONFIG enabled and then disabled runtime */
485 	if (!ipv6_mod_enabled())
486 		return 0;
487 
488 	rt6i_table = fib6_new_table(net, vrf->tb_id);
489 	if (!rt6i_table)
490 		goto out;
491 
492 	/* create a dst for routing packets out a VRF device */
493 	rt6 = ip6_dst_alloc(net, dev, flags);
494 	if (!rt6)
495 		goto out;
496 
497 	dst_hold(&rt6->dst);
498 
499 	rt6->rt6i_table = rt6i_table;
500 	rt6->dst.output	= vrf_output6;
501 
502 	/* create a dst for local routing - packets sent locally
503 	 * to local address via the VRF device as a loopback
504 	 */
505 	rt6_local = ip6_dst_alloc(net, dev, flags);
506 	if (!rt6_local) {
507 		dst_release(&rt6->dst);
508 		goto out;
509 	}
510 
511 	dst_hold(&rt6_local->dst);
512 
513 	rt6_local->rt6i_idev  = in6_dev_get(dev);
514 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
515 	rt6_local->rt6i_table = rt6i_table;
516 	rt6_local->dst.input  = ip6_input;
517 
518 	rcu_assign_pointer(vrf->rt6, rt6);
519 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
520 
521 	rc = 0;
522 out:
523 	return rc;
524 }
525 #else
526 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
527 				   struct sock *sk,
528 				   struct sk_buff *skb)
529 {
530 	return skb;
531 }
532 
533 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
534 {
535 }
536 
537 static int vrf_rt6_create(struct net_device *dev)
538 {
539 	return 0;
540 }
541 #endif
542 
543 /* modelled after ip_finish_output2 */
544 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
545 {
546 	struct dst_entry *dst = skb_dst(skb);
547 	struct rtable *rt = (struct rtable *)dst;
548 	struct net_device *dev = dst->dev;
549 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
550 	struct neighbour *neigh;
551 	u32 nexthop;
552 	int ret = -EINVAL;
553 
554 	nf_reset(skb);
555 
556 	/* Be paranoid, rather than too clever. */
557 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
558 		struct sk_buff *skb2;
559 
560 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
561 		if (!skb2) {
562 			ret = -ENOMEM;
563 			goto err;
564 		}
565 		if (skb->sk)
566 			skb_set_owner_w(skb2, skb->sk);
567 
568 		consume_skb(skb);
569 		skb = skb2;
570 	}
571 
572 	rcu_read_lock_bh();
573 
574 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
575 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
576 	if (unlikely(!neigh))
577 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
578 	if (!IS_ERR(neigh)) {
579 		sock_confirm_neigh(skb, neigh);
580 		ret = neigh_output(neigh, skb);
581 	}
582 
583 	rcu_read_unlock_bh();
584 err:
585 	if (unlikely(ret < 0))
586 		vrf_tx_error(skb->dev, skb);
587 	return ret;
588 }
589 
590 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
591 {
592 	struct net_device *dev = skb_dst(skb)->dev;
593 
594 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
595 
596 	skb->dev = dev;
597 	skb->protocol = htons(ETH_P_IP);
598 
599 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
600 			    net, sk, skb, NULL, dev,
601 			    vrf_finish_output,
602 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
603 }
604 
605 /* set dst on skb to send packet to us via dev_xmit path. Allows
606  * packet to go through device based features such as qdisc, netfilter
607  * hooks and packet sockets with skb->dev set to vrf device.
608  */
609 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
610 				  struct sock *sk,
611 				  struct sk_buff *skb)
612 {
613 	struct net_vrf *vrf = netdev_priv(vrf_dev);
614 	struct dst_entry *dst = NULL;
615 	struct rtable *rth;
616 
617 	/* don't divert multicast */
618 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
619 		return skb;
620 
621 	rcu_read_lock();
622 
623 	rth = rcu_dereference(vrf->rth);
624 	if (likely(rth)) {
625 		dst = &rth->dst;
626 		dst_hold(dst);
627 	}
628 
629 	rcu_read_unlock();
630 
631 	if (unlikely(!dst)) {
632 		vrf_tx_error(vrf_dev, skb);
633 		return NULL;
634 	}
635 
636 	skb_dst_drop(skb);
637 	skb_dst_set(skb, dst);
638 
639 	return skb;
640 }
641 
642 /* called with rcu lock held */
643 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
644 				  struct sock *sk,
645 				  struct sk_buff *skb,
646 				  u16 proto)
647 {
648 	switch (proto) {
649 	case AF_INET:
650 		return vrf_ip_out(vrf_dev, sk, skb);
651 	case AF_INET6:
652 		return vrf_ip6_out(vrf_dev, sk, skb);
653 	}
654 
655 	return skb;
656 }
657 
658 /* holding rtnl */
659 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
660 {
661 	struct rtable *rth = rtnl_dereference(vrf->rth);
662 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
663 	struct net *net = dev_net(dev);
664 	struct dst_entry *dst;
665 
666 	RCU_INIT_POINTER(vrf->rth, NULL);
667 	RCU_INIT_POINTER(vrf->rth_local, NULL);
668 	synchronize_rcu();
669 
670 	/* move dev in dst's to loopback so this VRF device can be deleted
671 	 * - based on dst_ifdown
672 	 */
673 	if (rth) {
674 		dst = &rth->dst;
675 		dev_put(dst->dev);
676 		dst->dev = net->loopback_dev;
677 		dev_hold(dst->dev);
678 		dst_release(dst);
679 	}
680 
681 	if (rth_local) {
682 		dst = &rth_local->dst;
683 		dev_put(dst->dev);
684 		dst->dev = net->loopback_dev;
685 		dev_hold(dst->dev);
686 		dst_release(dst);
687 	}
688 }
689 
690 static int vrf_rtable_create(struct net_device *dev)
691 {
692 	struct net_vrf *vrf = netdev_priv(dev);
693 	struct rtable *rth, *rth_local;
694 
695 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
696 		return -ENOMEM;
697 
698 	/* create a dst for routing packets out through a VRF device */
699 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
700 	if (!rth)
701 		return -ENOMEM;
702 
703 	/* create a dst for local ingress routing - packets sent locally
704 	 * to local address via the VRF device as a loopback
705 	 */
706 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
707 	if (!rth_local) {
708 		dst_release(&rth->dst);
709 		return -ENOMEM;
710 	}
711 
712 	rth->dst.output	= vrf_output;
713 	rth->rt_table_id = vrf->tb_id;
714 
715 	rth_local->rt_table_id = vrf->tb_id;
716 
717 	rcu_assign_pointer(vrf->rth, rth);
718 	rcu_assign_pointer(vrf->rth_local, rth_local);
719 
720 	return 0;
721 }
722 
723 /**************************** device handling ********************/
724 
725 /* cycle interface to flush neighbor cache and move routes across tables */
726 static void cycle_netdev(struct net_device *dev)
727 {
728 	unsigned int flags = dev->flags;
729 	int ret;
730 
731 	if (!netif_running(dev))
732 		return;
733 
734 	ret = dev_change_flags(dev, flags & ~IFF_UP);
735 	if (ret >= 0)
736 		ret = dev_change_flags(dev, flags);
737 
738 	if (ret < 0) {
739 		netdev_err(dev,
740 			   "Failed to cycle device %s; route tables might be wrong!\n",
741 			   dev->name);
742 	}
743 }
744 
745 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
746 {
747 	int ret;
748 
749 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
750 	if (ret < 0)
751 		return ret;
752 
753 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
754 	cycle_netdev(port_dev);
755 
756 	return 0;
757 }
758 
759 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
760 {
761 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
762 		return -EINVAL;
763 
764 	return do_vrf_add_slave(dev, port_dev);
765 }
766 
767 /* inverse of do_vrf_add_slave */
768 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
769 {
770 	netdev_upper_dev_unlink(port_dev, dev);
771 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
772 
773 	cycle_netdev(port_dev);
774 
775 	return 0;
776 }
777 
778 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
779 {
780 	return do_vrf_del_slave(dev, port_dev);
781 }
782 
783 static void vrf_dev_uninit(struct net_device *dev)
784 {
785 	struct net_vrf *vrf = netdev_priv(dev);
786 	struct net_device *port_dev;
787 	struct list_head *iter;
788 
789 	vrf_rtable_release(dev, vrf);
790 	vrf_rt6_release(dev, vrf);
791 
792 	netdev_for_each_lower_dev(dev, port_dev, iter)
793 		vrf_del_slave(dev, port_dev);
794 
795 	free_percpu(dev->dstats);
796 	dev->dstats = NULL;
797 }
798 
799 static int vrf_dev_init(struct net_device *dev)
800 {
801 	struct net_vrf *vrf = netdev_priv(dev);
802 
803 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
804 	if (!dev->dstats)
805 		goto out_nomem;
806 
807 	/* create the default dst which points back to us */
808 	if (vrf_rtable_create(dev) != 0)
809 		goto out_stats;
810 
811 	if (vrf_rt6_create(dev) != 0)
812 		goto out_rth;
813 
814 	dev->flags = IFF_MASTER | IFF_NOARP;
815 
816 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
817 	dev->mtu = 64 * 1024;
818 
819 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
820 	dev->operstate = IF_OPER_UP;
821 	netdev_lockdep_set_classes(dev);
822 	return 0;
823 
824 out_rth:
825 	vrf_rtable_release(dev, vrf);
826 out_stats:
827 	free_percpu(dev->dstats);
828 	dev->dstats = NULL;
829 out_nomem:
830 	return -ENOMEM;
831 }
832 
833 static const struct net_device_ops vrf_netdev_ops = {
834 	.ndo_init		= vrf_dev_init,
835 	.ndo_uninit		= vrf_dev_uninit,
836 	.ndo_start_xmit		= vrf_xmit,
837 	.ndo_get_stats64	= vrf_get_stats64,
838 	.ndo_add_slave		= vrf_add_slave,
839 	.ndo_del_slave		= vrf_del_slave,
840 };
841 
842 static u32 vrf_fib_table(const struct net_device *dev)
843 {
844 	struct net_vrf *vrf = netdev_priv(dev);
845 
846 	return vrf->tb_id;
847 }
848 
849 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
850 {
851 	return 0;
852 }
853 
854 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
855 				      struct sk_buff *skb,
856 				      struct net_device *dev)
857 {
858 	struct net *net = dev_net(dev);
859 
860 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
861 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
862 
863 	return skb;
864 }
865 
866 #if IS_ENABLED(CONFIG_IPV6)
867 /* neighbor handling is done with actual device; do not want
868  * to flip skb->dev for those ndisc packets. This really fails
869  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
870  * a start.
871  */
872 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
873 {
874 	const struct ipv6hdr *iph = ipv6_hdr(skb);
875 	bool rc = false;
876 
877 	if (iph->nexthdr == NEXTHDR_ICMP) {
878 		const struct icmp6hdr *icmph;
879 		struct icmp6hdr _icmph;
880 
881 		icmph = skb_header_pointer(skb, sizeof(*iph),
882 					   sizeof(_icmph), &_icmph);
883 		if (!icmph)
884 			goto out;
885 
886 		switch (icmph->icmp6_type) {
887 		case NDISC_ROUTER_SOLICITATION:
888 		case NDISC_ROUTER_ADVERTISEMENT:
889 		case NDISC_NEIGHBOUR_SOLICITATION:
890 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
891 		case NDISC_REDIRECT:
892 			rc = true;
893 			break;
894 		}
895 	}
896 
897 out:
898 	return rc;
899 }
900 
901 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
902 					     const struct net_device *dev,
903 					     struct flowi6 *fl6,
904 					     int ifindex,
905 					     int flags)
906 {
907 	struct net_vrf *vrf = netdev_priv(dev);
908 	struct fib6_table *table = NULL;
909 	struct rt6_info *rt6;
910 
911 	rcu_read_lock();
912 
913 	/* fib6_table does not have a refcnt and can not be freed */
914 	rt6 = rcu_dereference(vrf->rt6);
915 	if (likely(rt6))
916 		table = rt6->rt6i_table;
917 
918 	rcu_read_unlock();
919 
920 	if (!table)
921 		return NULL;
922 
923 	return ip6_pol_route(net, table, ifindex, fl6, flags);
924 }
925 
926 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
927 			      int ifindex)
928 {
929 	const struct ipv6hdr *iph = ipv6_hdr(skb);
930 	struct flowi6 fl6 = {
931 		.daddr          = iph->daddr,
932 		.saddr          = iph->saddr,
933 		.flowlabel      = ip6_flowinfo(iph),
934 		.flowi6_mark    = skb->mark,
935 		.flowi6_proto   = iph->nexthdr,
936 		.flowi6_iif     = ifindex,
937 	};
938 	struct net *net = dev_net(vrf_dev);
939 	struct rt6_info *rt6;
940 
941 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
942 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
943 	if (unlikely(!rt6))
944 		return;
945 
946 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
947 		return;
948 
949 	skb_dst_set(skb, &rt6->dst);
950 }
951 
952 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
953 				   struct sk_buff *skb)
954 {
955 	int orig_iif = skb->skb_iif;
956 	bool need_strict;
957 
958 	/* loopback traffic; do not push through packet taps again.
959 	 * Reset pkt_type for upper layers to process skb
960 	 */
961 	if (skb->pkt_type == PACKET_LOOPBACK) {
962 		skb->dev = vrf_dev;
963 		skb->skb_iif = vrf_dev->ifindex;
964 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
965 		skb->pkt_type = PACKET_HOST;
966 		goto out;
967 	}
968 
969 	/* if packet is NDISC or addressed to multicast or link-local
970 	 * then keep the ingress interface
971 	 */
972 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
973 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
974 		vrf_rx_stats(vrf_dev, skb->len);
975 		skb->dev = vrf_dev;
976 		skb->skb_iif = vrf_dev->ifindex;
977 
978 		skb_push(skb, skb->mac_len);
979 		dev_queue_xmit_nit(skb, vrf_dev);
980 		skb_pull(skb, skb->mac_len);
981 
982 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
983 	}
984 
985 	if (need_strict)
986 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
987 
988 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
989 out:
990 	return skb;
991 }
992 
993 #else
994 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
995 				   struct sk_buff *skb)
996 {
997 	return skb;
998 }
999 #endif
1000 
1001 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1002 				  struct sk_buff *skb)
1003 {
1004 	skb->dev = vrf_dev;
1005 	skb->skb_iif = vrf_dev->ifindex;
1006 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1007 
1008 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1009 		goto out;
1010 
1011 	/* loopback traffic; do not push through packet taps again.
1012 	 * Reset pkt_type for upper layers to process skb
1013 	 */
1014 	if (skb->pkt_type == PACKET_LOOPBACK) {
1015 		skb->pkt_type = PACKET_HOST;
1016 		goto out;
1017 	}
1018 
1019 	vrf_rx_stats(vrf_dev, skb->len);
1020 
1021 	skb_push(skb, skb->mac_len);
1022 	dev_queue_xmit_nit(skb, vrf_dev);
1023 	skb_pull(skb, skb->mac_len);
1024 
1025 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1026 out:
1027 	return skb;
1028 }
1029 
1030 /* called with rcu lock held */
1031 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1032 				  struct sk_buff *skb,
1033 				  u16 proto)
1034 {
1035 	switch (proto) {
1036 	case AF_INET:
1037 		return vrf_ip_rcv(vrf_dev, skb);
1038 	case AF_INET6:
1039 		return vrf_ip6_rcv(vrf_dev, skb);
1040 	}
1041 
1042 	return skb;
1043 }
1044 
1045 #if IS_ENABLED(CONFIG_IPV6)
1046 /* send to link-local or multicast address via interface enslaved to
1047  * VRF device. Force lookup to VRF table without changing flow struct
1048  */
1049 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1050 					      struct flowi6 *fl6)
1051 {
1052 	struct net *net = dev_net(dev);
1053 	int flags = RT6_LOOKUP_F_IFACE;
1054 	struct dst_entry *dst = NULL;
1055 	struct rt6_info *rt;
1056 
1057 	/* VRF device does not have a link-local address and
1058 	 * sending packets to link-local or mcast addresses over
1059 	 * a VRF device does not make sense
1060 	 */
1061 	if (fl6->flowi6_oif == dev->ifindex) {
1062 		dst = &net->ipv6.ip6_null_entry->dst;
1063 		dst_hold(dst);
1064 		return dst;
1065 	}
1066 
1067 	if (!ipv6_addr_any(&fl6->saddr))
1068 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1069 
1070 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1071 	if (rt)
1072 		dst = &rt->dst;
1073 
1074 	return dst;
1075 }
1076 #endif
1077 
1078 static const struct l3mdev_ops vrf_l3mdev_ops = {
1079 	.l3mdev_fib_table	= vrf_fib_table,
1080 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1081 	.l3mdev_l3_out		= vrf_l3_out,
1082 #if IS_ENABLED(CONFIG_IPV6)
1083 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1084 #endif
1085 };
1086 
1087 static void vrf_get_drvinfo(struct net_device *dev,
1088 			    struct ethtool_drvinfo *info)
1089 {
1090 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1091 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1092 }
1093 
1094 static const struct ethtool_ops vrf_ethtool_ops = {
1095 	.get_drvinfo	= vrf_get_drvinfo,
1096 };
1097 
1098 static inline size_t vrf_fib_rule_nl_size(void)
1099 {
1100 	size_t sz;
1101 
1102 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1103 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1104 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1105 
1106 	return sz;
1107 }
1108 
1109 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1110 {
1111 	struct fib_rule_hdr *frh;
1112 	struct nlmsghdr *nlh;
1113 	struct sk_buff *skb;
1114 	int err;
1115 
1116 	if (family == AF_INET6 && !ipv6_mod_enabled())
1117 		return 0;
1118 
1119 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1120 	if (!skb)
1121 		return -ENOMEM;
1122 
1123 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1124 	if (!nlh)
1125 		goto nla_put_failure;
1126 
1127 	/* rule only needs to appear once */
1128 	nlh->nlmsg_flags &= NLM_F_EXCL;
1129 
1130 	frh = nlmsg_data(nlh);
1131 	memset(frh, 0, sizeof(*frh));
1132 	frh->family = family;
1133 	frh->action = FR_ACT_TO_TBL;
1134 
1135 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1136 		goto nla_put_failure;
1137 
1138 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1139 		goto nla_put_failure;
1140 
1141 	nlmsg_end(skb, nlh);
1142 
1143 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1144 	skb->sk = dev_net(dev)->rtnl;
1145 	if (add_it) {
1146 		err = fib_nl_newrule(skb, nlh);
1147 		if (err == -EEXIST)
1148 			err = 0;
1149 	} else {
1150 		err = fib_nl_delrule(skb, nlh);
1151 		if (err == -ENOENT)
1152 			err = 0;
1153 	}
1154 	nlmsg_free(skb);
1155 
1156 	return err;
1157 
1158 nla_put_failure:
1159 	nlmsg_free(skb);
1160 
1161 	return -EMSGSIZE;
1162 }
1163 
1164 static int vrf_add_fib_rules(const struct net_device *dev)
1165 {
1166 	int err;
1167 
1168 	err = vrf_fib_rule(dev, AF_INET,  true);
1169 	if (err < 0)
1170 		goto out_err;
1171 
1172 	err = vrf_fib_rule(dev, AF_INET6, true);
1173 	if (err < 0)
1174 		goto ipv6_err;
1175 
1176 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1177 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1178 	if (err < 0)
1179 		goto ipmr_err;
1180 #endif
1181 
1182 	return 0;
1183 
1184 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1185 ipmr_err:
1186 	vrf_fib_rule(dev, AF_INET6,  false);
1187 #endif
1188 
1189 ipv6_err:
1190 	vrf_fib_rule(dev, AF_INET,  false);
1191 
1192 out_err:
1193 	netdev_err(dev, "Failed to add FIB rules.\n");
1194 	return err;
1195 }
1196 
1197 static void vrf_setup(struct net_device *dev)
1198 {
1199 	ether_setup(dev);
1200 
1201 	/* Initialize the device structure. */
1202 	dev->netdev_ops = &vrf_netdev_ops;
1203 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1204 	dev->ethtool_ops = &vrf_ethtool_ops;
1205 	dev->destructor = free_netdev;
1206 
1207 	/* Fill in device structure with ethernet-generic values. */
1208 	eth_hw_addr_random(dev);
1209 
1210 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1211 	dev->features |= NETIF_F_LLTX;
1212 
1213 	/* don't allow vrf devices to change network namespaces. */
1214 	dev->features |= NETIF_F_NETNS_LOCAL;
1215 
1216 	/* does not make sense for a VLAN to be added to a vrf device */
1217 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1218 
1219 	/* enable offload features */
1220 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1221 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1222 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1223 
1224 	dev->hw_features = dev->features;
1225 	dev->hw_enc_features = dev->features;
1226 
1227 	/* default to no qdisc; user can add if desired */
1228 	dev->priv_flags |= IFF_NO_QUEUE;
1229 }
1230 
1231 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1232 {
1233 	if (tb[IFLA_ADDRESS]) {
1234 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1235 			return -EINVAL;
1236 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1237 			return -EADDRNOTAVAIL;
1238 	}
1239 	return 0;
1240 }
1241 
1242 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1243 {
1244 	unregister_netdevice_queue(dev, head);
1245 }
1246 
1247 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1248 		       struct nlattr *tb[], struct nlattr *data[])
1249 {
1250 	struct net_vrf *vrf = netdev_priv(dev);
1251 	int err;
1252 
1253 	if (!data || !data[IFLA_VRF_TABLE])
1254 		return -EINVAL;
1255 
1256 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1257 	if (vrf->tb_id == RT_TABLE_UNSPEC)
1258 		return -EINVAL;
1259 
1260 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1261 
1262 	err = register_netdevice(dev);
1263 	if (err)
1264 		goto out;
1265 
1266 	if (add_fib_rules) {
1267 		err = vrf_add_fib_rules(dev);
1268 		if (err) {
1269 			unregister_netdevice(dev);
1270 			goto out;
1271 		}
1272 		add_fib_rules = false;
1273 	}
1274 
1275 out:
1276 	return err;
1277 }
1278 
1279 static size_t vrf_nl_getsize(const struct net_device *dev)
1280 {
1281 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1282 }
1283 
1284 static int vrf_fillinfo(struct sk_buff *skb,
1285 			const struct net_device *dev)
1286 {
1287 	struct net_vrf *vrf = netdev_priv(dev);
1288 
1289 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1290 }
1291 
1292 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1293 				 const struct net_device *slave_dev)
1294 {
1295 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1296 }
1297 
1298 static int vrf_fill_slave_info(struct sk_buff *skb,
1299 			       const struct net_device *vrf_dev,
1300 			       const struct net_device *slave_dev)
1301 {
1302 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1303 
1304 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1305 		return -EMSGSIZE;
1306 
1307 	return 0;
1308 }
1309 
1310 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1311 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1312 };
1313 
1314 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1315 	.kind		= DRV_NAME,
1316 	.priv_size	= sizeof(struct net_vrf),
1317 
1318 	.get_size	= vrf_nl_getsize,
1319 	.policy		= vrf_nl_policy,
1320 	.validate	= vrf_validate,
1321 	.fill_info	= vrf_fillinfo,
1322 
1323 	.get_slave_size  = vrf_get_slave_size,
1324 	.fill_slave_info = vrf_fill_slave_info,
1325 
1326 	.newlink	= vrf_newlink,
1327 	.dellink	= vrf_dellink,
1328 	.setup		= vrf_setup,
1329 	.maxtype	= IFLA_VRF_MAX,
1330 };
1331 
1332 static int vrf_device_event(struct notifier_block *unused,
1333 			    unsigned long event, void *ptr)
1334 {
1335 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1336 
1337 	/* only care about unregister events to drop slave references */
1338 	if (event == NETDEV_UNREGISTER) {
1339 		struct net_device *vrf_dev;
1340 
1341 		if (!netif_is_l3_slave(dev))
1342 			goto out;
1343 
1344 		vrf_dev = netdev_master_upper_dev_get(dev);
1345 		vrf_del_slave(vrf_dev, dev);
1346 	}
1347 out:
1348 	return NOTIFY_DONE;
1349 }
1350 
1351 static struct notifier_block vrf_notifier_block __read_mostly = {
1352 	.notifier_call = vrf_device_event,
1353 };
1354 
1355 static int __init vrf_init_module(void)
1356 {
1357 	int rc;
1358 
1359 	register_netdevice_notifier(&vrf_notifier_block);
1360 
1361 	rc = rtnl_link_register(&vrf_link_ops);
1362 	if (rc < 0)
1363 		goto error;
1364 
1365 	return 0;
1366 
1367 error:
1368 	unregister_netdevice_notifier(&vrf_notifier_block);
1369 	return rc;
1370 }
1371 
1372 module_init(vrf_init_module);
1373 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1374 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1375 MODULE_LICENSE("GPL");
1376 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1377 MODULE_VERSION(DRV_VERSION);
1378