1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/ethtool.h> 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ip.h> 18 #include <linux/init.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netfilter.h> 21 #include <linux/rtnetlink.h> 22 #include <net/rtnetlink.h> 23 #include <linux/u64_stats_sync.h> 24 #include <linux/hashtable.h> 25 #include <linux/spinlock_types.h> 26 27 #include <linux/inetdevice.h> 28 #include <net/arp.h> 29 #include <net/ip.h> 30 #include <net/ip_fib.h> 31 #include <net/ip6_fib.h> 32 #include <net/ip6_route.h> 33 #include <net/route.h> 34 #include <net/addrconf.h> 35 #include <net/l3mdev.h> 36 #include <net/fib_rules.h> 37 #include <net/sch_generic.h> 38 #include <net/netns/generic.h> 39 #include <net/netfilter/nf_conntrack.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.1" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 #define HT_MAP_BITS 4 47 #define HASH_INITVAL ((u32)0xcafef00d) 48 49 struct vrf_map { 50 DECLARE_HASHTABLE(ht, HT_MAP_BITS); 51 spinlock_t vmap_lock; 52 53 /* shared_tables: 54 * count how many distinct tables do not comply with the strict mode 55 * requirement. 56 * shared_tables value must be 0 in order to enable the strict mode. 57 * 58 * example of the evolution of shared_tables: 59 * | time 60 * add vrf0 --> table 100 shared_tables = 0 | t0 61 * add vrf1 --> table 101 shared_tables = 0 | t1 62 * add vrf2 --> table 100 shared_tables = 1 | t2 63 * add vrf3 --> table 100 shared_tables = 1 | t3 64 * add vrf4 --> table 101 shared_tables = 2 v t4 65 * 66 * shared_tables is a "step function" (or "staircase function") 67 * and it is increased by one when the second vrf is associated to a 68 * table. 69 * 70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. 71 * 72 * at t3, another dev (vrf3) is bound to the same table 100 but the 73 * value of shared_tables is still 1. 74 * This means that no matter how many new vrfs will register on the 75 * table 100, the shared_tables will not increase (considering only 76 * table 100). 77 * 78 * at t4, vrf4 is bound to table 101, and shared_tables = 2. 79 * 80 * Looking at the value of shared_tables we can immediately know if 81 * the strict_mode can or cannot be enforced. Indeed, strict_mode 82 * can be enforced iff shared_tables = 0. 83 * 84 * Conversely, shared_tables is decreased when a vrf is de-associated 85 * from a table with exactly two associated vrfs. 86 */ 87 u32 shared_tables; 88 89 bool strict_mode; 90 }; 91 92 struct vrf_map_elem { 93 struct hlist_node hnode; 94 struct list_head vrf_list; /* VRFs registered to this table */ 95 96 u32 table_id; 97 int users; 98 int ifindex; 99 }; 100 101 static unsigned int vrf_net_id; 102 103 /* per netns vrf data */ 104 struct netns_vrf { 105 /* protected by rtnl lock */ 106 bool add_fib_rules; 107 108 struct vrf_map vmap; 109 struct ctl_table_header *ctl_hdr; 110 }; 111 112 struct net_vrf { 113 struct rtable __rcu *rth; 114 struct rt6_info __rcu *rt6; 115 #if IS_ENABLED(CONFIG_IPV6) 116 struct fib6_table *fib6_table; 117 #endif 118 u32 tb_id; 119 120 struct list_head me_list; /* entry in vrf_map_elem */ 121 int ifindex; 122 }; 123 124 struct pcpu_dstats { 125 u64 tx_pkts; 126 u64 tx_bytes; 127 u64 tx_drps; 128 u64 rx_pkts; 129 u64 rx_bytes; 130 u64 rx_drps; 131 struct u64_stats_sync syncp; 132 }; 133 134 static void vrf_rx_stats(struct net_device *dev, int len) 135 { 136 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 137 138 u64_stats_update_begin(&dstats->syncp); 139 dstats->rx_pkts++; 140 dstats->rx_bytes += len; 141 u64_stats_update_end(&dstats->syncp); 142 } 143 144 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 145 { 146 vrf_dev->stats.tx_errors++; 147 kfree_skb(skb); 148 } 149 150 static void vrf_get_stats64(struct net_device *dev, 151 struct rtnl_link_stats64 *stats) 152 { 153 int i; 154 155 for_each_possible_cpu(i) { 156 const struct pcpu_dstats *dstats; 157 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 158 unsigned int start; 159 160 dstats = per_cpu_ptr(dev->dstats, i); 161 do { 162 start = u64_stats_fetch_begin_irq(&dstats->syncp); 163 tbytes = dstats->tx_bytes; 164 tpkts = dstats->tx_pkts; 165 tdrops = dstats->tx_drps; 166 rbytes = dstats->rx_bytes; 167 rpkts = dstats->rx_pkts; 168 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 169 stats->tx_bytes += tbytes; 170 stats->tx_packets += tpkts; 171 stats->tx_dropped += tdrops; 172 stats->rx_bytes += rbytes; 173 stats->rx_packets += rpkts; 174 } 175 } 176 177 static struct vrf_map *netns_vrf_map(struct net *net) 178 { 179 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 180 181 return &nn_vrf->vmap; 182 } 183 184 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) 185 { 186 return netns_vrf_map(dev_net(dev)); 187 } 188 189 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) 190 { 191 struct list_head *me_head = &me->vrf_list; 192 struct net_vrf *vrf; 193 194 if (list_empty(me_head)) 195 return -ENODEV; 196 197 vrf = list_first_entry(me_head, struct net_vrf, me_list); 198 199 return vrf->ifindex; 200 } 201 202 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) 203 { 204 struct vrf_map_elem *me; 205 206 me = kmalloc(sizeof(*me), flags); 207 if (!me) 208 return NULL; 209 210 return me; 211 } 212 213 static void vrf_map_elem_free(struct vrf_map_elem *me) 214 { 215 kfree(me); 216 } 217 218 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, 219 int ifindex, int users) 220 { 221 me->table_id = table_id; 222 me->ifindex = ifindex; 223 me->users = users; 224 INIT_LIST_HEAD(&me->vrf_list); 225 } 226 227 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, 228 u32 table_id) 229 { 230 struct vrf_map_elem *me; 231 u32 key; 232 233 key = jhash_1word(table_id, HASH_INITVAL); 234 hash_for_each_possible(vmap->ht, me, hnode, key) { 235 if (me->table_id == table_id) 236 return me; 237 } 238 239 return NULL; 240 } 241 242 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) 243 { 244 u32 table_id = me->table_id; 245 u32 key; 246 247 key = jhash_1word(table_id, HASH_INITVAL); 248 hash_add(vmap->ht, &me->hnode, key); 249 } 250 251 static void vrf_map_del_elem(struct vrf_map_elem *me) 252 { 253 hash_del(&me->hnode); 254 } 255 256 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) 257 { 258 spin_lock(&vmap->vmap_lock); 259 } 260 261 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) 262 { 263 spin_unlock(&vmap->vmap_lock); 264 } 265 266 /* called with rtnl lock held */ 267 static int 268 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) 269 { 270 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 271 struct net_vrf *vrf = netdev_priv(dev); 272 struct vrf_map_elem *new_me, *me; 273 u32 table_id = vrf->tb_id; 274 bool free_new_me = false; 275 int users; 276 int res; 277 278 /* we pre-allocate elements used in the spin-locked section (so that we 279 * keep the spinlock as short as possible). 280 */ 281 new_me = vrf_map_elem_alloc(GFP_KERNEL); 282 if (!new_me) 283 return -ENOMEM; 284 285 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0); 286 287 vrf_map_lock(vmap); 288 289 me = vrf_map_lookup_elem(vmap, table_id); 290 if (!me) { 291 me = new_me; 292 vrf_map_add_elem(vmap, me); 293 goto link_vrf; 294 } 295 296 /* we already have an entry in the vrf_map, so it means there is (at 297 * least) a vrf registered on the specific table. 298 */ 299 free_new_me = true; 300 if (vmap->strict_mode) { 301 /* vrfs cannot share the same table */ 302 NL_SET_ERR_MSG(extack, "Table is used by another VRF"); 303 res = -EBUSY; 304 goto unlock; 305 } 306 307 link_vrf: 308 users = ++me->users; 309 if (users == 2) 310 ++vmap->shared_tables; 311 312 list_add(&vrf->me_list, &me->vrf_list); 313 314 res = 0; 315 316 unlock: 317 vrf_map_unlock(vmap); 318 319 /* clean-up, if needed */ 320 if (free_new_me) 321 vrf_map_elem_free(new_me); 322 323 return res; 324 } 325 326 /* called with rtnl lock held */ 327 static void vrf_map_unregister_dev(struct net_device *dev) 328 { 329 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 330 struct net_vrf *vrf = netdev_priv(dev); 331 u32 table_id = vrf->tb_id; 332 struct vrf_map_elem *me; 333 int users; 334 335 vrf_map_lock(vmap); 336 337 me = vrf_map_lookup_elem(vmap, table_id); 338 if (!me) 339 goto unlock; 340 341 list_del(&vrf->me_list); 342 343 users = --me->users; 344 if (users == 1) { 345 --vmap->shared_tables; 346 } else if (users == 0) { 347 vrf_map_del_elem(me); 348 349 /* no one will refer to this element anymore */ 350 vrf_map_elem_free(me); 351 } 352 353 unlock: 354 vrf_map_unlock(vmap); 355 } 356 357 /* return the vrf device index associated with the table_id */ 358 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) 359 { 360 struct vrf_map *vmap = netns_vrf_map(net); 361 struct vrf_map_elem *me; 362 int ifindex; 363 364 vrf_map_lock(vmap); 365 366 if (!vmap->strict_mode) { 367 ifindex = -EPERM; 368 goto unlock; 369 } 370 371 me = vrf_map_lookup_elem(vmap, table_id); 372 if (!me) { 373 ifindex = -ENODEV; 374 goto unlock; 375 } 376 377 ifindex = vrf_map_elem_get_vrf_ifindex(me); 378 379 unlock: 380 vrf_map_unlock(vmap); 381 382 return ifindex; 383 } 384 385 /* by default VRF devices do not have a qdisc and are expected 386 * to be created with only a single queue. 387 */ 388 static bool qdisc_tx_is_default(const struct net_device *dev) 389 { 390 struct netdev_queue *txq; 391 struct Qdisc *qdisc; 392 393 if (dev->num_tx_queues > 1) 394 return false; 395 396 txq = netdev_get_tx_queue(dev, 0); 397 qdisc = rcu_access_pointer(txq->qdisc); 398 399 return !qdisc->enqueue; 400 } 401 402 /* Local traffic destined to local address. Reinsert the packet to rx 403 * path, similar to loopback handling. 404 */ 405 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 406 struct dst_entry *dst) 407 { 408 int len = skb->len; 409 410 skb_orphan(skb); 411 412 skb_dst_set(skb, dst); 413 414 /* set pkt_type to avoid skb hitting packet taps twice - 415 * once on Tx and again in Rx processing 416 */ 417 skb->pkt_type = PACKET_LOOPBACK; 418 419 skb->protocol = eth_type_trans(skb, dev); 420 421 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 422 vrf_rx_stats(dev, len); 423 else 424 this_cpu_inc(dev->dstats->rx_drps); 425 426 return NETDEV_TX_OK; 427 } 428 429 static void vrf_nf_set_untracked(struct sk_buff *skb) 430 { 431 if (skb_get_nfct(skb) == 0) 432 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 433 } 434 435 static void vrf_nf_reset_ct(struct sk_buff *skb) 436 { 437 if (skb_get_nfct(skb) == IP_CT_UNTRACKED) 438 nf_reset_ct(skb); 439 } 440 441 #if IS_ENABLED(CONFIG_IPV6) 442 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 443 struct sk_buff *skb) 444 { 445 int err; 446 447 vrf_nf_reset_ct(skb); 448 449 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 450 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 451 452 if (likely(err == 1)) 453 err = dst_output(net, sk, skb); 454 455 return err; 456 } 457 458 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 459 struct net_device *dev) 460 { 461 const struct ipv6hdr *iph; 462 struct net *net = dev_net(skb->dev); 463 struct flowi6 fl6; 464 int ret = NET_XMIT_DROP; 465 struct dst_entry *dst; 466 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 467 468 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) 469 goto err; 470 471 iph = ipv6_hdr(skb); 472 473 memset(&fl6, 0, sizeof(fl6)); 474 /* needed to match OIF rule */ 475 fl6.flowi6_oif = dev->ifindex; 476 fl6.flowi6_iif = LOOPBACK_IFINDEX; 477 fl6.daddr = iph->daddr; 478 fl6.saddr = iph->saddr; 479 fl6.flowlabel = ip6_flowinfo(iph); 480 fl6.flowi6_mark = skb->mark; 481 fl6.flowi6_proto = iph->nexthdr; 482 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF; 483 484 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); 485 if (IS_ERR(dst) || dst == dst_null) 486 goto err; 487 488 skb_dst_drop(skb); 489 490 /* if dst.dev is the VRF device again this is locally originated traffic 491 * destined to a local address. Short circuit to Rx path. 492 */ 493 if (dst->dev == dev) 494 return vrf_local_xmit(skb, dev, dst); 495 496 skb_dst_set(skb, dst); 497 498 /* strip the ethernet header added for pass through VRF device */ 499 __skb_pull(skb, skb_network_offset(skb)); 500 501 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); 502 ret = vrf_ip6_local_out(net, skb->sk, skb); 503 if (unlikely(net_xmit_eval(ret))) 504 dev->stats.tx_errors++; 505 else 506 ret = NET_XMIT_SUCCESS; 507 508 return ret; 509 err: 510 vrf_tx_error(dev, skb); 511 return NET_XMIT_DROP; 512 } 513 #else 514 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 515 struct net_device *dev) 516 { 517 vrf_tx_error(dev, skb); 518 return NET_XMIT_DROP; 519 } 520 #endif 521 522 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 523 static int vrf_ip_local_out(struct net *net, struct sock *sk, 524 struct sk_buff *skb) 525 { 526 int err; 527 528 vrf_nf_reset_ct(skb); 529 530 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 531 skb, NULL, skb_dst(skb)->dev, dst_output); 532 if (likely(err == 1)) 533 err = dst_output(net, sk, skb); 534 535 return err; 536 } 537 538 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 539 struct net_device *vrf_dev) 540 { 541 struct iphdr *ip4h; 542 int ret = NET_XMIT_DROP; 543 struct flowi4 fl4; 544 struct net *net = dev_net(vrf_dev); 545 struct rtable *rt; 546 547 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) 548 goto err; 549 550 ip4h = ip_hdr(skb); 551 552 memset(&fl4, 0, sizeof(fl4)); 553 /* needed to match OIF rule */ 554 fl4.flowi4_oif = vrf_dev->ifindex; 555 fl4.flowi4_iif = LOOPBACK_IFINDEX; 556 fl4.flowi4_tos = RT_TOS(ip4h->tos); 557 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF; 558 fl4.flowi4_proto = ip4h->protocol; 559 fl4.daddr = ip4h->daddr; 560 fl4.saddr = ip4h->saddr; 561 562 rt = ip_route_output_flow(net, &fl4, NULL); 563 if (IS_ERR(rt)) 564 goto err; 565 566 skb_dst_drop(skb); 567 568 /* if dst.dev is the VRF device again this is locally originated traffic 569 * destined to a local address. Short circuit to Rx path. 570 */ 571 if (rt->dst.dev == vrf_dev) 572 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 573 574 skb_dst_set(skb, &rt->dst); 575 576 /* strip the ethernet header added for pass through VRF device */ 577 __skb_pull(skb, skb_network_offset(skb)); 578 579 if (!ip4h->saddr) { 580 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 581 RT_SCOPE_LINK); 582 } 583 584 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 585 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 586 if (unlikely(net_xmit_eval(ret))) 587 vrf_dev->stats.tx_errors++; 588 else 589 ret = NET_XMIT_SUCCESS; 590 591 out: 592 return ret; 593 err: 594 vrf_tx_error(vrf_dev, skb); 595 goto out; 596 } 597 598 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 599 { 600 switch (skb->protocol) { 601 case htons(ETH_P_IP): 602 return vrf_process_v4_outbound(skb, dev); 603 case htons(ETH_P_IPV6): 604 return vrf_process_v6_outbound(skb, dev); 605 default: 606 vrf_tx_error(dev, skb); 607 return NET_XMIT_DROP; 608 } 609 } 610 611 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 612 { 613 int len = skb->len; 614 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 615 616 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 617 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 618 619 u64_stats_update_begin(&dstats->syncp); 620 dstats->tx_pkts++; 621 dstats->tx_bytes += len; 622 u64_stats_update_end(&dstats->syncp); 623 } else { 624 this_cpu_inc(dev->dstats->tx_drps); 625 } 626 627 return ret; 628 } 629 630 static void vrf_finish_direct(struct sk_buff *skb) 631 { 632 struct net_device *vrf_dev = skb->dev; 633 634 if (!list_empty(&vrf_dev->ptype_all) && 635 likely(skb_headroom(skb) >= ETH_HLEN)) { 636 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 637 638 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 639 eth_zero_addr(eth->h_dest); 640 eth->h_proto = skb->protocol; 641 642 rcu_read_lock_bh(); 643 dev_queue_xmit_nit(skb, vrf_dev); 644 rcu_read_unlock_bh(); 645 646 skb_pull(skb, ETH_HLEN); 647 } 648 649 vrf_nf_reset_ct(skb); 650 } 651 652 #if IS_ENABLED(CONFIG_IPV6) 653 /* modelled after ip6_finish_output2 */ 654 static int vrf_finish_output6(struct net *net, struct sock *sk, 655 struct sk_buff *skb) 656 { 657 struct dst_entry *dst = skb_dst(skb); 658 struct net_device *dev = dst->dev; 659 const struct in6_addr *nexthop; 660 struct neighbour *neigh; 661 int ret; 662 663 vrf_nf_reset_ct(skb); 664 665 skb->protocol = htons(ETH_P_IPV6); 666 skb->dev = dev; 667 668 rcu_read_lock_bh(); 669 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 670 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 671 if (unlikely(!neigh)) 672 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 673 if (!IS_ERR(neigh)) { 674 sock_confirm_neigh(skb, neigh); 675 ret = neigh_output(neigh, skb, false); 676 rcu_read_unlock_bh(); 677 return ret; 678 } 679 rcu_read_unlock_bh(); 680 681 IP6_INC_STATS(dev_net(dst->dev), 682 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 683 kfree_skb(skb); 684 return -EINVAL; 685 } 686 687 /* modelled after ip6_output */ 688 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 689 { 690 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 691 net, sk, skb, NULL, skb_dst(skb)->dev, 692 vrf_finish_output6, 693 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 694 } 695 696 /* set dst on skb to send packet to us via dev_xmit path. Allows 697 * packet to go through device based features such as qdisc, netfilter 698 * hooks and packet sockets with skb->dev set to vrf device. 699 */ 700 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 701 struct sk_buff *skb) 702 { 703 struct net_vrf *vrf = netdev_priv(vrf_dev); 704 struct dst_entry *dst = NULL; 705 struct rt6_info *rt6; 706 707 rcu_read_lock(); 708 709 rt6 = rcu_dereference(vrf->rt6); 710 if (likely(rt6)) { 711 dst = &rt6->dst; 712 dst_hold(dst); 713 } 714 715 rcu_read_unlock(); 716 717 if (unlikely(!dst)) { 718 vrf_tx_error(vrf_dev, skb); 719 return NULL; 720 } 721 722 skb_dst_drop(skb); 723 skb_dst_set(skb, dst); 724 725 return skb; 726 } 727 728 static int vrf_output6_direct_finish(struct net *net, struct sock *sk, 729 struct sk_buff *skb) 730 { 731 vrf_finish_direct(skb); 732 733 return vrf_ip6_local_out(net, sk, skb); 734 } 735 736 static int vrf_output6_direct(struct net *net, struct sock *sk, 737 struct sk_buff *skb) 738 { 739 int err = 1; 740 741 skb->protocol = htons(ETH_P_IPV6); 742 743 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 744 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, 745 NULL, skb->dev, vrf_output6_direct_finish); 746 747 if (likely(err == 1)) 748 vrf_finish_direct(skb); 749 750 return err; 751 } 752 753 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, 754 struct sk_buff *skb) 755 { 756 int err; 757 758 err = vrf_output6_direct(net, sk, skb); 759 if (likely(err == 1)) 760 err = vrf_ip6_local_out(net, sk, skb); 761 762 return err; 763 } 764 765 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 766 struct sock *sk, 767 struct sk_buff *skb) 768 { 769 struct net *net = dev_net(vrf_dev); 770 int err; 771 772 skb->dev = vrf_dev; 773 774 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 775 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish); 776 777 if (likely(err == 1)) 778 err = vrf_output6_direct(net, sk, skb); 779 780 if (likely(err == 1)) 781 return skb; 782 783 return NULL; 784 } 785 786 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 787 struct sock *sk, 788 struct sk_buff *skb) 789 { 790 /* don't divert link scope packets */ 791 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 792 return skb; 793 794 vrf_nf_set_untracked(skb); 795 796 if (qdisc_tx_is_default(vrf_dev) || 797 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 798 return vrf_ip6_out_direct(vrf_dev, sk, skb); 799 800 return vrf_ip6_out_redirect(vrf_dev, skb); 801 } 802 803 /* holding rtnl */ 804 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 805 { 806 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 807 struct net *net = dev_net(dev); 808 struct dst_entry *dst; 809 810 RCU_INIT_POINTER(vrf->rt6, NULL); 811 synchronize_rcu(); 812 813 /* move dev in dst's to loopback so this VRF device can be deleted 814 * - based on dst_ifdown 815 */ 816 if (rt6) { 817 dst = &rt6->dst; 818 dev_replace_track(dst->dev, net->loopback_dev, 819 &dst->dev_tracker, GFP_KERNEL); 820 dst->dev = net->loopback_dev; 821 dst_release(dst); 822 } 823 } 824 825 static int vrf_rt6_create(struct net_device *dev) 826 { 827 int flags = DST_NOPOLICY | DST_NOXFRM; 828 struct net_vrf *vrf = netdev_priv(dev); 829 struct net *net = dev_net(dev); 830 struct rt6_info *rt6; 831 int rc = -ENOMEM; 832 833 /* IPv6 can be CONFIG enabled and then disabled runtime */ 834 if (!ipv6_mod_enabled()) 835 return 0; 836 837 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 838 if (!vrf->fib6_table) 839 goto out; 840 841 /* create a dst for routing packets out a VRF device */ 842 rt6 = ip6_dst_alloc(net, dev, flags); 843 if (!rt6) 844 goto out; 845 846 rt6->dst.output = vrf_output6; 847 848 rcu_assign_pointer(vrf->rt6, rt6); 849 850 rc = 0; 851 out: 852 return rc; 853 } 854 #else 855 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 856 struct sock *sk, 857 struct sk_buff *skb) 858 { 859 return skb; 860 } 861 862 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 863 { 864 } 865 866 static int vrf_rt6_create(struct net_device *dev) 867 { 868 return 0; 869 } 870 #endif 871 872 /* modelled after ip_finish_output2 */ 873 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 874 { 875 struct dst_entry *dst = skb_dst(skb); 876 struct rtable *rt = (struct rtable *)dst; 877 struct net_device *dev = dst->dev; 878 unsigned int hh_len = LL_RESERVED_SPACE(dev); 879 struct neighbour *neigh; 880 bool is_v6gw = false; 881 882 vrf_nf_reset_ct(skb); 883 884 /* Be paranoid, rather than too clever. */ 885 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 886 skb = skb_expand_head(skb, hh_len); 887 if (!skb) { 888 dev->stats.tx_errors++; 889 return -ENOMEM; 890 } 891 } 892 893 rcu_read_lock_bh(); 894 895 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 896 if (!IS_ERR(neigh)) { 897 int ret; 898 899 sock_confirm_neigh(skb, neigh); 900 /* if crossing protocols, can not use the cached header */ 901 ret = neigh_output(neigh, skb, is_v6gw); 902 rcu_read_unlock_bh(); 903 return ret; 904 } 905 906 rcu_read_unlock_bh(); 907 vrf_tx_error(skb->dev, skb); 908 return -EINVAL; 909 } 910 911 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 912 { 913 struct net_device *dev = skb_dst(skb)->dev; 914 915 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 916 917 skb->dev = dev; 918 skb->protocol = htons(ETH_P_IP); 919 920 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 921 net, sk, skb, NULL, dev, 922 vrf_finish_output, 923 !(IPCB(skb)->flags & IPSKB_REROUTED)); 924 } 925 926 /* set dst on skb to send packet to us via dev_xmit path. Allows 927 * packet to go through device based features such as qdisc, netfilter 928 * hooks and packet sockets with skb->dev set to vrf device. 929 */ 930 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 931 struct sk_buff *skb) 932 { 933 struct net_vrf *vrf = netdev_priv(vrf_dev); 934 struct dst_entry *dst = NULL; 935 struct rtable *rth; 936 937 rcu_read_lock(); 938 939 rth = rcu_dereference(vrf->rth); 940 if (likely(rth)) { 941 dst = &rth->dst; 942 dst_hold(dst); 943 } 944 945 rcu_read_unlock(); 946 947 if (unlikely(!dst)) { 948 vrf_tx_error(vrf_dev, skb); 949 return NULL; 950 } 951 952 skb_dst_drop(skb); 953 skb_dst_set(skb, dst); 954 955 return skb; 956 } 957 958 static int vrf_output_direct_finish(struct net *net, struct sock *sk, 959 struct sk_buff *skb) 960 { 961 vrf_finish_direct(skb); 962 963 return vrf_ip_local_out(net, sk, skb); 964 } 965 966 static int vrf_output_direct(struct net *net, struct sock *sk, 967 struct sk_buff *skb) 968 { 969 int err = 1; 970 971 skb->protocol = htons(ETH_P_IP); 972 973 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 974 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, 975 NULL, skb->dev, vrf_output_direct_finish); 976 977 if (likely(err == 1)) 978 vrf_finish_direct(skb); 979 980 return err; 981 } 982 983 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, 984 struct sk_buff *skb) 985 { 986 int err; 987 988 err = vrf_output_direct(net, sk, skb); 989 if (likely(err == 1)) 990 err = vrf_ip_local_out(net, sk, skb); 991 992 return err; 993 } 994 995 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 996 struct sock *sk, 997 struct sk_buff *skb) 998 { 999 struct net *net = dev_net(vrf_dev); 1000 int err; 1001 1002 skb->dev = vrf_dev; 1003 1004 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 1005 skb, NULL, vrf_dev, vrf_ip_out_direct_finish); 1006 1007 if (likely(err == 1)) 1008 err = vrf_output_direct(net, sk, skb); 1009 1010 if (likely(err == 1)) 1011 return skb; 1012 1013 return NULL; 1014 } 1015 1016 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 1017 struct sock *sk, 1018 struct sk_buff *skb) 1019 { 1020 /* don't divert multicast or local broadcast */ 1021 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 1022 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 1023 return skb; 1024 1025 vrf_nf_set_untracked(skb); 1026 1027 if (qdisc_tx_is_default(vrf_dev) || 1028 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 1029 return vrf_ip_out_direct(vrf_dev, sk, skb); 1030 1031 return vrf_ip_out_redirect(vrf_dev, skb); 1032 } 1033 1034 /* called with rcu lock held */ 1035 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 1036 struct sock *sk, 1037 struct sk_buff *skb, 1038 u16 proto) 1039 { 1040 switch (proto) { 1041 case AF_INET: 1042 return vrf_ip_out(vrf_dev, sk, skb); 1043 case AF_INET6: 1044 return vrf_ip6_out(vrf_dev, sk, skb); 1045 } 1046 1047 return skb; 1048 } 1049 1050 /* holding rtnl */ 1051 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 1052 { 1053 struct rtable *rth = rtnl_dereference(vrf->rth); 1054 struct net *net = dev_net(dev); 1055 struct dst_entry *dst; 1056 1057 RCU_INIT_POINTER(vrf->rth, NULL); 1058 synchronize_rcu(); 1059 1060 /* move dev in dst's to loopback so this VRF device can be deleted 1061 * - based on dst_ifdown 1062 */ 1063 if (rth) { 1064 dst = &rth->dst; 1065 dev_replace_track(dst->dev, net->loopback_dev, 1066 &dst->dev_tracker, GFP_KERNEL); 1067 dst->dev = net->loopback_dev; 1068 dst_release(dst); 1069 } 1070 } 1071 1072 static int vrf_rtable_create(struct net_device *dev) 1073 { 1074 struct net_vrf *vrf = netdev_priv(dev); 1075 struct rtable *rth; 1076 1077 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 1078 return -ENOMEM; 1079 1080 /* create a dst for routing packets out through a VRF device */ 1081 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1); 1082 if (!rth) 1083 return -ENOMEM; 1084 1085 rth->dst.output = vrf_output; 1086 1087 rcu_assign_pointer(vrf->rth, rth); 1088 1089 return 0; 1090 } 1091 1092 /**************************** device handling ********************/ 1093 1094 /* cycle interface to flush neighbor cache and move routes across tables */ 1095 static void cycle_netdev(struct net_device *dev, 1096 struct netlink_ext_ack *extack) 1097 { 1098 unsigned int flags = dev->flags; 1099 int ret; 1100 1101 if (!netif_running(dev)) 1102 return; 1103 1104 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 1105 if (ret >= 0) 1106 ret = dev_change_flags(dev, flags, extack); 1107 1108 if (ret < 0) { 1109 netdev_err(dev, 1110 "Failed to cycle device %s; route tables might be wrong!\n", 1111 dev->name); 1112 } 1113 } 1114 1115 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1116 struct netlink_ext_ack *extack) 1117 { 1118 int ret; 1119 1120 /* do not allow loopback device to be enslaved to a VRF. 1121 * The vrf device acts as the loopback for the vrf. 1122 */ 1123 if (port_dev == dev_net(dev)->loopback_dev) { 1124 NL_SET_ERR_MSG(extack, 1125 "Can not enslave loopback device to a VRF"); 1126 return -EOPNOTSUPP; 1127 } 1128 1129 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 1130 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 1131 if (ret < 0) 1132 goto err; 1133 1134 cycle_netdev(port_dev, extack); 1135 1136 return 0; 1137 1138 err: 1139 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1140 return ret; 1141 } 1142 1143 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1144 struct netlink_ext_ack *extack) 1145 { 1146 if (netif_is_l3_master(port_dev)) { 1147 NL_SET_ERR_MSG(extack, 1148 "Can not enslave an L3 master device to a VRF"); 1149 return -EINVAL; 1150 } 1151 1152 if (netif_is_l3_slave(port_dev)) 1153 return -EINVAL; 1154 1155 return do_vrf_add_slave(dev, port_dev, extack); 1156 } 1157 1158 /* inverse of do_vrf_add_slave */ 1159 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1160 { 1161 netdev_upper_dev_unlink(port_dev, dev); 1162 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1163 1164 cycle_netdev(port_dev, NULL); 1165 1166 return 0; 1167 } 1168 1169 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1170 { 1171 return do_vrf_del_slave(dev, port_dev); 1172 } 1173 1174 static void vrf_dev_uninit(struct net_device *dev) 1175 { 1176 struct net_vrf *vrf = netdev_priv(dev); 1177 1178 vrf_rtable_release(dev, vrf); 1179 vrf_rt6_release(dev, vrf); 1180 1181 free_percpu(dev->dstats); 1182 dev->dstats = NULL; 1183 } 1184 1185 static int vrf_dev_init(struct net_device *dev) 1186 { 1187 struct net_vrf *vrf = netdev_priv(dev); 1188 1189 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 1190 if (!dev->dstats) 1191 goto out_nomem; 1192 1193 /* create the default dst which points back to us */ 1194 if (vrf_rtable_create(dev) != 0) 1195 goto out_stats; 1196 1197 if (vrf_rt6_create(dev) != 0) 1198 goto out_rth; 1199 1200 dev->flags = IFF_MASTER | IFF_NOARP; 1201 1202 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 1203 dev->operstate = IF_OPER_UP; 1204 netdev_lockdep_set_classes(dev); 1205 return 0; 1206 1207 out_rth: 1208 vrf_rtable_release(dev, vrf); 1209 out_stats: 1210 free_percpu(dev->dstats); 1211 dev->dstats = NULL; 1212 out_nomem: 1213 return -ENOMEM; 1214 } 1215 1216 static const struct net_device_ops vrf_netdev_ops = { 1217 .ndo_init = vrf_dev_init, 1218 .ndo_uninit = vrf_dev_uninit, 1219 .ndo_start_xmit = vrf_xmit, 1220 .ndo_set_mac_address = eth_mac_addr, 1221 .ndo_get_stats64 = vrf_get_stats64, 1222 .ndo_add_slave = vrf_add_slave, 1223 .ndo_del_slave = vrf_del_slave, 1224 }; 1225 1226 static u32 vrf_fib_table(const struct net_device *dev) 1227 { 1228 struct net_vrf *vrf = netdev_priv(dev); 1229 1230 return vrf->tb_id; 1231 } 1232 1233 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 1234 { 1235 kfree_skb(skb); 1236 return 0; 1237 } 1238 1239 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 1240 struct sk_buff *skb, 1241 struct net_device *dev) 1242 { 1243 struct net *net = dev_net(dev); 1244 1245 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 1246 skb = NULL; /* kfree_skb(skb) handled by nf code */ 1247 1248 return skb; 1249 } 1250 1251 static int vrf_prepare_mac_header(struct sk_buff *skb, 1252 struct net_device *vrf_dev, u16 proto) 1253 { 1254 struct ethhdr *eth; 1255 int err; 1256 1257 /* in general, we do not know if there is enough space in the head of 1258 * the packet for hosting the mac header. 1259 */ 1260 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); 1261 if (unlikely(err)) 1262 /* no space in the skb head */ 1263 return -ENOBUFS; 1264 1265 __skb_push(skb, ETH_HLEN); 1266 eth = (struct ethhdr *)skb->data; 1267 1268 skb_reset_mac_header(skb); 1269 1270 /* we set the ethernet destination and the source addresses to the 1271 * address of the VRF device. 1272 */ 1273 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr); 1274 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 1275 eth->h_proto = htons(proto); 1276 1277 /* the destination address of the Ethernet frame corresponds to the 1278 * address set on the VRF interface; therefore, the packet is intended 1279 * to be processed locally. 1280 */ 1281 skb->protocol = eth->h_proto; 1282 skb->pkt_type = PACKET_HOST; 1283 1284 skb_postpush_rcsum(skb, skb->data, ETH_HLEN); 1285 1286 skb_pull_inline(skb, ETH_HLEN); 1287 1288 return 0; 1289 } 1290 1291 /* prepare and add the mac header to the packet if it was not set previously. 1292 * In this way, packet sniffers such as tcpdump can parse the packet correctly. 1293 * If the mac header was already set, the original mac header is left 1294 * untouched and the function returns immediately. 1295 */ 1296 static int vrf_add_mac_header_if_unset(struct sk_buff *skb, 1297 struct net_device *vrf_dev, 1298 u16 proto) 1299 { 1300 if (skb_mac_header_was_set(skb)) 1301 return 0; 1302 1303 return vrf_prepare_mac_header(skb, vrf_dev, proto); 1304 } 1305 1306 #if IS_ENABLED(CONFIG_IPV6) 1307 /* neighbor handling is done with actual device; do not want 1308 * to flip skb->dev for those ndisc packets. This really fails 1309 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 1310 * a start. 1311 */ 1312 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 1313 { 1314 const struct ipv6hdr *iph = ipv6_hdr(skb); 1315 bool rc = false; 1316 1317 if (iph->nexthdr == NEXTHDR_ICMP) { 1318 const struct icmp6hdr *icmph; 1319 struct icmp6hdr _icmph; 1320 1321 icmph = skb_header_pointer(skb, sizeof(*iph), 1322 sizeof(_icmph), &_icmph); 1323 if (!icmph) 1324 goto out; 1325 1326 switch (icmph->icmp6_type) { 1327 case NDISC_ROUTER_SOLICITATION: 1328 case NDISC_ROUTER_ADVERTISEMENT: 1329 case NDISC_NEIGHBOUR_SOLICITATION: 1330 case NDISC_NEIGHBOUR_ADVERTISEMENT: 1331 case NDISC_REDIRECT: 1332 rc = true; 1333 break; 1334 } 1335 } 1336 1337 out: 1338 return rc; 1339 } 1340 1341 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 1342 const struct net_device *dev, 1343 struct flowi6 *fl6, 1344 int ifindex, 1345 const struct sk_buff *skb, 1346 int flags) 1347 { 1348 struct net_vrf *vrf = netdev_priv(dev); 1349 1350 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 1351 } 1352 1353 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 1354 int ifindex) 1355 { 1356 const struct ipv6hdr *iph = ipv6_hdr(skb); 1357 struct flowi6 fl6 = { 1358 .flowi6_iif = ifindex, 1359 .flowi6_mark = skb->mark, 1360 .flowi6_proto = iph->nexthdr, 1361 .daddr = iph->daddr, 1362 .saddr = iph->saddr, 1363 .flowlabel = ip6_flowinfo(iph), 1364 }; 1365 struct net *net = dev_net(vrf_dev); 1366 struct rt6_info *rt6; 1367 1368 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 1369 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 1370 if (unlikely(!rt6)) 1371 return; 1372 1373 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 1374 return; 1375 1376 skb_dst_set(skb, &rt6->dst); 1377 } 1378 1379 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1380 struct sk_buff *skb) 1381 { 1382 int orig_iif = skb->skb_iif; 1383 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1384 bool is_ndisc = ipv6_ndisc_frame(skb); 1385 1386 /* loopback, multicast & non-ND link-local traffic; do not push through 1387 * packet taps again. Reset pkt_type for upper layers to process skb. 1388 * For strict packets with a source LLA, determine the dst using the 1389 * original ifindex. 1390 */ 1391 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 1392 skb->dev = vrf_dev; 1393 skb->skb_iif = vrf_dev->ifindex; 1394 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1395 1396 if (skb->pkt_type == PACKET_LOOPBACK) 1397 skb->pkt_type = PACKET_HOST; 1398 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL) 1399 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1400 1401 goto out; 1402 } 1403 1404 /* if packet is NDISC then keep the ingress interface */ 1405 if (!is_ndisc) { 1406 vrf_rx_stats(vrf_dev, skb->len); 1407 skb->dev = vrf_dev; 1408 skb->skb_iif = vrf_dev->ifindex; 1409 1410 if (!list_empty(&vrf_dev->ptype_all)) { 1411 int err; 1412 1413 err = vrf_add_mac_header_if_unset(skb, vrf_dev, 1414 ETH_P_IPV6); 1415 if (likely(!err)) { 1416 skb_push(skb, skb->mac_len); 1417 dev_queue_xmit_nit(skb, vrf_dev); 1418 skb_pull(skb, skb->mac_len); 1419 } 1420 } 1421 1422 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1423 } 1424 1425 if (need_strict) 1426 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1427 1428 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1429 out: 1430 return skb; 1431 } 1432 1433 #else 1434 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1435 struct sk_buff *skb) 1436 { 1437 return skb; 1438 } 1439 #endif 1440 1441 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1442 struct sk_buff *skb) 1443 { 1444 skb->dev = vrf_dev; 1445 skb->skb_iif = vrf_dev->ifindex; 1446 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1447 1448 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1449 goto out; 1450 1451 /* loopback traffic; do not push through packet taps again. 1452 * Reset pkt_type for upper layers to process skb 1453 */ 1454 if (skb->pkt_type == PACKET_LOOPBACK) { 1455 skb->pkt_type = PACKET_HOST; 1456 goto out; 1457 } 1458 1459 vrf_rx_stats(vrf_dev, skb->len); 1460 1461 if (!list_empty(&vrf_dev->ptype_all)) { 1462 int err; 1463 1464 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP); 1465 if (likely(!err)) { 1466 skb_push(skb, skb->mac_len); 1467 dev_queue_xmit_nit(skb, vrf_dev); 1468 skb_pull(skb, skb->mac_len); 1469 } 1470 } 1471 1472 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1473 out: 1474 return skb; 1475 } 1476 1477 /* called with rcu lock held */ 1478 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1479 struct sk_buff *skb, 1480 u16 proto) 1481 { 1482 switch (proto) { 1483 case AF_INET: 1484 return vrf_ip_rcv(vrf_dev, skb); 1485 case AF_INET6: 1486 return vrf_ip6_rcv(vrf_dev, skb); 1487 } 1488 1489 return skb; 1490 } 1491 1492 #if IS_ENABLED(CONFIG_IPV6) 1493 /* send to link-local or multicast address via interface enslaved to 1494 * VRF device. Force lookup to VRF table without changing flow struct 1495 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1496 * is taken on the dst by this function. 1497 */ 1498 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1499 struct flowi6 *fl6) 1500 { 1501 struct net *net = dev_net(dev); 1502 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1503 struct dst_entry *dst = NULL; 1504 struct rt6_info *rt; 1505 1506 /* VRF device does not have a link-local address and 1507 * sending packets to link-local or mcast addresses over 1508 * a VRF device does not make sense 1509 */ 1510 if (fl6->flowi6_oif == dev->ifindex) { 1511 dst = &net->ipv6.ip6_null_entry->dst; 1512 return dst; 1513 } 1514 1515 if (!ipv6_addr_any(&fl6->saddr)) 1516 flags |= RT6_LOOKUP_F_HAS_SADDR; 1517 1518 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1519 if (rt) 1520 dst = &rt->dst; 1521 1522 return dst; 1523 } 1524 #endif 1525 1526 static const struct l3mdev_ops vrf_l3mdev_ops = { 1527 .l3mdev_fib_table = vrf_fib_table, 1528 .l3mdev_l3_rcv = vrf_l3_rcv, 1529 .l3mdev_l3_out = vrf_l3_out, 1530 #if IS_ENABLED(CONFIG_IPV6) 1531 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1532 #endif 1533 }; 1534 1535 static void vrf_get_drvinfo(struct net_device *dev, 1536 struct ethtool_drvinfo *info) 1537 { 1538 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1539 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1540 } 1541 1542 static const struct ethtool_ops vrf_ethtool_ops = { 1543 .get_drvinfo = vrf_get_drvinfo, 1544 }; 1545 1546 static inline size_t vrf_fib_rule_nl_size(void) 1547 { 1548 size_t sz; 1549 1550 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1551 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1552 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1553 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1554 1555 return sz; 1556 } 1557 1558 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1559 { 1560 struct fib_rule_hdr *frh; 1561 struct nlmsghdr *nlh; 1562 struct sk_buff *skb; 1563 int err; 1564 1565 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && 1566 !ipv6_mod_enabled()) 1567 return 0; 1568 1569 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1570 if (!skb) 1571 return -ENOMEM; 1572 1573 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1574 if (!nlh) 1575 goto nla_put_failure; 1576 1577 /* rule only needs to appear once */ 1578 nlh->nlmsg_flags |= NLM_F_EXCL; 1579 1580 frh = nlmsg_data(nlh); 1581 memset(frh, 0, sizeof(*frh)); 1582 frh->family = family; 1583 frh->action = FR_ACT_TO_TBL; 1584 1585 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1586 goto nla_put_failure; 1587 1588 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1589 goto nla_put_failure; 1590 1591 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1592 goto nla_put_failure; 1593 1594 nlmsg_end(skb, nlh); 1595 1596 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1597 skb->sk = dev_net(dev)->rtnl; 1598 if (add_it) { 1599 err = fib_nl_newrule(skb, nlh, NULL); 1600 if (err == -EEXIST) 1601 err = 0; 1602 } else { 1603 err = fib_nl_delrule(skb, nlh, NULL); 1604 if (err == -ENOENT) 1605 err = 0; 1606 } 1607 nlmsg_free(skb); 1608 1609 return err; 1610 1611 nla_put_failure: 1612 nlmsg_free(skb); 1613 1614 return -EMSGSIZE; 1615 } 1616 1617 static int vrf_add_fib_rules(const struct net_device *dev) 1618 { 1619 int err; 1620 1621 err = vrf_fib_rule(dev, AF_INET, true); 1622 if (err < 0) 1623 goto out_err; 1624 1625 err = vrf_fib_rule(dev, AF_INET6, true); 1626 if (err < 0) 1627 goto ipv6_err; 1628 1629 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1630 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1631 if (err < 0) 1632 goto ipmr_err; 1633 #endif 1634 1635 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1636 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1637 if (err < 0) 1638 goto ip6mr_err; 1639 #endif 1640 1641 return 0; 1642 1643 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1644 ip6mr_err: 1645 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1646 #endif 1647 1648 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1649 ipmr_err: 1650 vrf_fib_rule(dev, AF_INET6, false); 1651 #endif 1652 1653 ipv6_err: 1654 vrf_fib_rule(dev, AF_INET, false); 1655 1656 out_err: 1657 netdev_err(dev, "Failed to add FIB rules.\n"); 1658 return err; 1659 } 1660 1661 static void vrf_setup(struct net_device *dev) 1662 { 1663 ether_setup(dev); 1664 1665 /* Initialize the device structure. */ 1666 dev->netdev_ops = &vrf_netdev_ops; 1667 dev->l3mdev_ops = &vrf_l3mdev_ops; 1668 dev->ethtool_ops = &vrf_ethtool_ops; 1669 dev->needs_free_netdev = true; 1670 1671 /* Fill in device structure with ethernet-generic values. */ 1672 eth_hw_addr_random(dev); 1673 1674 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1675 dev->features |= NETIF_F_LLTX; 1676 1677 /* don't allow vrf devices to change network namespaces. */ 1678 dev->features |= NETIF_F_NETNS_LOCAL; 1679 1680 /* does not make sense for a VLAN to be added to a vrf device */ 1681 dev->features |= NETIF_F_VLAN_CHALLENGED; 1682 1683 /* enable offload features */ 1684 dev->features |= NETIF_F_GSO_SOFTWARE; 1685 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1686 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1687 1688 dev->hw_features = dev->features; 1689 dev->hw_enc_features = dev->features; 1690 1691 /* default to no qdisc; user can add if desired */ 1692 dev->priv_flags |= IFF_NO_QUEUE; 1693 dev->priv_flags |= IFF_NO_RX_HANDLER; 1694 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1695 1696 /* VRF devices do not care about MTU, but if the MTU is set 1697 * too low then the ipv4 and ipv6 protocols are disabled 1698 * which breaks networking. 1699 */ 1700 dev->min_mtu = IPV6_MIN_MTU; 1701 dev->max_mtu = IP6_MAX_MTU; 1702 dev->mtu = dev->max_mtu; 1703 } 1704 1705 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1706 struct netlink_ext_ack *extack) 1707 { 1708 if (tb[IFLA_ADDRESS]) { 1709 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1710 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1711 return -EINVAL; 1712 } 1713 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1714 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1715 return -EADDRNOTAVAIL; 1716 } 1717 } 1718 return 0; 1719 } 1720 1721 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1722 { 1723 struct net_device *port_dev; 1724 struct list_head *iter; 1725 1726 netdev_for_each_lower_dev(dev, port_dev, iter) 1727 vrf_del_slave(dev, port_dev); 1728 1729 vrf_map_unregister_dev(dev); 1730 1731 unregister_netdevice_queue(dev, head); 1732 } 1733 1734 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1735 struct nlattr *tb[], struct nlattr *data[], 1736 struct netlink_ext_ack *extack) 1737 { 1738 struct net_vrf *vrf = netdev_priv(dev); 1739 struct netns_vrf *nn_vrf; 1740 bool *add_fib_rules; 1741 struct net *net; 1742 int err; 1743 1744 if (!data || !data[IFLA_VRF_TABLE]) { 1745 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1746 return -EINVAL; 1747 } 1748 1749 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1750 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1751 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1752 "Invalid VRF table id"); 1753 return -EINVAL; 1754 } 1755 1756 dev->priv_flags |= IFF_L3MDEV_MASTER; 1757 1758 err = register_netdevice(dev); 1759 if (err) 1760 goto out; 1761 1762 /* mapping between table_id and vrf; 1763 * note: such binding could not be done in the dev init function 1764 * because dev->ifindex id is not available yet. 1765 */ 1766 vrf->ifindex = dev->ifindex; 1767 1768 err = vrf_map_register_dev(dev, extack); 1769 if (err) { 1770 unregister_netdevice(dev); 1771 goto out; 1772 } 1773 1774 net = dev_net(dev); 1775 nn_vrf = net_generic(net, vrf_net_id); 1776 1777 add_fib_rules = &nn_vrf->add_fib_rules; 1778 if (*add_fib_rules) { 1779 err = vrf_add_fib_rules(dev); 1780 if (err) { 1781 vrf_map_unregister_dev(dev); 1782 unregister_netdevice(dev); 1783 goto out; 1784 } 1785 *add_fib_rules = false; 1786 } 1787 1788 out: 1789 return err; 1790 } 1791 1792 static size_t vrf_nl_getsize(const struct net_device *dev) 1793 { 1794 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1795 } 1796 1797 static int vrf_fillinfo(struct sk_buff *skb, 1798 const struct net_device *dev) 1799 { 1800 struct net_vrf *vrf = netdev_priv(dev); 1801 1802 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1803 } 1804 1805 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1806 const struct net_device *slave_dev) 1807 { 1808 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1809 } 1810 1811 static int vrf_fill_slave_info(struct sk_buff *skb, 1812 const struct net_device *vrf_dev, 1813 const struct net_device *slave_dev) 1814 { 1815 struct net_vrf *vrf = netdev_priv(vrf_dev); 1816 1817 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1818 return -EMSGSIZE; 1819 1820 return 0; 1821 } 1822 1823 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1824 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1825 }; 1826 1827 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1828 .kind = DRV_NAME, 1829 .priv_size = sizeof(struct net_vrf), 1830 1831 .get_size = vrf_nl_getsize, 1832 .policy = vrf_nl_policy, 1833 .validate = vrf_validate, 1834 .fill_info = vrf_fillinfo, 1835 1836 .get_slave_size = vrf_get_slave_size, 1837 .fill_slave_info = vrf_fill_slave_info, 1838 1839 .newlink = vrf_newlink, 1840 .dellink = vrf_dellink, 1841 .setup = vrf_setup, 1842 .maxtype = IFLA_VRF_MAX, 1843 }; 1844 1845 static int vrf_device_event(struct notifier_block *unused, 1846 unsigned long event, void *ptr) 1847 { 1848 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1849 1850 /* only care about unregister events to drop slave references */ 1851 if (event == NETDEV_UNREGISTER) { 1852 struct net_device *vrf_dev; 1853 1854 if (!netif_is_l3_slave(dev)) 1855 goto out; 1856 1857 vrf_dev = netdev_master_upper_dev_get(dev); 1858 vrf_del_slave(vrf_dev, dev); 1859 } 1860 out: 1861 return NOTIFY_DONE; 1862 } 1863 1864 static struct notifier_block vrf_notifier_block __read_mostly = { 1865 .notifier_call = vrf_device_event, 1866 }; 1867 1868 static int vrf_map_init(struct vrf_map *vmap) 1869 { 1870 spin_lock_init(&vmap->vmap_lock); 1871 hash_init(vmap->ht); 1872 1873 vmap->strict_mode = false; 1874 1875 return 0; 1876 } 1877 1878 #ifdef CONFIG_SYSCTL 1879 static bool vrf_strict_mode(struct vrf_map *vmap) 1880 { 1881 bool strict_mode; 1882 1883 vrf_map_lock(vmap); 1884 strict_mode = vmap->strict_mode; 1885 vrf_map_unlock(vmap); 1886 1887 return strict_mode; 1888 } 1889 1890 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) 1891 { 1892 bool *cur_mode; 1893 int res = 0; 1894 1895 vrf_map_lock(vmap); 1896 1897 cur_mode = &vmap->strict_mode; 1898 if (*cur_mode == new_mode) 1899 goto unlock; 1900 1901 if (*cur_mode) { 1902 /* disable strict mode */ 1903 *cur_mode = false; 1904 } else { 1905 if (vmap->shared_tables) { 1906 /* we cannot allow strict_mode because there are some 1907 * vrfs that share one or more tables. 1908 */ 1909 res = -EBUSY; 1910 goto unlock; 1911 } 1912 1913 /* no tables are shared among vrfs, so we can go back 1914 * to 1:1 association between a vrf with its table. 1915 */ 1916 *cur_mode = true; 1917 } 1918 1919 unlock: 1920 vrf_map_unlock(vmap); 1921 1922 return res; 1923 } 1924 1925 static int vrf_shared_table_handler(struct ctl_table *table, int write, 1926 void *buffer, size_t *lenp, loff_t *ppos) 1927 { 1928 struct net *net = (struct net *)table->extra1; 1929 struct vrf_map *vmap = netns_vrf_map(net); 1930 int proc_strict_mode = 0; 1931 struct ctl_table tmp = { 1932 .procname = table->procname, 1933 .data = &proc_strict_mode, 1934 .maxlen = sizeof(int), 1935 .mode = table->mode, 1936 .extra1 = SYSCTL_ZERO, 1937 .extra2 = SYSCTL_ONE, 1938 }; 1939 int ret; 1940 1941 if (!write) 1942 proc_strict_mode = vrf_strict_mode(vmap); 1943 1944 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 1945 1946 if (write && ret == 0) 1947 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode); 1948 1949 return ret; 1950 } 1951 1952 static const struct ctl_table vrf_table[] = { 1953 { 1954 .procname = "strict_mode", 1955 .data = NULL, 1956 .maxlen = sizeof(int), 1957 .mode = 0644, 1958 .proc_handler = vrf_shared_table_handler, 1959 /* set by the vrf_netns_init */ 1960 .extra1 = NULL, 1961 }, 1962 { }, 1963 }; 1964 1965 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1966 { 1967 struct ctl_table *table; 1968 1969 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); 1970 if (!table) 1971 return -ENOMEM; 1972 1973 /* init the extra1 parameter with the reference to current netns */ 1974 table[0].extra1 = net; 1975 1976 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table); 1977 if (!nn_vrf->ctl_hdr) { 1978 kfree(table); 1979 return -ENOMEM; 1980 } 1981 1982 return 0; 1983 } 1984 1985 static void vrf_netns_exit_sysctl(struct net *net) 1986 { 1987 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 1988 struct ctl_table *table; 1989 1990 table = nn_vrf->ctl_hdr->ctl_table_arg; 1991 unregister_net_sysctl_table(nn_vrf->ctl_hdr); 1992 kfree(table); 1993 } 1994 #else 1995 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1996 { 1997 return 0; 1998 } 1999 2000 static void vrf_netns_exit_sysctl(struct net *net) 2001 { 2002 } 2003 #endif 2004 2005 /* Initialize per network namespace state */ 2006 static int __net_init vrf_netns_init(struct net *net) 2007 { 2008 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 2009 2010 nn_vrf->add_fib_rules = true; 2011 vrf_map_init(&nn_vrf->vmap); 2012 2013 return vrf_netns_init_sysctl(net, nn_vrf); 2014 } 2015 2016 static void __net_exit vrf_netns_exit(struct net *net) 2017 { 2018 vrf_netns_exit_sysctl(net); 2019 } 2020 2021 static struct pernet_operations vrf_net_ops __net_initdata = { 2022 .init = vrf_netns_init, 2023 .exit = vrf_netns_exit, 2024 .id = &vrf_net_id, 2025 .size = sizeof(struct netns_vrf), 2026 }; 2027 2028 static int __init vrf_init_module(void) 2029 { 2030 int rc; 2031 2032 register_netdevice_notifier(&vrf_notifier_block); 2033 2034 rc = register_pernet_subsys(&vrf_net_ops); 2035 if (rc < 0) 2036 goto error; 2037 2038 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF, 2039 vrf_ifindex_lookup_by_table_id); 2040 if (rc < 0) 2041 goto unreg_pernet; 2042 2043 rc = rtnl_link_register(&vrf_link_ops); 2044 if (rc < 0) 2045 goto table_lookup_unreg; 2046 2047 return 0; 2048 2049 table_lookup_unreg: 2050 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF, 2051 vrf_ifindex_lookup_by_table_id); 2052 2053 unreg_pernet: 2054 unregister_pernet_subsys(&vrf_net_ops); 2055 2056 error: 2057 unregister_netdevice_notifier(&vrf_notifier_block); 2058 return rc; 2059 } 2060 2061 module_init(vrf_init_module); 2062 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 2063 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 2064 MODULE_LICENSE("GPL"); 2065 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 2066 MODULE_VERSION(DRV_VERSION); 2067