xref: /openbmc/linux/drivers/net/vrf.c (revision 87d08b11)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.0"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45 
46 struct net_vrf {
47 	struct rtable __rcu	*rth;
48 	struct rtable __rcu	*rth_local;
49 	struct rt6_info	__rcu	*rt6;
50 	struct rt6_info	__rcu	*rt6_local;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
80 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
81 						 struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 	return stats;
106 }
107 
108 /* Local traffic destined to local address. Reinsert the packet to rx
109  * path, similar to loopback handling.
110  */
111 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
112 			  struct dst_entry *dst)
113 {
114 	int len = skb->len;
115 
116 	skb_orphan(skb);
117 
118 	skb_dst_set(skb, dst);
119 	skb_dst_force(skb);
120 
121 	/* set pkt_type to avoid skb hitting packet taps twice -
122 	 * once on Tx and again in Rx processing
123 	 */
124 	skb->pkt_type = PACKET_LOOPBACK;
125 
126 	skb->protocol = eth_type_trans(skb, dev);
127 
128 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
129 		vrf_rx_stats(dev, len);
130 	else
131 		this_cpu_inc(dev->dstats->rx_drps);
132 
133 	return NETDEV_TX_OK;
134 }
135 
136 #if IS_ENABLED(CONFIG_IPV6)
137 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
138 			     struct sk_buff *skb)
139 {
140 	int err;
141 
142 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
143 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
144 
145 	if (likely(err == 1))
146 		err = dst_output(net, sk, skb);
147 
148 	return err;
149 }
150 
151 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
152 					   struct net_device *dev)
153 {
154 	const struct ipv6hdr *iph = ipv6_hdr(skb);
155 	struct net *net = dev_net(skb->dev);
156 	struct flowi6 fl6 = {
157 		/* needed to match OIF rule */
158 		.flowi6_oif = dev->ifindex,
159 		.flowi6_iif = LOOPBACK_IFINDEX,
160 		.daddr = iph->daddr,
161 		.saddr = iph->saddr,
162 		.flowlabel = ip6_flowinfo(iph),
163 		.flowi6_mark = skb->mark,
164 		.flowi6_proto = iph->nexthdr,
165 		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
166 	};
167 	int ret = NET_XMIT_DROP;
168 	struct dst_entry *dst;
169 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
170 
171 	dst = ip6_route_output(net, NULL, &fl6);
172 	if (dst == dst_null)
173 		goto err;
174 
175 	skb_dst_drop(skb);
176 
177 	/* if dst.dev is loopback or the VRF device again this is locally
178 	 * originated traffic destined to a local address. Short circuit
179 	 * to Rx path using our local dst
180 	 */
181 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
182 		struct net_vrf *vrf = netdev_priv(dev);
183 		struct rt6_info *rt6_local;
184 
185 		/* release looked up dst and use cached local dst */
186 		dst_release(dst);
187 
188 		rcu_read_lock();
189 
190 		rt6_local = rcu_dereference(vrf->rt6_local);
191 		if (unlikely(!rt6_local)) {
192 			rcu_read_unlock();
193 			goto err;
194 		}
195 
196 		/* Ordering issue: cached local dst is created on newlink
197 		 * before the IPv6 initialization. Using the local dst
198 		 * requires rt6i_idev to be set so make sure it is.
199 		 */
200 		if (unlikely(!rt6_local->rt6i_idev)) {
201 			rt6_local->rt6i_idev = in6_dev_get(dev);
202 			if (!rt6_local->rt6i_idev) {
203 				rcu_read_unlock();
204 				goto err;
205 			}
206 		}
207 
208 		dst = &rt6_local->dst;
209 		dst_hold(dst);
210 
211 		rcu_read_unlock();
212 
213 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
214 	}
215 
216 	skb_dst_set(skb, dst);
217 
218 	/* strip the ethernet header added for pass through VRF device */
219 	__skb_pull(skb, skb_network_offset(skb));
220 
221 	ret = vrf_ip6_local_out(net, skb->sk, skb);
222 	if (unlikely(net_xmit_eval(ret)))
223 		dev->stats.tx_errors++;
224 	else
225 		ret = NET_XMIT_SUCCESS;
226 
227 	return ret;
228 err:
229 	vrf_tx_error(dev, skb);
230 	return NET_XMIT_DROP;
231 }
232 #else
233 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
234 					   struct net_device *dev)
235 {
236 	vrf_tx_error(dev, skb);
237 	return NET_XMIT_DROP;
238 }
239 #endif
240 
241 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
242 static int vrf_ip_local_out(struct net *net, struct sock *sk,
243 			    struct sk_buff *skb)
244 {
245 	int err;
246 
247 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
248 		      skb, NULL, skb_dst(skb)->dev, dst_output);
249 	if (likely(err == 1))
250 		err = dst_output(net, sk, skb);
251 
252 	return err;
253 }
254 
255 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
256 					   struct net_device *vrf_dev)
257 {
258 	struct iphdr *ip4h = ip_hdr(skb);
259 	int ret = NET_XMIT_DROP;
260 	struct flowi4 fl4 = {
261 		/* needed to match OIF rule */
262 		.flowi4_oif = vrf_dev->ifindex,
263 		.flowi4_iif = LOOPBACK_IFINDEX,
264 		.flowi4_tos = RT_TOS(ip4h->tos),
265 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
266 		.daddr = ip4h->daddr,
267 	};
268 	struct net *net = dev_net(vrf_dev);
269 	struct rtable *rt;
270 
271 	rt = ip_route_output_flow(net, &fl4, NULL);
272 	if (IS_ERR(rt))
273 		goto err;
274 
275 	skb_dst_drop(skb);
276 
277 	/* if dst.dev is loopback or the VRF device again this is locally
278 	 * originated traffic destined to a local address. Short circuit
279 	 * to Rx path using our local dst
280 	 */
281 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
282 		struct net_vrf *vrf = netdev_priv(vrf_dev);
283 		struct rtable *rth_local;
284 		struct dst_entry *dst = NULL;
285 
286 		ip_rt_put(rt);
287 
288 		rcu_read_lock();
289 
290 		rth_local = rcu_dereference(vrf->rth_local);
291 		if (likely(rth_local)) {
292 			dst = &rth_local->dst;
293 			dst_hold(dst);
294 		}
295 
296 		rcu_read_unlock();
297 
298 		if (unlikely(!dst))
299 			goto err;
300 
301 		return vrf_local_xmit(skb, vrf_dev, dst);
302 	}
303 
304 	skb_dst_set(skb, &rt->dst);
305 
306 	/* strip the ethernet header added for pass through VRF device */
307 	__skb_pull(skb, skb_network_offset(skb));
308 
309 	if (!ip4h->saddr) {
310 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
311 					       RT_SCOPE_LINK);
312 	}
313 
314 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
315 	if (unlikely(net_xmit_eval(ret)))
316 		vrf_dev->stats.tx_errors++;
317 	else
318 		ret = NET_XMIT_SUCCESS;
319 
320 out:
321 	return ret;
322 err:
323 	vrf_tx_error(vrf_dev, skb);
324 	goto out;
325 }
326 
327 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
328 {
329 	switch (skb->protocol) {
330 	case htons(ETH_P_IP):
331 		return vrf_process_v4_outbound(skb, dev);
332 	case htons(ETH_P_IPV6):
333 		return vrf_process_v6_outbound(skb, dev);
334 	default:
335 		vrf_tx_error(dev, skb);
336 		return NET_XMIT_DROP;
337 	}
338 }
339 
340 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
341 {
342 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
343 
344 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
345 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
346 
347 		u64_stats_update_begin(&dstats->syncp);
348 		dstats->tx_pkts++;
349 		dstats->tx_bytes += skb->len;
350 		u64_stats_update_end(&dstats->syncp);
351 	} else {
352 		this_cpu_inc(dev->dstats->tx_drps);
353 	}
354 
355 	return ret;
356 }
357 
358 #if IS_ENABLED(CONFIG_IPV6)
359 /* modelled after ip6_finish_output2 */
360 static int vrf_finish_output6(struct net *net, struct sock *sk,
361 			      struct sk_buff *skb)
362 {
363 	struct dst_entry *dst = skb_dst(skb);
364 	struct net_device *dev = dst->dev;
365 	struct neighbour *neigh;
366 	struct in6_addr *nexthop;
367 	int ret;
368 
369 	nf_reset(skb);
370 
371 	skb->protocol = htons(ETH_P_IPV6);
372 	skb->dev = dev;
373 
374 	rcu_read_lock_bh();
375 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
376 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
377 	if (unlikely(!neigh))
378 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
379 	if (!IS_ERR(neigh)) {
380 		ret = dst_neigh_output(dst, neigh, skb);
381 		rcu_read_unlock_bh();
382 		return ret;
383 	}
384 	rcu_read_unlock_bh();
385 
386 	IP6_INC_STATS(dev_net(dst->dev),
387 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
388 	kfree_skb(skb);
389 	return -EINVAL;
390 }
391 
392 /* modelled after ip6_output */
393 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
394 {
395 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
396 			    net, sk, skb, NULL, skb_dst(skb)->dev,
397 			    vrf_finish_output6,
398 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
399 }
400 
401 /* set dst on skb to send packet to us via dev_xmit path. Allows
402  * packet to go through device based features such as qdisc, netfilter
403  * hooks and packet sockets with skb->dev set to vrf device.
404  */
405 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
406 				   struct sock *sk,
407 				   struct sk_buff *skb)
408 {
409 	struct net_vrf *vrf = netdev_priv(vrf_dev);
410 	struct dst_entry *dst = NULL;
411 	struct rt6_info *rt6;
412 
413 	/* don't divert link scope packets */
414 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
415 		return skb;
416 
417 	rcu_read_lock();
418 
419 	rt6 = rcu_dereference(vrf->rt6);
420 	if (likely(rt6)) {
421 		dst = &rt6->dst;
422 		dst_hold(dst);
423 	}
424 
425 	rcu_read_unlock();
426 
427 	if (unlikely(!dst)) {
428 		vrf_tx_error(vrf_dev, skb);
429 		return NULL;
430 	}
431 
432 	skb_dst_drop(skb);
433 	skb_dst_set(skb, dst);
434 
435 	return skb;
436 }
437 
438 /* holding rtnl */
439 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
440 {
441 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
442 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
443 	struct net *net = dev_net(dev);
444 	struct dst_entry *dst;
445 
446 	RCU_INIT_POINTER(vrf->rt6, NULL);
447 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
448 	synchronize_rcu();
449 
450 	/* move dev in dst's to loopback so this VRF device can be deleted
451 	 * - based on dst_ifdown
452 	 */
453 	if (rt6) {
454 		dst = &rt6->dst;
455 		dev_put(dst->dev);
456 		dst->dev = net->loopback_dev;
457 		dev_hold(dst->dev);
458 		dst_release(dst);
459 	}
460 
461 	if (rt6_local) {
462 		if (rt6_local->rt6i_idev)
463 			in6_dev_put(rt6_local->rt6i_idev);
464 
465 		dst = &rt6_local->dst;
466 		dev_put(dst->dev);
467 		dst->dev = net->loopback_dev;
468 		dev_hold(dst->dev);
469 		dst_release(dst);
470 	}
471 }
472 
473 static int vrf_rt6_create(struct net_device *dev)
474 {
475 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
476 	struct net_vrf *vrf = netdev_priv(dev);
477 	struct net *net = dev_net(dev);
478 	struct fib6_table *rt6i_table;
479 	struct rt6_info *rt6, *rt6_local;
480 	int rc = -ENOMEM;
481 
482 	/* IPv6 can be CONFIG enabled and then disabled runtime */
483 	if (!ipv6_mod_enabled())
484 		return 0;
485 
486 	rt6i_table = fib6_new_table(net, vrf->tb_id);
487 	if (!rt6i_table)
488 		goto out;
489 
490 	/* create a dst for routing packets out a VRF device */
491 	rt6 = ip6_dst_alloc(net, dev, flags);
492 	if (!rt6)
493 		goto out;
494 
495 	dst_hold(&rt6->dst);
496 
497 	rt6->rt6i_table = rt6i_table;
498 	rt6->dst.output	= vrf_output6;
499 
500 	/* create a dst for local routing - packets sent locally
501 	 * to local address via the VRF device as a loopback
502 	 */
503 	rt6_local = ip6_dst_alloc(net, dev, flags);
504 	if (!rt6_local) {
505 		dst_release(&rt6->dst);
506 		goto out;
507 	}
508 
509 	dst_hold(&rt6_local->dst);
510 
511 	rt6_local->rt6i_idev  = in6_dev_get(dev);
512 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
513 	rt6_local->rt6i_table = rt6i_table;
514 	rt6_local->dst.input  = ip6_input;
515 
516 	rcu_assign_pointer(vrf->rt6, rt6);
517 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
518 
519 	rc = 0;
520 out:
521 	return rc;
522 }
523 #else
524 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
525 				   struct sock *sk,
526 				   struct sk_buff *skb)
527 {
528 	return skb;
529 }
530 
531 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
532 {
533 }
534 
535 static int vrf_rt6_create(struct net_device *dev)
536 {
537 	return 0;
538 }
539 #endif
540 
541 /* modelled after ip_finish_output2 */
542 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
543 {
544 	struct dst_entry *dst = skb_dst(skb);
545 	struct rtable *rt = (struct rtable *)dst;
546 	struct net_device *dev = dst->dev;
547 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
548 	struct neighbour *neigh;
549 	u32 nexthop;
550 	int ret = -EINVAL;
551 
552 	nf_reset(skb);
553 
554 	/* Be paranoid, rather than too clever. */
555 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
556 		struct sk_buff *skb2;
557 
558 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
559 		if (!skb2) {
560 			ret = -ENOMEM;
561 			goto err;
562 		}
563 		if (skb->sk)
564 			skb_set_owner_w(skb2, skb->sk);
565 
566 		consume_skb(skb);
567 		skb = skb2;
568 	}
569 
570 	rcu_read_lock_bh();
571 
572 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
573 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
574 	if (unlikely(!neigh))
575 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
576 	if (!IS_ERR(neigh))
577 		ret = dst_neigh_output(dst, neigh, skb);
578 
579 	rcu_read_unlock_bh();
580 err:
581 	if (unlikely(ret < 0))
582 		vrf_tx_error(skb->dev, skb);
583 	return ret;
584 }
585 
586 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
587 {
588 	struct net_device *dev = skb_dst(skb)->dev;
589 
590 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
591 
592 	skb->dev = dev;
593 	skb->protocol = htons(ETH_P_IP);
594 
595 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
596 			    net, sk, skb, NULL, dev,
597 			    vrf_finish_output,
598 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
599 }
600 
601 /* set dst on skb to send packet to us via dev_xmit path. Allows
602  * packet to go through device based features such as qdisc, netfilter
603  * hooks and packet sockets with skb->dev set to vrf device.
604  */
605 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
606 				  struct sock *sk,
607 				  struct sk_buff *skb)
608 {
609 	struct net_vrf *vrf = netdev_priv(vrf_dev);
610 	struct dst_entry *dst = NULL;
611 	struct rtable *rth;
612 
613 	/* don't divert multicast */
614 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
615 		return skb;
616 
617 	rcu_read_lock();
618 
619 	rth = rcu_dereference(vrf->rth);
620 	if (likely(rth)) {
621 		dst = &rth->dst;
622 		dst_hold(dst);
623 	}
624 
625 	rcu_read_unlock();
626 
627 	if (unlikely(!dst)) {
628 		vrf_tx_error(vrf_dev, skb);
629 		return NULL;
630 	}
631 
632 	skb_dst_drop(skb);
633 	skb_dst_set(skb, dst);
634 
635 	return skb;
636 }
637 
638 /* called with rcu lock held */
639 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
640 				  struct sock *sk,
641 				  struct sk_buff *skb,
642 				  u16 proto)
643 {
644 	switch (proto) {
645 	case AF_INET:
646 		return vrf_ip_out(vrf_dev, sk, skb);
647 	case AF_INET6:
648 		return vrf_ip6_out(vrf_dev, sk, skb);
649 	}
650 
651 	return skb;
652 }
653 
654 /* holding rtnl */
655 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
656 {
657 	struct rtable *rth = rtnl_dereference(vrf->rth);
658 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
659 	struct net *net = dev_net(dev);
660 	struct dst_entry *dst;
661 
662 	RCU_INIT_POINTER(vrf->rth, NULL);
663 	RCU_INIT_POINTER(vrf->rth_local, NULL);
664 	synchronize_rcu();
665 
666 	/* move dev in dst's to loopback so this VRF device can be deleted
667 	 * - based on dst_ifdown
668 	 */
669 	if (rth) {
670 		dst = &rth->dst;
671 		dev_put(dst->dev);
672 		dst->dev = net->loopback_dev;
673 		dev_hold(dst->dev);
674 		dst_release(dst);
675 	}
676 
677 	if (rth_local) {
678 		dst = &rth_local->dst;
679 		dev_put(dst->dev);
680 		dst->dev = net->loopback_dev;
681 		dev_hold(dst->dev);
682 		dst_release(dst);
683 	}
684 }
685 
686 static int vrf_rtable_create(struct net_device *dev)
687 {
688 	struct net_vrf *vrf = netdev_priv(dev);
689 	struct rtable *rth, *rth_local;
690 
691 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
692 		return -ENOMEM;
693 
694 	/* create a dst for routing packets out through a VRF device */
695 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
696 	if (!rth)
697 		return -ENOMEM;
698 
699 	/* create a dst for local ingress routing - packets sent locally
700 	 * to local address via the VRF device as a loopback
701 	 */
702 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
703 	if (!rth_local) {
704 		dst_release(&rth->dst);
705 		return -ENOMEM;
706 	}
707 
708 	rth->dst.output	= vrf_output;
709 	rth->rt_table_id = vrf->tb_id;
710 
711 	rth_local->rt_table_id = vrf->tb_id;
712 
713 	rcu_assign_pointer(vrf->rth, rth);
714 	rcu_assign_pointer(vrf->rth_local, rth_local);
715 
716 	return 0;
717 }
718 
719 /**************************** device handling ********************/
720 
721 /* cycle interface to flush neighbor cache and move routes across tables */
722 static void cycle_netdev(struct net_device *dev)
723 {
724 	unsigned int flags = dev->flags;
725 	int ret;
726 
727 	if (!netif_running(dev))
728 		return;
729 
730 	ret = dev_change_flags(dev, flags & ~IFF_UP);
731 	if (ret >= 0)
732 		ret = dev_change_flags(dev, flags);
733 
734 	if (ret < 0) {
735 		netdev_err(dev,
736 			   "Failed to cycle device %s; route tables might be wrong!\n",
737 			   dev->name);
738 	}
739 }
740 
741 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
742 {
743 	int ret;
744 
745 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
746 	if (ret < 0)
747 		return ret;
748 
749 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
750 	cycle_netdev(port_dev);
751 
752 	return 0;
753 }
754 
755 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
756 {
757 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
758 		return -EINVAL;
759 
760 	return do_vrf_add_slave(dev, port_dev);
761 }
762 
763 /* inverse of do_vrf_add_slave */
764 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
765 {
766 	netdev_upper_dev_unlink(port_dev, dev);
767 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
768 
769 	cycle_netdev(port_dev);
770 
771 	return 0;
772 }
773 
774 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
775 {
776 	return do_vrf_del_slave(dev, port_dev);
777 }
778 
779 static void vrf_dev_uninit(struct net_device *dev)
780 {
781 	struct net_vrf *vrf = netdev_priv(dev);
782 	struct net_device *port_dev;
783 	struct list_head *iter;
784 
785 	vrf_rtable_release(dev, vrf);
786 	vrf_rt6_release(dev, vrf);
787 
788 	netdev_for_each_lower_dev(dev, port_dev, iter)
789 		vrf_del_slave(dev, port_dev);
790 
791 	free_percpu(dev->dstats);
792 	dev->dstats = NULL;
793 }
794 
795 static int vrf_dev_init(struct net_device *dev)
796 {
797 	struct net_vrf *vrf = netdev_priv(dev);
798 
799 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
800 	if (!dev->dstats)
801 		goto out_nomem;
802 
803 	/* create the default dst which points back to us */
804 	if (vrf_rtable_create(dev) != 0)
805 		goto out_stats;
806 
807 	if (vrf_rt6_create(dev) != 0)
808 		goto out_rth;
809 
810 	dev->flags = IFF_MASTER | IFF_NOARP;
811 
812 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
813 	dev->mtu = 64 * 1024;
814 
815 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
816 	dev->operstate = IF_OPER_UP;
817 	netdev_lockdep_set_classes(dev);
818 	return 0;
819 
820 out_rth:
821 	vrf_rtable_release(dev, vrf);
822 out_stats:
823 	free_percpu(dev->dstats);
824 	dev->dstats = NULL;
825 out_nomem:
826 	return -ENOMEM;
827 }
828 
829 static const struct net_device_ops vrf_netdev_ops = {
830 	.ndo_init		= vrf_dev_init,
831 	.ndo_uninit		= vrf_dev_uninit,
832 	.ndo_start_xmit		= vrf_xmit,
833 	.ndo_get_stats64	= vrf_get_stats64,
834 	.ndo_add_slave		= vrf_add_slave,
835 	.ndo_del_slave		= vrf_del_slave,
836 };
837 
838 static u32 vrf_fib_table(const struct net_device *dev)
839 {
840 	struct net_vrf *vrf = netdev_priv(dev);
841 
842 	return vrf->tb_id;
843 }
844 
845 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
846 {
847 	return 0;
848 }
849 
850 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
851 				      struct sk_buff *skb,
852 				      struct net_device *dev)
853 {
854 	struct net *net = dev_net(dev);
855 
856 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
857 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
858 
859 	return skb;
860 }
861 
862 #if IS_ENABLED(CONFIG_IPV6)
863 /* neighbor handling is done with actual device; do not want
864  * to flip skb->dev for those ndisc packets. This really fails
865  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
866  * a start.
867  */
868 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
869 {
870 	const struct ipv6hdr *iph = ipv6_hdr(skb);
871 	bool rc = false;
872 
873 	if (iph->nexthdr == NEXTHDR_ICMP) {
874 		const struct icmp6hdr *icmph;
875 		struct icmp6hdr _icmph;
876 
877 		icmph = skb_header_pointer(skb, sizeof(*iph),
878 					   sizeof(_icmph), &_icmph);
879 		if (!icmph)
880 			goto out;
881 
882 		switch (icmph->icmp6_type) {
883 		case NDISC_ROUTER_SOLICITATION:
884 		case NDISC_ROUTER_ADVERTISEMENT:
885 		case NDISC_NEIGHBOUR_SOLICITATION:
886 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
887 		case NDISC_REDIRECT:
888 			rc = true;
889 			break;
890 		}
891 	}
892 
893 out:
894 	return rc;
895 }
896 
897 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
898 					     const struct net_device *dev,
899 					     struct flowi6 *fl6,
900 					     int ifindex,
901 					     int flags)
902 {
903 	struct net_vrf *vrf = netdev_priv(dev);
904 	struct fib6_table *table = NULL;
905 	struct rt6_info *rt6;
906 
907 	rcu_read_lock();
908 
909 	/* fib6_table does not have a refcnt and can not be freed */
910 	rt6 = rcu_dereference(vrf->rt6);
911 	if (likely(rt6))
912 		table = rt6->rt6i_table;
913 
914 	rcu_read_unlock();
915 
916 	if (!table)
917 		return NULL;
918 
919 	return ip6_pol_route(net, table, ifindex, fl6, flags);
920 }
921 
922 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
923 			      int ifindex)
924 {
925 	const struct ipv6hdr *iph = ipv6_hdr(skb);
926 	struct flowi6 fl6 = {
927 		.daddr          = iph->daddr,
928 		.saddr          = iph->saddr,
929 		.flowlabel      = ip6_flowinfo(iph),
930 		.flowi6_mark    = skb->mark,
931 		.flowi6_proto   = iph->nexthdr,
932 		.flowi6_iif     = ifindex,
933 	};
934 	struct net *net = dev_net(vrf_dev);
935 	struct rt6_info *rt6;
936 
937 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
938 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
939 	if (unlikely(!rt6))
940 		return;
941 
942 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
943 		return;
944 
945 	skb_dst_set(skb, &rt6->dst);
946 }
947 
948 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
949 				   struct sk_buff *skb)
950 {
951 	int orig_iif = skb->skb_iif;
952 	bool need_strict;
953 
954 	/* loopback traffic; do not push through packet taps again.
955 	 * Reset pkt_type for upper layers to process skb
956 	 */
957 	if (skb->pkt_type == PACKET_LOOPBACK) {
958 		skb->dev = vrf_dev;
959 		skb->skb_iif = vrf_dev->ifindex;
960 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
961 		skb->pkt_type = PACKET_HOST;
962 		goto out;
963 	}
964 
965 	/* if packet is NDISC or addressed to multicast or link-local
966 	 * then keep the ingress interface
967 	 */
968 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
969 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
970 		skb->dev = vrf_dev;
971 		skb->skb_iif = vrf_dev->ifindex;
972 
973 		skb_push(skb, skb->mac_len);
974 		dev_queue_xmit_nit(skb, vrf_dev);
975 		skb_pull(skb, skb->mac_len);
976 
977 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
978 	}
979 
980 	if (need_strict)
981 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
982 
983 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
984 out:
985 	return skb;
986 }
987 
988 #else
989 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
990 				   struct sk_buff *skb)
991 {
992 	return skb;
993 }
994 #endif
995 
996 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
997 				  struct sk_buff *skb)
998 {
999 	skb->dev = vrf_dev;
1000 	skb->skb_iif = vrf_dev->ifindex;
1001 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1002 
1003 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1004 		goto out;
1005 
1006 	/* loopback traffic; do not push through packet taps again.
1007 	 * Reset pkt_type for upper layers to process skb
1008 	 */
1009 	if (skb->pkt_type == PACKET_LOOPBACK) {
1010 		skb->pkt_type = PACKET_HOST;
1011 		goto out;
1012 	}
1013 
1014 	skb_push(skb, skb->mac_len);
1015 	dev_queue_xmit_nit(skb, vrf_dev);
1016 	skb_pull(skb, skb->mac_len);
1017 
1018 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1019 out:
1020 	return skb;
1021 }
1022 
1023 /* called with rcu lock held */
1024 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1025 				  struct sk_buff *skb,
1026 				  u16 proto)
1027 {
1028 	switch (proto) {
1029 	case AF_INET:
1030 		return vrf_ip_rcv(vrf_dev, skb);
1031 	case AF_INET6:
1032 		return vrf_ip6_rcv(vrf_dev, skb);
1033 	}
1034 
1035 	return skb;
1036 }
1037 
1038 #if IS_ENABLED(CONFIG_IPV6)
1039 /* send to link-local or multicast address via interface enslaved to
1040  * VRF device. Force lookup to VRF table without changing flow struct
1041  */
1042 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1043 					      struct flowi6 *fl6)
1044 {
1045 	struct net *net = dev_net(dev);
1046 	int flags = RT6_LOOKUP_F_IFACE;
1047 	struct dst_entry *dst = NULL;
1048 	struct rt6_info *rt;
1049 
1050 	/* VRF device does not have a link-local address and
1051 	 * sending packets to link-local or mcast addresses over
1052 	 * a VRF device does not make sense
1053 	 */
1054 	if (fl6->flowi6_oif == dev->ifindex) {
1055 		dst = &net->ipv6.ip6_null_entry->dst;
1056 		dst_hold(dst);
1057 		return dst;
1058 	}
1059 
1060 	if (!ipv6_addr_any(&fl6->saddr))
1061 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1062 
1063 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1064 	if (rt)
1065 		dst = &rt->dst;
1066 
1067 	return dst;
1068 }
1069 #endif
1070 
1071 static const struct l3mdev_ops vrf_l3mdev_ops = {
1072 	.l3mdev_fib_table	= vrf_fib_table,
1073 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1074 	.l3mdev_l3_out		= vrf_l3_out,
1075 #if IS_ENABLED(CONFIG_IPV6)
1076 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1077 #endif
1078 };
1079 
1080 static void vrf_get_drvinfo(struct net_device *dev,
1081 			    struct ethtool_drvinfo *info)
1082 {
1083 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1084 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1085 }
1086 
1087 static const struct ethtool_ops vrf_ethtool_ops = {
1088 	.get_drvinfo	= vrf_get_drvinfo,
1089 };
1090 
1091 static inline size_t vrf_fib_rule_nl_size(void)
1092 {
1093 	size_t sz;
1094 
1095 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1096 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1097 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1098 
1099 	return sz;
1100 }
1101 
1102 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1103 {
1104 	struct fib_rule_hdr *frh;
1105 	struct nlmsghdr *nlh;
1106 	struct sk_buff *skb;
1107 	int err;
1108 
1109 	if (family == AF_INET6 && !ipv6_mod_enabled())
1110 		return 0;
1111 
1112 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1113 	if (!skb)
1114 		return -ENOMEM;
1115 
1116 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1117 	if (!nlh)
1118 		goto nla_put_failure;
1119 
1120 	/* rule only needs to appear once */
1121 	nlh->nlmsg_flags &= NLM_F_EXCL;
1122 
1123 	frh = nlmsg_data(nlh);
1124 	memset(frh, 0, sizeof(*frh));
1125 	frh->family = family;
1126 	frh->action = FR_ACT_TO_TBL;
1127 
1128 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1129 		goto nla_put_failure;
1130 
1131 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1132 		goto nla_put_failure;
1133 
1134 	nlmsg_end(skb, nlh);
1135 
1136 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1137 	skb->sk = dev_net(dev)->rtnl;
1138 	if (add_it) {
1139 		err = fib_nl_newrule(skb, nlh);
1140 		if (err == -EEXIST)
1141 			err = 0;
1142 	} else {
1143 		err = fib_nl_delrule(skb, nlh);
1144 		if (err == -ENOENT)
1145 			err = 0;
1146 	}
1147 	nlmsg_free(skb);
1148 
1149 	return err;
1150 
1151 nla_put_failure:
1152 	nlmsg_free(skb);
1153 
1154 	return -EMSGSIZE;
1155 }
1156 
1157 static int vrf_add_fib_rules(const struct net_device *dev)
1158 {
1159 	int err;
1160 
1161 	err = vrf_fib_rule(dev, AF_INET,  true);
1162 	if (err < 0)
1163 		goto out_err;
1164 
1165 	err = vrf_fib_rule(dev, AF_INET6, true);
1166 	if (err < 0)
1167 		goto ipv6_err;
1168 
1169 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1170 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1171 	if (err < 0)
1172 		goto ipmr_err;
1173 #endif
1174 
1175 	return 0;
1176 
1177 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1178 ipmr_err:
1179 	vrf_fib_rule(dev, AF_INET6,  false);
1180 #endif
1181 
1182 ipv6_err:
1183 	vrf_fib_rule(dev, AF_INET,  false);
1184 
1185 out_err:
1186 	netdev_err(dev, "Failed to add FIB rules.\n");
1187 	return err;
1188 }
1189 
1190 static void vrf_setup(struct net_device *dev)
1191 {
1192 	ether_setup(dev);
1193 
1194 	/* Initialize the device structure. */
1195 	dev->netdev_ops = &vrf_netdev_ops;
1196 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1197 	dev->ethtool_ops = &vrf_ethtool_ops;
1198 	dev->destructor = free_netdev;
1199 
1200 	/* Fill in device structure with ethernet-generic values. */
1201 	eth_hw_addr_random(dev);
1202 
1203 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1204 	dev->features |= NETIF_F_LLTX;
1205 
1206 	/* don't allow vrf devices to change network namespaces. */
1207 	dev->features |= NETIF_F_NETNS_LOCAL;
1208 
1209 	/* does not make sense for a VLAN to be added to a vrf device */
1210 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1211 
1212 	/* enable offload features */
1213 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1214 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1215 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1216 
1217 	dev->hw_features = dev->features;
1218 	dev->hw_enc_features = dev->features;
1219 
1220 	/* default to no qdisc; user can add if desired */
1221 	dev->priv_flags |= IFF_NO_QUEUE;
1222 }
1223 
1224 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1225 {
1226 	if (tb[IFLA_ADDRESS]) {
1227 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1228 			return -EINVAL;
1229 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1230 			return -EADDRNOTAVAIL;
1231 	}
1232 	return 0;
1233 }
1234 
1235 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1236 {
1237 	unregister_netdevice_queue(dev, head);
1238 }
1239 
1240 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1241 		       struct nlattr *tb[], struct nlattr *data[])
1242 {
1243 	struct net_vrf *vrf = netdev_priv(dev);
1244 	int err;
1245 
1246 	if (!data || !data[IFLA_VRF_TABLE])
1247 		return -EINVAL;
1248 
1249 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1250 
1251 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1252 
1253 	err = register_netdevice(dev);
1254 	if (err)
1255 		goto out;
1256 
1257 	if (add_fib_rules) {
1258 		err = vrf_add_fib_rules(dev);
1259 		if (err) {
1260 			unregister_netdevice(dev);
1261 			goto out;
1262 		}
1263 		add_fib_rules = false;
1264 	}
1265 
1266 out:
1267 	return err;
1268 }
1269 
1270 static size_t vrf_nl_getsize(const struct net_device *dev)
1271 {
1272 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1273 }
1274 
1275 static int vrf_fillinfo(struct sk_buff *skb,
1276 			const struct net_device *dev)
1277 {
1278 	struct net_vrf *vrf = netdev_priv(dev);
1279 
1280 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1281 }
1282 
1283 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1284 				 const struct net_device *slave_dev)
1285 {
1286 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1287 }
1288 
1289 static int vrf_fill_slave_info(struct sk_buff *skb,
1290 			       const struct net_device *vrf_dev,
1291 			       const struct net_device *slave_dev)
1292 {
1293 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1294 
1295 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1296 		return -EMSGSIZE;
1297 
1298 	return 0;
1299 }
1300 
1301 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1302 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1303 };
1304 
1305 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1306 	.kind		= DRV_NAME,
1307 	.priv_size	= sizeof(struct net_vrf),
1308 
1309 	.get_size	= vrf_nl_getsize,
1310 	.policy		= vrf_nl_policy,
1311 	.validate	= vrf_validate,
1312 	.fill_info	= vrf_fillinfo,
1313 
1314 	.get_slave_size  = vrf_get_slave_size,
1315 	.fill_slave_info = vrf_fill_slave_info,
1316 
1317 	.newlink	= vrf_newlink,
1318 	.dellink	= vrf_dellink,
1319 	.setup		= vrf_setup,
1320 	.maxtype	= IFLA_VRF_MAX,
1321 };
1322 
1323 static int vrf_device_event(struct notifier_block *unused,
1324 			    unsigned long event, void *ptr)
1325 {
1326 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1327 
1328 	/* only care about unregister events to drop slave references */
1329 	if (event == NETDEV_UNREGISTER) {
1330 		struct net_device *vrf_dev;
1331 
1332 		if (!netif_is_l3_slave(dev))
1333 			goto out;
1334 
1335 		vrf_dev = netdev_master_upper_dev_get(dev);
1336 		vrf_del_slave(vrf_dev, dev);
1337 	}
1338 out:
1339 	return NOTIFY_DONE;
1340 }
1341 
1342 static struct notifier_block vrf_notifier_block __read_mostly = {
1343 	.notifier_call = vrf_device_event,
1344 };
1345 
1346 static int __init vrf_init_module(void)
1347 {
1348 	int rc;
1349 
1350 	register_netdevice_notifier(&vrf_notifier_block);
1351 
1352 	rc = rtnl_link_register(&vrf_link_ops);
1353 	if (rc < 0)
1354 		goto error;
1355 
1356 	return 0;
1357 
1358 error:
1359 	unregister_netdevice_notifier(&vrf_notifier_block);
1360 	return rc;
1361 }
1362 
1363 module_init(vrf_init_module);
1364 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1365 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1366 MODULE_LICENSE("GPL");
1367 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1368 MODULE_VERSION(DRV_VERSION);
1369