1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ip.h> 17 #include <linux/init.h> 18 #include <linux/moduleparam.h> 19 #include <linux/netfilter.h> 20 #include <linux/rtnetlink.h> 21 #include <net/rtnetlink.h> 22 #include <linux/u64_stats_sync.h> 23 #include <linux/hashtable.h> 24 25 #include <linux/inetdevice.h> 26 #include <net/arp.h> 27 #include <net/ip.h> 28 #include <net/ip_fib.h> 29 #include <net/ip6_fib.h> 30 #include <net/ip6_route.h> 31 #include <net/route.h> 32 #include <net/addrconf.h> 33 #include <net/l3mdev.h> 34 #include <net/fib_rules.h> 35 #include <net/netns/generic.h> 36 37 #define DRV_NAME "vrf" 38 #define DRV_VERSION "1.0" 39 40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 41 42 static unsigned int vrf_net_id; 43 44 struct net_vrf { 45 struct rtable __rcu *rth; 46 struct rt6_info __rcu *rt6; 47 #if IS_ENABLED(CONFIG_IPV6) 48 struct fib6_table *fib6_table; 49 #endif 50 u32 tb_id; 51 }; 52 53 struct pcpu_dstats { 54 u64 tx_pkts; 55 u64 tx_bytes; 56 u64 tx_drps; 57 u64 rx_pkts; 58 u64 rx_bytes; 59 u64 rx_drps; 60 struct u64_stats_sync syncp; 61 }; 62 63 static void vrf_rx_stats(struct net_device *dev, int len) 64 { 65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 66 67 u64_stats_update_begin(&dstats->syncp); 68 dstats->rx_pkts++; 69 dstats->rx_bytes += len; 70 u64_stats_update_end(&dstats->syncp); 71 } 72 73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 74 { 75 vrf_dev->stats.tx_errors++; 76 kfree_skb(skb); 77 } 78 79 static void vrf_get_stats64(struct net_device *dev, 80 struct rtnl_link_stats64 *stats) 81 { 82 int i; 83 84 for_each_possible_cpu(i) { 85 const struct pcpu_dstats *dstats; 86 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 87 unsigned int start; 88 89 dstats = per_cpu_ptr(dev->dstats, i); 90 do { 91 start = u64_stats_fetch_begin_irq(&dstats->syncp); 92 tbytes = dstats->tx_bytes; 93 tpkts = dstats->tx_pkts; 94 tdrops = dstats->tx_drps; 95 rbytes = dstats->rx_bytes; 96 rpkts = dstats->rx_pkts; 97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 98 stats->tx_bytes += tbytes; 99 stats->tx_packets += tpkts; 100 stats->tx_dropped += tdrops; 101 stats->rx_bytes += rbytes; 102 stats->rx_packets += rpkts; 103 } 104 } 105 106 /* by default VRF devices do not have a qdisc and are expected 107 * to be created with only a single queue. 108 */ 109 static bool qdisc_tx_is_default(const struct net_device *dev) 110 { 111 struct netdev_queue *txq; 112 struct Qdisc *qdisc; 113 114 if (dev->num_tx_queues > 1) 115 return false; 116 117 txq = netdev_get_tx_queue(dev, 0); 118 qdisc = rcu_access_pointer(txq->qdisc); 119 120 return !qdisc->enqueue; 121 } 122 123 /* Local traffic destined to local address. Reinsert the packet to rx 124 * path, similar to loopback handling. 125 */ 126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 127 struct dst_entry *dst) 128 { 129 int len = skb->len; 130 131 skb_orphan(skb); 132 133 skb_dst_set(skb, dst); 134 135 /* set pkt_type to avoid skb hitting packet taps twice - 136 * once on Tx and again in Rx processing 137 */ 138 skb->pkt_type = PACKET_LOOPBACK; 139 140 skb->protocol = eth_type_trans(skb, dev); 141 142 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 143 vrf_rx_stats(dev, len); 144 else 145 this_cpu_inc(dev->dstats->rx_drps); 146 147 return NETDEV_TX_OK; 148 } 149 150 #if IS_ENABLED(CONFIG_IPV6) 151 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 152 struct sk_buff *skb) 153 { 154 int err; 155 156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 157 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 158 159 if (likely(err == 1)) 160 err = dst_output(net, sk, skb); 161 162 return err; 163 } 164 165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 166 struct net_device *dev) 167 { 168 const struct ipv6hdr *iph; 169 struct net *net = dev_net(skb->dev); 170 struct flowi6 fl6; 171 int ret = NET_XMIT_DROP; 172 struct dst_entry *dst; 173 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 174 175 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) 176 goto err; 177 178 iph = ipv6_hdr(skb); 179 180 memset(&fl6, 0, sizeof(fl6)); 181 /* needed to match OIF rule */ 182 fl6.flowi6_oif = dev->ifindex; 183 fl6.flowi6_iif = LOOPBACK_IFINDEX; 184 fl6.daddr = iph->daddr; 185 fl6.saddr = iph->saddr; 186 fl6.flowlabel = ip6_flowinfo(iph); 187 fl6.flowi6_mark = skb->mark; 188 fl6.flowi6_proto = iph->nexthdr; 189 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF; 190 191 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); 192 if (IS_ERR(dst) || dst == dst_null) 193 goto err; 194 195 skb_dst_drop(skb); 196 197 /* if dst.dev is loopback or the VRF device again this is locally 198 * originated traffic destined to a local address. Short circuit 199 * to Rx path 200 */ 201 if (dst->dev == dev) 202 return vrf_local_xmit(skb, dev, dst); 203 204 skb_dst_set(skb, dst); 205 206 /* strip the ethernet header added for pass through VRF device */ 207 __skb_pull(skb, skb_network_offset(skb)); 208 209 ret = vrf_ip6_local_out(net, skb->sk, skb); 210 if (unlikely(net_xmit_eval(ret))) 211 dev->stats.tx_errors++; 212 else 213 ret = NET_XMIT_SUCCESS; 214 215 return ret; 216 err: 217 vrf_tx_error(dev, skb); 218 return NET_XMIT_DROP; 219 } 220 #else 221 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 222 struct net_device *dev) 223 { 224 vrf_tx_error(dev, skb); 225 return NET_XMIT_DROP; 226 } 227 #endif 228 229 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 230 static int vrf_ip_local_out(struct net *net, struct sock *sk, 231 struct sk_buff *skb) 232 { 233 int err; 234 235 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 236 skb, NULL, skb_dst(skb)->dev, dst_output); 237 if (likely(err == 1)) 238 err = dst_output(net, sk, skb); 239 240 return err; 241 } 242 243 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 244 struct net_device *vrf_dev) 245 { 246 struct iphdr *ip4h; 247 int ret = NET_XMIT_DROP; 248 struct flowi4 fl4; 249 struct net *net = dev_net(vrf_dev); 250 struct rtable *rt; 251 252 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) 253 goto err; 254 255 ip4h = ip_hdr(skb); 256 257 memset(&fl4, 0, sizeof(fl4)); 258 /* needed to match OIF rule */ 259 fl4.flowi4_oif = vrf_dev->ifindex; 260 fl4.flowi4_iif = LOOPBACK_IFINDEX; 261 fl4.flowi4_tos = RT_TOS(ip4h->tos); 262 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF; 263 fl4.flowi4_proto = ip4h->protocol; 264 fl4.daddr = ip4h->daddr; 265 fl4.saddr = ip4h->saddr; 266 267 rt = ip_route_output_flow(net, &fl4, NULL); 268 if (IS_ERR(rt)) 269 goto err; 270 271 skb_dst_drop(skb); 272 273 /* if dst.dev is loopback or the VRF device again this is locally 274 * originated traffic destined to a local address. Short circuit 275 * to Rx path 276 */ 277 if (rt->dst.dev == vrf_dev) 278 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 279 280 skb_dst_set(skb, &rt->dst); 281 282 /* strip the ethernet header added for pass through VRF device */ 283 __skb_pull(skb, skb_network_offset(skb)); 284 285 if (!ip4h->saddr) { 286 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 287 RT_SCOPE_LINK); 288 } 289 290 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 291 if (unlikely(net_xmit_eval(ret))) 292 vrf_dev->stats.tx_errors++; 293 else 294 ret = NET_XMIT_SUCCESS; 295 296 out: 297 return ret; 298 err: 299 vrf_tx_error(vrf_dev, skb); 300 goto out; 301 } 302 303 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 304 { 305 switch (skb->protocol) { 306 case htons(ETH_P_IP): 307 return vrf_process_v4_outbound(skb, dev); 308 case htons(ETH_P_IPV6): 309 return vrf_process_v6_outbound(skb, dev); 310 default: 311 vrf_tx_error(dev, skb); 312 return NET_XMIT_DROP; 313 } 314 } 315 316 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 317 { 318 int len = skb->len; 319 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 320 321 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 322 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 323 324 u64_stats_update_begin(&dstats->syncp); 325 dstats->tx_pkts++; 326 dstats->tx_bytes += len; 327 u64_stats_update_end(&dstats->syncp); 328 } else { 329 this_cpu_inc(dev->dstats->tx_drps); 330 } 331 332 return ret; 333 } 334 335 static int vrf_finish_direct(struct net *net, struct sock *sk, 336 struct sk_buff *skb) 337 { 338 struct net_device *vrf_dev = skb->dev; 339 340 if (!list_empty(&vrf_dev->ptype_all) && 341 likely(skb_headroom(skb) >= ETH_HLEN)) { 342 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 343 344 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 345 eth_zero_addr(eth->h_dest); 346 eth->h_proto = skb->protocol; 347 348 rcu_read_lock_bh(); 349 dev_queue_xmit_nit(skb, vrf_dev); 350 rcu_read_unlock_bh(); 351 352 skb_pull(skb, ETH_HLEN); 353 } 354 355 return 1; 356 } 357 358 #if IS_ENABLED(CONFIG_IPV6) 359 /* modelled after ip6_finish_output2 */ 360 static int vrf_finish_output6(struct net *net, struct sock *sk, 361 struct sk_buff *skb) 362 { 363 struct dst_entry *dst = skb_dst(skb); 364 struct net_device *dev = dst->dev; 365 const struct in6_addr *nexthop; 366 struct neighbour *neigh; 367 int ret; 368 369 nf_reset_ct(skb); 370 371 skb->protocol = htons(ETH_P_IPV6); 372 skb->dev = dev; 373 374 rcu_read_lock_bh(); 375 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 376 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 377 if (unlikely(!neigh)) 378 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 379 if (!IS_ERR(neigh)) { 380 sock_confirm_neigh(skb, neigh); 381 ret = neigh_output(neigh, skb, false); 382 rcu_read_unlock_bh(); 383 return ret; 384 } 385 rcu_read_unlock_bh(); 386 387 IP6_INC_STATS(dev_net(dst->dev), 388 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 389 kfree_skb(skb); 390 return -EINVAL; 391 } 392 393 /* modelled after ip6_output */ 394 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 395 { 396 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 397 net, sk, skb, NULL, skb_dst(skb)->dev, 398 vrf_finish_output6, 399 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 400 } 401 402 /* set dst on skb to send packet to us via dev_xmit path. Allows 403 * packet to go through device based features such as qdisc, netfilter 404 * hooks and packet sockets with skb->dev set to vrf device. 405 */ 406 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 407 struct sk_buff *skb) 408 { 409 struct net_vrf *vrf = netdev_priv(vrf_dev); 410 struct dst_entry *dst = NULL; 411 struct rt6_info *rt6; 412 413 rcu_read_lock(); 414 415 rt6 = rcu_dereference(vrf->rt6); 416 if (likely(rt6)) { 417 dst = &rt6->dst; 418 dst_hold(dst); 419 } 420 421 rcu_read_unlock(); 422 423 if (unlikely(!dst)) { 424 vrf_tx_error(vrf_dev, skb); 425 return NULL; 426 } 427 428 skb_dst_drop(skb); 429 skb_dst_set(skb, dst); 430 431 return skb; 432 } 433 434 static int vrf_output6_direct(struct net *net, struct sock *sk, 435 struct sk_buff *skb) 436 { 437 skb->protocol = htons(ETH_P_IPV6); 438 439 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 440 net, sk, skb, NULL, skb->dev, 441 vrf_finish_direct, 442 !(IPCB(skb)->flags & IPSKB_REROUTED)); 443 } 444 445 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 446 struct sock *sk, 447 struct sk_buff *skb) 448 { 449 struct net *net = dev_net(vrf_dev); 450 int err; 451 452 skb->dev = vrf_dev; 453 454 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 455 skb, NULL, vrf_dev, vrf_output6_direct); 456 457 if (likely(err == 1)) 458 err = vrf_output6_direct(net, sk, skb); 459 460 /* reset skb device */ 461 if (likely(err == 1)) 462 nf_reset_ct(skb); 463 else 464 skb = NULL; 465 466 return skb; 467 } 468 469 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 470 struct sock *sk, 471 struct sk_buff *skb) 472 { 473 /* don't divert link scope packets */ 474 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 475 return skb; 476 477 if (qdisc_tx_is_default(vrf_dev) || 478 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 479 return vrf_ip6_out_direct(vrf_dev, sk, skb); 480 481 return vrf_ip6_out_redirect(vrf_dev, skb); 482 } 483 484 /* holding rtnl */ 485 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 486 { 487 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 488 struct net *net = dev_net(dev); 489 struct dst_entry *dst; 490 491 RCU_INIT_POINTER(vrf->rt6, NULL); 492 synchronize_rcu(); 493 494 /* move dev in dst's to loopback so this VRF device can be deleted 495 * - based on dst_ifdown 496 */ 497 if (rt6) { 498 dst = &rt6->dst; 499 dev_put(dst->dev); 500 dst->dev = net->loopback_dev; 501 dev_hold(dst->dev); 502 dst_release(dst); 503 } 504 } 505 506 static int vrf_rt6_create(struct net_device *dev) 507 { 508 int flags = DST_NOPOLICY | DST_NOXFRM; 509 struct net_vrf *vrf = netdev_priv(dev); 510 struct net *net = dev_net(dev); 511 struct rt6_info *rt6; 512 int rc = -ENOMEM; 513 514 /* IPv6 can be CONFIG enabled and then disabled runtime */ 515 if (!ipv6_mod_enabled()) 516 return 0; 517 518 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 519 if (!vrf->fib6_table) 520 goto out; 521 522 /* create a dst for routing packets out a VRF device */ 523 rt6 = ip6_dst_alloc(net, dev, flags); 524 if (!rt6) 525 goto out; 526 527 rt6->dst.output = vrf_output6; 528 529 rcu_assign_pointer(vrf->rt6, rt6); 530 531 rc = 0; 532 out: 533 return rc; 534 } 535 #else 536 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 537 struct sock *sk, 538 struct sk_buff *skb) 539 { 540 return skb; 541 } 542 543 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 544 { 545 } 546 547 static int vrf_rt6_create(struct net_device *dev) 548 { 549 return 0; 550 } 551 #endif 552 553 /* modelled after ip_finish_output2 */ 554 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 555 { 556 struct dst_entry *dst = skb_dst(skb); 557 struct rtable *rt = (struct rtable *)dst; 558 struct net_device *dev = dst->dev; 559 unsigned int hh_len = LL_RESERVED_SPACE(dev); 560 struct neighbour *neigh; 561 bool is_v6gw = false; 562 int ret = -EINVAL; 563 564 nf_reset_ct(skb); 565 566 /* Be paranoid, rather than too clever. */ 567 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 568 struct sk_buff *skb2; 569 570 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 571 if (!skb2) { 572 ret = -ENOMEM; 573 goto err; 574 } 575 if (skb->sk) 576 skb_set_owner_w(skb2, skb->sk); 577 578 consume_skb(skb); 579 skb = skb2; 580 } 581 582 rcu_read_lock_bh(); 583 584 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 585 if (!IS_ERR(neigh)) { 586 sock_confirm_neigh(skb, neigh); 587 /* if crossing protocols, can not use the cached header */ 588 ret = neigh_output(neigh, skb, is_v6gw); 589 rcu_read_unlock_bh(); 590 return ret; 591 } 592 593 rcu_read_unlock_bh(); 594 err: 595 vrf_tx_error(skb->dev, skb); 596 return ret; 597 } 598 599 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 600 { 601 struct net_device *dev = skb_dst(skb)->dev; 602 603 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 604 605 skb->dev = dev; 606 skb->protocol = htons(ETH_P_IP); 607 608 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 609 net, sk, skb, NULL, dev, 610 vrf_finish_output, 611 !(IPCB(skb)->flags & IPSKB_REROUTED)); 612 } 613 614 /* set dst on skb to send packet to us via dev_xmit path. Allows 615 * packet to go through device based features such as qdisc, netfilter 616 * hooks and packet sockets with skb->dev set to vrf device. 617 */ 618 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 619 struct sk_buff *skb) 620 { 621 struct net_vrf *vrf = netdev_priv(vrf_dev); 622 struct dst_entry *dst = NULL; 623 struct rtable *rth; 624 625 rcu_read_lock(); 626 627 rth = rcu_dereference(vrf->rth); 628 if (likely(rth)) { 629 dst = &rth->dst; 630 dst_hold(dst); 631 } 632 633 rcu_read_unlock(); 634 635 if (unlikely(!dst)) { 636 vrf_tx_error(vrf_dev, skb); 637 return NULL; 638 } 639 640 skb_dst_drop(skb); 641 skb_dst_set(skb, dst); 642 643 return skb; 644 } 645 646 static int vrf_output_direct(struct net *net, struct sock *sk, 647 struct sk_buff *skb) 648 { 649 skb->protocol = htons(ETH_P_IP); 650 651 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 652 net, sk, skb, NULL, skb->dev, 653 vrf_finish_direct, 654 !(IPCB(skb)->flags & IPSKB_REROUTED)); 655 } 656 657 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 658 struct sock *sk, 659 struct sk_buff *skb) 660 { 661 struct net *net = dev_net(vrf_dev); 662 int err; 663 664 skb->dev = vrf_dev; 665 666 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 667 skb, NULL, vrf_dev, vrf_output_direct); 668 669 if (likely(err == 1)) 670 err = vrf_output_direct(net, sk, skb); 671 672 /* reset skb device */ 673 if (likely(err == 1)) 674 nf_reset_ct(skb); 675 else 676 skb = NULL; 677 678 return skb; 679 } 680 681 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 682 struct sock *sk, 683 struct sk_buff *skb) 684 { 685 /* don't divert multicast or local broadcast */ 686 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 687 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 688 return skb; 689 690 if (qdisc_tx_is_default(vrf_dev) || 691 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 692 return vrf_ip_out_direct(vrf_dev, sk, skb); 693 694 return vrf_ip_out_redirect(vrf_dev, skb); 695 } 696 697 /* called with rcu lock held */ 698 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 699 struct sock *sk, 700 struct sk_buff *skb, 701 u16 proto) 702 { 703 switch (proto) { 704 case AF_INET: 705 return vrf_ip_out(vrf_dev, sk, skb); 706 case AF_INET6: 707 return vrf_ip6_out(vrf_dev, sk, skb); 708 } 709 710 return skb; 711 } 712 713 /* holding rtnl */ 714 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 715 { 716 struct rtable *rth = rtnl_dereference(vrf->rth); 717 struct net *net = dev_net(dev); 718 struct dst_entry *dst; 719 720 RCU_INIT_POINTER(vrf->rth, NULL); 721 synchronize_rcu(); 722 723 /* move dev in dst's to loopback so this VRF device can be deleted 724 * - based on dst_ifdown 725 */ 726 if (rth) { 727 dst = &rth->dst; 728 dev_put(dst->dev); 729 dst->dev = net->loopback_dev; 730 dev_hold(dst->dev); 731 dst_release(dst); 732 } 733 } 734 735 static int vrf_rtable_create(struct net_device *dev) 736 { 737 struct net_vrf *vrf = netdev_priv(dev); 738 struct rtable *rth; 739 740 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 741 return -ENOMEM; 742 743 /* create a dst for routing packets out through a VRF device */ 744 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1); 745 if (!rth) 746 return -ENOMEM; 747 748 rth->dst.output = vrf_output; 749 750 rcu_assign_pointer(vrf->rth, rth); 751 752 return 0; 753 } 754 755 /**************************** device handling ********************/ 756 757 /* cycle interface to flush neighbor cache and move routes across tables */ 758 static void cycle_netdev(struct net_device *dev, 759 struct netlink_ext_ack *extack) 760 { 761 unsigned int flags = dev->flags; 762 int ret; 763 764 if (!netif_running(dev)) 765 return; 766 767 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 768 if (ret >= 0) 769 ret = dev_change_flags(dev, flags, extack); 770 771 if (ret < 0) { 772 netdev_err(dev, 773 "Failed to cycle device %s; route tables might be wrong!\n", 774 dev->name); 775 } 776 } 777 778 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 779 struct netlink_ext_ack *extack) 780 { 781 int ret; 782 783 /* do not allow loopback device to be enslaved to a VRF. 784 * The vrf device acts as the loopback for the vrf. 785 */ 786 if (port_dev == dev_net(dev)->loopback_dev) { 787 NL_SET_ERR_MSG(extack, 788 "Can not enslave loopback device to a VRF"); 789 return -EOPNOTSUPP; 790 } 791 792 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 793 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 794 if (ret < 0) 795 goto err; 796 797 cycle_netdev(port_dev, extack); 798 799 return 0; 800 801 err: 802 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 803 return ret; 804 } 805 806 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 807 struct netlink_ext_ack *extack) 808 { 809 if (netif_is_l3_master(port_dev)) { 810 NL_SET_ERR_MSG(extack, 811 "Can not enslave an L3 master device to a VRF"); 812 return -EINVAL; 813 } 814 815 if (netif_is_l3_slave(port_dev)) 816 return -EINVAL; 817 818 return do_vrf_add_slave(dev, port_dev, extack); 819 } 820 821 /* inverse of do_vrf_add_slave */ 822 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 823 { 824 netdev_upper_dev_unlink(port_dev, dev); 825 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 826 827 cycle_netdev(port_dev, NULL); 828 829 return 0; 830 } 831 832 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 833 { 834 return do_vrf_del_slave(dev, port_dev); 835 } 836 837 static void vrf_dev_uninit(struct net_device *dev) 838 { 839 struct net_vrf *vrf = netdev_priv(dev); 840 841 vrf_rtable_release(dev, vrf); 842 vrf_rt6_release(dev, vrf); 843 844 free_percpu(dev->dstats); 845 dev->dstats = NULL; 846 } 847 848 static int vrf_dev_init(struct net_device *dev) 849 { 850 struct net_vrf *vrf = netdev_priv(dev); 851 852 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 853 if (!dev->dstats) 854 goto out_nomem; 855 856 /* create the default dst which points back to us */ 857 if (vrf_rtable_create(dev) != 0) 858 goto out_stats; 859 860 if (vrf_rt6_create(dev) != 0) 861 goto out_rth; 862 863 dev->flags = IFF_MASTER | IFF_NOARP; 864 865 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 866 dev->mtu = 64 * 1024; 867 868 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 869 dev->operstate = IF_OPER_UP; 870 netdev_lockdep_set_classes(dev); 871 return 0; 872 873 out_rth: 874 vrf_rtable_release(dev, vrf); 875 out_stats: 876 free_percpu(dev->dstats); 877 dev->dstats = NULL; 878 out_nomem: 879 return -ENOMEM; 880 } 881 882 static const struct net_device_ops vrf_netdev_ops = { 883 .ndo_init = vrf_dev_init, 884 .ndo_uninit = vrf_dev_uninit, 885 .ndo_start_xmit = vrf_xmit, 886 .ndo_set_mac_address = eth_mac_addr, 887 .ndo_get_stats64 = vrf_get_stats64, 888 .ndo_add_slave = vrf_add_slave, 889 .ndo_del_slave = vrf_del_slave, 890 }; 891 892 static u32 vrf_fib_table(const struct net_device *dev) 893 { 894 struct net_vrf *vrf = netdev_priv(dev); 895 896 return vrf->tb_id; 897 } 898 899 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 900 { 901 kfree_skb(skb); 902 return 0; 903 } 904 905 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 906 struct sk_buff *skb, 907 struct net_device *dev) 908 { 909 struct net *net = dev_net(dev); 910 911 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 912 skb = NULL; /* kfree_skb(skb) handled by nf code */ 913 914 return skb; 915 } 916 917 #if IS_ENABLED(CONFIG_IPV6) 918 /* neighbor handling is done with actual device; do not want 919 * to flip skb->dev for those ndisc packets. This really fails 920 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 921 * a start. 922 */ 923 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 924 { 925 const struct ipv6hdr *iph = ipv6_hdr(skb); 926 bool rc = false; 927 928 if (iph->nexthdr == NEXTHDR_ICMP) { 929 const struct icmp6hdr *icmph; 930 struct icmp6hdr _icmph; 931 932 icmph = skb_header_pointer(skb, sizeof(*iph), 933 sizeof(_icmph), &_icmph); 934 if (!icmph) 935 goto out; 936 937 switch (icmph->icmp6_type) { 938 case NDISC_ROUTER_SOLICITATION: 939 case NDISC_ROUTER_ADVERTISEMENT: 940 case NDISC_NEIGHBOUR_SOLICITATION: 941 case NDISC_NEIGHBOUR_ADVERTISEMENT: 942 case NDISC_REDIRECT: 943 rc = true; 944 break; 945 } 946 } 947 948 out: 949 return rc; 950 } 951 952 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 953 const struct net_device *dev, 954 struct flowi6 *fl6, 955 int ifindex, 956 const struct sk_buff *skb, 957 int flags) 958 { 959 struct net_vrf *vrf = netdev_priv(dev); 960 961 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 962 } 963 964 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 965 int ifindex) 966 { 967 const struct ipv6hdr *iph = ipv6_hdr(skb); 968 struct flowi6 fl6 = { 969 .flowi6_iif = ifindex, 970 .flowi6_mark = skb->mark, 971 .flowi6_proto = iph->nexthdr, 972 .daddr = iph->daddr, 973 .saddr = iph->saddr, 974 .flowlabel = ip6_flowinfo(iph), 975 }; 976 struct net *net = dev_net(vrf_dev); 977 struct rt6_info *rt6; 978 979 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 980 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 981 if (unlikely(!rt6)) 982 return; 983 984 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 985 return; 986 987 skb_dst_set(skb, &rt6->dst); 988 } 989 990 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 991 struct sk_buff *skb) 992 { 993 int orig_iif = skb->skb_iif; 994 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 995 bool is_ndisc = ipv6_ndisc_frame(skb); 996 997 /* loopback, multicast & non-ND link-local traffic; do not push through 998 * packet taps again. Reset pkt_type for upper layers to process skb 999 */ 1000 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 1001 skb->dev = vrf_dev; 1002 skb->skb_iif = vrf_dev->ifindex; 1003 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1004 if (skb->pkt_type == PACKET_LOOPBACK) 1005 skb->pkt_type = PACKET_HOST; 1006 goto out; 1007 } 1008 1009 /* if packet is NDISC then keep the ingress interface */ 1010 if (!is_ndisc) { 1011 vrf_rx_stats(vrf_dev, skb->len); 1012 skb->dev = vrf_dev; 1013 skb->skb_iif = vrf_dev->ifindex; 1014 1015 if (!list_empty(&vrf_dev->ptype_all)) { 1016 skb_push(skb, skb->mac_len); 1017 dev_queue_xmit_nit(skb, vrf_dev); 1018 skb_pull(skb, skb->mac_len); 1019 } 1020 1021 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1022 } 1023 1024 if (need_strict) 1025 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1026 1027 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1028 out: 1029 return skb; 1030 } 1031 1032 #else 1033 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1034 struct sk_buff *skb) 1035 { 1036 return skb; 1037 } 1038 #endif 1039 1040 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1041 struct sk_buff *skb) 1042 { 1043 skb->dev = vrf_dev; 1044 skb->skb_iif = vrf_dev->ifindex; 1045 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1046 1047 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1048 goto out; 1049 1050 /* loopback traffic; do not push through packet taps again. 1051 * Reset pkt_type for upper layers to process skb 1052 */ 1053 if (skb->pkt_type == PACKET_LOOPBACK) { 1054 skb->pkt_type = PACKET_HOST; 1055 goto out; 1056 } 1057 1058 vrf_rx_stats(vrf_dev, skb->len); 1059 1060 if (!list_empty(&vrf_dev->ptype_all)) { 1061 skb_push(skb, skb->mac_len); 1062 dev_queue_xmit_nit(skb, vrf_dev); 1063 skb_pull(skb, skb->mac_len); 1064 } 1065 1066 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1067 out: 1068 return skb; 1069 } 1070 1071 /* called with rcu lock held */ 1072 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1073 struct sk_buff *skb, 1074 u16 proto) 1075 { 1076 switch (proto) { 1077 case AF_INET: 1078 return vrf_ip_rcv(vrf_dev, skb); 1079 case AF_INET6: 1080 return vrf_ip6_rcv(vrf_dev, skb); 1081 } 1082 1083 return skb; 1084 } 1085 1086 #if IS_ENABLED(CONFIG_IPV6) 1087 /* send to link-local or multicast address via interface enslaved to 1088 * VRF device. Force lookup to VRF table without changing flow struct 1089 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1090 * is taken on the dst by this function. 1091 */ 1092 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1093 struct flowi6 *fl6) 1094 { 1095 struct net *net = dev_net(dev); 1096 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1097 struct dst_entry *dst = NULL; 1098 struct rt6_info *rt; 1099 1100 /* VRF device does not have a link-local address and 1101 * sending packets to link-local or mcast addresses over 1102 * a VRF device does not make sense 1103 */ 1104 if (fl6->flowi6_oif == dev->ifindex) { 1105 dst = &net->ipv6.ip6_null_entry->dst; 1106 return dst; 1107 } 1108 1109 if (!ipv6_addr_any(&fl6->saddr)) 1110 flags |= RT6_LOOKUP_F_HAS_SADDR; 1111 1112 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1113 if (rt) 1114 dst = &rt->dst; 1115 1116 return dst; 1117 } 1118 #endif 1119 1120 static const struct l3mdev_ops vrf_l3mdev_ops = { 1121 .l3mdev_fib_table = vrf_fib_table, 1122 .l3mdev_l3_rcv = vrf_l3_rcv, 1123 .l3mdev_l3_out = vrf_l3_out, 1124 #if IS_ENABLED(CONFIG_IPV6) 1125 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1126 #endif 1127 }; 1128 1129 static void vrf_get_drvinfo(struct net_device *dev, 1130 struct ethtool_drvinfo *info) 1131 { 1132 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1133 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1134 } 1135 1136 static const struct ethtool_ops vrf_ethtool_ops = { 1137 .get_drvinfo = vrf_get_drvinfo, 1138 }; 1139 1140 static inline size_t vrf_fib_rule_nl_size(void) 1141 { 1142 size_t sz; 1143 1144 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1145 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1146 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1147 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1148 1149 return sz; 1150 } 1151 1152 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1153 { 1154 struct fib_rule_hdr *frh; 1155 struct nlmsghdr *nlh; 1156 struct sk_buff *skb; 1157 int err; 1158 1159 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && 1160 !ipv6_mod_enabled()) 1161 return 0; 1162 1163 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1164 if (!skb) 1165 return -ENOMEM; 1166 1167 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1168 if (!nlh) 1169 goto nla_put_failure; 1170 1171 /* rule only needs to appear once */ 1172 nlh->nlmsg_flags |= NLM_F_EXCL; 1173 1174 frh = nlmsg_data(nlh); 1175 memset(frh, 0, sizeof(*frh)); 1176 frh->family = family; 1177 frh->action = FR_ACT_TO_TBL; 1178 1179 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1180 goto nla_put_failure; 1181 1182 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1183 goto nla_put_failure; 1184 1185 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1186 goto nla_put_failure; 1187 1188 nlmsg_end(skb, nlh); 1189 1190 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1191 skb->sk = dev_net(dev)->rtnl; 1192 if (add_it) { 1193 err = fib_nl_newrule(skb, nlh, NULL); 1194 if (err == -EEXIST) 1195 err = 0; 1196 } else { 1197 err = fib_nl_delrule(skb, nlh, NULL); 1198 if (err == -ENOENT) 1199 err = 0; 1200 } 1201 nlmsg_free(skb); 1202 1203 return err; 1204 1205 nla_put_failure: 1206 nlmsg_free(skb); 1207 1208 return -EMSGSIZE; 1209 } 1210 1211 static int vrf_add_fib_rules(const struct net_device *dev) 1212 { 1213 int err; 1214 1215 err = vrf_fib_rule(dev, AF_INET, true); 1216 if (err < 0) 1217 goto out_err; 1218 1219 err = vrf_fib_rule(dev, AF_INET6, true); 1220 if (err < 0) 1221 goto ipv6_err; 1222 1223 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1224 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1225 if (err < 0) 1226 goto ipmr_err; 1227 #endif 1228 1229 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1230 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1231 if (err < 0) 1232 goto ip6mr_err; 1233 #endif 1234 1235 return 0; 1236 1237 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1238 ip6mr_err: 1239 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1240 #endif 1241 1242 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1243 ipmr_err: 1244 vrf_fib_rule(dev, AF_INET6, false); 1245 #endif 1246 1247 ipv6_err: 1248 vrf_fib_rule(dev, AF_INET, false); 1249 1250 out_err: 1251 netdev_err(dev, "Failed to add FIB rules.\n"); 1252 return err; 1253 } 1254 1255 static void vrf_setup(struct net_device *dev) 1256 { 1257 ether_setup(dev); 1258 1259 /* Initialize the device structure. */ 1260 dev->netdev_ops = &vrf_netdev_ops; 1261 dev->l3mdev_ops = &vrf_l3mdev_ops; 1262 dev->ethtool_ops = &vrf_ethtool_ops; 1263 dev->needs_free_netdev = true; 1264 1265 /* Fill in device structure with ethernet-generic values. */ 1266 eth_hw_addr_random(dev); 1267 1268 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1269 dev->features |= NETIF_F_LLTX; 1270 1271 /* don't allow vrf devices to change network namespaces. */ 1272 dev->features |= NETIF_F_NETNS_LOCAL; 1273 1274 /* does not make sense for a VLAN to be added to a vrf device */ 1275 dev->features |= NETIF_F_VLAN_CHALLENGED; 1276 1277 /* enable offload features */ 1278 dev->features |= NETIF_F_GSO_SOFTWARE; 1279 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1280 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1281 1282 dev->hw_features = dev->features; 1283 dev->hw_enc_features = dev->features; 1284 1285 /* default to no qdisc; user can add if desired */ 1286 dev->priv_flags |= IFF_NO_QUEUE; 1287 dev->priv_flags |= IFF_NO_RX_HANDLER; 1288 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1289 1290 /* VRF devices do not care about MTU, but if the MTU is set 1291 * too low then the ipv4 and ipv6 protocols are disabled 1292 * which breaks networking. 1293 */ 1294 dev->min_mtu = IPV6_MIN_MTU; 1295 dev->max_mtu = ETH_MAX_MTU; 1296 } 1297 1298 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1299 struct netlink_ext_ack *extack) 1300 { 1301 if (tb[IFLA_ADDRESS]) { 1302 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1303 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1304 return -EINVAL; 1305 } 1306 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1307 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1308 return -EADDRNOTAVAIL; 1309 } 1310 } 1311 return 0; 1312 } 1313 1314 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1315 { 1316 struct net_device *port_dev; 1317 struct list_head *iter; 1318 1319 netdev_for_each_lower_dev(dev, port_dev, iter) 1320 vrf_del_slave(dev, port_dev); 1321 1322 unregister_netdevice_queue(dev, head); 1323 } 1324 1325 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1326 struct nlattr *tb[], struct nlattr *data[], 1327 struct netlink_ext_ack *extack) 1328 { 1329 struct net_vrf *vrf = netdev_priv(dev); 1330 bool *add_fib_rules; 1331 struct net *net; 1332 int err; 1333 1334 if (!data || !data[IFLA_VRF_TABLE]) { 1335 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1336 return -EINVAL; 1337 } 1338 1339 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1340 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1341 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1342 "Invalid VRF table id"); 1343 return -EINVAL; 1344 } 1345 1346 dev->priv_flags |= IFF_L3MDEV_MASTER; 1347 1348 err = register_netdevice(dev); 1349 if (err) 1350 goto out; 1351 1352 net = dev_net(dev); 1353 add_fib_rules = net_generic(net, vrf_net_id); 1354 if (*add_fib_rules) { 1355 err = vrf_add_fib_rules(dev); 1356 if (err) { 1357 unregister_netdevice(dev); 1358 goto out; 1359 } 1360 *add_fib_rules = false; 1361 } 1362 1363 out: 1364 return err; 1365 } 1366 1367 static size_t vrf_nl_getsize(const struct net_device *dev) 1368 { 1369 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1370 } 1371 1372 static int vrf_fillinfo(struct sk_buff *skb, 1373 const struct net_device *dev) 1374 { 1375 struct net_vrf *vrf = netdev_priv(dev); 1376 1377 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1378 } 1379 1380 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1381 const struct net_device *slave_dev) 1382 { 1383 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1384 } 1385 1386 static int vrf_fill_slave_info(struct sk_buff *skb, 1387 const struct net_device *vrf_dev, 1388 const struct net_device *slave_dev) 1389 { 1390 struct net_vrf *vrf = netdev_priv(vrf_dev); 1391 1392 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1393 return -EMSGSIZE; 1394 1395 return 0; 1396 } 1397 1398 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1399 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1400 }; 1401 1402 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1403 .kind = DRV_NAME, 1404 .priv_size = sizeof(struct net_vrf), 1405 1406 .get_size = vrf_nl_getsize, 1407 .policy = vrf_nl_policy, 1408 .validate = vrf_validate, 1409 .fill_info = vrf_fillinfo, 1410 1411 .get_slave_size = vrf_get_slave_size, 1412 .fill_slave_info = vrf_fill_slave_info, 1413 1414 .newlink = vrf_newlink, 1415 .dellink = vrf_dellink, 1416 .setup = vrf_setup, 1417 .maxtype = IFLA_VRF_MAX, 1418 }; 1419 1420 static int vrf_device_event(struct notifier_block *unused, 1421 unsigned long event, void *ptr) 1422 { 1423 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1424 1425 /* only care about unregister events to drop slave references */ 1426 if (event == NETDEV_UNREGISTER) { 1427 struct net_device *vrf_dev; 1428 1429 if (!netif_is_l3_slave(dev)) 1430 goto out; 1431 1432 vrf_dev = netdev_master_upper_dev_get(dev); 1433 vrf_del_slave(vrf_dev, dev); 1434 } 1435 out: 1436 return NOTIFY_DONE; 1437 } 1438 1439 static struct notifier_block vrf_notifier_block __read_mostly = { 1440 .notifier_call = vrf_device_event, 1441 }; 1442 1443 /* Initialize per network namespace state */ 1444 static int __net_init vrf_netns_init(struct net *net) 1445 { 1446 bool *add_fib_rules = net_generic(net, vrf_net_id); 1447 1448 *add_fib_rules = true; 1449 1450 return 0; 1451 } 1452 1453 static struct pernet_operations vrf_net_ops __net_initdata = { 1454 .init = vrf_netns_init, 1455 .id = &vrf_net_id, 1456 .size = sizeof(bool), 1457 }; 1458 1459 static int __init vrf_init_module(void) 1460 { 1461 int rc; 1462 1463 register_netdevice_notifier(&vrf_notifier_block); 1464 1465 rc = register_pernet_subsys(&vrf_net_ops); 1466 if (rc < 0) 1467 goto error; 1468 1469 rc = rtnl_link_register(&vrf_link_ops); 1470 if (rc < 0) { 1471 unregister_pernet_subsys(&vrf_net_ops); 1472 goto error; 1473 } 1474 1475 return 0; 1476 1477 error: 1478 unregister_netdevice_notifier(&vrf_notifier_block); 1479 return rc; 1480 } 1481 1482 module_init(vrf_init_module); 1483 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1484 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1485 MODULE_LICENSE("GPL"); 1486 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1487 MODULE_VERSION(DRV_VERSION); 1488