1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 39 #define RT_FL_TOS(oldflp4) \ 40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)) 41 42 #define DRV_NAME "vrf" 43 #define DRV_VERSION "1.0" 44 45 struct net_vrf { 46 struct rtable __rcu *rth; 47 struct rt6_info __rcu *rt6; 48 u32 tb_id; 49 }; 50 51 struct pcpu_dstats { 52 u64 tx_pkts; 53 u64 tx_bytes; 54 u64 tx_drps; 55 u64 rx_pkts; 56 u64 rx_bytes; 57 struct u64_stats_sync syncp; 58 }; 59 60 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 61 { 62 vrf_dev->stats.tx_errors++; 63 kfree_skb(skb); 64 } 65 66 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev, 67 struct rtnl_link_stats64 *stats) 68 { 69 int i; 70 71 for_each_possible_cpu(i) { 72 const struct pcpu_dstats *dstats; 73 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 74 unsigned int start; 75 76 dstats = per_cpu_ptr(dev->dstats, i); 77 do { 78 start = u64_stats_fetch_begin_irq(&dstats->syncp); 79 tbytes = dstats->tx_bytes; 80 tpkts = dstats->tx_pkts; 81 tdrops = dstats->tx_drps; 82 rbytes = dstats->rx_bytes; 83 rpkts = dstats->rx_pkts; 84 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 85 stats->tx_bytes += tbytes; 86 stats->tx_packets += tpkts; 87 stats->tx_dropped += tdrops; 88 stats->rx_bytes += rbytes; 89 stats->rx_packets += rpkts; 90 } 91 return stats; 92 } 93 94 #if IS_ENABLED(CONFIG_IPV6) 95 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 96 struct net_device *dev) 97 { 98 const struct ipv6hdr *iph = ipv6_hdr(skb); 99 struct net *net = dev_net(skb->dev); 100 struct flowi6 fl6 = { 101 /* needed to match OIF rule */ 102 .flowi6_oif = dev->ifindex, 103 .flowi6_iif = LOOPBACK_IFINDEX, 104 .daddr = iph->daddr, 105 .saddr = iph->saddr, 106 .flowlabel = ip6_flowinfo(iph), 107 .flowi6_mark = skb->mark, 108 .flowi6_proto = iph->nexthdr, 109 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF, 110 }; 111 int ret = NET_XMIT_DROP; 112 struct dst_entry *dst; 113 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 114 115 dst = ip6_route_output(net, NULL, &fl6); 116 if (dst == dst_null) 117 goto err; 118 119 skb_dst_drop(skb); 120 skb_dst_set(skb, dst); 121 122 ret = ip6_local_out(net, skb->sk, skb); 123 if (unlikely(net_xmit_eval(ret))) 124 dev->stats.tx_errors++; 125 else 126 ret = NET_XMIT_SUCCESS; 127 128 return ret; 129 err: 130 vrf_tx_error(dev, skb); 131 return NET_XMIT_DROP; 132 } 133 #else 134 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 135 struct net_device *dev) 136 { 137 vrf_tx_error(dev, skb); 138 return NET_XMIT_DROP; 139 } 140 #endif 141 142 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4, 143 struct net_device *vrf_dev) 144 { 145 struct rtable *rt; 146 int err = 1; 147 148 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL); 149 if (IS_ERR(rt)) 150 goto out; 151 152 /* TO-DO: what about broadcast ? */ 153 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { 154 ip_rt_put(rt); 155 goto out; 156 } 157 158 skb_dst_drop(skb); 159 skb_dst_set(skb, &rt->dst); 160 err = 0; 161 out: 162 return err; 163 } 164 165 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 166 struct net_device *vrf_dev) 167 { 168 struct iphdr *ip4h = ip_hdr(skb); 169 int ret = NET_XMIT_DROP; 170 struct flowi4 fl4 = { 171 /* needed to match OIF rule */ 172 .flowi4_oif = vrf_dev->ifindex, 173 .flowi4_iif = LOOPBACK_IFINDEX, 174 .flowi4_tos = RT_TOS(ip4h->tos), 175 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC | 176 FLOWI_FLAG_SKIP_NH_OIF, 177 .daddr = ip4h->daddr, 178 }; 179 180 if (vrf_send_v4_prep(skb, &fl4, vrf_dev)) 181 goto err; 182 183 if (!ip4h->saddr) { 184 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 185 RT_SCOPE_LINK); 186 } 187 188 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 189 if (unlikely(net_xmit_eval(ret))) 190 vrf_dev->stats.tx_errors++; 191 else 192 ret = NET_XMIT_SUCCESS; 193 194 out: 195 return ret; 196 err: 197 vrf_tx_error(vrf_dev, skb); 198 goto out; 199 } 200 201 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 202 { 203 /* strip the ethernet header added for pass through VRF device */ 204 __skb_pull(skb, skb_network_offset(skb)); 205 206 switch (skb->protocol) { 207 case htons(ETH_P_IP): 208 return vrf_process_v4_outbound(skb, dev); 209 case htons(ETH_P_IPV6): 210 return vrf_process_v6_outbound(skb, dev); 211 default: 212 vrf_tx_error(dev, skb); 213 return NET_XMIT_DROP; 214 } 215 } 216 217 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 218 { 219 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 220 221 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 222 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 223 224 u64_stats_update_begin(&dstats->syncp); 225 dstats->tx_pkts++; 226 dstats->tx_bytes += skb->len; 227 u64_stats_update_end(&dstats->syncp); 228 } else { 229 this_cpu_inc(dev->dstats->tx_drps); 230 } 231 232 return ret; 233 } 234 235 #if IS_ENABLED(CONFIG_IPV6) 236 /* modelled after ip6_finish_output2 */ 237 static int vrf_finish_output6(struct net *net, struct sock *sk, 238 struct sk_buff *skb) 239 { 240 struct dst_entry *dst = skb_dst(skb); 241 struct net_device *dev = dst->dev; 242 struct neighbour *neigh; 243 struct in6_addr *nexthop; 244 int ret; 245 246 skb->protocol = htons(ETH_P_IPV6); 247 skb->dev = dev; 248 249 rcu_read_lock_bh(); 250 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 251 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 252 if (unlikely(!neigh)) 253 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 254 if (!IS_ERR(neigh)) { 255 ret = dst_neigh_output(dst, neigh, skb); 256 rcu_read_unlock_bh(); 257 return ret; 258 } 259 rcu_read_unlock_bh(); 260 261 IP6_INC_STATS(dev_net(dst->dev), 262 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 263 kfree_skb(skb); 264 return -EINVAL; 265 } 266 267 /* modelled after ip6_output */ 268 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 269 { 270 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 271 net, sk, skb, NULL, skb_dst(skb)->dev, 272 vrf_finish_output6, 273 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 274 } 275 276 /* holding rtnl */ 277 static void vrf_rt6_release(struct net_vrf *vrf) 278 { 279 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 280 281 rcu_assign_pointer(vrf->rt6, NULL); 282 283 if (rt6) 284 dst_release(&rt6->dst); 285 } 286 287 static int vrf_rt6_create(struct net_device *dev) 288 { 289 struct net_vrf *vrf = netdev_priv(dev); 290 struct net *net = dev_net(dev); 291 struct fib6_table *rt6i_table; 292 struct rt6_info *rt6; 293 int rc = -ENOMEM; 294 295 rt6i_table = fib6_new_table(net, vrf->tb_id); 296 if (!rt6i_table) 297 goto out; 298 299 rt6 = ip6_dst_alloc(net, dev, 300 DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE); 301 if (!rt6) 302 goto out; 303 304 dst_hold(&rt6->dst); 305 306 rt6->rt6i_table = rt6i_table; 307 rt6->dst.output = vrf_output6; 308 rcu_assign_pointer(vrf->rt6, rt6); 309 310 rc = 0; 311 out: 312 return rc; 313 } 314 #else 315 static void vrf_rt6_release(struct net_vrf *vrf) 316 { 317 } 318 319 static int vrf_rt6_create(struct net_device *dev) 320 { 321 return 0; 322 } 323 #endif 324 325 /* modelled after ip_finish_output2 */ 326 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 327 { 328 struct dst_entry *dst = skb_dst(skb); 329 struct rtable *rt = (struct rtable *)dst; 330 struct net_device *dev = dst->dev; 331 unsigned int hh_len = LL_RESERVED_SPACE(dev); 332 struct neighbour *neigh; 333 u32 nexthop; 334 int ret = -EINVAL; 335 336 /* Be paranoid, rather than too clever. */ 337 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 338 struct sk_buff *skb2; 339 340 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 341 if (!skb2) { 342 ret = -ENOMEM; 343 goto err; 344 } 345 if (skb->sk) 346 skb_set_owner_w(skb2, skb->sk); 347 348 consume_skb(skb); 349 skb = skb2; 350 } 351 352 rcu_read_lock_bh(); 353 354 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 355 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 356 if (unlikely(!neigh)) 357 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 358 if (!IS_ERR(neigh)) 359 ret = dst_neigh_output(dst, neigh, skb); 360 361 rcu_read_unlock_bh(); 362 err: 363 if (unlikely(ret < 0)) 364 vrf_tx_error(skb->dev, skb); 365 return ret; 366 } 367 368 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 369 { 370 struct net_device *dev = skb_dst(skb)->dev; 371 372 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 373 374 skb->dev = dev; 375 skb->protocol = htons(ETH_P_IP); 376 377 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 378 net, sk, skb, NULL, dev, 379 vrf_finish_output, 380 !(IPCB(skb)->flags & IPSKB_REROUTED)); 381 } 382 383 /* holding rtnl */ 384 static void vrf_rtable_release(struct net_vrf *vrf) 385 { 386 struct rtable *rth = rtnl_dereference(vrf->rth); 387 388 rcu_assign_pointer(vrf->rth, NULL); 389 390 if (rth) 391 dst_release(&rth->dst); 392 } 393 394 static int vrf_rtable_create(struct net_device *dev) 395 { 396 struct net_vrf *vrf = netdev_priv(dev); 397 struct rtable *rth; 398 399 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 400 return -ENOMEM; 401 402 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 403 if (!rth) 404 return -ENOMEM; 405 406 rth->dst.output = vrf_output; 407 rth->rt_table_id = vrf->tb_id; 408 409 rcu_assign_pointer(vrf->rth, rth); 410 411 return 0; 412 } 413 414 /**************************** device handling ********************/ 415 416 /* cycle interface to flush neighbor cache and move routes across tables */ 417 static void cycle_netdev(struct net_device *dev) 418 { 419 unsigned int flags = dev->flags; 420 int ret; 421 422 if (!netif_running(dev)) 423 return; 424 425 ret = dev_change_flags(dev, flags & ~IFF_UP); 426 if (ret >= 0) 427 ret = dev_change_flags(dev, flags); 428 429 if (ret < 0) { 430 netdev_err(dev, 431 "Failed to cycle device %s; route tables might be wrong!\n", 432 dev->name); 433 } 434 } 435 436 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 437 { 438 int ret; 439 440 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL); 441 if (ret < 0) 442 return ret; 443 444 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 445 cycle_netdev(port_dev); 446 447 return 0; 448 } 449 450 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 451 { 452 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev)) 453 return -EINVAL; 454 455 return do_vrf_add_slave(dev, port_dev); 456 } 457 458 /* inverse of do_vrf_add_slave */ 459 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 460 { 461 netdev_upper_dev_unlink(port_dev, dev); 462 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 463 464 cycle_netdev(port_dev); 465 466 return 0; 467 } 468 469 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 470 { 471 return do_vrf_del_slave(dev, port_dev); 472 } 473 474 static void vrf_dev_uninit(struct net_device *dev) 475 { 476 struct net_vrf *vrf = netdev_priv(dev); 477 struct net_device *port_dev; 478 struct list_head *iter; 479 480 vrf_rtable_release(vrf); 481 vrf_rt6_release(vrf); 482 483 netdev_for_each_lower_dev(dev, port_dev, iter) 484 vrf_del_slave(dev, port_dev); 485 486 free_percpu(dev->dstats); 487 dev->dstats = NULL; 488 } 489 490 static int vrf_dev_init(struct net_device *dev) 491 { 492 struct net_vrf *vrf = netdev_priv(dev); 493 494 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 495 if (!dev->dstats) 496 goto out_nomem; 497 498 /* create the default dst which points back to us */ 499 if (vrf_rtable_create(dev) != 0) 500 goto out_stats; 501 502 if (vrf_rt6_create(dev) != 0) 503 goto out_rth; 504 505 dev->flags = IFF_MASTER | IFF_NOARP; 506 507 return 0; 508 509 out_rth: 510 vrf_rtable_release(vrf); 511 out_stats: 512 free_percpu(dev->dstats); 513 dev->dstats = NULL; 514 out_nomem: 515 return -ENOMEM; 516 } 517 518 static const struct net_device_ops vrf_netdev_ops = { 519 .ndo_init = vrf_dev_init, 520 .ndo_uninit = vrf_dev_uninit, 521 .ndo_start_xmit = vrf_xmit, 522 .ndo_get_stats64 = vrf_get_stats64, 523 .ndo_add_slave = vrf_add_slave, 524 .ndo_del_slave = vrf_del_slave, 525 }; 526 527 static u32 vrf_fib_table(const struct net_device *dev) 528 { 529 struct net_vrf *vrf = netdev_priv(dev); 530 531 return vrf->tb_id; 532 } 533 534 static struct rtable *vrf_get_rtable(const struct net_device *dev, 535 const struct flowi4 *fl4) 536 { 537 struct rtable *rth = NULL; 538 539 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) { 540 struct net_vrf *vrf = netdev_priv(dev); 541 542 rcu_read_lock(); 543 544 rth = rcu_dereference(vrf->rth); 545 if (likely(rth)) 546 dst_hold(&rth->dst); 547 548 rcu_read_unlock(); 549 } 550 551 return rth; 552 } 553 554 /* called under rcu_read_lock */ 555 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4) 556 { 557 struct fib_result res = { .tclassid = 0 }; 558 struct net *net = dev_net(dev); 559 u32 orig_tos = fl4->flowi4_tos; 560 u8 flags = fl4->flowi4_flags; 561 u8 scope = fl4->flowi4_scope; 562 u8 tos = RT_FL_TOS(fl4); 563 int rc; 564 565 if (unlikely(!fl4->daddr)) 566 return 0; 567 568 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF; 569 fl4->flowi4_iif = LOOPBACK_IFINDEX; 570 /* make sure oif is set to VRF device for lookup */ 571 fl4->flowi4_oif = dev->ifindex; 572 fl4->flowi4_tos = tos & IPTOS_RT_MASK; 573 fl4->flowi4_scope = ((tos & RTO_ONLINK) ? 574 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE); 575 576 rc = fib_lookup(net, fl4, &res, 0); 577 if (!rc) { 578 if (res.type == RTN_LOCAL) 579 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr; 580 else 581 fib_select_path(net, &res, fl4, -1); 582 } 583 584 fl4->flowi4_flags = flags; 585 fl4->flowi4_tos = orig_tos; 586 fl4->flowi4_scope = scope; 587 588 return rc; 589 } 590 591 #if IS_ENABLED(CONFIG_IPV6) 592 /* neighbor handling is done with actual device; do not want 593 * to flip skb->dev for those ndisc packets. This really fails 594 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 595 * a start. 596 */ 597 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 598 { 599 const struct ipv6hdr *iph = ipv6_hdr(skb); 600 bool rc = false; 601 602 if (iph->nexthdr == NEXTHDR_ICMP) { 603 const struct icmp6hdr *icmph; 604 struct icmp6hdr _icmph; 605 606 icmph = skb_header_pointer(skb, sizeof(*iph), 607 sizeof(_icmph), &_icmph); 608 if (!icmph) 609 goto out; 610 611 switch (icmph->icmp6_type) { 612 case NDISC_ROUTER_SOLICITATION: 613 case NDISC_ROUTER_ADVERTISEMENT: 614 case NDISC_NEIGHBOUR_SOLICITATION: 615 case NDISC_NEIGHBOUR_ADVERTISEMENT: 616 case NDISC_REDIRECT: 617 rc = true; 618 break; 619 } 620 } 621 622 out: 623 return rc; 624 } 625 626 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 627 struct sk_buff *skb) 628 { 629 /* if packet is NDISC keep the ingress interface */ 630 if (!ipv6_ndisc_frame(skb)) { 631 skb->dev = vrf_dev; 632 skb->skb_iif = vrf_dev->ifindex; 633 634 skb_push(skb, skb->mac_len); 635 dev_queue_xmit_nit(skb, vrf_dev); 636 skb_pull(skb, skb->mac_len); 637 638 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 639 } 640 641 return skb; 642 } 643 644 #else 645 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 646 struct sk_buff *skb) 647 { 648 return skb; 649 } 650 #endif 651 652 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 653 struct sk_buff *skb) 654 { 655 skb->dev = vrf_dev; 656 skb->skb_iif = vrf_dev->ifindex; 657 658 skb_push(skb, skb->mac_len); 659 dev_queue_xmit_nit(skb, vrf_dev); 660 skb_pull(skb, skb->mac_len); 661 662 return skb; 663 } 664 665 /* called with rcu lock held */ 666 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 667 struct sk_buff *skb, 668 u16 proto) 669 { 670 switch (proto) { 671 case AF_INET: 672 return vrf_ip_rcv(vrf_dev, skb); 673 case AF_INET6: 674 return vrf_ip6_rcv(vrf_dev, skb); 675 } 676 677 return skb; 678 } 679 680 #if IS_ENABLED(CONFIG_IPV6) 681 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev, 682 const struct flowi6 *fl6) 683 { 684 struct dst_entry *dst = NULL; 685 686 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) { 687 struct net_vrf *vrf = netdev_priv(dev); 688 struct rt6_info *rt; 689 690 rcu_read_lock(); 691 692 rt = rcu_dereference(vrf->rt6); 693 if (likely(rt)) { 694 dst = &rt->dst; 695 dst_hold(dst); 696 } 697 698 rcu_read_unlock(); 699 } 700 701 return dst; 702 } 703 #endif 704 705 static const struct l3mdev_ops vrf_l3mdev_ops = { 706 .l3mdev_fib_table = vrf_fib_table, 707 .l3mdev_get_rtable = vrf_get_rtable, 708 .l3mdev_get_saddr = vrf_get_saddr, 709 .l3mdev_l3_rcv = vrf_l3_rcv, 710 #if IS_ENABLED(CONFIG_IPV6) 711 .l3mdev_get_rt6_dst = vrf_get_rt6_dst, 712 #endif 713 }; 714 715 static void vrf_get_drvinfo(struct net_device *dev, 716 struct ethtool_drvinfo *info) 717 { 718 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 719 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 720 } 721 722 static const struct ethtool_ops vrf_ethtool_ops = { 723 .get_drvinfo = vrf_get_drvinfo, 724 }; 725 726 static void vrf_setup(struct net_device *dev) 727 { 728 ether_setup(dev); 729 730 /* Initialize the device structure. */ 731 dev->netdev_ops = &vrf_netdev_ops; 732 dev->l3mdev_ops = &vrf_l3mdev_ops; 733 dev->ethtool_ops = &vrf_ethtool_ops; 734 dev->destructor = free_netdev; 735 736 /* Fill in device structure with ethernet-generic values. */ 737 eth_hw_addr_random(dev); 738 739 /* don't acquire vrf device's netif_tx_lock when transmitting */ 740 dev->features |= NETIF_F_LLTX; 741 742 /* don't allow vrf devices to change network namespaces. */ 743 dev->features |= NETIF_F_NETNS_LOCAL; 744 } 745 746 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) 747 { 748 if (tb[IFLA_ADDRESS]) { 749 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 750 return -EINVAL; 751 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 752 return -EADDRNOTAVAIL; 753 } 754 return 0; 755 } 756 757 static void vrf_dellink(struct net_device *dev, struct list_head *head) 758 { 759 unregister_netdevice_queue(dev, head); 760 } 761 762 static int vrf_newlink(struct net *src_net, struct net_device *dev, 763 struct nlattr *tb[], struct nlattr *data[]) 764 { 765 struct net_vrf *vrf = netdev_priv(dev); 766 767 if (!data || !data[IFLA_VRF_TABLE]) 768 return -EINVAL; 769 770 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 771 772 dev->priv_flags |= IFF_L3MDEV_MASTER; 773 774 return register_netdevice(dev); 775 } 776 777 static size_t vrf_nl_getsize(const struct net_device *dev) 778 { 779 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 780 } 781 782 static int vrf_fillinfo(struct sk_buff *skb, 783 const struct net_device *dev) 784 { 785 struct net_vrf *vrf = netdev_priv(dev); 786 787 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 788 } 789 790 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 791 const struct net_device *slave_dev) 792 { 793 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 794 } 795 796 static int vrf_fill_slave_info(struct sk_buff *skb, 797 const struct net_device *vrf_dev, 798 const struct net_device *slave_dev) 799 { 800 struct net_vrf *vrf = netdev_priv(vrf_dev); 801 802 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 803 return -EMSGSIZE; 804 805 return 0; 806 } 807 808 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 809 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 810 }; 811 812 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 813 .kind = DRV_NAME, 814 .priv_size = sizeof(struct net_vrf), 815 816 .get_size = vrf_nl_getsize, 817 .policy = vrf_nl_policy, 818 .validate = vrf_validate, 819 .fill_info = vrf_fillinfo, 820 821 .get_slave_size = vrf_get_slave_size, 822 .fill_slave_info = vrf_fill_slave_info, 823 824 .newlink = vrf_newlink, 825 .dellink = vrf_dellink, 826 .setup = vrf_setup, 827 .maxtype = IFLA_VRF_MAX, 828 }; 829 830 static int vrf_device_event(struct notifier_block *unused, 831 unsigned long event, void *ptr) 832 { 833 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 834 835 /* only care about unregister events to drop slave references */ 836 if (event == NETDEV_UNREGISTER) { 837 struct net_device *vrf_dev; 838 839 if (!netif_is_l3_slave(dev)) 840 goto out; 841 842 vrf_dev = netdev_master_upper_dev_get(dev); 843 vrf_del_slave(vrf_dev, dev); 844 } 845 out: 846 return NOTIFY_DONE; 847 } 848 849 static struct notifier_block vrf_notifier_block __read_mostly = { 850 .notifier_call = vrf_device_event, 851 }; 852 853 static int __init vrf_init_module(void) 854 { 855 int rc; 856 857 register_netdevice_notifier(&vrf_notifier_block); 858 859 rc = rtnl_link_register(&vrf_link_ops); 860 if (rc < 0) 861 goto error; 862 863 return 0; 864 865 error: 866 unregister_netdevice_notifier(&vrf_notifier_block); 867 return rc; 868 } 869 870 module_init(vrf_init_module); 871 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 872 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 873 MODULE_LICENSE("GPL"); 874 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 875 MODULE_VERSION(DRV_VERSION); 876