xref: /openbmc/linux/drivers/net/vrf.c (revision 6dfcd296)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.0"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45 
46 struct net_vrf {
47 	struct rtable __rcu	*rth;
48 	struct rtable __rcu	*rth_local;
49 	struct rt6_info	__rcu	*rt6;
50 	struct rt6_info	__rcu	*rt6_local;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
80 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
81 						 struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 	return stats;
106 }
107 
108 /* Local traffic destined to local address. Reinsert the packet to rx
109  * path, similar to loopback handling.
110  */
111 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
112 			  struct dst_entry *dst)
113 {
114 	int len = skb->len;
115 
116 	skb_orphan(skb);
117 
118 	skb_dst_set(skb, dst);
119 	skb_dst_force(skb);
120 
121 	/* set pkt_type to avoid skb hitting packet taps twice -
122 	 * once on Tx and again in Rx processing
123 	 */
124 	skb->pkt_type = PACKET_LOOPBACK;
125 
126 	skb->protocol = eth_type_trans(skb, dev);
127 
128 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
129 		vrf_rx_stats(dev, len);
130 	else
131 		this_cpu_inc(dev->dstats->rx_drps);
132 
133 	return NETDEV_TX_OK;
134 }
135 
136 #if IS_ENABLED(CONFIG_IPV6)
137 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
138 			     struct sk_buff *skb)
139 {
140 	int err;
141 
142 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
143 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
144 
145 	if (likely(err == 1))
146 		err = dst_output(net, sk, skb);
147 
148 	return err;
149 }
150 
151 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
152 					   struct net_device *dev)
153 {
154 	const struct ipv6hdr *iph = ipv6_hdr(skb);
155 	struct net *net = dev_net(skb->dev);
156 	struct flowi6 fl6 = {
157 		/* needed to match OIF rule */
158 		.flowi6_oif = dev->ifindex,
159 		.flowi6_iif = LOOPBACK_IFINDEX,
160 		.daddr = iph->daddr,
161 		.saddr = iph->saddr,
162 		.flowlabel = ip6_flowinfo(iph),
163 		.flowi6_mark = skb->mark,
164 		.flowi6_proto = iph->nexthdr,
165 		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
166 	};
167 	int ret = NET_XMIT_DROP;
168 	struct dst_entry *dst;
169 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
170 
171 	dst = ip6_route_output(net, NULL, &fl6);
172 	if (dst == dst_null)
173 		goto err;
174 
175 	skb_dst_drop(skb);
176 
177 	/* if dst.dev is loopback or the VRF device again this is locally
178 	 * originated traffic destined to a local address. Short circuit
179 	 * to Rx path using our local dst
180 	 */
181 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
182 		struct net_vrf *vrf = netdev_priv(dev);
183 		struct rt6_info *rt6_local;
184 
185 		/* release looked up dst and use cached local dst */
186 		dst_release(dst);
187 
188 		rcu_read_lock();
189 
190 		rt6_local = rcu_dereference(vrf->rt6_local);
191 		if (unlikely(!rt6_local)) {
192 			rcu_read_unlock();
193 			goto err;
194 		}
195 
196 		/* Ordering issue: cached local dst is created on newlink
197 		 * before the IPv6 initialization. Using the local dst
198 		 * requires rt6i_idev to be set so make sure it is.
199 		 */
200 		if (unlikely(!rt6_local->rt6i_idev)) {
201 			rt6_local->rt6i_idev = in6_dev_get(dev);
202 			if (!rt6_local->rt6i_idev) {
203 				rcu_read_unlock();
204 				goto err;
205 			}
206 		}
207 
208 		dst = &rt6_local->dst;
209 		dst_hold(dst);
210 
211 		rcu_read_unlock();
212 
213 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
214 	}
215 
216 	skb_dst_set(skb, dst);
217 
218 	/* strip the ethernet header added for pass through VRF device */
219 	__skb_pull(skb, skb_network_offset(skb));
220 
221 	ret = vrf_ip6_local_out(net, skb->sk, skb);
222 	if (unlikely(net_xmit_eval(ret)))
223 		dev->stats.tx_errors++;
224 	else
225 		ret = NET_XMIT_SUCCESS;
226 
227 	return ret;
228 err:
229 	vrf_tx_error(dev, skb);
230 	return NET_XMIT_DROP;
231 }
232 #else
233 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
234 					   struct net_device *dev)
235 {
236 	vrf_tx_error(dev, skb);
237 	return NET_XMIT_DROP;
238 }
239 #endif
240 
241 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
242 static int vrf_ip_local_out(struct net *net, struct sock *sk,
243 			    struct sk_buff *skb)
244 {
245 	int err;
246 
247 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
248 		      skb, NULL, skb_dst(skb)->dev, dst_output);
249 	if (likely(err == 1))
250 		err = dst_output(net, sk, skb);
251 
252 	return err;
253 }
254 
255 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
256 					   struct net_device *vrf_dev)
257 {
258 	struct iphdr *ip4h = ip_hdr(skb);
259 	int ret = NET_XMIT_DROP;
260 	struct flowi4 fl4 = {
261 		/* needed to match OIF rule */
262 		.flowi4_oif = vrf_dev->ifindex,
263 		.flowi4_iif = LOOPBACK_IFINDEX,
264 		.flowi4_tos = RT_TOS(ip4h->tos),
265 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
266 		.daddr = ip4h->daddr,
267 	};
268 	struct net *net = dev_net(vrf_dev);
269 	struct rtable *rt;
270 
271 	rt = ip_route_output_flow(net, &fl4, NULL);
272 	if (IS_ERR(rt))
273 		goto err;
274 
275 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
276 		ip_rt_put(rt);
277 		goto err;
278 	}
279 
280 	skb_dst_drop(skb);
281 
282 	/* if dst.dev is loopback or the VRF device again this is locally
283 	 * originated traffic destined to a local address. Short circuit
284 	 * to Rx path using our local dst
285 	 */
286 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
287 		struct net_vrf *vrf = netdev_priv(vrf_dev);
288 		struct rtable *rth_local;
289 		struct dst_entry *dst = NULL;
290 
291 		ip_rt_put(rt);
292 
293 		rcu_read_lock();
294 
295 		rth_local = rcu_dereference(vrf->rth_local);
296 		if (likely(rth_local)) {
297 			dst = &rth_local->dst;
298 			dst_hold(dst);
299 		}
300 
301 		rcu_read_unlock();
302 
303 		if (unlikely(!dst))
304 			goto err;
305 
306 		return vrf_local_xmit(skb, vrf_dev, dst);
307 	}
308 
309 	skb_dst_set(skb, &rt->dst);
310 
311 	/* strip the ethernet header added for pass through VRF device */
312 	__skb_pull(skb, skb_network_offset(skb));
313 
314 	if (!ip4h->saddr) {
315 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
316 					       RT_SCOPE_LINK);
317 	}
318 
319 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
320 	if (unlikely(net_xmit_eval(ret)))
321 		vrf_dev->stats.tx_errors++;
322 	else
323 		ret = NET_XMIT_SUCCESS;
324 
325 out:
326 	return ret;
327 err:
328 	vrf_tx_error(vrf_dev, skb);
329 	goto out;
330 }
331 
332 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
333 {
334 	switch (skb->protocol) {
335 	case htons(ETH_P_IP):
336 		return vrf_process_v4_outbound(skb, dev);
337 	case htons(ETH_P_IPV6):
338 		return vrf_process_v6_outbound(skb, dev);
339 	default:
340 		vrf_tx_error(dev, skb);
341 		return NET_XMIT_DROP;
342 	}
343 }
344 
345 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
346 {
347 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
348 
349 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
350 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
351 
352 		u64_stats_update_begin(&dstats->syncp);
353 		dstats->tx_pkts++;
354 		dstats->tx_bytes += skb->len;
355 		u64_stats_update_end(&dstats->syncp);
356 	} else {
357 		this_cpu_inc(dev->dstats->tx_drps);
358 	}
359 
360 	return ret;
361 }
362 
363 #if IS_ENABLED(CONFIG_IPV6)
364 /* modelled after ip6_finish_output2 */
365 static int vrf_finish_output6(struct net *net, struct sock *sk,
366 			      struct sk_buff *skb)
367 {
368 	struct dst_entry *dst = skb_dst(skb);
369 	struct net_device *dev = dst->dev;
370 	struct neighbour *neigh;
371 	struct in6_addr *nexthop;
372 	int ret;
373 
374 	skb->protocol = htons(ETH_P_IPV6);
375 	skb->dev = dev;
376 
377 	rcu_read_lock_bh();
378 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
379 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
380 	if (unlikely(!neigh))
381 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
382 	if (!IS_ERR(neigh)) {
383 		ret = dst_neigh_output(dst, neigh, skb);
384 		rcu_read_unlock_bh();
385 		return ret;
386 	}
387 	rcu_read_unlock_bh();
388 
389 	IP6_INC_STATS(dev_net(dst->dev),
390 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
391 	kfree_skb(skb);
392 	return -EINVAL;
393 }
394 
395 /* modelled after ip6_output */
396 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
399 			    net, sk, skb, NULL, skb_dst(skb)->dev,
400 			    vrf_finish_output6,
401 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
402 }
403 
404 /* set dst on skb to send packet to us via dev_xmit path. Allows
405  * packet to go through device based features such as qdisc, netfilter
406  * hooks and packet sockets with skb->dev set to vrf device.
407  */
408 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
409 				   struct sock *sk,
410 				   struct sk_buff *skb)
411 {
412 	struct net_vrf *vrf = netdev_priv(vrf_dev);
413 	struct dst_entry *dst = NULL;
414 	struct rt6_info *rt6;
415 
416 	/* don't divert link scope packets */
417 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
418 		return skb;
419 
420 	rcu_read_lock();
421 
422 	rt6 = rcu_dereference(vrf->rt6);
423 	if (likely(rt6)) {
424 		dst = &rt6->dst;
425 		dst_hold(dst);
426 	}
427 
428 	rcu_read_unlock();
429 
430 	if (unlikely(!dst)) {
431 		vrf_tx_error(vrf_dev, skb);
432 		return NULL;
433 	}
434 
435 	skb_dst_drop(skb);
436 	skb_dst_set(skb, dst);
437 
438 	return skb;
439 }
440 
441 /* holding rtnl */
442 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
443 {
444 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
445 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
446 	struct net *net = dev_net(dev);
447 	struct dst_entry *dst;
448 
449 	RCU_INIT_POINTER(vrf->rt6, NULL);
450 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
451 	synchronize_rcu();
452 
453 	/* move dev in dst's to loopback so this VRF device can be deleted
454 	 * - based on dst_ifdown
455 	 */
456 	if (rt6) {
457 		dst = &rt6->dst;
458 		dev_put(dst->dev);
459 		dst->dev = net->loopback_dev;
460 		dev_hold(dst->dev);
461 		dst_release(dst);
462 	}
463 
464 	if (rt6_local) {
465 		if (rt6_local->rt6i_idev)
466 			in6_dev_put(rt6_local->rt6i_idev);
467 
468 		dst = &rt6_local->dst;
469 		dev_put(dst->dev);
470 		dst->dev = net->loopback_dev;
471 		dev_hold(dst->dev);
472 		dst_release(dst);
473 	}
474 }
475 
476 static int vrf_rt6_create(struct net_device *dev)
477 {
478 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
479 	struct net_vrf *vrf = netdev_priv(dev);
480 	struct net *net = dev_net(dev);
481 	struct fib6_table *rt6i_table;
482 	struct rt6_info *rt6, *rt6_local;
483 	int rc = -ENOMEM;
484 
485 	/* IPv6 can be CONFIG enabled and then disabled runtime */
486 	if (!ipv6_mod_enabled())
487 		return 0;
488 
489 	rt6i_table = fib6_new_table(net, vrf->tb_id);
490 	if (!rt6i_table)
491 		goto out;
492 
493 	/* create a dst for routing packets out a VRF device */
494 	rt6 = ip6_dst_alloc(net, dev, flags);
495 	if (!rt6)
496 		goto out;
497 
498 	dst_hold(&rt6->dst);
499 
500 	rt6->rt6i_table = rt6i_table;
501 	rt6->dst.output	= vrf_output6;
502 
503 	/* create a dst for local routing - packets sent locally
504 	 * to local address via the VRF device as a loopback
505 	 */
506 	rt6_local = ip6_dst_alloc(net, dev, flags);
507 	if (!rt6_local) {
508 		dst_release(&rt6->dst);
509 		goto out;
510 	}
511 
512 	dst_hold(&rt6_local->dst);
513 
514 	rt6_local->rt6i_idev  = in6_dev_get(dev);
515 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
516 	rt6_local->rt6i_table = rt6i_table;
517 	rt6_local->dst.input  = ip6_input;
518 
519 	rcu_assign_pointer(vrf->rt6, rt6);
520 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
521 
522 	rc = 0;
523 out:
524 	return rc;
525 }
526 #else
527 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
528 				   struct sock *sk,
529 				   struct sk_buff *skb)
530 {
531 	return skb;
532 }
533 
534 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
535 {
536 }
537 
538 static int vrf_rt6_create(struct net_device *dev)
539 {
540 	return 0;
541 }
542 #endif
543 
544 /* modelled after ip_finish_output2 */
545 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
546 {
547 	struct dst_entry *dst = skb_dst(skb);
548 	struct rtable *rt = (struct rtable *)dst;
549 	struct net_device *dev = dst->dev;
550 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
551 	struct neighbour *neigh;
552 	u32 nexthop;
553 	int ret = -EINVAL;
554 
555 	/* Be paranoid, rather than too clever. */
556 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
557 		struct sk_buff *skb2;
558 
559 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
560 		if (!skb2) {
561 			ret = -ENOMEM;
562 			goto err;
563 		}
564 		if (skb->sk)
565 			skb_set_owner_w(skb2, skb->sk);
566 
567 		consume_skb(skb);
568 		skb = skb2;
569 	}
570 
571 	rcu_read_lock_bh();
572 
573 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
574 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
575 	if (unlikely(!neigh))
576 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
577 	if (!IS_ERR(neigh))
578 		ret = dst_neigh_output(dst, neigh, skb);
579 
580 	rcu_read_unlock_bh();
581 err:
582 	if (unlikely(ret < 0))
583 		vrf_tx_error(skb->dev, skb);
584 	return ret;
585 }
586 
587 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
588 {
589 	struct net_device *dev = skb_dst(skb)->dev;
590 
591 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
592 
593 	skb->dev = dev;
594 	skb->protocol = htons(ETH_P_IP);
595 
596 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
597 			    net, sk, skb, NULL, dev,
598 			    vrf_finish_output,
599 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
600 }
601 
602 /* set dst on skb to send packet to us via dev_xmit path. Allows
603  * packet to go through device based features such as qdisc, netfilter
604  * hooks and packet sockets with skb->dev set to vrf device.
605  */
606 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
607 				  struct sock *sk,
608 				  struct sk_buff *skb)
609 {
610 	struct net_vrf *vrf = netdev_priv(vrf_dev);
611 	struct dst_entry *dst = NULL;
612 	struct rtable *rth;
613 
614 	rcu_read_lock();
615 
616 	rth = rcu_dereference(vrf->rth);
617 	if (likely(rth)) {
618 		dst = &rth->dst;
619 		dst_hold(dst);
620 	}
621 
622 	rcu_read_unlock();
623 
624 	if (unlikely(!dst)) {
625 		vrf_tx_error(vrf_dev, skb);
626 		return NULL;
627 	}
628 
629 	skb_dst_drop(skb);
630 	skb_dst_set(skb, dst);
631 
632 	return skb;
633 }
634 
635 /* called with rcu lock held */
636 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
637 				  struct sock *sk,
638 				  struct sk_buff *skb,
639 				  u16 proto)
640 {
641 	switch (proto) {
642 	case AF_INET:
643 		return vrf_ip_out(vrf_dev, sk, skb);
644 	case AF_INET6:
645 		return vrf_ip6_out(vrf_dev, sk, skb);
646 	}
647 
648 	return skb;
649 }
650 
651 /* holding rtnl */
652 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
653 {
654 	struct rtable *rth = rtnl_dereference(vrf->rth);
655 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
656 	struct net *net = dev_net(dev);
657 	struct dst_entry *dst;
658 
659 	RCU_INIT_POINTER(vrf->rth, NULL);
660 	RCU_INIT_POINTER(vrf->rth_local, NULL);
661 	synchronize_rcu();
662 
663 	/* move dev in dst's to loopback so this VRF device can be deleted
664 	 * - based on dst_ifdown
665 	 */
666 	if (rth) {
667 		dst = &rth->dst;
668 		dev_put(dst->dev);
669 		dst->dev = net->loopback_dev;
670 		dev_hold(dst->dev);
671 		dst_release(dst);
672 	}
673 
674 	if (rth_local) {
675 		dst = &rth_local->dst;
676 		dev_put(dst->dev);
677 		dst->dev = net->loopback_dev;
678 		dev_hold(dst->dev);
679 		dst_release(dst);
680 	}
681 }
682 
683 static int vrf_rtable_create(struct net_device *dev)
684 {
685 	struct net_vrf *vrf = netdev_priv(dev);
686 	struct rtable *rth, *rth_local;
687 
688 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
689 		return -ENOMEM;
690 
691 	/* create a dst for routing packets out through a VRF device */
692 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
693 	if (!rth)
694 		return -ENOMEM;
695 
696 	/* create a dst for local ingress routing - packets sent locally
697 	 * to local address via the VRF device as a loopback
698 	 */
699 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
700 	if (!rth_local) {
701 		dst_release(&rth->dst);
702 		return -ENOMEM;
703 	}
704 
705 	rth->dst.output	= vrf_output;
706 	rth->rt_table_id = vrf->tb_id;
707 
708 	rth_local->rt_table_id = vrf->tb_id;
709 
710 	rcu_assign_pointer(vrf->rth, rth);
711 	rcu_assign_pointer(vrf->rth_local, rth_local);
712 
713 	return 0;
714 }
715 
716 /**************************** device handling ********************/
717 
718 /* cycle interface to flush neighbor cache and move routes across tables */
719 static void cycle_netdev(struct net_device *dev)
720 {
721 	unsigned int flags = dev->flags;
722 	int ret;
723 
724 	if (!netif_running(dev))
725 		return;
726 
727 	ret = dev_change_flags(dev, flags & ~IFF_UP);
728 	if (ret >= 0)
729 		ret = dev_change_flags(dev, flags);
730 
731 	if (ret < 0) {
732 		netdev_err(dev,
733 			   "Failed to cycle device %s; route tables might be wrong!\n",
734 			   dev->name);
735 	}
736 }
737 
738 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
739 {
740 	int ret;
741 
742 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
743 	if (ret < 0)
744 		return ret;
745 
746 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
747 	cycle_netdev(port_dev);
748 
749 	return 0;
750 }
751 
752 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
753 {
754 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
755 		return -EINVAL;
756 
757 	return do_vrf_add_slave(dev, port_dev);
758 }
759 
760 /* inverse of do_vrf_add_slave */
761 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
762 {
763 	netdev_upper_dev_unlink(port_dev, dev);
764 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
765 
766 	cycle_netdev(port_dev);
767 
768 	return 0;
769 }
770 
771 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
772 {
773 	return do_vrf_del_slave(dev, port_dev);
774 }
775 
776 static void vrf_dev_uninit(struct net_device *dev)
777 {
778 	struct net_vrf *vrf = netdev_priv(dev);
779 	struct net_device *port_dev;
780 	struct list_head *iter;
781 
782 	vrf_rtable_release(dev, vrf);
783 	vrf_rt6_release(dev, vrf);
784 
785 	netdev_for_each_lower_dev(dev, port_dev, iter)
786 		vrf_del_slave(dev, port_dev);
787 
788 	free_percpu(dev->dstats);
789 	dev->dstats = NULL;
790 }
791 
792 static int vrf_dev_init(struct net_device *dev)
793 {
794 	struct net_vrf *vrf = netdev_priv(dev);
795 
796 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
797 	if (!dev->dstats)
798 		goto out_nomem;
799 
800 	/* create the default dst which points back to us */
801 	if (vrf_rtable_create(dev) != 0)
802 		goto out_stats;
803 
804 	if (vrf_rt6_create(dev) != 0)
805 		goto out_rth;
806 
807 	dev->flags = IFF_MASTER | IFF_NOARP;
808 
809 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
810 	dev->mtu = 64 * 1024;
811 
812 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
813 	dev->operstate = IF_OPER_UP;
814 	netdev_lockdep_set_classes(dev);
815 	return 0;
816 
817 out_rth:
818 	vrf_rtable_release(dev, vrf);
819 out_stats:
820 	free_percpu(dev->dstats);
821 	dev->dstats = NULL;
822 out_nomem:
823 	return -ENOMEM;
824 }
825 
826 static const struct net_device_ops vrf_netdev_ops = {
827 	.ndo_init		= vrf_dev_init,
828 	.ndo_uninit		= vrf_dev_uninit,
829 	.ndo_start_xmit		= vrf_xmit,
830 	.ndo_get_stats64	= vrf_get_stats64,
831 	.ndo_add_slave		= vrf_add_slave,
832 	.ndo_del_slave		= vrf_del_slave,
833 };
834 
835 static u32 vrf_fib_table(const struct net_device *dev)
836 {
837 	struct net_vrf *vrf = netdev_priv(dev);
838 
839 	return vrf->tb_id;
840 }
841 
842 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
843 {
844 	return 0;
845 }
846 
847 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
848 				      struct sk_buff *skb,
849 				      struct net_device *dev)
850 {
851 	struct net *net = dev_net(dev);
852 
853 	nf_reset(skb);
854 
855 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
856 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
857 
858 	return skb;
859 }
860 
861 #if IS_ENABLED(CONFIG_IPV6)
862 /* neighbor handling is done with actual device; do not want
863  * to flip skb->dev for those ndisc packets. This really fails
864  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
865  * a start.
866  */
867 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
868 {
869 	const struct ipv6hdr *iph = ipv6_hdr(skb);
870 	bool rc = false;
871 
872 	if (iph->nexthdr == NEXTHDR_ICMP) {
873 		const struct icmp6hdr *icmph;
874 		struct icmp6hdr _icmph;
875 
876 		icmph = skb_header_pointer(skb, sizeof(*iph),
877 					   sizeof(_icmph), &_icmph);
878 		if (!icmph)
879 			goto out;
880 
881 		switch (icmph->icmp6_type) {
882 		case NDISC_ROUTER_SOLICITATION:
883 		case NDISC_ROUTER_ADVERTISEMENT:
884 		case NDISC_NEIGHBOUR_SOLICITATION:
885 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
886 		case NDISC_REDIRECT:
887 			rc = true;
888 			break;
889 		}
890 	}
891 
892 out:
893 	return rc;
894 }
895 
896 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
897 					     const struct net_device *dev,
898 					     struct flowi6 *fl6,
899 					     int ifindex,
900 					     int flags)
901 {
902 	struct net_vrf *vrf = netdev_priv(dev);
903 	struct fib6_table *table = NULL;
904 	struct rt6_info *rt6;
905 
906 	rcu_read_lock();
907 
908 	/* fib6_table does not have a refcnt and can not be freed */
909 	rt6 = rcu_dereference(vrf->rt6);
910 	if (likely(rt6))
911 		table = rt6->rt6i_table;
912 
913 	rcu_read_unlock();
914 
915 	if (!table)
916 		return NULL;
917 
918 	return ip6_pol_route(net, table, ifindex, fl6, flags);
919 }
920 
921 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
922 			      int ifindex)
923 {
924 	const struct ipv6hdr *iph = ipv6_hdr(skb);
925 	struct flowi6 fl6 = {
926 		.daddr          = iph->daddr,
927 		.saddr          = iph->saddr,
928 		.flowlabel      = ip6_flowinfo(iph),
929 		.flowi6_mark    = skb->mark,
930 		.flowi6_proto   = iph->nexthdr,
931 		.flowi6_iif     = ifindex,
932 	};
933 	struct net *net = dev_net(vrf_dev);
934 	struct rt6_info *rt6;
935 
936 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
937 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
938 	if (unlikely(!rt6))
939 		return;
940 
941 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
942 		return;
943 
944 	skb_dst_set(skb, &rt6->dst);
945 }
946 
947 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
948 				   struct sk_buff *skb)
949 {
950 	int orig_iif = skb->skb_iif;
951 	bool need_strict;
952 
953 	/* loopback traffic; do not push through packet taps again.
954 	 * Reset pkt_type for upper layers to process skb
955 	 */
956 	if (skb->pkt_type == PACKET_LOOPBACK) {
957 		skb->dev = vrf_dev;
958 		skb->skb_iif = vrf_dev->ifindex;
959 		skb->pkt_type = PACKET_HOST;
960 		goto out;
961 	}
962 
963 	/* if packet is NDISC or addressed to multicast or link-local
964 	 * then keep the ingress interface
965 	 */
966 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
967 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
968 		skb->dev = vrf_dev;
969 		skb->skb_iif = vrf_dev->ifindex;
970 
971 		skb_push(skb, skb->mac_len);
972 		dev_queue_xmit_nit(skb, vrf_dev);
973 		skb_pull(skb, skb->mac_len);
974 
975 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
976 	}
977 
978 	if (need_strict)
979 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
980 
981 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
982 out:
983 	return skb;
984 }
985 
986 #else
987 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
988 				   struct sk_buff *skb)
989 {
990 	return skb;
991 }
992 #endif
993 
994 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
995 				  struct sk_buff *skb)
996 {
997 	skb->dev = vrf_dev;
998 	skb->skb_iif = vrf_dev->ifindex;
999 
1000 	/* loopback traffic; do not push through packet taps again.
1001 	 * Reset pkt_type for upper layers to process skb
1002 	 */
1003 	if (skb->pkt_type == PACKET_LOOPBACK) {
1004 		skb->pkt_type = PACKET_HOST;
1005 		goto out;
1006 	}
1007 
1008 	skb_push(skb, skb->mac_len);
1009 	dev_queue_xmit_nit(skb, vrf_dev);
1010 	skb_pull(skb, skb->mac_len);
1011 
1012 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1013 out:
1014 	return skb;
1015 }
1016 
1017 /* called with rcu lock held */
1018 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1019 				  struct sk_buff *skb,
1020 				  u16 proto)
1021 {
1022 	switch (proto) {
1023 	case AF_INET:
1024 		return vrf_ip_rcv(vrf_dev, skb);
1025 	case AF_INET6:
1026 		return vrf_ip6_rcv(vrf_dev, skb);
1027 	}
1028 
1029 	return skb;
1030 }
1031 
1032 #if IS_ENABLED(CONFIG_IPV6)
1033 /* send to link-local or multicast address via interface enslaved to
1034  * VRF device. Force lookup to VRF table without changing flow struct
1035  */
1036 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1037 					      struct flowi6 *fl6)
1038 {
1039 	struct net *net = dev_net(dev);
1040 	int flags = RT6_LOOKUP_F_IFACE;
1041 	struct dst_entry *dst = NULL;
1042 	struct rt6_info *rt;
1043 
1044 	/* VRF device does not have a link-local address and
1045 	 * sending packets to link-local or mcast addresses over
1046 	 * a VRF device does not make sense
1047 	 */
1048 	if (fl6->flowi6_oif == dev->ifindex) {
1049 		dst = &net->ipv6.ip6_null_entry->dst;
1050 		dst_hold(dst);
1051 		return dst;
1052 	}
1053 
1054 	if (!ipv6_addr_any(&fl6->saddr))
1055 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1056 
1057 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1058 	if (rt)
1059 		dst = &rt->dst;
1060 
1061 	return dst;
1062 }
1063 #endif
1064 
1065 static const struct l3mdev_ops vrf_l3mdev_ops = {
1066 	.l3mdev_fib_table	= vrf_fib_table,
1067 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1068 	.l3mdev_l3_out		= vrf_l3_out,
1069 #if IS_ENABLED(CONFIG_IPV6)
1070 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1071 #endif
1072 };
1073 
1074 static void vrf_get_drvinfo(struct net_device *dev,
1075 			    struct ethtool_drvinfo *info)
1076 {
1077 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1078 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1079 }
1080 
1081 static const struct ethtool_ops vrf_ethtool_ops = {
1082 	.get_drvinfo	= vrf_get_drvinfo,
1083 };
1084 
1085 static inline size_t vrf_fib_rule_nl_size(void)
1086 {
1087 	size_t sz;
1088 
1089 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1090 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1091 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1092 
1093 	return sz;
1094 }
1095 
1096 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1097 {
1098 	struct fib_rule_hdr *frh;
1099 	struct nlmsghdr *nlh;
1100 	struct sk_buff *skb;
1101 	int err;
1102 
1103 	if (family == AF_INET6 && !ipv6_mod_enabled())
1104 		return 0;
1105 
1106 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1107 	if (!skb)
1108 		return -ENOMEM;
1109 
1110 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1111 	if (!nlh)
1112 		goto nla_put_failure;
1113 
1114 	/* rule only needs to appear once */
1115 	nlh->nlmsg_flags &= NLM_F_EXCL;
1116 
1117 	frh = nlmsg_data(nlh);
1118 	memset(frh, 0, sizeof(*frh));
1119 	frh->family = family;
1120 	frh->action = FR_ACT_TO_TBL;
1121 
1122 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1123 		goto nla_put_failure;
1124 
1125 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1126 		goto nla_put_failure;
1127 
1128 	nlmsg_end(skb, nlh);
1129 
1130 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1131 	skb->sk = dev_net(dev)->rtnl;
1132 	if (add_it) {
1133 		err = fib_nl_newrule(skb, nlh);
1134 		if (err == -EEXIST)
1135 			err = 0;
1136 	} else {
1137 		err = fib_nl_delrule(skb, nlh);
1138 		if (err == -ENOENT)
1139 			err = 0;
1140 	}
1141 	nlmsg_free(skb);
1142 
1143 	return err;
1144 
1145 nla_put_failure:
1146 	nlmsg_free(skb);
1147 
1148 	return -EMSGSIZE;
1149 }
1150 
1151 static int vrf_add_fib_rules(const struct net_device *dev)
1152 {
1153 	int err;
1154 
1155 	err = vrf_fib_rule(dev, AF_INET,  true);
1156 	if (err < 0)
1157 		goto out_err;
1158 
1159 	err = vrf_fib_rule(dev, AF_INET6, true);
1160 	if (err < 0)
1161 		goto ipv6_err;
1162 
1163 	return 0;
1164 
1165 ipv6_err:
1166 	vrf_fib_rule(dev, AF_INET,  false);
1167 
1168 out_err:
1169 	netdev_err(dev, "Failed to add FIB rules.\n");
1170 	return err;
1171 }
1172 
1173 static void vrf_setup(struct net_device *dev)
1174 {
1175 	ether_setup(dev);
1176 
1177 	/* Initialize the device structure. */
1178 	dev->netdev_ops = &vrf_netdev_ops;
1179 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1180 	dev->ethtool_ops = &vrf_ethtool_ops;
1181 	dev->destructor = free_netdev;
1182 
1183 	/* Fill in device structure with ethernet-generic values. */
1184 	eth_hw_addr_random(dev);
1185 
1186 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1187 	dev->features |= NETIF_F_LLTX;
1188 
1189 	/* don't allow vrf devices to change network namespaces. */
1190 	dev->features |= NETIF_F_NETNS_LOCAL;
1191 
1192 	/* does not make sense for a VLAN to be added to a vrf device */
1193 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1194 
1195 	/* enable offload features */
1196 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1197 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1198 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1199 
1200 	dev->hw_features = dev->features;
1201 	dev->hw_enc_features = dev->features;
1202 
1203 	/* default to no qdisc; user can add if desired */
1204 	dev->priv_flags |= IFF_NO_QUEUE;
1205 }
1206 
1207 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1208 {
1209 	if (tb[IFLA_ADDRESS]) {
1210 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1211 			return -EINVAL;
1212 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1213 			return -EADDRNOTAVAIL;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1219 {
1220 	unregister_netdevice_queue(dev, head);
1221 }
1222 
1223 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1224 		       struct nlattr *tb[], struct nlattr *data[])
1225 {
1226 	struct net_vrf *vrf = netdev_priv(dev);
1227 	int err;
1228 
1229 	if (!data || !data[IFLA_VRF_TABLE])
1230 		return -EINVAL;
1231 
1232 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1233 
1234 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1235 
1236 	err = register_netdevice(dev);
1237 	if (err)
1238 		goto out;
1239 
1240 	if (add_fib_rules) {
1241 		err = vrf_add_fib_rules(dev);
1242 		if (err) {
1243 			unregister_netdevice(dev);
1244 			goto out;
1245 		}
1246 		add_fib_rules = false;
1247 	}
1248 
1249 out:
1250 	return err;
1251 }
1252 
1253 static size_t vrf_nl_getsize(const struct net_device *dev)
1254 {
1255 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1256 }
1257 
1258 static int vrf_fillinfo(struct sk_buff *skb,
1259 			const struct net_device *dev)
1260 {
1261 	struct net_vrf *vrf = netdev_priv(dev);
1262 
1263 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1264 }
1265 
1266 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1267 				 const struct net_device *slave_dev)
1268 {
1269 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1270 }
1271 
1272 static int vrf_fill_slave_info(struct sk_buff *skb,
1273 			       const struct net_device *vrf_dev,
1274 			       const struct net_device *slave_dev)
1275 {
1276 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1277 
1278 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1279 		return -EMSGSIZE;
1280 
1281 	return 0;
1282 }
1283 
1284 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1285 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1286 };
1287 
1288 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1289 	.kind		= DRV_NAME,
1290 	.priv_size	= sizeof(struct net_vrf),
1291 
1292 	.get_size	= vrf_nl_getsize,
1293 	.policy		= vrf_nl_policy,
1294 	.validate	= vrf_validate,
1295 	.fill_info	= vrf_fillinfo,
1296 
1297 	.get_slave_size  = vrf_get_slave_size,
1298 	.fill_slave_info = vrf_fill_slave_info,
1299 
1300 	.newlink	= vrf_newlink,
1301 	.dellink	= vrf_dellink,
1302 	.setup		= vrf_setup,
1303 	.maxtype	= IFLA_VRF_MAX,
1304 };
1305 
1306 static int vrf_device_event(struct notifier_block *unused,
1307 			    unsigned long event, void *ptr)
1308 {
1309 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1310 
1311 	/* only care about unregister events to drop slave references */
1312 	if (event == NETDEV_UNREGISTER) {
1313 		struct net_device *vrf_dev;
1314 
1315 		if (!netif_is_l3_slave(dev))
1316 			goto out;
1317 
1318 		vrf_dev = netdev_master_upper_dev_get(dev);
1319 		vrf_del_slave(vrf_dev, dev);
1320 	}
1321 out:
1322 	return NOTIFY_DONE;
1323 }
1324 
1325 static struct notifier_block vrf_notifier_block __read_mostly = {
1326 	.notifier_call = vrf_device_event,
1327 };
1328 
1329 static int __init vrf_init_module(void)
1330 {
1331 	int rc;
1332 
1333 	register_netdevice_notifier(&vrf_notifier_block);
1334 
1335 	rc = rtnl_link_register(&vrf_link_ops);
1336 	if (rc < 0)
1337 		goto error;
1338 
1339 	return 0;
1340 
1341 error:
1342 	unregister_netdevice_notifier(&vrf_notifier_block);
1343 	return rc;
1344 }
1345 
1346 module_init(vrf_init_module);
1347 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1348 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1349 MODULE_LICENSE("GPL");
1350 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1351 MODULE_VERSION(DRV_VERSION);
1352