1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/ethtool.h> 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ip.h> 18 #include <linux/init.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netfilter.h> 21 #include <linux/rtnetlink.h> 22 #include <net/rtnetlink.h> 23 #include <linux/u64_stats_sync.h> 24 #include <linux/hashtable.h> 25 #include <linux/spinlock_types.h> 26 27 #include <linux/inetdevice.h> 28 #include <net/arp.h> 29 #include <net/ip.h> 30 #include <net/ip_fib.h> 31 #include <net/ip6_fib.h> 32 #include <net/ip6_route.h> 33 #include <net/route.h> 34 #include <net/addrconf.h> 35 #include <net/l3mdev.h> 36 #include <net/fib_rules.h> 37 #include <net/netns/generic.h> 38 #include <net/netfilter/nf_conntrack.h> 39 40 #define DRV_NAME "vrf" 41 #define DRV_VERSION "1.1" 42 43 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 44 45 #define HT_MAP_BITS 4 46 #define HASH_INITVAL ((u32)0xcafef00d) 47 48 struct vrf_map { 49 DECLARE_HASHTABLE(ht, HT_MAP_BITS); 50 spinlock_t vmap_lock; 51 52 /* shared_tables: 53 * count how many distinct tables do not comply with the strict mode 54 * requirement. 55 * shared_tables value must be 0 in order to enable the strict mode. 56 * 57 * example of the evolution of shared_tables: 58 * | time 59 * add vrf0 --> table 100 shared_tables = 0 | t0 60 * add vrf1 --> table 101 shared_tables = 0 | t1 61 * add vrf2 --> table 100 shared_tables = 1 | t2 62 * add vrf3 --> table 100 shared_tables = 1 | t3 63 * add vrf4 --> table 101 shared_tables = 2 v t4 64 * 65 * shared_tables is a "step function" (or "staircase function") 66 * and it is increased by one when the second vrf is associated to a 67 * table. 68 * 69 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. 70 * 71 * at t3, another dev (vrf3) is bound to the same table 100 but the 72 * value of shared_tables is still 1. 73 * This means that no matter how many new vrfs will register on the 74 * table 100, the shared_tables will not increase (considering only 75 * table 100). 76 * 77 * at t4, vrf4 is bound to table 101, and shared_tables = 2. 78 * 79 * Looking at the value of shared_tables we can immediately know if 80 * the strict_mode can or cannot be enforced. Indeed, strict_mode 81 * can be enforced iff shared_tables = 0. 82 * 83 * Conversely, shared_tables is decreased when a vrf is de-associated 84 * from a table with exactly two associated vrfs. 85 */ 86 u32 shared_tables; 87 88 bool strict_mode; 89 }; 90 91 struct vrf_map_elem { 92 struct hlist_node hnode; 93 struct list_head vrf_list; /* VRFs registered to this table */ 94 95 u32 table_id; 96 int users; 97 int ifindex; 98 }; 99 100 static unsigned int vrf_net_id; 101 102 /* per netns vrf data */ 103 struct netns_vrf { 104 /* protected by rtnl lock */ 105 bool add_fib_rules; 106 107 struct vrf_map vmap; 108 struct ctl_table_header *ctl_hdr; 109 }; 110 111 struct net_vrf { 112 struct rtable __rcu *rth; 113 struct rt6_info __rcu *rt6; 114 #if IS_ENABLED(CONFIG_IPV6) 115 struct fib6_table *fib6_table; 116 #endif 117 u32 tb_id; 118 119 struct list_head me_list; /* entry in vrf_map_elem */ 120 int ifindex; 121 }; 122 123 struct pcpu_dstats { 124 u64 tx_pkts; 125 u64 tx_bytes; 126 u64 tx_drps; 127 u64 rx_pkts; 128 u64 rx_bytes; 129 u64 rx_drps; 130 struct u64_stats_sync syncp; 131 }; 132 133 static void vrf_rx_stats(struct net_device *dev, int len) 134 { 135 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 136 137 u64_stats_update_begin(&dstats->syncp); 138 dstats->rx_pkts++; 139 dstats->rx_bytes += len; 140 u64_stats_update_end(&dstats->syncp); 141 } 142 143 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 144 { 145 vrf_dev->stats.tx_errors++; 146 kfree_skb(skb); 147 } 148 149 static void vrf_get_stats64(struct net_device *dev, 150 struct rtnl_link_stats64 *stats) 151 { 152 int i; 153 154 for_each_possible_cpu(i) { 155 const struct pcpu_dstats *dstats; 156 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 157 unsigned int start; 158 159 dstats = per_cpu_ptr(dev->dstats, i); 160 do { 161 start = u64_stats_fetch_begin_irq(&dstats->syncp); 162 tbytes = dstats->tx_bytes; 163 tpkts = dstats->tx_pkts; 164 tdrops = dstats->tx_drps; 165 rbytes = dstats->rx_bytes; 166 rpkts = dstats->rx_pkts; 167 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 168 stats->tx_bytes += tbytes; 169 stats->tx_packets += tpkts; 170 stats->tx_dropped += tdrops; 171 stats->rx_bytes += rbytes; 172 stats->rx_packets += rpkts; 173 } 174 } 175 176 static struct vrf_map *netns_vrf_map(struct net *net) 177 { 178 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 179 180 return &nn_vrf->vmap; 181 } 182 183 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) 184 { 185 return netns_vrf_map(dev_net(dev)); 186 } 187 188 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) 189 { 190 struct list_head *me_head = &me->vrf_list; 191 struct net_vrf *vrf; 192 193 if (list_empty(me_head)) 194 return -ENODEV; 195 196 vrf = list_first_entry(me_head, struct net_vrf, me_list); 197 198 return vrf->ifindex; 199 } 200 201 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) 202 { 203 struct vrf_map_elem *me; 204 205 me = kmalloc(sizeof(*me), flags); 206 if (!me) 207 return NULL; 208 209 return me; 210 } 211 212 static void vrf_map_elem_free(struct vrf_map_elem *me) 213 { 214 kfree(me); 215 } 216 217 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, 218 int ifindex, int users) 219 { 220 me->table_id = table_id; 221 me->ifindex = ifindex; 222 me->users = users; 223 INIT_LIST_HEAD(&me->vrf_list); 224 } 225 226 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, 227 u32 table_id) 228 { 229 struct vrf_map_elem *me; 230 u32 key; 231 232 key = jhash_1word(table_id, HASH_INITVAL); 233 hash_for_each_possible(vmap->ht, me, hnode, key) { 234 if (me->table_id == table_id) 235 return me; 236 } 237 238 return NULL; 239 } 240 241 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) 242 { 243 u32 table_id = me->table_id; 244 u32 key; 245 246 key = jhash_1word(table_id, HASH_INITVAL); 247 hash_add(vmap->ht, &me->hnode, key); 248 } 249 250 static void vrf_map_del_elem(struct vrf_map_elem *me) 251 { 252 hash_del(&me->hnode); 253 } 254 255 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) 256 { 257 spin_lock(&vmap->vmap_lock); 258 } 259 260 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) 261 { 262 spin_unlock(&vmap->vmap_lock); 263 } 264 265 /* called with rtnl lock held */ 266 static int 267 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) 268 { 269 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 270 struct net_vrf *vrf = netdev_priv(dev); 271 struct vrf_map_elem *new_me, *me; 272 u32 table_id = vrf->tb_id; 273 bool free_new_me = false; 274 int users; 275 int res; 276 277 /* we pre-allocate elements used in the spin-locked section (so that we 278 * keep the spinlock as short as possible). 279 */ 280 new_me = vrf_map_elem_alloc(GFP_KERNEL); 281 if (!new_me) 282 return -ENOMEM; 283 284 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0); 285 286 vrf_map_lock(vmap); 287 288 me = vrf_map_lookup_elem(vmap, table_id); 289 if (!me) { 290 me = new_me; 291 vrf_map_add_elem(vmap, me); 292 goto link_vrf; 293 } 294 295 /* we already have an entry in the vrf_map, so it means there is (at 296 * least) a vrf registered on the specific table. 297 */ 298 free_new_me = true; 299 if (vmap->strict_mode) { 300 /* vrfs cannot share the same table */ 301 NL_SET_ERR_MSG(extack, "Table is used by another VRF"); 302 res = -EBUSY; 303 goto unlock; 304 } 305 306 link_vrf: 307 users = ++me->users; 308 if (users == 2) 309 ++vmap->shared_tables; 310 311 list_add(&vrf->me_list, &me->vrf_list); 312 313 res = 0; 314 315 unlock: 316 vrf_map_unlock(vmap); 317 318 /* clean-up, if needed */ 319 if (free_new_me) 320 vrf_map_elem_free(new_me); 321 322 return res; 323 } 324 325 /* called with rtnl lock held */ 326 static void vrf_map_unregister_dev(struct net_device *dev) 327 { 328 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 329 struct net_vrf *vrf = netdev_priv(dev); 330 u32 table_id = vrf->tb_id; 331 struct vrf_map_elem *me; 332 int users; 333 334 vrf_map_lock(vmap); 335 336 me = vrf_map_lookup_elem(vmap, table_id); 337 if (!me) 338 goto unlock; 339 340 list_del(&vrf->me_list); 341 342 users = --me->users; 343 if (users == 1) { 344 --vmap->shared_tables; 345 } else if (users == 0) { 346 vrf_map_del_elem(me); 347 348 /* no one will refer to this element anymore */ 349 vrf_map_elem_free(me); 350 } 351 352 unlock: 353 vrf_map_unlock(vmap); 354 } 355 356 /* return the vrf device index associated with the table_id */ 357 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) 358 { 359 struct vrf_map *vmap = netns_vrf_map(net); 360 struct vrf_map_elem *me; 361 int ifindex; 362 363 vrf_map_lock(vmap); 364 365 if (!vmap->strict_mode) { 366 ifindex = -EPERM; 367 goto unlock; 368 } 369 370 me = vrf_map_lookup_elem(vmap, table_id); 371 if (!me) { 372 ifindex = -ENODEV; 373 goto unlock; 374 } 375 376 ifindex = vrf_map_elem_get_vrf_ifindex(me); 377 378 unlock: 379 vrf_map_unlock(vmap); 380 381 return ifindex; 382 } 383 384 /* by default VRF devices do not have a qdisc and are expected 385 * to be created with only a single queue. 386 */ 387 static bool qdisc_tx_is_default(const struct net_device *dev) 388 { 389 struct netdev_queue *txq; 390 struct Qdisc *qdisc; 391 392 if (dev->num_tx_queues > 1) 393 return false; 394 395 txq = netdev_get_tx_queue(dev, 0); 396 qdisc = rcu_access_pointer(txq->qdisc); 397 398 return !qdisc->enqueue; 399 } 400 401 /* Local traffic destined to local address. Reinsert the packet to rx 402 * path, similar to loopback handling. 403 */ 404 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 405 struct dst_entry *dst) 406 { 407 int len = skb->len; 408 409 skb_orphan(skb); 410 411 skb_dst_set(skb, dst); 412 413 /* set pkt_type to avoid skb hitting packet taps twice - 414 * once on Tx and again in Rx processing 415 */ 416 skb->pkt_type = PACKET_LOOPBACK; 417 418 skb->protocol = eth_type_trans(skb, dev); 419 420 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 421 vrf_rx_stats(dev, len); 422 else 423 this_cpu_inc(dev->dstats->rx_drps); 424 425 return NETDEV_TX_OK; 426 } 427 428 static void vrf_nf_set_untracked(struct sk_buff *skb) 429 { 430 if (skb_get_nfct(skb) == 0) 431 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 432 } 433 434 static void vrf_nf_reset_ct(struct sk_buff *skb) 435 { 436 if (skb_get_nfct(skb) == IP_CT_UNTRACKED) 437 nf_reset_ct(skb); 438 } 439 440 #if IS_ENABLED(CONFIG_IPV6) 441 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 442 struct sk_buff *skb) 443 { 444 int err; 445 446 vrf_nf_reset_ct(skb); 447 448 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 449 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 450 451 if (likely(err == 1)) 452 err = dst_output(net, sk, skb); 453 454 return err; 455 } 456 457 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 458 struct net_device *dev) 459 { 460 const struct ipv6hdr *iph; 461 struct net *net = dev_net(skb->dev); 462 struct flowi6 fl6; 463 int ret = NET_XMIT_DROP; 464 struct dst_entry *dst; 465 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 466 467 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) 468 goto err; 469 470 iph = ipv6_hdr(skb); 471 472 memset(&fl6, 0, sizeof(fl6)); 473 /* needed to match OIF rule */ 474 fl6.flowi6_oif = dev->ifindex; 475 fl6.flowi6_iif = LOOPBACK_IFINDEX; 476 fl6.daddr = iph->daddr; 477 fl6.saddr = iph->saddr; 478 fl6.flowlabel = ip6_flowinfo(iph); 479 fl6.flowi6_mark = skb->mark; 480 fl6.flowi6_proto = iph->nexthdr; 481 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF; 482 483 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); 484 if (IS_ERR(dst) || dst == dst_null) 485 goto err; 486 487 skb_dst_drop(skb); 488 489 /* if dst.dev is the VRF device again this is locally originated traffic 490 * destined to a local address. Short circuit to Rx path. 491 */ 492 if (dst->dev == dev) 493 return vrf_local_xmit(skb, dev, dst); 494 495 skb_dst_set(skb, dst); 496 497 /* strip the ethernet header added for pass through VRF device */ 498 __skb_pull(skb, skb_network_offset(skb)); 499 500 ret = vrf_ip6_local_out(net, skb->sk, skb); 501 if (unlikely(net_xmit_eval(ret))) 502 dev->stats.tx_errors++; 503 else 504 ret = NET_XMIT_SUCCESS; 505 506 return ret; 507 err: 508 vrf_tx_error(dev, skb); 509 return NET_XMIT_DROP; 510 } 511 #else 512 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 513 struct net_device *dev) 514 { 515 vrf_tx_error(dev, skb); 516 return NET_XMIT_DROP; 517 } 518 #endif 519 520 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 521 static int vrf_ip_local_out(struct net *net, struct sock *sk, 522 struct sk_buff *skb) 523 { 524 int err; 525 526 vrf_nf_reset_ct(skb); 527 528 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 529 skb, NULL, skb_dst(skb)->dev, dst_output); 530 if (likely(err == 1)) 531 err = dst_output(net, sk, skb); 532 533 return err; 534 } 535 536 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 537 struct net_device *vrf_dev) 538 { 539 struct iphdr *ip4h; 540 int ret = NET_XMIT_DROP; 541 struct flowi4 fl4; 542 struct net *net = dev_net(vrf_dev); 543 struct rtable *rt; 544 545 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) 546 goto err; 547 548 ip4h = ip_hdr(skb); 549 550 memset(&fl4, 0, sizeof(fl4)); 551 /* needed to match OIF rule */ 552 fl4.flowi4_oif = vrf_dev->ifindex; 553 fl4.flowi4_iif = LOOPBACK_IFINDEX; 554 fl4.flowi4_tos = RT_TOS(ip4h->tos); 555 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF; 556 fl4.flowi4_proto = ip4h->protocol; 557 fl4.daddr = ip4h->daddr; 558 fl4.saddr = ip4h->saddr; 559 560 rt = ip_route_output_flow(net, &fl4, NULL); 561 if (IS_ERR(rt)) 562 goto err; 563 564 skb_dst_drop(skb); 565 566 /* if dst.dev is the VRF device again this is locally originated traffic 567 * destined to a local address. Short circuit to Rx path. 568 */ 569 if (rt->dst.dev == vrf_dev) 570 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 571 572 skb_dst_set(skb, &rt->dst); 573 574 /* strip the ethernet header added for pass through VRF device */ 575 __skb_pull(skb, skb_network_offset(skb)); 576 577 if (!ip4h->saddr) { 578 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 579 RT_SCOPE_LINK); 580 } 581 582 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 583 if (unlikely(net_xmit_eval(ret))) 584 vrf_dev->stats.tx_errors++; 585 else 586 ret = NET_XMIT_SUCCESS; 587 588 out: 589 return ret; 590 err: 591 vrf_tx_error(vrf_dev, skb); 592 goto out; 593 } 594 595 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 596 { 597 switch (skb->protocol) { 598 case htons(ETH_P_IP): 599 return vrf_process_v4_outbound(skb, dev); 600 case htons(ETH_P_IPV6): 601 return vrf_process_v6_outbound(skb, dev); 602 default: 603 vrf_tx_error(dev, skb); 604 return NET_XMIT_DROP; 605 } 606 } 607 608 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 609 { 610 int len = skb->len; 611 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 612 613 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 614 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 615 616 u64_stats_update_begin(&dstats->syncp); 617 dstats->tx_pkts++; 618 dstats->tx_bytes += len; 619 u64_stats_update_end(&dstats->syncp); 620 } else { 621 this_cpu_inc(dev->dstats->tx_drps); 622 } 623 624 return ret; 625 } 626 627 static void vrf_finish_direct(struct sk_buff *skb) 628 { 629 struct net_device *vrf_dev = skb->dev; 630 631 if (!list_empty(&vrf_dev->ptype_all) && 632 likely(skb_headroom(skb) >= ETH_HLEN)) { 633 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 634 635 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 636 eth_zero_addr(eth->h_dest); 637 eth->h_proto = skb->protocol; 638 639 rcu_read_lock_bh(); 640 dev_queue_xmit_nit(skb, vrf_dev); 641 rcu_read_unlock_bh(); 642 643 skb_pull(skb, ETH_HLEN); 644 } 645 646 vrf_nf_reset_ct(skb); 647 } 648 649 #if IS_ENABLED(CONFIG_IPV6) 650 /* modelled after ip6_finish_output2 */ 651 static int vrf_finish_output6(struct net *net, struct sock *sk, 652 struct sk_buff *skb) 653 { 654 struct dst_entry *dst = skb_dst(skb); 655 struct net_device *dev = dst->dev; 656 const struct in6_addr *nexthop; 657 struct neighbour *neigh; 658 int ret; 659 660 vrf_nf_reset_ct(skb); 661 662 skb->protocol = htons(ETH_P_IPV6); 663 skb->dev = dev; 664 665 rcu_read_lock_bh(); 666 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 667 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 668 if (unlikely(!neigh)) 669 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 670 if (!IS_ERR(neigh)) { 671 sock_confirm_neigh(skb, neigh); 672 ret = neigh_output(neigh, skb, false); 673 rcu_read_unlock_bh(); 674 return ret; 675 } 676 rcu_read_unlock_bh(); 677 678 IP6_INC_STATS(dev_net(dst->dev), 679 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 680 kfree_skb(skb); 681 return -EINVAL; 682 } 683 684 /* modelled after ip6_output */ 685 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 686 { 687 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 688 net, sk, skb, NULL, skb_dst(skb)->dev, 689 vrf_finish_output6, 690 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 691 } 692 693 /* set dst on skb to send packet to us via dev_xmit path. Allows 694 * packet to go through device based features such as qdisc, netfilter 695 * hooks and packet sockets with skb->dev set to vrf device. 696 */ 697 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 698 struct sk_buff *skb) 699 { 700 struct net_vrf *vrf = netdev_priv(vrf_dev); 701 struct dst_entry *dst = NULL; 702 struct rt6_info *rt6; 703 704 rcu_read_lock(); 705 706 rt6 = rcu_dereference(vrf->rt6); 707 if (likely(rt6)) { 708 dst = &rt6->dst; 709 dst_hold(dst); 710 } 711 712 rcu_read_unlock(); 713 714 if (unlikely(!dst)) { 715 vrf_tx_error(vrf_dev, skb); 716 return NULL; 717 } 718 719 skb_dst_drop(skb); 720 skb_dst_set(skb, dst); 721 722 return skb; 723 } 724 725 static int vrf_output6_direct_finish(struct net *net, struct sock *sk, 726 struct sk_buff *skb) 727 { 728 vrf_finish_direct(skb); 729 730 return vrf_ip6_local_out(net, sk, skb); 731 } 732 733 static int vrf_output6_direct(struct net *net, struct sock *sk, 734 struct sk_buff *skb) 735 { 736 int err = 1; 737 738 skb->protocol = htons(ETH_P_IPV6); 739 740 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 741 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, 742 NULL, skb->dev, vrf_output6_direct_finish); 743 744 if (likely(err == 1)) 745 vrf_finish_direct(skb); 746 747 return err; 748 } 749 750 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, 751 struct sk_buff *skb) 752 { 753 int err; 754 755 err = vrf_output6_direct(net, sk, skb); 756 if (likely(err == 1)) 757 err = vrf_ip6_local_out(net, sk, skb); 758 759 return err; 760 } 761 762 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 763 struct sock *sk, 764 struct sk_buff *skb) 765 { 766 struct net *net = dev_net(vrf_dev); 767 int err; 768 769 skb->dev = vrf_dev; 770 771 vrf_nf_set_untracked(skb); 772 773 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 774 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish); 775 776 if (likely(err == 1)) 777 err = vrf_output6_direct(net, sk, skb); 778 779 if (likely(err == 1)) 780 return skb; 781 782 return NULL; 783 } 784 785 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 786 struct sock *sk, 787 struct sk_buff *skb) 788 { 789 /* don't divert link scope packets */ 790 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 791 return skb; 792 793 if (qdisc_tx_is_default(vrf_dev) || 794 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 795 return vrf_ip6_out_direct(vrf_dev, sk, skb); 796 797 return vrf_ip6_out_redirect(vrf_dev, skb); 798 } 799 800 /* holding rtnl */ 801 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 802 { 803 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 804 struct net *net = dev_net(dev); 805 struct dst_entry *dst; 806 807 RCU_INIT_POINTER(vrf->rt6, NULL); 808 synchronize_rcu(); 809 810 /* move dev in dst's to loopback so this VRF device can be deleted 811 * - based on dst_ifdown 812 */ 813 if (rt6) { 814 dst = &rt6->dst; 815 dev_put(dst->dev); 816 dst->dev = net->loopback_dev; 817 dev_hold(dst->dev); 818 dst_release(dst); 819 } 820 } 821 822 static int vrf_rt6_create(struct net_device *dev) 823 { 824 int flags = DST_NOPOLICY | DST_NOXFRM; 825 struct net_vrf *vrf = netdev_priv(dev); 826 struct net *net = dev_net(dev); 827 struct rt6_info *rt6; 828 int rc = -ENOMEM; 829 830 /* IPv6 can be CONFIG enabled and then disabled runtime */ 831 if (!ipv6_mod_enabled()) 832 return 0; 833 834 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 835 if (!vrf->fib6_table) 836 goto out; 837 838 /* create a dst for routing packets out a VRF device */ 839 rt6 = ip6_dst_alloc(net, dev, flags); 840 if (!rt6) 841 goto out; 842 843 rt6->dst.output = vrf_output6; 844 845 rcu_assign_pointer(vrf->rt6, rt6); 846 847 rc = 0; 848 out: 849 return rc; 850 } 851 #else 852 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 853 struct sock *sk, 854 struct sk_buff *skb) 855 { 856 return skb; 857 } 858 859 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 860 { 861 } 862 863 static int vrf_rt6_create(struct net_device *dev) 864 { 865 return 0; 866 } 867 #endif 868 869 /* modelled after ip_finish_output2 */ 870 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 871 { 872 struct dst_entry *dst = skb_dst(skb); 873 struct rtable *rt = (struct rtable *)dst; 874 struct net_device *dev = dst->dev; 875 unsigned int hh_len = LL_RESERVED_SPACE(dev); 876 struct neighbour *neigh; 877 bool is_v6gw = false; 878 879 vrf_nf_reset_ct(skb); 880 881 /* Be paranoid, rather than too clever. */ 882 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 883 skb = skb_expand_head(skb, hh_len); 884 if (!skb) { 885 dev->stats.tx_errors++; 886 return -ENOMEM; 887 } 888 } 889 890 rcu_read_lock_bh(); 891 892 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 893 if (!IS_ERR(neigh)) { 894 int ret; 895 896 sock_confirm_neigh(skb, neigh); 897 /* if crossing protocols, can not use the cached header */ 898 ret = neigh_output(neigh, skb, is_v6gw); 899 rcu_read_unlock_bh(); 900 return ret; 901 } 902 903 rcu_read_unlock_bh(); 904 vrf_tx_error(skb->dev, skb); 905 return -EINVAL; 906 } 907 908 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 909 { 910 struct net_device *dev = skb_dst(skb)->dev; 911 912 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 913 914 skb->dev = dev; 915 skb->protocol = htons(ETH_P_IP); 916 917 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 918 net, sk, skb, NULL, dev, 919 vrf_finish_output, 920 !(IPCB(skb)->flags & IPSKB_REROUTED)); 921 } 922 923 /* set dst on skb to send packet to us via dev_xmit path. Allows 924 * packet to go through device based features such as qdisc, netfilter 925 * hooks and packet sockets with skb->dev set to vrf device. 926 */ 927 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 928 struct sk_buff *skb) 929 { 930 struct net_vrf *vrf = netdev_priv(vrf_dev); 931 struct dst_entry *dst = NULL; 932 struct rtable *rth; 933 934 rcu_read_lock(); 935 936 rth = rcu_dereference(vrf->rth); 937 if (likely(rth)) { 938 dst = &rth->dst; 939 dst_hold(dst); 940 } 941 942 rcu_read_unlock(); 943 944 if (unlikely(!dst)) { 945 vrf_tx_error(vrf_dev, skb); 946 return NULL; 947 } 948 949 skb_dst_drop(skb); 950 skb_dst_set(skb, dst); 951 952 return skb; 953 } 954 955 static int vrf_output_direct_finish(struct net *net, struct sock *sk, 956 struct sk_buff *skb) 957 { 958 vrf_finish_direct(skb); 959 960 return vrf_ip_local_out(net, sk, skb); 961 } 962 963 static int vrf_output_direct(struct net *net, struct sock *sk, 964 struct sk_buff *skb) 965 { 966 int err = 1; 967 968 skb->protocol = htons(ETH_P_IP); 969 970 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 971 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, 972 NULL, skb->dev, vrf_output_direct_finish); 973 974 if (likely(err == 1)) 975 vrf_finish_direct(skb); 976 977 return err; 978 } 979 980 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, 981 struct sk_buff *skb) 982 { 983 int err; 984 985 err = vrf_output_direct(net, sk, skb); 986 if (likely(err == 1)) 987 err = vrf_ip_local_out(net, sk, skb); 988 989 return err; 990 } 991 992 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 993 struct sock *sk, 994 struct sk_buff *skb) 995 { 996 struct net *net = dev_net(vrf_dev); 997 int err; 998 999 skb->dev = vrf_dev; 1000 1001 vrf_nf_set_untracked(skb); 1002 1003 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 1004 skb, NULL, vrf_dev, vrf_ip_out_direct_finish); 1005 1006 if (likely(err == 1)) 1007 err = vrf_output_direct(net, sk, skb); 1008 1009 if (likely(err == 1)) 1010 return skb; 1011 1012 return NULL; 1013 } 1014 1015 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 1016 struct sock *sk, 1017 struct sk_buff *skb) 1018 { 1019 /* don't divert multicast or local broadcast */ 1020 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 1021 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 1022 return skb; 1023 1024 if (qdisc_tx_is_default(vrf_dev) || 1025 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 1026 return vrf_ip_out_direct(vrf_dev, sk, skb); 1027 1028 return vrf_ip_out_redirect(vrf_dev, skb); 1029 } 1030 1031 /* called with rcu lock held */ 1032 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 1033 struct sock *sk, 1034 struct sk_buff *skb, 1035 u16 proto) 1036 { 1037 switch (proto) { 1038 case AF_INET: 1039 return vrf_ip_out(vrf_dev, sk, skb); 1040 case AF_INET6: 1041 return vrf_ip6_out(vrf_dev, sk, skb); 1042 } 1043 1044 return skb; 1045 } 1046 1047 /* holding rtnl */ 1048 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 1049 { 1050 struct rtable *rth = rtnl_dereference(vrf->rth); 1051 struct net *net = dev_net(dev); 1052 struct dst_entry *dst; 1053 1054 RCU_INIT_POINTER(vrf->rth, NULL); 1055 synchronize_rcu(); 1056 1057 /* move dev in dst's to loopback so this VRF device can be deleted 1058 * - based on dst_ifdown 1059 */ 1060 if (rth) { 1061 dst = &rth->dst; 1062 dev_put(dst->dev); 1063 dst->dev = net->loopback_dev; 1064 dev_hold(dst->dev); 1065 dst_release(dst); 1066 } 1067 } 1068 1069 static int vrf_rtable_create(struct net_device *dev) 1070 { 1071 struct net_vrf *vrf = netdev_priv(dev); 1072 struct rtable *rth; 1073 1074 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 1075 return -ENOMEM; 1076 1077 /* create a dst for routing packets out through a VRF device */ 1078 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1); 1079 if (!rth) 1080 return -ENOMEM; 1081 1082 rth->dst.output = vrf_output; 1083 1084 rcu_assign_pointer(vrf->rth, rth); 1085 1086 return 0; 1087 } 1088 1089 /**************************** device handling ********************/ 1090 1091 /* cycle interface to flush neighbor cache and move routes across tables */ 1092 static void cycle_netdev(struct net_device *dev, 1093 struct netlink_ext_ack *extack) 1094 { 1095 unsigned int flags = dev->flags; 1096 int ret; 1097 1098 if (!netif_running(dev)) 1099 return; 1100 1101 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 1102 if (ret >= 0) 1103 ret = dev_change_flags(dev, flags, extack); 1104 1105 if (ret < 0) { 1106 netdev_err(dev, 1107 "Failed to cycle device %s; route tables might be wrong!\n", 1108 dev->name); 1109 } 1110 } 1111 1112 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1113 struct netlink_ext_ack *extack) 1114 { 1115 int ret; 1116 1117 /* do not allow loopback device to be enslaved to a VRF. 1118 * The vrf device acts as the loopback for the vrf. 1119 */ 1120 if (port_dev == dev_net(dev)->loopback_dev) { 1121 NL_SET_ERR_MSG(extack, 1122 "Can not enslave loopback device to a VRF"); 1123 return -EOPNOTSUPP; 1124 } 1125 1126 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 1127 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 1128 if (ret < 0) 1129 goto err; 1130 1131 cycle_netdev(port_dev, extack); 1132 1133 return 0; 1134 1135 err: 1136 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1137 return ret; 1138 } 1139 1140 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1141 struct netlink_ext_ack *extack) 1142 { 1143 if (netif_is_l3_master(port_dev)) { 1144 NL_SET_ERR_MSG(extack, 1145 "Can not enslave an L3 master device to a VRF"); 1146 return -EINVAL; 1147 } 1148 1149 if (netif_is_l3_slave(port_dev)) 1150 return -EINVAL; 1151 1152 return do_vrf_add_slave(dev, port_dev, extack); 1153 } 1154 1155 /* inverse of do_vrf_add_slave */ 1156 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1157 { 1158 netdev_upper_dev_unlink(port_dev, dev); 1159 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1160 1161 cycle_netdev(port_dev, NULL); 1162 1163 return 0; 1164 } 1165 1166 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1167 { 1168 return do_vrf_del_slave(dev, port_dev); 1169 } 1170 1171 static void vrf_dev_uninit(struct net_device *dev) 1172 { 1173 struct net_vrf *vrf = netdev_priv(dev); 1174 1175 vrf_rtable_release(dev, vrf); 1176 vrf_rt6_release(dev, vrf); 1177 1178 free_percpu(dev->dstats); 1179 dev->dstats = NULL; 1180 } 1181 1182 static int vrf_dev_init(struct net_device *dev) 1183 { 1184 struct net_vrf *vrf = netdev_priv(dev); 1185 1186 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 1187 if (!dev->dstats) 1188 goto out_nomem; 1189 1190 /* create the default dst which points back to us */ 1191 if (vrf_rtable_create(dev) != 0) 1192 goto out_stats; 1193 1194 if (vrf_rt6_create(dev) != 0) 1195 goto out_rth; 1196 1197 dev->flags = IFF_MASTER | IFF_NOARP; 1198 1199 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 1200 dev->operstate = IF_OPER_UP; 1201 netdev_lockdep_set_classes(dev); 1202 return 0; 1203 1204 out_rth: 1205 vrf_rtable_release(dev, vrf); 1206 out_stats: 1207 free_percpu(dev->dstats); 1208 dev->dstats = NULL; 1209 out_nomem: 1210 return -ENOMEM; 1211 } 1212 1213 static const struct net_device_ops vrf_netdev_ops = { 1214 .ndo_init = vrf_dev_init, 1215 .ndo_uninit = vrf_dev_uninit, 1216 .ndo_start_xmit = vrf_xmit, 1217 .ndo_set_mac_address = eth_mac_addr, 1218 .ndo_get_stats64 = vrf_get_stats64, 1219 .ndo_add_slave = vrf_add_slave, 1220 .ndo_del_slave = vrf_del_slave, 1221 }; 1222 1223 static u32 vrf_fib_table(const struct net_device *dev) 1224 { 1225 struct net_vrf *vrf = netdev_priv(dev); 1226 1227 return vrf->tb_id; 1228 } 1229 1230 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 1231 { 1232 kfree_skb(skb); 1233 return 0; 1234 } 1235 1236 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 1237 struct sk_buff *skb, 1238 struct net_device *dev) 1239 { 1240 struct net *net = dev_net(dev); 1241 1242 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 1243 skb = NULL; /* kfree_skb(skb) handled by nf code */ 1244 1245 return skb; 1246 } 1247 1248 static int vrf_prepare_mac_header(struct sk_buff *skb, 1249 struct net_device *vrf_dev, u16 proto) 1250 { 1251 struct ethhdr *eth; 1252 int err; 1253 1254 /* in general, we do not know if there is enough space in the head of 1255 * the packet for hosting the mac header. 1256 */ 1257 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); 1258 if (unlikely(err)) 1259 /* no space in the skb head */ 1260 return -ENOBUFS; 1261 1262 __skb_push(skb, ETH_HLEN); 1263 eth = (struct ethhdr *)skb->data; 1264 1265 skb_reset_mac_header(skb); 1266 1267 /* we set the ethernet destination and the source addresses to the 1268 * address of the VRF device. 1269 */ 1270 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr); 1271 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 1272 eth->h_proto = htons(proto); 1273 1274 /* the destination address of the Ethernet frame corresponds to the 1275 * address set on the VRF interface; therefore, the packet is intended 1276 * to be processed locally. 1277 */ 1278 skb->protocol = eth->h_proto; 1279 skb->pkt_type = PACKET_HOST; 1280 1281 skb_postpush_rcsum(skb, skb->data, ETH_HLEN); 1282 1283 skb_pull_inline(skb, ETH_HLEN); 1284 1285 return 0; 1286 } 1287 1288 /* prepare and add the mac header to the packet if it was not set previously. 1289 * In this way, packet sniffers such as tcpdump can parse the packet correctly. 1290 * If the mac header was already set, the original mac header is left 1291 * untouched and the function returns immediately. 1292 */ 1293 static int vrf_add_mac_header_if_unset(struct sk_buff *skb, 1294 struct net_device *vrf_dev, 1295 u16 proto) 1296 { 1297 if (skb_mac_header_was_set(skb)) 1298 return 0; 1299 1300 return vrf_prepare_mac_header(skb, vrf_dev, proto); 1301 } 1302 1303 #if IS_ENABLED(CONFIG_IPV6) 1304 /* neighbor handling is done with actual device; do not want 1305 * to flip skb->dev for those ndisc packets. This really fails 1306 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 1307 * a start. 1308 */ 1309 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 1310 { 1311 const struct ipv6hdr *iph = ipv6_hdr(skb); 1312 bool rc = false; 1313 1314 if (iph->nexthdr == NEXTHDR_ICMP) { 1315 const struct icmp6hdr *icmph; 1316 struct icmp6hdr _icmph; 1317 1318 icmph = skb_header_pointer(skb, sizeof(*iph), 1319 sizeof(_icmph), &_icmph); 1320 if (!icmph) 1321 goto out; 1322 1323 switch (icmph->icmp6_type) { 1324 case NDISC_ROUTER_SOLICITATION: 1325 case NDISC_ROUTER_ADVERTISEMENT: 1326 case NDISC_NEIGHBOUR_SOLICITATION: 1327 case NDISC_NEIGHBOUR_ADVERTISEMENT: 1328 case NDISC_REDIRECT: 1329 rc = true; 1330 break; 1331 } 1332 } 1333 1334 out: 1335 return rc; 1336 } 1337 1338 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 1339 const struct net_device *dev, 1340 struct flowi6 *fl6, 1341 int ifindex, 1342 const struct sk_buff *skb, 1343 int flags) 1344 { 1345 struct net_vrf *vrf = netdev_priv(dev); 1346 1347 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 1348 } 1349 1350 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 1351 int ifindex) 1352 { 1353 const struct ipv6hdr *iph = ipv6_hdr(skb); 1354 struct flowi6 fl6 = { 1355 .flowi6_iif = ifindex, 1356 .flowi6_mark = skb->mark, 1357 .flowi6_proto = iph->nexthdr, 1358 .daddr = iph->daddr, 1359 .saddr = iph->saddr, 1360 .flowlabel = ip6_flowinfo(iph), 1361 }; 1362 struct net *net = dev_net(vrf_dev); 1363 struct rt6_info *rt6; 1364 1365 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 1366 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 1367 if (unlikely(!rt6)) 1368 return; 1369 1370 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 1371 return; 1372 1373 skb_dst_set(skb, &rt6->dst); 1374 } 1375 1376 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1377 struct sk_buff *skb) 1378 { 1379 int orig_iif = skb->skb_iif; 1380 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1381 bool is_ndisc = ipv6_ndisc_frame(skb); 1382 1383 /* loopback, multicast & non-ND link-local traffic; do not push through 1384 * packet taps again. Reset pkt_type for upper layers to process skb. 1385 * For strict packets with a source LLA, determine the dst using the 1386 * original ifindex. 1387 */ 1388 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 1389 skb->dev = vrf_dev; 1390 skb->skb_iif = vrf_dev->ifindex; 1391 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1392 1393 if (skb->pkt_type == PACKET_LOOPBACK) 1394 skb->pkt_type = PACKET_HOST; 1395 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL) 1396 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1397 1398 goto out; 1399 } 1400 1401 /* if packet is NDISC then keep the ingress interface */ 1402 if (!is_ndisc) { 1403 vrf_rx_stats(vrf_dev, skb->len); 1404 skb->dev = vrf_dev; 1405 skb->skb_iif = vrf_dev->ifindex; 1406 1407 if (!list_empty(&vrf_dev->ptype_all)) { 1408 int err; 1409 1410 err = vrf_add_mac_header_if_unset(skb, vrf_dev, 1411 ETH_P_IPV6); 1412 if (likely(!err)) { 1413 skb_push(skb, skb->mac_len); 1414 dev_queue_xmit_nit(skb, vrf_dev); 1415 skb_pull(skb, skb->mac_len); 1416 } 1417 } 1418 1419 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1420 } 1421 1422 if (need_strict) 1423 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1424 1425 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1426 out: 1427 return skb; 1428 } 1429 1430 #else 1431 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1432 struct sk_buff *skb) 1433 { 1434 return skb; 1435 } 1436 #endif 1437 1438 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1439 struct sk_buff *skb) 1440 { 1441 skb->dev = vrf_dev; 1442 skb->skb_iif = vrf_dev->ifindex; 1443 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1444 1445 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1446 goto out; 1447 1448 /* loopback traffic; do not push through packet taps again. 1449 * Reset pkt_type for upper layers to process skb 1450 */ 1451 if (skb->pkt_type == PACKET_LOOPBACK) { 1452 skb->pkt_type = PACKET_HOST; 1453 goto out; 1454 } 1455 1456 vrf_rx_stats(vrf_dev, skb->len); 1457 1458 if (!list_empty(&vrf_dev->ptype_all)) { 1459 int err; 1460 1461 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP); 1462 if (likely(!err)) { 1463 skb_push(skb, skb->mac_len); 1464 dev_queue_xmit_nit(skb, vrf_dev); 1465 skb_pull(skb, skb->mac_len); 1466 } 1467 } 1468 1469 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1470 out: 1471 return skb; 1472 } 1473 1474 /* called with rcu lock held */ 1475 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1476 struct sk_buff *skb, 1477 u16 proto) 1478 { 1479 switch (proto) { 1480 case AF_INET: 1481 return vrf_ip_rcv(vrf_dev, skb); 1482 case AF_INET6: 1483 return vrf_ip6_rcv(vrf_dev, skb); 1484 } 1485 1486 return skb; 1487 } 1488 1489 #if IS_ENABLED(CONFIG_IPV6) 1490 /* send to link-local or multicast address via interface enslaved to 1491 * VRF device. Force lookup to VRF table without changing flow struct 1492 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1493 * is taken on the dst by this function. 1494 */ 1495 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1496 struct flowi6 *fl6) 1497 { 1498 struct net *net = dev_net(dev); 1499 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1500 struct dst_entry *dst = NULL; 1501 struct rt6_info *rt; 1502 1503 /* VRF device does not have a link-local address and 1504 * sending packets to link-local or mcast addresses over 1505 * a VRF device does not make sense 1506 */ 1507 if (fl6->flowi6_oif == dev->ifindex) { 1508 dst = &net->ipv6.ip6_null_entry->dst; 1509 return dst; 1510 } 1511 1512 if (!ipv6_addr_any(&fl6->saddr)) 1513 flags |= RT6_LOOKUP_F_HAS_SADDR; 1514 1515 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1516 if (rt) 1517 dst = &rt->dst; 1518 1519 return dst; 1520 } 1521 #endif 1522 1523 static const struct l3mdev_ops vrf_l3mdev_ops = { 1524 .l3mdev_fib_table = vrf_fib_table, 1525 .l3mdev_l3_rcv = vrf_l3_rcv, 1526 .l3mdev_l3_out = vrf_l3_out, 1527 #if IS_ENABLED(CONFIG_IPV6) 1528 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1529 #endif 1530 }; 1531 1532 static void vrf_get_drvinfo(struct net_device *dev, 1533 struct ethtool_drvinfo *info) 1534 { 1535 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1536 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1537 } 1538 1539 static const struct ethtool_ops vrf_ethtool_ops = { 1540 .get_drvinfo = vrf_get_drvinfo, 1541 }; 1542 1543 static inline size_t vrf_fib_rule_nl_size(void) 1544 { 1545 size_t sz; 1546 1547 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1548 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1549 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1550 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1551 1552 return sz; 1553 } 1554 1555 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1556 { 1557 struct fib_rule_hdr *frh; 1558 struct nlmsghdr *nlh; 1559 struct sk_buff *skb; 1560 int err; 1561 1562 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && 1563 !ipv6_mod_enabled()) 1564 return 0; 1565 1566 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1567 if (!skb) 1568 return -ENOMEM; 1569 1570 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1571 if (!nlh) 1572 goto nla_put_failure; 1573 1574 /* rule only needs to appear once */ 1575 nlh->nlmsg_flags |= NLM_F_EXCL; 1576 1577 frh = nlmsg_data(nlh); 1578 memset(frh, 0, sizeof(*frh)); 1579 frh->family = family; 1580 frh->action = FR_ACT_TO_TBL; 1581 1582 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1583 goto nla_put_failure; 1584 1585 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1586 goto nla_put_failure; 1587 1588 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1589 goto nla_put_failure; 1590 1591 nlmsg_end(skb, nlh); 1592 1593 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1594 skb->sk = dev_net(dev)->rtnl; 1595 if (add_it) { 1596 err = fib_nl_newrule(skb, nlh, NULL); 1597 if (err == -EEXIST) 1598 err = 0; 1599 } else { 1600 err = fib_nl_delrule(skb, nlh, NULL); 1601 if (err == -ENOENT) 1602 err = 0; 1603 } 1604 nlmsg_free(skb); 1605 1606 return err; 1607 1608 nla_put_failure: 1609 nlmsg_free(skb); 1610 1611 return -EMSGSIZE; 1612 } 1613 1614 static int vrf_add_fib_rules(const struct net_device *dev) 1615 { 1616 int err; 1617 1618 err = vrf_fib_rule(dev, AF_INET, true); 1619 if (err < 0) 1620 goto out_err; 1621 1622 err = vrf_fib_rule(dev, AF_INET6, true); 1623 if (err < 0) 1624 goto ipv6_err; 1625 1626 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1627 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1628 if (err < 0) 1629 goto ipmr_err; 1630 #endif 1631 1632 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1633 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1634 if (err < 0) 1635 goto ip6mr_err; 1636 #endif 1637 1638 return 0; 1639 1640 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1641 ip6mr_err: 1642 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1643 #endif 1644 1645 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1646 ipmr_err: 1647 vrf_fib_rule(dev, AF_INET6, false); 1648 #endif 1649 1650 ipv6_err: 1651 vrf_fib_rule(dev, AF_INET, false); 1652 1653 out_err: 1654 netdev_err(dev, "Failed to add FIB rules.\n"); 1655 return err; 1656 } 1657 1658 static void vrf_setup(struct net_device *dev) 1659 { 1660 ether_setup(dev); 1661 1662 /* Initialize the device structure. */ 1663 dev->netdev_ops = &vrf_netdev_ops; 1664 dev->l3mdev_ops = &vrf_l3mdev_ops; 1665 dev->ethtool_ops = &vrf_ethtool_ops; 1666 dev->needs_free_netdev = true; 1667 1668 /* Fill in device structure with ethernet-generic values. */ 1669 eth_hw_addr_random(dev); 1670 1671 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1672 dev->features |= NETIF_F_LLTX; 1673 1674 /* don't allow vrf devices to change network namespaces. */ 1675 dev->features |= NETIF_F_NETNS_LOCAL; 1676 1677 /* does not make sense for a VLAN to be added to a vrf device */ 1678 dev->features |= NETIF_F_VLAN_CHALLENGED; 1679 1680 /* enable offload features */ 1681 dev->features |= NETIF_F_GSO_SOFTWARE; 1682 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1683 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1684 1685 dev->hw_features = dev->features; 1686 dev->hw_enc_features = dev->features; 1687 1688 /* default to no qdisc; user can add if desired */ 1689 dev->priv_flags |= IFF_NO_QUEUE; 1690 dev->priv_flags |= IFF_NO_RX_HANDLER; 1691 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1692 1693 /* VRF devices do not care about MTU, but if the MTU is set 1694 * too low then the ipv4 and ipv6 protocols are disabled 1695 * which breaks networking. 1696 */ 1697 dev->min_mtu = IPV6_MIN_MTU; 1698 dev->max_mtu = IP6_MAX_MTU; 1699 dev->mtu = dev->max_mtu; 1700 } 1701 1702 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1703 struct netlink_ext_ack *extack) 1704 { 1705 if (tb[IFLA_ADDRESS]) { 1706 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1707 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1708 return -EINVAL; 1709 } 1710 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1711 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1712 return -EADDRNOTAVAIL; 1713 } 1714 } 1715 return 0; 1716 } 1717 1718 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1719 { 1720 struct net_device *port_dev; 1721 struct list_head *iter; 1722 1723 netdev_for_each_lower_dev(dev, port_dev, iter) 1724 vrf_del_slave(dev, port_dev); 1725 1726 vrf_map_unregister_dev(dev); 1727 1728 unregister_netdevice_queue(dev, head); 1729 } 1730 1731 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1732 struct nlattr *tb[], struct nlattr *data[], 1733 struct netlink_ext_ack *extack) 1734 { 1735 struct net_vrf *vrf = netdev_priv(dev); 1736 struct netns_vrf *nn_vrf; 1737 bool *add_fib_rules; 1738 struct net *net; 1739 int err; 1740 1741 if (!data || !data[IFLA_VRF_TABLE]) { 1742 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1743 return -EINVAL; 1744 } 1745 1746 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1747 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1748 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1749 "Invalid VRF table id"); 1750 return -EINVAL; 1751 } 1752 1753 dev->priv_flags |= IFF_L3MDEV_MASTER; 1754 1755 err = register_netdevice(dev); 1756 if (err) 1757 goto out; 1758 1759 /* mapping between table_id and vrf; 1760 * note: such binding could not be done in the dev init function 1761 * because dev->ifindex id is not available yet. 1762 */ 1763 vrf->ifindex = dev->ifindex; 1764 1765 err = vrf_map_register_dev(dev, extack); 1766 if (err) { 1767 unregister_netdevice(dev); 1768 goto out; 1769 } 1770 1771 net = dev_net(dev); 1772 nn_vrf = net_generic(net, vrf_net_id); 1773 1774 add_fib_rules = &nn_vrf->add_fib_rules; 1775 if (*add_fib_rules) { 1776 err = vrf_add_fib_rules(dev); 1777 if (err) { 1778 vrf_map_unregister_dev(dev); 1779 unregister_netdevice(dev); 1780 goto out; 1781 } 1782 *add_fib_rules = false; 1783 } 1784 1785 out: 1786 return err; 1787 } 1788 1789 static size_t vrf_nl_getsize(const struct net_device *dev) 1790 { 1791 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1792 } 1793 1794 static int vrf_fillinfo(struct sk_buff *skb, 1795 const struct net_device *dev) 1796 { 1797 struct net_vrf *vrf = netdev_priv(dev); 1798 1799 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1800 } 1801 1802 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1803 const struct net_device *slave_dev) 1804 { 1805 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1806 } 1807 1808 static int vrf_fill_slave_info(struct sk_buff *skb, 1809 const struct net_device *vrf_dev, 1810 const struct net_device *slave_dev) 1811 { 1812 struct net_vrf *vrf = netdev_priv(vrf_dev); 1813 1814 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1815 return -EMSGSIZE; 1816 1817 return 0; 1818 } 1819 1820 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1821 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1822 }; 1823 1824 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1825 .kind = DRV_NAME, 1826 .priv_size = sizeof(struct net_vrf), 1827 1828 .get_size = vrf_nl_getsize, 1829 .policy = vrf_nl_policy, 1830 .validate = vrf_validate, 1831 .fill_info = vrf_fillinfo, 1832 1833 .get_slave_size = vrf_get_slave_size, 1834 .fill_slave_info = vrf_fill_slave_info, 1835 1836 .newlink = vrf_newlink, 1837 .dellink = vrf_dellink, 1838 .setup = vrf_setup, 1839 .maxtype = IFLA_VRF_MAX, 1840 }; 1841 1842 static int vrf_device_event(struct notifier_block *unused, 1843 unsigned long event, void *ptr) 1844 { 1845 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1846 1847 /* only care about unregister events to drop slave references */ 1848 if (event == NETDEV_UNREGISTER) { 1849 struct net_device *vrf_dev; 1850 1851 if (!netif_is_l3_slave(dev)) 1852 goto out; 1853 1854 vrf_dev = netdev_master_upper_dev_get(dev); 1855 vrf_del_slave(vrf_dev, dev); 1856 } 1857 out: 1858 return NOTIFY_DONE; 1859 } 1860 1861 static struct notifier_block vrf_notifier_block __read_mostly = { 1862 .notifier_call = vrf_device_event, 1863 }; 1864 1865 static int vrf_map_init(struct vrf_map *vmap) 1866 { 1867 spin_lock_init(&vmap->vmap_lock); 1868 hash_init(vmap->ht); 1869 1870 vmap->strict_mode = false; 1871 1872 return 0; 1873 } 1874 1875 #ifdef CONFIG_SYSCTL 1876 static bool vrf_strict_mode(struct vrf_map *vmap) 1877 { 1878 bool strict_mode; 1879 1880 vrf_map_lock(vmap); 1881 strict_mode = vmap->strict_mode; 1882 vrf_map_unlock(vmap); 1883 1884 return strict_mode; 1885 } 1886 1887 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) 1888 { 1889 bool *cur_mode; 1890 int res = 0; 1891 1892 vrf_map_lock(vmap); 1893 1894 cur_mode = &vmap->strict_mode; 1895 if (*cur_mode == new_mode) 1896 goto unlock; 1897 1898 if (*cur_mode) { 1899 /* disable strict mode */ 1900 *cur_mode = false; 1901 } else { 1902 if (vmap->shared_tables) { 1903 /* we cannot allow strict_mode because there are some 1904 * vrfs that share one or more tables. 1905 */ 1906 res = -EBUSY; 1907 goto unlock; 1908 } 1909 1910 /* no tables are shared among vrfs, so we can go back 1911 * to 1:1 association between a vrf with its table. 1912 */ 1913 *cur_mode = true; 1914 } 1915 1916 unlock: 1917 vrf_map_unlock(vmap); 1918 1919 return res; 1920 } 1921 1922 static int vrf_shared_table_handler(struct ctl_table *table, int write, 1923 void *buffer, size_t *lenp, loff_t *ppos) 1924 { 1925 struct net *net = (struct net *)table->extra1; 1926 struct vrf_map *vmap = netns_vrf_map(net); 1927 int proc_strict_mode = 0; 1928 struct ctl_table tmp = { 1929 .procname = table->procname, 1930 .data = &proc_strict_mode, 1931 .maxlen = sizeof(int), 1932 .mode = table->mode, 1933 .extra1 = SYSCTL_ZERO, 1934 .extra2 = SYSCTL_ONE, 1935 }; 1936 int ret; 1937 1938 if (!write) 1939 proc_strict_mode = vrf_strict_mode(vmap); 1940 1941 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 1942 1943 if (write && ret == 0) 1944 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode); 1945 1946 return ret; 1947 } 1948 1949 static const struct ctl_table vrf_table[] = { 1950 { 1951 .procname = "strict_mode", 1952 .data = NULL, 1953 .maxlen = sizeof(int), 1954 .mode = 0644, 1955 .proc_handler = vrf_shared_table_handler, 1956 /* set by the vrf_netns_init */ 1957 .extra1 = NULL, 1958 }, 1959 { }, 1960 }; 1961 1962 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1963 { 1964 struct ctl_table *table; 1965 1966 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); 1967 if (!table) 1968 return -ENOMEM; 1969 1970 /* init the extra1 parameter with the reference to current netns */ 1971 table[0].extra1 = net; 1972 1973 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table); 1974 if (!nn_vrf->ctl_hdr) { 1975 kfree(table); 1976 return -ENOMEM; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static void vrf_netns_exit_sysctl(struct net *net) 1983 { 1984 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 1985 struct ctl_table *table; 1986 1987 table = nn_vrf->ctl_hdr->ctl_table_arg; 1988 unregister_net_sysctl_table(nn_vrf->ctl_hdr); 1989 kfree(table); 1990 } 1991 #else 1992 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1993 { 1994 return 0; 1995 } 1996 1997 static void vrf_netns_exit_sysctl(struct net *net) 1998 { 1999 } 2000 #endif 2001 2002 /* Initialize per network namespace state */ 2003 static int __net_init vrf_netns_init(struct net *net) 2004 { 2005 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 2006 2007 nn_vrf->add_fib_rules = true; 2008 vrf_map_init(&nn_vrf->vmap); 2009 2010 return vrf_netns_init_sysctl(net, nn_vrf); 2011 } 2012 2013 static void __net_exit vrf_netns_exit(struct net *net) 2014 { 2015 vrf_netns_exit_sysctl(net); 2016 } 2017 2018 static struct pernet_operations vrf_net_ops __net_initdata = { 2019 .init = vrf_netns_init, 2020 .exit = vrf_netns_exit, 2021 .id = &vrf_net_id, 2022 .size = sizeof(struct netns_vrf), 2023 }; 2024 2025 static int __init vrf_init_module(void) 2026 { 2027 int rc; 2028 2029 register_netdevice_notifier(&vrf_notifier_block); 2030 2031 rc = register_pernet_subsys(&vrf_net_ops); 2032 if (rc < 0) 2033 goto error; 2034 2035 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF, 2036 vrf_ifindex_lookup_by_table_id); 2037 if (rc < 0) 2038 goto unreg_pernet; 2039 2040 rc = rtnl_link_register(&vrf_link_ops); 2041 if (rc < 0) 2042 goto table_lookup_unreg; 2043 2044 return 0; 2045 2046 table_lookup_unreg: 2047 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF, 2048 vrf_ifindex_lookup_by_table_id); 2049 2050 unreg_pernet: 2051 unregister_pernet_subsys(&vrf_net_ops); 2052 2053 error: 2054 unregister_netdevice_notifier(&vrf_notifier_block); 2055 return rc; 2056 } 2057 2058 module_init(vrf_init_module); 2059 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 2060 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 2061 MODULE_LICENSE("GPL"); 2062 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 2063 MODULE_VERSION(DRV_VERSION); 2064