xref: /openbmc/linux/drivers/net/vrf.c (revision 6197e5b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
38 
39 #define DRV_NAME	"vrf"
40 #define DRV_VERSION	"1.1"
41 
42 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
43 
44 #define HT_MAP_BITS	4
45 #define HASH_INITVAL	((u32)0xcafef00d)
46 
47 struct  vrf_map {
48 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 	spinlock_t vmap_lock;
50 
51 	/* shared_tables:
52 	 * count how many distinct tables do not comply with the strict mode
53 	 * requirement.
54 	 * shared_tables value must be 0 in order to enable the strict mode.
55 	 *
56 	 * example of the evolution of shared_tables:
57 	 *                                                        | time
58 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
59 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
60 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
61 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
62 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
63 	 *
64 	 * shared_tables is a "step function" (or "staircase function")
65 	 * and it is increased by one when the second vrf is associated to a
66 	 * table.
67 	 *
68 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 	 *
70 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 	 * value of shared_tables is still 1.
72 	 * This means that no matter how many new vrfs will register on the
73 	 * table 100, the shared_tables will not increase (considering only
74 	 * table 100).
75 	 *
76 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 	 *
78 	 * Looking at the value of shared_tables we can immediately know if
79 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 	 * can be enforced iff shared_tables = 0.
81 	 *
82 	 * Conversely, shared_tables is decreased when a vrf is de-associated
83 	 * from a table with exactly two associated vrfs.
84 	 */
85 	u32 shared_tables;
86 
87 	bool strict_mode;
88 };
89 
90 struct vrf_map_elem {
91 	struct hlist_node hnode;
92 	struct list_head vrf_list;  /* VRFs registered to this table */
93 
94 	u32 table_id;
95 	int users;
96 	int ifindex;
97 };
98 
99 static unsigned int vrf_net_id;
100 
101 /* per netns vrf data */
102 struct netns_vrf {
103 	/* protected by rtnl lock */
104 	bool add_fib_rules;
105 
106 	struct vrf_map vmap;
107 	struct ctl_table_header	*ctl_hdr;
108 };
109 
110 struct net_vrf {
111 	struct rtable __rcu	*rth;
112 	struct rt6_info	__rcu	*rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 	struct fib6_table	*fib6_table;
115 #endif
116 	u32                     tb_id;
117 
118 	struct list_head	me_list;   /* entry in vrf_map_elem */
119 	int			ifindex;
120 };
121 
122 struct pcpu_dstats {
123 	u64			tx_pkts;
124 	u64			tx_bytes;
125 	u64			tx_drps;
126 	u64			rx_pkts;
127 	u64			rx_bytes;
128 	u64			rx_drps;
129 	struct u64_stats_sync	syncp;
130 };
131 
132 static void vrf_rx_stats(struct net_device *dev, int len)
133 {
134 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135 
136 	u64_stats_update_begin(&dstats->syncp);
137 	dstats->rx_pkts++;
138 	dstats->rx_bytes += len;
139 	u64_stats_update_end(&dstats->syncp);
140 }
141 
142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 {
144 	vrf_dev->stats.tx_errors++;
145 	kfree_skb(skb);
146 }
147 
148 static void vrf_get_stats64(struct net_device *dev,
149 			    struct rtnl_link_stats64 *stats)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i) {
154 		const struct pcpu_dstats *dstats;
155 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 		unsigned int start;
157 
158 		dstats = per_cpu_ptr(dev->dstats, i);
159 		do {
160 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 			tbytes = dstats->tx_bytes;
162 			tpkts = dstats->tx_pkts;
163 			tdrops = dstats->tx_drps;
164 			rbytes = dstats->rx_bytes;
165 			rpkts = dstats->rx_pkts;
166 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 		stats->tx_bytes += tbytes;
168 		stats->tx_packets += tpkts;
169 		stats->tx_dropped += tdrops;
170 		stats->rx_bytes += rbytes;
171 		stats->rx_packets += rpkts;
172 	}
173 }
174 
175 static struct vrf_map *netns_vrf_map(struct net *net)
176 {
177 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178 
179 	return &nn_vrf->vmap;
180 }
181 
182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 {
184 	return netns_vrf_map(dev_net(dev));
185 }
186 
187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 {
189 	struct list_head *me_head = &me->vrf_list;
190 	struct net_vrf *vrf;
191 
192 	if (list_empty(me_head))
193 		return -ENODEV;
194 
195 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
196 
197 	return vrf->ifindex;
198 }
199 
200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 {
202 	struct vrf_map_elem *me;
203 
204 	me = kmalloc(sizeof(*me), flags);
205 	if (!me)
206 		return NULL;
207 
208 	return me;
209 }
210 
211 static void vrf_map_elem_free(struct vrf_map_elem *me)
212 {
213 	kfree(me);
214 }
215 
216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 			      int ifindex, int users)
218 {
219 	me->table_id = table_id;
220 	me->ifindex = ifindex;
221 	me->users = users;
222 	INIT_LIST_HEAD(&me->vrf_list);
223 }
224 
225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 						u32 table_id)
227 {
228 	struct vrf_map_elem *me;
229 	u32 key;
230 
231 	key = jhash_1word(table_id, HASH_INITVAL);
232 	hash_for_each_possible(vmap->ht, me, hnode, key) {
233 		if (me->table_id == table_id)
234 			return me;
235 	}
236 
237 	return NULL;
238 }
239 
240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 {
242 	u32 table_id = me->table_id;
243 	u32 key;
244 
245 	key = jhash_1word(table_id, HASH_INITVAL);
246 	hash_add(vmap->ht, &me->hnode, key);
247 }
248 
249 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 {
251 	hash_del(&me->hnode);
252 }
253 
254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 {
256 	spin_lock(&vmap->vmap_lock);
257 }
258 
259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 {
261 	spin_unlock(&vmap->vmap_lock);
262 }
263 
264 /* called with rtnl lock held */
265 static int
266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 {
268 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 	struct net_vrf *vrf = netdev_priv(dev);
270 	struct vrf_map_elem *new_me, *me;
271 	u32 table_id = vrf->tb_id;
272 	bool free_new_me = false;
273 	int users;
274 	int res;
275 
276 	/* we pre-allocate elements used in the spin-locked section (so that we
277 	 * keep the spinlock as short as possibile).
278 	 */
279 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 	if (!new_me)
281 		return -ENOMEM;
282 
283 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284 
285 	vrf_map_lock(vmap);
286 
287 	me = vrf_map_lookup_elem(vmap, table_id);
288 	if (!me) {
289 		me = new_me;
290 		vrf_map_add_elem(vmap, me);
291 		goto link_vrf;
292 	}
293 
294 	/* we already have an entry in the vrf_map, so it means there is (at
295 	 * least) a vrf registered on the specific table.
296 	 */
297 	free_new_me = true;
298 	if (vmap->strict_mode) {
299 		/* vrfs cannot share the same table */
300 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 		res = -EBUSY;
302 		goto unlock;
303 	}
304 
305 link_vrf:
306 	users = ++me->users;
307 	if (users == 2)
308 		++vmap->shared_tables;
309 
310 	list_add(&vrf->me_list, &me->vrf_list);
311 
312 	res = 0;
313 
314 unlock:
315 	vrf_map_unlock(vmap);
316 
317 	/* clean-up, if needed */
318 	if (free_new_me)
319 		vrf_map_elem_free(new_me);
320 
321 	return res;
322 }
323 
324 /* called with rtnl lock held */
325 static void vrf_map_unregister_dev(struct net_device *dev)
326 {
327 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 	struct net_vrf *vrf = netdev_priv(dev);
329 	u32 table_id = vrf->tb_id;
330 	struct vrf_map_elem *me;
331 	int users;
332 
333 	vrf_map_lock(vmap);
334 
335 	me = vrf_map_lookup_elem(vmap, table_id);
336 	if (!me)
337 		goto unlock;
338 
339 	list_del(&vrf->me_list);
340 
341 	users = --me->users;
342 	if (users == 1) {
343 		--vmap->shared_tables;
344 	} else if (users == 0) {
345 		vrf_map_del_elem(me);
346 
347 		/* no one will refer to this element anymore */
348 		vrf_map_elem_free(me);
349 	}
350 
351 unlock:
352 	vrf_map_unlock(vmap);
353 }
354 
355 /* return the vrf device index associated with the table_id */
356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 {
358 	struct vrf_map *vmap = netns_vrf_map(net);
359 	struct vrf_map_elem *me;
360 	int ifindex;
361 
362 	vrf_map_lock(vmap);
363 
364 	if (!vmap->strict_mode) {
365 		ifindex = -EPERM;
366 		goto unlock;
367 	}
368 
369 	me = vrf_map_lookup_elem(vmap, table_id);
370 	if (!me) {
371 		ifindex = -ENODEV;
372 		goto unlock;
373 	}
374 
375 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
376 
377 unlock:
378 	vrf_map_unlock(vmap);
379 
380 	return ifindex;
381 }
382 
383 /* by default VRF devices do not have a qdisc and are expected
384  * to be created with only a single queue.
385  */
386 static bool qdisc_tx_is_default(const struct net_device *dev)
387 {
388 	struct netdev_queue *txq;
389 	struct Qdisc *qdisc;
390 
391 	if (dev->num_tx_queues > 1)
392 		return false;
393 
394 	txq = netdev_get_tx_queue(dev, 0);
395 	qdisc = rcu_access_pointer(txq->qdisc);
396 
397 	return !qdisc->enqueue;
398 }
399 
400 /* Local traffic destined to local address. Reinsert the packet to rx
401  * path, similar to loopback handling.
402  */
403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 			  struct dst_entry *dst)
405 {
406 	int len = skb->len;
407 
408 	skb_orphan(skb);
409 
410 	skb_dst_set(skb, dst);
411 
412 	/* set pkt_type to avoid skb hitting packet taps twice -
413 	 * once on Tx and again in Rx processing
414 	 */
415 	skb->pkt_type = PACKET_LOOPBACK;
416 
417 	skb->protocol = eth_type_trans(skb, dev);
418 
419 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 		vrf_rx_stats(dev, len);
421 	else
422 		this_cpu_inc(dev->dstats->rx_drps);
423 
424 	return NETDEV_TX_OK;
425 }
426 
427 #if IS_ENABLED(CONFIG_IPV6)
428 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
429 			     struct sk_buff *skb)
430 {
431 	int err;
432 
433 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435 
436 	if (likely(err == 1))
437 		err = dst_output(net, sk, skb);
438 
439 	return err;
440 }
441 
442 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 					   struct net_device *dev)
444 {
445 	const struct ipv6hdr *iph;
446 	struct net *net = dev_net(skb->dev);
447 	struct flowi6 fl6;
448 	int ret = NET_XMIT_DROP;
449 	struct dst_entry *dst;
450 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451 
452 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
453 		goto err;
454 
455 	iph = ipv6_hdr(skb);
456 
457 	memset(&fl6, 0, sizeof(fl6));
458 	/* needed to match OIF rule */
459 	fl6.flowi6_oif = dev->ifindex;
460 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 	fl6.daddr = iph->daddr;
462 	fl6.saddr = iph->saddr;
463 	fl6.flowlabel = ip6_flowinfo(iph);
464 	fl6.flowi6_mark = skb->mark;
465 	fl6.flowi6_proto = iph->nexthdr;
466 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467 
468 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 	if (IS_ERR(dst) || dst == dst_null)
470 		goto err;
471 
472 	skb_dst_drop(skb);
473 
474 	/* if dst.dev is loopback or the VRF device again this is locally
475 	 * originated traffic destined to a local address. Short circuit
476 	 * to Rx path
477 	 */
478 	if (dst->dev == dev)
479 		return vrf_local_xmit(skb, dev, dst);
480 
481 	skb_dst_set(skb, dst);
482 
483 	/* strip the ethernet header added for pass through VRF device */
484 	__skb_pull(skb, skb_network_offset(skb));
485 
486 	ret = vrf_ip6_local_out(net, skb->sk, skb);
487 	if (unlikely(net_xmit_eval(ret)))
488 		dev->stats.tx_errors++;
489 	else
490 		ret = NET_XMIT_SUCCESS;
491 
492 	return ret;
493 err:
494 	vrf_tx_error(dev, skb);
495 	return NET_XMIT_DROP;
496 }
497 #else
498 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
499 					   struct net_device *dev)
500 {
501 	vrf_tx_error(dev, skb);
502 	return NET_XMIT_DROP;
503 }
504 #endif
505 
506 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
507 static int vrf_ip_local_out(struct net *net, struct sock *sk,
508 			    struct sk_buff *skb)
509 {
510 	int err;
511 
512 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
513 		      skb, NULL, skb_dst(skb)->dev, dst_output);
514 	if (likely(err == 1))
515 		err = dst_output(net, sk, skb);
516 
517 	return err;
518 }
519 
520 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
521 					   struct net_device *vrf_dev)
522 {
523 	struct iphdr *ip4h;
524 	int ret = NET_XMIT_DROP;
525 	struct flowi4 fl4;
526 	struct net *net = dev_net(vrf_dev);
527 	struct rtable *rt;
528 
529 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
530 		goto err;
531 
532 	ip4h = ip_hdr(skb);
533 
534 	memset(&fl4, 0, sizeof(fl4));
535 	/* needed to match OIF rule */
536 	fl4.flowi4_oif = vrf_dev->ifindex;
537 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
538 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
539 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
540 	fl4.flowi4_proto = ip4h->protocol;
541 	fl4.daddr = ip4h->daddr;
542 	fl4.saddr = ip4h->saddr;
543 
544 	rt = ip_route_output_flow(net, &fl4, NULL);
545 	if (IS_ERR(rt))
546 		goto err;
547 
548 	skb_dst_drop(skb);
549 
550 	/* if dst.dev is loopback or the VRF device again this is locally
551 	 * originated traffic destined to a local address. Short circuit
552 	 * to Rx path
553 	 */
554 	if (rt->dst.dev == vrf_dev)
555 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
556 
557 	skb_dst_set(skb, &rt->dst);
558 
559 	/* strip the ethernet header added for pass through VRF device */
560 	__skb_pull(skb, skb_network_offset(skb));
561 
562 	if (!ip4h->saddr) {
563 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
564 					       RT_SCOPE_LINK);
565 	}
566 
567 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
568 	if (unlikely(net_xmit_eval(ret)))
569 		vrf_dev->stats.tx_errors++;
570 	else
571 		ret = NET_XMIT_SUCCESS;
572 
573 out:
574 	return ret;
575 err:
576 	vrf_tx_error(vrf_dev, skb);
577 	goto out;
578 }
579 
580 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
581 {
582 	switch (skb->protocol) {
583 	case htons(ETH_P_IP):
584 		return vrf_process_v4_outbound(skb, dev);
585 	case htons(ETH_P_IPV6):
586 		return vrf_process_v6_outbound(skb, dev);
587 	default:
588 		vrf_tx_error(dev, skb);
589 		return NET_XMIT_DROP;
590 	}
591 }
592 
593 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
594 {
595 	int len = skb->len;
596 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
597 
598 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
599 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
600 
601 		u64_stats_update_begin(&dstats->syncp);
602 		dstats->tx_pkts++;
603 		dstats->tx_bytes += len;
604 		u64_stats_update_end(&dstats->syncp);
605 	} else {
606 		this_cpu_inc(dev->dstats->tx_drps);
607 	}
608 
609 	return ret;
610 }
611 
612 static void vrf_finish_direct(struct sk_buff *skb)
613 {
614 	struct net_device *vrf_dev = skb->dev;
615 
616 	if (!list_empty(&vrf_dev->ptype_all) &&
617 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
618 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
619 
620 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
621 		eth_zero_addr(eth->h_dest);
622 		eth->h_proto = skb->protocol;
623 
624 		rcu_read_lock_bh();
625 		dev_queue_xmit_nit(skb, vrf_dev);
626 		rcu_read_unlock_bh();
627 
628 		skb_pull(skb, ETH_HLEN);
629 	}
630 
631 	/* reset skb device */
632 	nf_reset_ct(skb);
633 }
634 
635 #if IS_ENABLED(CONFIG_IPV6)
636 /* modelled after ip6_finish_output2 */
637 static int vrf_finish_output6(struct net *net, struct sock *sk,
638 			      struct sk_buff *skb)
639 {
640 	struct dst_entry *dst = skb_dst(skb);
641 	struct net_device *dev = dst->dev;
642 	const struct in6_addr *nexthop;
643 	struct neighbour *neigh;
644 	int ret;
645 
646 	nf_reset_ct(skb);
647 
648 	skb->protocol = htons(ETH_P_IPV6);
649 	skb->dev = dev;
650 
651 	rcu_read_lock_bh();
652 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
653 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
654 	if (unlikely(!neigh))
655 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
656 	if (!IS_ERR(neigh)) {
657 		sock_confirm_neigh(skb, neigh);
658 		ret = neigh_output(neigh, skb, false);
659 		rcu_read_unlock_bh();
660 		return ret;
661 	}
662 	rcu_read_unlock_bh();
663 
664 	IP6_INC_STATS(dev_net(dst->dev),
665 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
666 	kfree_skb(skb);
667 	return -EINVAL;
668 }
669 
670 /* modelled after ip6_output */
671 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
672 {
673 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
674 			    net, sk, skb, NULL, skb_dst(skb)->dev,
675 			    vrf_finish_output6,
676 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
677 }
678 
679 /* set dst on skb to send packet to us via dev_xmit path. Allows
680  * packet to go through device based features such as qdisc, netfilter
681  * hooks and packet sockets with skb->dev set to vrf device.
682  */
683 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
684 					    struct sk_buff *skb)
685 {
686 	struct net_vrf *vrf = netdev_priv(vrf_dev);
687 	struct dst_entry *dst = NULL;
688 	struct rt6_info *rt6;
689 
690 	rcu_read_lock();
691 
692 	rt6 = rcu_dereference(vrf->rt6);
693 	if (likely(rt6)) {
694 		dst = &rt6->dst;
695 		dst_hold(dst);
696 	}
697 
698 	rcu_read_unlock();
699 
700 	if (unlikely(!dst)) {
701 		vrf_tx_error(vrf_dev, skb);
702 		return NULL;
703 	}
704 
705 	skb_dst_drop(skb);
706 	skb_dst_set(skb, dst);
707 
708 	return skb;
709 }
710 
711 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
712 				     struct sk_buff *skb)
713 {
714 	vrf_finish_direct(skb);
715 
716 	return vrf_ip6_local_out(net, sk, skb);
717 }
718 
719 static int vrf_output6_direct(struct net *net, struct sock *sk,
720 			      struct sk_buff *skb)
721 {
722 	int err = 1;
723 
724 	skb->protocol = htons(ETH_P_IPV6);
725 
726 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
727 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
728 			      NULL, skb->dev, vrf_output6_direct_finish);
729 
730 	if (likely(err == 1))
731 		vrf_finish_direct(skb);
732 
733 	return err;
734 }
735 
736 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
737 				     struct sk_buff *skb)
738 {
739 	int err;
740 
741 	err = vrf_output6_direct(net, sk, skb);
742 	if (likely(err == 1))
743 		err = vrf_ip6_local_out(net, sk, skb);
744 
745 	return err;
746 }
747 
748 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
749 					  struct sock *sk,
750 					  struct sk_buff *skb)
751 {
752 	struct net *net = dev_net(vrf_dev);
753 	int err;
754 
755 	skb->dev = vrf_dev;
756 
757 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
758 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
759 
760 	if (likely(err == 1))
761 		err = vrf_output6_direct(net, sk, skb);
762 
763 	if (likely(err == 1))
764 		return skb;
765 
766 	return NULL;
767 }
768 
769 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
770 				   struct sock *sk,
771 				   struct sk_buff *skb)
772 {
773 	/* don't divert link scope packets */
774 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
775 		return skb;
776 
777 	if (qdisc_tx_is_default(vrf_dev) ||
778 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
779 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
780 
781 	return vrf_ip6_out_redirect(vrf_dev, skb);
782 }
783 
784 /* holding rtnl */
785 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
786 {
787 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
788 	struct net *net = dev_net(dev);
789 	struct dst_entry *dst;
790 
791 	RCU_INIT_POINTER(vrf->rt6, NULL);
792 	synchronize_rcu();
793 
794 	/* move dev in dst's to loopback so this VRF device can be deleted
795 	 * - based on dst_ifdown
796 	 */
797 	if (rt6) {
798 		dst = &rt6->dst;
799 		dev_put(dst->dev);
800 		dst->dev = net->loopback_dev;
801 		dev_hold(dst->dev);
802 		dst_release(dst);
803 	}
804 }
805 
806 static int vrf_rt6_create(struct net_device *dev)
807 {
808 	int flags = DST_NOPOLICY | DST_NOXFRM;
809 	struct net_vrf *vrf = netdev_priv(dev);
810 	struct net *net = dev_net(dev);
811 	struct rt6_info *rt6;
812 	int rc = -ENOMEM;
813 
814 	/* IPv6 can be CONFIG enabled and then disabled runtime */
815 	if (!ipv6_mod_enabled())
816 		return 0;
817 
818 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
819 	if (!vrf->fib6_table)
820 		goto out;
821 
822 	/* create a dst for routing packets out a VRF device */
823 	rt6 = ip6_dst_alloc(net, dev, flags);
824 	if (!rt6)
825 		goto out;
826 
827 	rt6->dst.output	= vrf_output6;
828 
829 	rcu_assign_pointer(vrf->rt6, rt6);
830 
831 	rc = 0;
832 out:
833 	return rc;
834 }
835 #else
836 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
837 				   struct sock *sk,
838 				   struct sk_buff *skb)
839 {
840 	return skb;
841 }
842 
843 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
844 {
845 }
846 
847 static int vrf_rt6_create(struct net_device *dev)
848 {
849 	return 0;
850 }
851 #endif
852 
853 /* modelled after ip_finish_output2 */
854 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
855 {
856 	struct dst_entry *dst = skb_dst(skb);
857 	struct rtable *rt = (struct rtable *)dst;
858 	struct net_device *dev = dst->dev;
859 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
860 	struct neighbour *neigh;
861 	bool is_v6gw = false;
862 	int ret = -EINVAL;
863 
864 	nf_reset_ct(skb);
865 
866 	/* Be paranoid, rather than too clever. */
867 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
868 		struct sk_buff *skb2;
869 
870 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
871 		if (!skb2) {
872 			ret = -ENOMEM;
873 			goto err;
874 		}
875 		if (skb->sk)
876 			skb_set_owner_w(skb2, skb->sk);
877 
878 		consume_skb(skb);
879 		skb = skb2;
880 	}
881 
882 	rcu_read_lock_bh();
883 
884 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
885 	if (!IS_ERR(neigh)) {
886 		sock_confirm_neigh(skb, neigh);
887 		/* if crossing protocols, can not use the cached header */
888 		ret = neigh_output(neigh, skb, is_v6gw);
889 		rcu_read_unlock_bh();
890 		return ret;
891 	}
892 
893 	rcu_read_unlock_bh();
894 err:
895 	vrf_tx_error(skb->dev, skb);
896 	return ret;
897 }
898 
899 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
900 {
901 	struct net_device *dev = skb_dst(skb)->dev;
902 
903 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
904 
905 	skb->dev = dev;
906 	skb->protocol = htons(ETH_P_IP);
907 
908 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
909 			    net, sk, skb, NULL, dev,
910 			    vrf_finish_output,
911 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
912 }
913 
914 /* set dst on skb to send packet to us via dev_xmit path. Allows
915  * packet to go through device based features such as qdisc, netfilter
916  * hooks and packet sockets with skb->dev set to vrf device.
917  */
918 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
919 					   struct sk_buff *skb)
920 {
921 	struct net_vrf *vrf = netdev_priv(vrf_dev);
922 	struct dst_entry *dst = NULL;
923 	struct rtable *rth;
924 
925 	rcu_read_lock();
926 
927 	rth = rcu_dereference(vrf->rth);
928 	if (likely(rth)) {
929 		dst = &rth->dst;
930 		dst_hold(dst);
931 	}
932 
933 	rcu_read_unlock();
934 
935 	if (unlikely(!dst)) {
936 		vrf_tx_error(vrf_dev, skb);
937 		return NULL;
938 	}
939 
940 	skb_dst_drop(skb);
941 	skb_dst_set(skb, dst);
942 
943 	return skb;
944 }
945 
946 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
947 				    struct sk_buff *skb)
948 {
949 	vrf_finish_direct(skb);
950 
951 	return vrf_ip_local_out(net, sk, skb);
952 }
953 
954 static int vrf_output_direct(struct net *net, struct sock *sk,
955 			     struct sk_buff *skb)
956 {
957 	int err = 1;
958 
959 	skb->protocol = htons(ETH_P_IP);
960 
961 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
962 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
963 			      NULL, skb->dev, vrf_output_direct_finish);
964 
965 	if (likely(err == 1))
966 		vrf_finish_direct(skb);
967 
968 	return err;
969 }
970 
971 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
972 				    struct sk_buff *skb)
973 {
974 	int err;
975 
976 	err = vrf_output_direct(net, sk, skb);
977 	if (likely(err == 1))
978 		err = vrf_ip_local_out(net, sk, skb);
979 
980 	return err;
981 }
982 
983 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
984 					 struct sock *sk,
985 					 struct sk_buff *skb)
986 {
987 	struct net *net = dev_net(vrf_dev);
988 	int err;
989 
990 	skb->dev = vrf_dev;
991 
992 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
993 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
994 
995 	if (likely(err == 1))
996 		err = vrf_output_direct(net, sk, skb);
997 
998 	if (likely(err == 1))
999 		return skb;
1000 
1001 	return NULL;
1002 }
1003 
1004 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1005 				  struct sock *sk,
1006 				  struct sk_buff *skb)
1007 {
1008 	/* don't divert multicast or local broadcast */
1009 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1010 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1011 		return skb;
1012 
1013 	if (qdisc_tx_is_default(vrf_dev) ||
1014 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1015 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1016 
1017 	return vrf_ip_out_redirect(vrf_dev, skb);
1018 }
1019 
1020 /* called with rcu lock held */
1021 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1022 				  struct sock *sk,
1023 				  struct sk_buff *skb,
1024 				  u16 proto)
1025 {
1026 	switch (proto) {
1027 	case AF_INET:
1028 		return vrf_ip_out(vrf_dev, sk, skb);
1029 	case AF_INET6:
1030 		return vrf_ip6_out(vrf_dev, sk, skb);
1031 	}
1032 
1033 	return skb;
1034 }
1035 
1036 /* holding rtnl */
1037 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1038 {
1039 	struct rtable *rth = rtnl_dereference(vrf->rth);
1040 	struct net *net = dev_net(dev);
1041 	struct dst_entry *dst;
1042 
1043 	RCU_INIT_POINTER(vrf->rth, NULL);
1044 	synchronize_rcu();
1045 
1046 	/* move dev in dst's to loopback so this VRF device can be deleted
1047 	 * - based on dst_ifdown
1048 	 */
1049 	if (rth) {
1050 		dst = &rth->dst;
1051 		dev_put(dst->dev);
1052 		dst->dev = net->loopback_dev;
1053 		dev_hold(dst->dev);
1054 		dst_release(dst);
1055 	}
1056 }
1057 
1058 static int vrf_rtable_create(struct net_device *dev)
1059 {
1060 	struct net_vrf *vrf = netdev_priv(dev);
1061 	struct rtable *rth;
1062 
1063 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1064 		return -ENOMEM;
1065 
1066 	/* create a dst for routing packets out through a VRF device */
1067 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1068 	if (!rth)
1069 		return -ENOMEM;
1070 
1071 	rth->dst.output	= vrf_output;
1072 
1073 	rcu_assign_pointer(vrf->rth, rth);
1074 
1075 	return 0;
1076 }
1077 
1078 /**************************** device handling ********************/
1079 
1080 /* cycle interface to flush neighbor cache and move routes across tables */
1081 static void cycle_netdev(struct net_device *dev,
1082 			 struct netlink_ext_ack *extack)
1083 {
1084 	unsigned int flags = dev->flags;
1085 	int ret;
1086 
1087 	if (!netif_running(dev))
1088 		return;
1089 
1090 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1091 	if (ret >= 0)
1092 		ret = dev_change_flags(dev, flags, extack);
1093 
1094 	if (ret < 0) {
1095 		netdev_err(dev,
1096 			   "Failed to cycle device %s; route tables might be wrong!\n",
1097 			   dev->name);
1098 	}
1099 }
1100 
1101 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1102 			    struct netlink_ext_ack *extack)
1103 {
1104 	int ret;
1105 
1106 	/* do not allow loopback device to be enslaved to a VRF.
1107 	 * The vrf device acts as the loopback for the vrf.
1108 	 */
1109 	if (port_dev == dev_net(dev)->loopback_dev) {
1110 		NL_SET_ERR_MSG(extack,
1111 			       "Can not enslave loopback device to a VRF");
1112 		return -EOPNOTSUPP;
1113 	}
1114 
1115 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1116 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1117 	if (ret < 0)
1118 		goto err;
1119 
1120 	cycle_netdev(port_dev, extack);
1121 
1122 	return 0;
1123 
1124 err:
1125 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1126 	return ret;
1127 }
1128 
1129 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1130 			 struct netlink_ext_ack *extack)
1131 {
1132 	if (netif_is_l3_master(port_dev)) {
1133 		NL_SET_ERR_MSG(extack,
1134 			       "Can not enslave an L3 master device to a VRF");
1135 		return -EINVAL;
1136 	}
1137 
1138 	if (netif_is_l3_slave(port_dev))
1139 		return -EINVAL;
1140 
1141 	return do_vrf_add_slave(dev, port_dev, extack);
1142 }
1143 
1144 /* inverse of do_vrf_add_slave */
1145 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1146 {
1147 	netdev_upper_dev_unlink(port_dev, dev);
1148 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1149 
1150 	cycle_netdev(port_dev, NULL);
1151 
1152 	return 0;
1153 }
1154 
1155 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1156 {
1157 	return do_vrf_del_slave(dev, port_dev);
1158 }
1159 
1160 static void vrf_dev_uninit(struct net_device *dev)
1161 {
1162 	struct net_vrf *vrf = netdev_priv(dev);
1163 
1164 	vrf_rtable_release(dev, vrf);
1165 	vrf_rt6_release(dev, vrf);
1166 
1167 	free_percpu(dev->dstats);
1168 	dev->dstats = NULL;
1169 }
1170 
1171 static int vrf_dev_init(struct net_device *dev)
1172 {
1173 	struct net_vrf *vrf = netdev_priv(dev);
1174 
1175 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1176 	if (!dev->dstats)
1177 		goto out_nomem;
1178 
1179 	/* create the default dst which points back to us */
1180 	if (vrf_rtable_create(dev) != 0)
1181 		goto out_stats;
1182 
1183 	if (vrf_rt6_create(dev) != 0)
1184 		goto out_rth;
1185 
1186 	dev->flags = IFF_MASTER | IFF_NOARP;
1187 
1188 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
1189 	dev->mtu = 64 * 1024;
1190 
1191 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1192 	dev->operstate = IF_OPER_UP;
1193 	netdev_lockdep_set_classes(dev);
1194 	return 0;
1195 
1196 out_rth:
1197 	vrf_rtable_release(dev, vrf);
1198 out_stats:
1199 	free_percpu(dev->dstats);
1200 	dev->dstats = NULL;
1201 out_nomem:
1202 	return -ENOMEM;
1203 }
1204 
1205 static const struct net_device_ops vrf_netdev_ops = {
1206 	.ndo_init		= vrf_dev_init,
1207 	.ndo_uninit		= vrf_dev_uninit,
1208 	.ndo_start_xmit		= vrf_xmit,
1209 	.ndo_set_mac_address	= eth_mac_addr,
1210 	.ndo_get_stats64	= vrf_get_stats64,
1211 	.ndo_add_slave		= vrf_add_slave,
1212 	.ndo_del_slave		= vrf_del_slave,
1213 };
1214 
1215 static u32 vrf_fib_table(const struct net_device *dev)
1216 {
1217 	struct net_vrf *vrf = netdev_priv(dev);
1218 
1219 	return vrf->tb_id;
1220 }
1221 
1222 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1223 {
1224 	kfree_skb(skb);
1225 	return 0;
1226 }
1227 
1228 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1229 				      struct sk_buff *skb,
1230 				      struct net_device *dev)
1231 {
1232 	struct net *net = dev_net(dev);
1233 
1234 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1235 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1236 
1237 	return skb;
1238 }
1239 
1240 static int vrf_prepare_mac_header(struct sk_buff *skb,
1241 				  struct net_device *vrf_dev, u16 proto)
1242 {
1243 	struct ethhdr *eth;
1244 	int err;
1245 
1246 	/* in general, we do not know if there is enough space in the head of
1247 	 * the packet for hosting the mac header.
1248 	 */
1249 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1250 	if (unlikely(err))
1251 		/* no space in the skb head */
1252 		return -ENOBUFS;
1253 
1254 	__skb_push(skb, ETH_HLEN);
1255 	eth = (struct ethhdr *)skb->data;
1256 
1257 	skb_reset_mac_header(skb);
1258 
1259 	/* we set the ethernet destination and the source addresses to the
1260 	 * address of the VRF device.
1261 	 */
1262 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1263 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1264 	eth->h_proto = htons(proto);
1265 
1266 	/* the destination address of the Ethernet frame corresponds to the
1267 	 * address set on the VRF interface; therefore, the packet is intended
1268 	 * to be processed locally.
1269 	 */
1270 	skb->protocol = eth->h_proto;
1271 	skb->pkt_type = PACKET_HOST;
1272 
1273 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1274 
1275 	skb_pull_inline(skb, ETH_HLEN);
1276 
1277 	return 0;
1278 }
1279 
1280 /* prepare and add the mac header to the packet if it was not set previously.
1281  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1282  * If the mac header was already set, the original mac header is left
1283  * untouched and the function returns immediately.
1284  */
1285 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1286 				       struct net_device *vrf_dev,
1287 				       u16 proto)
1288 {
1289 	if (skb_mac_header_was_set(skb))
1290 		return 0;
1291 
1292 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1293 }
1294 
1295 #if IS_ENABLED(CONFIG_IPV6)
1296 /* neighbor handling is done with actual device; do not want
1297  * to flip skb->dev for those ndisc packets. This really fails
1298  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1299  * a start.
1300  */
1301 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1302 {
1303 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1304 	bool rc = false;
1305 
1306 	if (iph->nexthdr == NEXTHDR_ICMP) {
1307 		const struct icmp6hdr *icmph;
1308 		struct icmp6hdr _icmph;
1309 
1310 		icmph = skb_header_pointer(skb, sizeof(*iph),
1311 					   sizeof(_icmph), &_icmph);
1312 		if (!icmph)
1313 			goto out;
1314 
1315 		switch (icmph->icmp6_type) {
1316 		case NDISC_ROUTER_SOLICITATION:
1317 		case NDISC_ROUTER_ADVERTISEMENT:
1318 		case NDISC_NEIGHBOUR_SOLICITATION:
1319 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1320 		case NDISC_REDIRECT:
1321 			rc = true;
1322 			break;
1323 		}
1324 	}
1325 
1326 out:
1327 	return rc;
1328 }
1329 
1330 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1331 					     const struct net_device *dev,
1332 					     struct flowi6 *fl6,
1333 					     int ifindex,
1334 					     const struct sk_buff *skb,
1335 					     int flags)
1336 {
1337 	struct net_vrf *vrf = netdev_priv(dev);
1338 
1339 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1340 }
1341 
1342 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1343 			      int ifindex)
1344 {
1345 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1346 	struct flowi6 fl6 = {
1347 		.flowi6_iif     = ifindex,
1348 		.flowi6_mark    = skb->mark,
1349 		.flowi6_proto   = iph->nexthdr,
1350 		.daddr          = iph->daddr,
1351 		.saddr          = iph->saddr,
1352 		.flowlabel      = ip6_flowinfo(iph),
1353 	};
1354 	struct net *net = dev_net(vrf_dev);
1355 	struct rt6_info *rt6;
1356 
1357 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1358 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1359 	if (unlikely(!rt6))
1360 		return;
1361 
1362 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1363 		return;
1364 
1365 	skb_dst_set(skb, &rt6->dst);
1366 }
1367 
1368 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1369 				   struct sk_buff *skb)
1370 {
1371 	int orig_iif = skb->skb_iif;
1372 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1373 	bool is_ndisc = ipv6_ndisc_frame(skb);
1374 	bool is_ll_src;
1375 
1376 	/* loopback, multicast & non-ND link-local traffic; do not push through
1377 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1378 	 * for packets with lladdr src, however, skip so that the dst can be
1379 	 * determine at input using original ifindex in the case that daddr
1380 	 * needs strict
1381 	 */
1382 	is_ll_src = ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL;
1383 	if (skb->pkt_type == PACKET_LOOPBACK ||
1384 	    (need_strict && !is_ndisc && !is_ll_src)) {
1385 		skb->dev = vrf_dev;
1386 		skb->skb_iif = vrf_dev->ifindex;
1387 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1388 		if (skb->pkt_type == PACKET_LOOPBACK)
1389 			skb->pkt_type = PACKET_HOST;
1390 		goto out;
1391 	}
1392 
1393 	/* if packet is NDISC then keep the ingress interface */
1394 	if (!is_ndisc) {
1395 		vrf_rx_stats(vrf_dev, skb->len);
1396 		skb->dev = vrf_dev;
1397 		skb->skb_iif = vrf_dev->ifindex;
1398 
1399 		if (!list_empty(&vrf_dev->ptype_all)) {
1400 			int err;
1401 
1402 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1403 							  ETH_P_IPV6);
1404 			if (likely(!err)) {
1405 				skb_push(skb, skb->mac_len);
1406 				dev_queue_xmit_nit(skb, vrf_dev);
1407 				skb_pull(skb, skb->mac_len);
1408 			}
1409 		}
1410 
1411 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1412 	}
1413 
1414 	if (need_strict)
1415 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1416 
1417 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1418 out:
1419 	return skb;
1420 }
1421 
1422 #else
1423 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1424 				   struct sk_buff *skb)
1425 {
1426 	return skb;
1427 }
1428 #endif
1429 
1430 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1431 				  struct sk_buff *skb)
1432 {
1433 	skb->dev = vrf_dev;
1434 	skb->skb_iif = vrf_dev->ifindex;
1435 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1436 
1437 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1438 		goto out;
1439 
1440 	/* loopback traffic; do not push through packet taps again.
1441 	 * Reset pkt_type for upper layers to process skb
1442 	 */
1443 	if (skb->pkt_type == PACKET_LOOPBACK) {
1444 		skb->pkt_type = PACKET_HOST;
1445 		goto out;
1446 	}
1447 
1448 	vrf_rx_stats(vrf_dev, skb->len);
1449 
1450 	if (!list_empty(&vrf_dev->ptype_all)) {
1451 		int err;
1452 
1453 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1454 		if (likely(!err)) {
1455 			skb_push(skb, skb->mac_len);
1456 			dev_queue_xmit_nit(skb, vrf_dev);
1457 			skb_pull(skb, skb->mac_len);
1458 		}
1459 	}
1460 
1461 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1462 out:
1463 	return skb;
1464 }
1465 
1466 /* called with rcu lock held */
1467 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1468 				  struct sk_buff *skb,
1469 				  u16 proto)
1470 {
1471 	switch (proto) {
1472 	case AF_INET:
1473 		return vrf_ip_rcv(vrf_dev, skb);
1474 	case AF_INET6:
1475 		return vrf_ip6_rcv(vrf_dev, skb);
1476 	}
1477 
1478 	return skb;
1479 }
1480 
1481 #if IS_ENABLED(CONFIG_IPV6)
1482 /* send to link-local or multicast address via interface enslaved to
1483  * VRF device. Force lookup to VRF table without changing flow struct
1484  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1485  * is taken on the dst by this function.
1486  */
1487 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1488 					      struct flowi6 *fl6)
1489 {
1490 	struct net *net = dev_net(dev);
1491 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1492 	struct dst_entry *dst = NULL;
1493 	struct rt6_info *rt;
1494 
1495 	/* VRF device does not have a link-local address and
1496 	 * sending packets to link-local or mcast addresses over
1497 	 * a VRF device does not make sense
1498 	 */
1499 	if (fl6->flowi6_oif == dev->ifindex) {
1500 		dst = &net->ipv6.ip6_null_entry->dst;
1501 		return dst;
1502 	}
1503 
1504 	if (!ipv6_addr_any(&fl6->saddr))
1505 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1506 
1507 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1508 	if (rt)
1509 		dst = &rt->dst;
1510 
1511 	return dst;
1512 }
1513 #endif
1514 
1515 static const struct l3mdev_ops vrf_l3mdev_ops = {
1516 	.l3mdev_fib_table	= vrf_fib_table,
1517 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1518 	.l3mdev_l3_out		= vrf_l3_out,
1519 #if IS_ENABLED(CONFIG_IPV6)
1520 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1521 #endif
1522 };
1523 
1524 static void vrf_get_drvinfo(struct net_device *dev,
1525 			    struct ethtool_drvinfo *info)
1526 {
1527 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1528 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1529 }
1530 
1531 static const struct ethtool_ops vrf_ethtool_ops = {
1532 	.get_drvinfo	= vrf_get_drvinfo,
1533 };
1534 
1535 static inline size_t vrf_fib_rule_nl_size(void)
1536 {
1537 	size_t sz;
1538 
1539 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1540 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1541 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1542 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1543 
1544 	return sz;
1545 }
1546 
1547 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1548 {
1549 	struct fib_rule_hdr *frh;
1550 	struct nlmsghdr *nlh;
1551 	struct sk_buff *skb;
1552 	int err;
1553 
1554 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1555 	    !ipv6_mod_enabled())
1556 		return 0;
1557 
1558 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1559 	if (!skb)
1560 		return -ENOMEM;
1561 
1562 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1563 	if (!nlh)
1564 		goto nla_put_failure;
1565 
1566 	/* rule only needs to appear once */
1567 	nlh->nlmsg_flags |= NLM_F_EXCL;
1568 
1569 	frh = nlmsg_data(nlh);
1570 	memset(frh, 0, sizeof(*frh));
1571 	frh->family = family;
1572 	frh->action = FR_ACT_TO_TBL;
1573 
1574 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1575 		goto nla_put_failure;
1576 
1577 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1578 		goto nla_put_failure;
1579 
1580 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1581 		goto nla_put_failure;
1582 
1583 	nlmsg_end(skb, nlh);
1584 
1585 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1586 	skb->sk = dev_net(dev)->rtnl;
1587 	if (add_it) {
1588 		err = fib_nl_newrule(skb, nlh, NULL);
1589 		if (err == -EEXIST)
1590 			err = 0;
1591 	} else {
1592 		err = fib_nl_delrule(skb, nlh, NULL);
1593 		if (err == -ENOENT)
1594 			err = 0;
1595 	}
1596 	nlmsg_free(skb);
1597 
1598 	return err;
1599 
1600 nla_put_failure:
1601 	nlmsg_free(skb);
1602 
1603 	return -EMSGSIZE;
1604 }
1605 
1606 static int vrf_add_fib_rules(const struct net_device *dev)
1607 {
1608 	int err;
1609 
1610 	err = vrf_fib_rule(dev, AF_INET,  true);
1611 	if (err < 0)
1612 		goto out_err;
1613 
1614 	err = vrf_fib_rule(dev, AF_INET6, true);
1615 	if (err < 0)
1616 		goto ipv6_err;
1617 
1618 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1619 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1620 	if (err < 0)
1621 		goto ipmr_err;
1622 #endif
1623 
1624 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1625 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1626 	if (err < 0)
1627 		goto ip6mr_err;
1628 #endif
1629 
1630 	return 0;
1631 
1632 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1633 ip6mr_err:
1634 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1635 #endif
1636 
1637 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1638 ipmr_err:
1639 	vrf_fib_rule(dev, AF_INET6,  false);
1640 #endif
1641 
1642 ipv6_err:
1643 	vrf_fib_rule(dev, AF_INET,  false);
1644 
1645 out_err:
1646 	netdev_err(dev, "Failed to add FIB rules.\n");
1647 	return err;
1648 }
1649 
1650 static void vrf_setup(struct net_device *dev)
1651 {
1652 	ether_setup(dev);
1653 
1654 	/* Initialize the device structure. */
1655 	dev->netdev_ops = &vrf_netdev_ops;
1656 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1657 	dev->ethtool_ops = &vrf_ethtool_ops;
1658 	dev->needs_free_netdev = true;
1659 
1660 	/* Fill in device structure with ethernet-generic values. */
1661 	eth_hw_addr_random(dev);
1662 
1663 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1664 	dev->features |= NETIF_F_LLTX;
1665 
1666 	/* don't allow vrf devices to change network namespaces. */
1667 	dev->features |= NETIF_F_NETNS_LOCAL;
1668 
1669 	/* does not make sense for a VLAN to be added to a vrf device */
1670 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1671 
1672 	/* enable offload features */
1673 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1674 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1675 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1676 
1677 	dev->hw_features = dev->features;
1678 	dev->hw_enc_features = dev->features;
1679 
1680 	/* default to no qdisc; user can add if desired */
1681 	dev->priv_flags |= IFF_NO_QUEUE;
1682 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1683 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1684 
1685 	/* VRF devices do not care about MTU, but if the MTU is set
1686 	 * too low then the ipv4 and ipv6 protocols are disabled
1687 	 * which breaks networking.
1688 	 */
1689 	dev->min_mtu = IPV6_MIN_MTU;
1690 	dev->max_mtu = ETH_MAX_MTU;
1691 }
1692 
1693 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694 			struct netlink_ext_ack *extack)
1695 {
1696 	if (tb[IFLA_ADDRESS]) {
1697 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699 			return -EINVAL;
1700 		}
1701 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703 			return -EADDRNOTAVAIL;
1704 		}
1705 	}
1706 	return 0;
1707 }
1708 
1709 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1710 {
1711 	struct net_device *port_dev;
1712 	struct list_head *iter;
1713 
1714 	netdev_for_each_lower_dev(dev, port_dev, iter)
1715 		vrf_del_slave(dev, port_dev);
1716 
1717 	vrf_map_unregister_dev(dev);
1718 
1719 	unregister_netdevice_queue(dev, head);
1720 }
1721 
1722 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723 		       struct nlattr *tb[], struct nlattr *data[],
1724 		       struct netlink_ext_ack *extack)
1725 {
1726 	struct net_vrf *vrf = netdev_priv(dev);
1727 	struct netns_vrf *nn_vrf;
1728 	bool *add_fib_rules;
1729 	struct net *net;
1730 	int err;
1731 
1732 	if (!data || !data[IFLA_VRF_TABLE]) {
1733 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1734 		return -EINVAL;
1735 	}
1736 
1737 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740 				    "Invalid VRF table id");
1741 		return -EINVAL;
1742 	}
1743 
1744 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1745 
1746 	err = register_netdevice(dev);
1747 	if (err)
1748 		goto out;
1749 
1750 	/* mapping between table_id and vrf;
1751 	 * note: such binding could not be done in the dev init function
1752 	 * because dev->ifindex id is not available yet.
1753 	 */
1754 	vrf->ifindex = dev->ifindex;
1755 
1756 	err = vrf_map_register_dev(dev, extack);
1757 	if (err) {
1758 		unregister_netdevice(dev);
1759 		goto out;
1760 	}
1761 
1762 	net = dev_net(dev);
1763 	nn_vrf = net_generic(net, vrf_net_id);
1764 
1765 	add_fib_rules = &nn_vrf->add_fib_rules;
1766 	if (*add_fib_rules) {
1767 		err = vrf_add_fib_rules(dev);
1768 		if (err) {
1769 			vrf_map_unregister_dev(dev);
1770 			unregister_netdevice(dev);
1771 			goto out;
1772 		}
1773 		*add_fib_rules = false;
1774 	}
1775 
1776 out:
1777 	return err;
1778 }
1779 
1780 static size_t vrf_nl_getsize(const struct net_device *dev)
1781 {
1782 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1783 }
1784 
1785 static int vrf_fillinfo(struct sk_buff *skb,
1786 			const struct net_device *dev)
1787 {
1788 	struct net_vrf *vrf = netdev_priv(dev);
1789 
1790 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791 }
1792 
1793 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794 				 const struct net_device *slave_dev)
1795 {
1796 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1797 }
1798 
1799 static int vrf_fill_slave_info(struct sk_buff *skb,
1800 			       const struct net_device *vrf_dev,
1801 			       const struct net_device *slave_dev)
1802 {
1803 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1804 
1805 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1806 		return -EMSGSIZE;
1807 
1808 	return 0;
1809 }
1810 
1811 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813 };
1814 
1815 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1816 	.kind		= DRV_NAME,
1817 	.priv_size	= sizeof(struct net_vrf),
1818 
1819 	.get_size	= vrf_nl_getsize,
1820 	.policy		= vrf_nl_policy,
1821 	.validate	= vrf_validate,
1822 	.fill_info	= vrf_fillinfo,
1823 
1824 	.get_slave_size  = vrf_get_slave_size,
1825 	.fill_slave_info = vrf_fill_slave_info,
1826 
1827 	.newlink	= vrf_newlink,
1828 	.dellink	= vrf_dellink,
1829 	.setup		= vrf_setup,
1830 	.maxtype	= IFLA_VRF_MAX,
1831 };
1832 
1833 static int vrf_device_event(struct notifier_block *unused,
1834 			    unsigned long event, void *ptr)
1835 {
1836 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1837 
1838 	/* only care about unregister events to drop slave references */
1839 	if (event == NETDEV_UNREGISTER) {
1840 		struct net_device *vrf_dev;
1841 
1842 		if (!netif_is_l3_slave(dev))
1843 			goto out;
1844 
1845 		vrf_dev = netdev_master_upper_dev_get(dev);
1846 		vrf_del_slave(vrf_dev, dev);
1847 	}
1848 out:
1849 	return NOTIFY_DONE;
1850 }
1851 
1852 static struct notifier_block vrf_notifier_block __read_mostly = {
1853 	.notifier_call = vrf_device_event,
1854 };
1855 
1856 static int vrf_map_init(struct vrf_map *vmap)
1857 {
1858 	spin_lock_init(&vmap->vmap_lock);
1859 	hash_init(vmap->ht);
1860 
1861 	vmap->strict_mode = false;
1862 
1863 	return 0;
1864 }
1865 
1866 #ifdef CONFIG_SYSCTL
1867 static bool vrf_strict_mode(struct vrf_map *vmap)
1868 {
1869 	bool strict_mode;
1870 
1871 	vrf_map_lock(vmap);
1872 	strict_mode = vmap->strict_mode;
1873 	vrf_map_unlock(vmap);
1874 
1875 	return strict_mode;
1876 }
1877 
1878 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1879 {
1880 	bool *cur_mode;
1881 	int res = 0;
1882 
1883 	vrf_map_lock(vmap);
1884 
1885 	cur_mode = &vmap->strict_mode;
1886 	if (*cur_mode == new_mode)
1887 		goto unlock;
1888 
1889 	if (*cur_mode) {
1890 		/* disable strict mode */
1891 		*cur_mode = false;
1892 	} else {
1893 		if (vmap->shared_tables) {
1894 			/* we cannot allow strict_mode because there are some
1895 			 * vrfs that share one or more tables.
1896 			 */
1897 			res = -EBUSY;
1898 			goto unlock;
1899 		}
1900 
1901 		/* no tables are shared among vrfs, so we can go back
1902 		 * to 1:1 association between a vrf with its table.
1903 		 */
1904 		*cur_mode = true;
1905 	}
1906 
1907 unlock:
1908 	vrf_map_unlock(vmap);
1909 
1910 	return res;
1911 }
1912 
1913 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914 				    void *buffer, size_t *lenp, loff_t *ppos)
1915 {
1916 	struct net *net = (struct net *)table->extra1;
1917 	struct vrf_map *vmap = netns_vrf_map(net);
1918 	int proc_strict_mode = 0;
1919 	struct ctl_table tmp = {
1920 		.procname	= table->procname,
1921 		.data		= &proc_strict_mode,
1922 		.maxlen		= sizeof(int),
1923 		.mode		= table->mode,
1924 		.extra1		= SYSCTL_ZERO,
1925 		.extra2		= SYSCTL_ONE,
1926 	};
1927 	int ret;
1928 
1929 	if (!write)
1930 		proc_strict_mode = vrf_strict_mode(vmap);
1931 
1932 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1933 
1934 	if (write && ret == 0)
1935 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936 
1937 	return ret;
1938 }
1939 
1940 static const struct ctl_table vrf_table[] = {
1941 	{
1942 		.procname	= "strict_mode",
1943 		.data		= NULL,
1944 		.maxlen		= sizeof(int),
1945 		.mode		= 0644,
1946 		.proc_handler	= vrf_shared_table_handler,
1947 		/* set by the vrf_netns_init */
1948 		.extra1		= NULL,
1949 	},
1950 	{ },
1951 };
1952 
1953 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1954 {
1955 	struct ctl_table *table;
1956 
1957 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1958 	if (!table)
1959 		return -ENOMEM;
1960 
1961 	/* init the extra1 parameter with the reference to current netns */
1962 	table[0].extra1 = net;
1963 
1964 	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1965 	if (!nn_vrf->ctl_hdr) {
1966 		kfree(table);
1967 		return -ENOMEM;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 static void vrf_netns_exit_sysctl(struct net *net)
1974 {
1975 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976 	struct ctl_table *table;
1977 
1978 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1979 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1980 	kfree(table);
1981 }
1982 #else
1983 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1984 {
1985 	return 0;
1986 }
1987 
1988 static void vrf_netns_exit_sysctl(struct net *net)
1989 {
1990 }
1991 #endif
1992 
1993 /* Initialize per network namespace state */
1994 static int __net_init vrf_netns_init(struct net *net)
1995 {
1996 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1997 
1998 	nn_vrf->add_fib_rules = true;
1999 	vrf_map_init(&nn_vrf->vmap);
2000 
2001 	return vrf_netns_init_sysctl(net, nn_vrf);
2002 }
2003 
2004 static void __net_exit vrf_netns_exit(struct net *net)
2005 {
2006 	vrf_netns_exit_sysctl(net);
2007 }
2008 
2009 static struct pernet_operations vrf_net_ops __net_initdata = {
2010 	.init = vrf_netns_init,
2011 	.exit = vrf_netns_exit,
2012 	.id   = &vrf_net_id,
2013 	.size = sizeof(struct netns_vrf),
2014 };
2015 
2016 static int __init vrf_init_module(void)
2017 {
2018 	int rc;
2019 
2020 	register_netdevice_notifier(&vrf_notifier_block);
2021 
2022 	rc = register_pernet_subsys(&vrf_net_ops);
2023 	if (rc < 0)
2024 		goto error;
2025 
2026 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2027 					  vrf_ifindex_lookup_by_table_id);
2028 	if (rc < 0)
2029 		goto unreg_pernet;
2030 
2031 	rc = rtnl_link_register(&vrf_link_ops);
2032 	if (rc < 0)
2033 		goto table_lookup_unreg;
2034 
2035 	return 0;
2036 
2037 table_lookup_unreg:
2038 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2039 				       vrf_ifindex_lookup_by_table_id);
2040 
2041 unreg_pernet:
2042 	unregister_pernet_subsys(&vrf_net_ops);
2043 
2044 error:
2045 	unregister_netdevice_notifier(&vrf_notifier_block);
2046 	return rc;
2047 }
2048 
2049 module_init(vrf_init_module);
2050 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2051 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2052 MODULE_LICENSE("GPL");
2053 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2054 MODULE_VERSION(DRV_VERSION);
2055