xref: /openbmc/linux/drivers/net/vrf.c (revision 4f6cce39)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.0"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45 
46 struct net_vrf {
47 	struct rtable __rcu	*rth;
48 	struct rtable __rcu	*rth_local;
49 	struct rt6_info	__rcu	*rt6;
50 	struct rt6_info	__rcu	*rt6_local;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
80 static void vrf_get_stats64(struct net_device *dev,
81 			    struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 }
106 
107 /* Local traffic destined to local address. Reinsert the packet to rx
108  * path, similar to loopback handling.
109  */
110 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
111 			  struct dst_entry *dst)
112 {
113 	int len = skb->len;
114 
115 	skb_orphan(skb);
116 
117 	skb_dst_set(skb, dst);
118 	skb_dst_force(skb);
119 
120 	/* set pkt_type to avoid skb hitting packet taps twice -
121 	 * once on Tx and again in Rx processing
122 	 */
123 	skb->pkt_type = PACKET_LOOPBACK;
124 
125 	skb->protocol = eth_type_trans(skb, dev);
126 
127 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
128 		vrf_rx_stats(dev, len);
129 	else
130 		this_cpu_inc(dev->dstats->rx_drps);
131 
132 	return NETDEV_TX_OK;
133 }
134 
135 #if IS_ENABLED(CONFIG_IPV6)
136 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
137 			     struct sk_buff *skb)
138 {
139 	int err;
140 
141 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
142 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
143 
144 	if (likely(err == 1))
145 		err = dst_output(net, sk, skb);
146 
147 	return err;
148 }
149 
150 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
151 					   struct net_device *dev)
152 {
153 	const struct ipv6hdr *iph = ipv6_hdr(skb);
154 	struct net *net = dev_net(skb->dev);
155 	struct flowi6 fl6 = {
156 		/* needed to match OIF rule */
157 		.flowi6_oif = dev->ifindex,
158 		.flowi6_iif = LOOPBACK_IFINDEX,
159 		.daddr = iph->daddr,
160 		.saddr = iph->saddr,
161 		.flowlabel = ip6_flowinfo(iph),
162 		.flowi6_mark = skb->mark,
163 		.flowi6_proto = iph->nexthdr,
164 		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
165 	};
166 	int ret = NET_XMIT_DROP;
167 	struct dst_entry *dst;
168 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
169 
170 	dst = ip6_route_output(net, NULL, &fl6);
171 	if (dst == dst_null)
172 		goto err;
173 
174 	skb_dst_drop(skb);
175 
176 	/* if dst.dev is loopback or the VRF device again this is locally
177 	 * originated traffic destined to a local address. Short circuit
178 	 * to Rx path using our local dst
179 	 */
180 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
181 		struct net_vrf *vrf = netdev_priv(dev);
182 		struct rt6_info *rt6_local;
183 
184 		/* release looked up dst and use cached local dst */
185 		dst_release(dst);
186 
187 		rcu_read_lock();
188 
189 		rt6_local = rcu_dereference(vrf->rt6_local);
190 		if (unlikely(!rt6_local)) {
191 			rcu_read_unlock();
192 			goto err;
193 		}
194 
195 		/* Ordering issue: cached local dst is created on newlink
196 		 * before the IPv6 initialization. Using the local dst
197 		 * requires rt6i_idev to be set so make sure it is.
198 		 */
199 		if (unlikely(!rt6_local->rt6i_idev)) {
200 			rt6_local->rt6i_idev = in6_dev_get(dev);
201 			if (!rt6_local->rt6i_idev) {
202 				rcu_read_unlock();
203 				goto err;
204 			}
205 		}
206 
207 		dst = &rt6_local->dst;
208 		dst_hold(dst);
209 
210 		rcu_read_unlock();
211 
212 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
213 	}
214 
215 	skb_dst_set(skb, dst);
216 
217 	/* strip the ethernet header added for pass through VRF device */
218 	__skb_pull(skb, skb_network_offset(skb));
219 
220 	ret = vrf_ip6_local_out(net, skb->sk, skb);
221 	if (unlikely(net_xmit_eval(ret)))
222 		dev->stats.tx_errors++;
223 	else
224 		ret = NET_XMIT_SUCCESS;
225 
226 	return ret;
227 err:
228 	vrf_tx_error(dev, skb);
229 	return NET_XMIT_DROP;
230 }
231 #else
232 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
233 					   struct net_device *dev)
234 {
235 	vrf_tx_error(dev, skb);
236 	return NET_XMIT_DROP;
237 }
238 #endif
239 
240 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
241 static int vrf_ip_local_out(struct net *net, struct sock *sk,
242 			    struct sk_buff *skb)
243 {
244 	int err;
245 
246 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
247 		      skb, NULL, skb_dst(skb)->dev, dst_output);
248 	if (likely(err == 1))
249 		err = dst_output(net, sk, skb);
250 
251 	return err;
252 }
253 
254 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
255 					   struct net_device *vrf_dev)
256 {
257 	struct iphdr *ip4h = ip_hdr(skb);
258 	int ret = NET_XMIT_DROP;
259 	struct flowi4 fl4 = {
260 		/* needed to match OIF rule */
261 		.flowi4_oif = vrf_dev->ifindex,
262 		.flowi4_iif = LOOPBACK_IFINDEX,
263 		.flowi4_tos = RT_TOS(ip4h->tos),
264 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
265 		.flowi4_proto = ip4h->protocol,
266 		.daddr = ip4h->daddr,
267 		.saddr = ip4h->saddr,
268 	};
269 	struct net *net = dev_net(vrf_dev);
270 	struct rtable *rt;
271 
272 	rt = ip_route_output_flow(net, &fl4, NULL);
273 	if (IS_ERR(rt))
274 		goto err;
275 
276 	skb_dst_drop(skb);
277 
278 	/* if dst.dev is loopback or the VRF device again this is locally
279 	 * originated traffic destined to a local address. Short circuit
280 	 * to Rx path using our local dst
281 	 */
282 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
283 		struct net_vrf *vrf = netdev_priv(vrf_dev);
284 		struct rtable *rth_local;
285 		struct dst_entry *dst = NULL;
286 
287 		ip_rt_put(rt);
288 
289 		rcu_read_lock();
290 
291 		rth_local = rcu_dereference(vrf->rth_local);
292 		if (likely(rth_local)) {
293 			dst = &rth_local->dst;
294 			dst_hold(dst);
295 		}
296 
297 		rcu_read_unlock();
298 
299 		if (unlikely(!dst))
300 			goto err;
301 
302 		return vrf_local_xmit(skb, vrf_dev, dst);
303 	}
304 
305 	skb_dst_set(skb, &rt->dst);
306 
307 	/* strip the ethernet header added for pass through VRF device */
308 	__skb_pull(skb, skb_network_offset(skb));
309 
310 	if (!ip4h->saddr) {
311 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
312 					       RT_SCOPE_LINK);
313 	}
314 
315 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
316 	if (unlikely(net_xmit_eval(ret)))
317 		vrf_dev->stats.tx_errors++;
318 	else
319 		ret = NET_XMIT_SUCCESS;
320 
321 out:
322 	return ret;
323 err:
324 	vrf_tx_error(vrf_dev, skb);
325 	goto out;
326 }
327 
328 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
329 {
330 	switch (skb->protocol) {
331 	case htons(ETH_P_IP):
332 		return vrf_process_v4_outbound(skb, dev);
333 	case htons(ETH_P_IPV6):
334 		return vrf_process_v6_outbound(skb, dev);
335 	default:
336 		vrf_tx_error(dev, skb);
337 		return NET_XMIT_DROP;
338 	}
339 }
340 
341 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
342 {
343 	int len = skb->len;
344 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
345 
346 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
347 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
348 
349 		u64_stats_update_begin(&dstats->syncp);
350 		dstats->tx_pkts++;
351 		dstats->tx_bytes += len;
352 		u64_stats_update_end(&dstats->syncp);
353 	} else {
354 		this_cpu_inc(dev->dstats->tx_drps);
355 	}
356 
357 	return ret;
358 }
359 
360 #if IS_ENABLED(CONFIG_IPV6)
361 /* modelled after ip6_finish_output2 */
362 static int vrf_finish_output6(struct net *net, struct sock *sk,
363 			      struct sk_buff *skb)
364 {
365 	struct dst_entry *dst = skb_dst(skb);
366 	struct net_device *dev = dst->dev;
367 	struct neighbour *neigh;
368 	struct in6_addr *nexthop;
369 	int ret;
370 
371 	nf_reset(skb);
372 
373 	skb->protocol = htons(ETH_P_IPV6);
374 	skb->dev = dev;
375 
376 	rcu_read_lock_bh();
377 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
378 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
379 	if (unlikely(!neigh))
380 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
381 	if (!IS_ERR(neigh)) {
382 		sock_confirm_neigh(skb, neigh);
383 		ret = neigh_output(neigh, skb);
384 		rcu_read_unlock_bh();
385 		return ret;
386 	}
387 	rcu_read_unlock_bh();
388 
389 	IP6_INC_STATS(dev_net(dst->dev),
390 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
391 	kfree_skb(skb);
392 	return -EINVAL;
393 }
394 
395 /* modelled after ip6_output */
396 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
399 			    net, sk, skb, NULL, skb_dst(skb)->dev,
400 			    vrf_finish_output6,
401 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
402 }
403 
404 /* set dst on skb to send packet to us via dev_xmit path. Allows
405  * packet to go through device based features such as qdisc, netfilter
406  * hooks and packet sockets with skb->dev set to vrf device.
407  */
408 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
409 				   struct sock *sk,
410 				   struct sk_buff *skb)
411 {
412 	struct net_vrf *vrf = netdev_priv(vrf_dev);
413 	struct dst_entry *dst = NULL;
414 	struct rt6_info *rt6;
415 
416 	/* don't divert link scope packets */
417 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
418 		return skb;
419 
420 	rcu_read_lock();
421 
422 	rt6 = rcu_dereference(vrf->rt6);
423 	if (likely(rt6)) {
424 		dst = &rt6->dst;
425 		dst_hold(dst);
426 	}
427 
428 	rcu_read_unlock();
429 
430 	if (unlikely(!dst)) {
431 		vrf_tx_error(vrf_dev, skb);
432 		return NULL;
433 	}
434 
435 	skb_dst_drop(skb);
436 	skb_dst_set(skb, dst);
437 
438 	return skb;
439 }
440 
441 /* holding rtnl */
442 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
443 {
444 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
445 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
446 	struct net *net = dev_net(dev);
447 	struct dst_entry *dst;
448 
449 	RCU_INIT_POINTER(vrf->rt6, NULL);
450 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
451 	synchronize_rcu();
452 
453 	/* move dev in dst's to loopback so this VRF device can be deleted
454 	 * - based on dst_ifdown
455 	 */
456 	if (rt6) {
457 		dst = &rt6->dst;
458 		dev_put(dst->dev);
459 		dst->dev = net->loopback_dev;
460 		dev_hold(dst->dev);
461 		dst_release(dst);
462 	}
463 
464 	if (rt6_local) {
465 		if (rt6_local->rt6i_idev)
466 			in6_dev_put(rt6_local->rt6i_idev);
467 
468 		dst = &rt6_local->dst;
469 		dev_put(dst->dev);
470 		dst->dev = net->loopback_dev;
471 		dev_hold(dst->dev);
472 		dst_release(dst);
473 	}
474 }
475 
476 static int vrf_rt6_create(struct net_device *dev)
477 {
478 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
479 	struct net_vrf *vrf = netdev_priv(dev);
480 	struct net *net = dev_net(dev);
481 	struct fib6_table *rt6i_table;
482 	struct rt6_info *rt6, *rt6_local;
483 	int rc = -ENOMEM;
484 
485 	/* IPv6 can be CONFIG enabled and then disabled runtime */
486 	if (!ipv6_mod_enabled())
487 		return 0;
488 
489 	rt6i_table = fib6_new_table(net, vrf->tb_id);
490 	if (!rt6i_table)
491 		goto out;
492 
493 	/* create a dst for routing packets out a VRF device */
494 	rt6 = ip6_dst_alloc(net, dev, flags);
495 	if (!rt6)
496 		goto out;
497 
498 	dst_hold(&rt6->dst);
499 
500 	rt6->rt6i_table = rt6i_table;
501 	rt6->dst.output	= vrf_output6;
502 
503 	/* create a dst for local routing - packets sent locally
504 	 * to local address via the VRF device as a loopback
505 	 */
506 	rt6_local = ip6_dst_alloc(net, dev, flags);
507 	if (!rt6_local) {
508 		dst_release(&rt6->dst);
509 		goto out;
510 	}
511 
512 	dst_hold(&rt6_local->dst);
513 
514 	rt6_local->rt6i_idev  = in6_dev_get(dev);
515 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
516 	rt6_local->rt6i_table = rt6i_table;
517 	rt6_local->dst.input  = ip6_input;
518 
519 	rcu_assign_pointer(vrf->rt6, rt6);
520 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
521 
522 	rc = 0;
523 out:
524 	return rc;
525 }
526 #else
527 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
528 				   struct sock *sk,
529 				   struct sk_buff *skb)
530 {
531 	return skb;
532 }
533 
534 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
535 {
536 }
537 
538 static int vrf_rt6_create(struct net_device *dev)
539 {
540 	return 0;
541 }
542 #endif
543 
544 /* modelled after ip_finish_output2 */
545 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
546 {
547 	struct dst_entry *dst = skb_dst(skb);
548 	struct rtable *rt = (struct rtable *)dst;
549 	struct net_device *dev = dst->dev;
550 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
551 	struct neighbour *neigh;
552 	u32 nexthop;
553 	int ret = -EINVAL;
554 
555 	nf_reset(skb);
556 
557 	/* Be paranoid, rather than too clever. */
558 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
559 		struct sk_buff *skb2;
560 
561 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
562 		if (!skb2) {
563 			ret = -ENOMEM;
564 			goto err;
565 		}
566 		if (skb->sk)
567 			skb_set_owner_w(skb2, skb->sk);
568 
569 		consume_skb(skb);
570 		skb = skb2;
571 	}
572 
573 	rcu_read_lock_bh();
574 
575 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
576 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
577 	if (unlikely(!neigh))
578 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
579 	if (!IS_ERR(neigh)) {
580 		sock_confirm_neigh(skb, neigh);
581 		ret = neigh_output(neigh, skb);
582 	}
583 
584 	rcu_read_unlock_bh();
585 err:
586 	if (unlikely(ret < 0))
587 		vrf_tx_error(skb->dev, skb);
588 	return ret;
589 }
590 
591 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
592 {
593 	struct net_device *dev = skb_dst(skb)->dev;
594 
595 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
596 
597 	skb->dev = dev;
598 	skb->protocol = htons(ETH_P_IP);
599 
600 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
601 			    net, sk, skb, NULL, dev,
602 			    vrf_finish_output,
603 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
604 }
605 
606 /* set dst on skb to send packet to us via dev_xmit path. Allows
607  * packet to go through device based features such as qdisc, netfilter
608  * hooks and packet sockets with skb->dev set to vrf device.
609  */
610 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
611 				  struct sock *sk,
612 				  struct sk_buff *skb)
613 {
614 	struct net_vrf *vrf = netdev_priv(vrf_dev);
615 	struct dst_entry *dst = NULL;
616 	struct rtable *rth;
617 
618 	/* don't divert multicast */
619 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
620 		return skb;
621 
622 	rcu_read_lock();
623 
624 	rth = rcu_dereference(vrf->rth);
625 	if (likely(rth)) {
626 		dst = &rth->dst;
627 		dst_hold(dst);
628 	}
629 
630 	rcu_read_unlock();
631 
632 	if (unlikely(!dst)) {
633 		vrf_tx_error(vrf_dev, skb);
634 		return NULL;
635 	}
636 
637 	skb_dst_drop(skb);
638 	skb_dst_set(skb, dst);
639 
640 	return skb;
641 }
642 
643 /* called with rcu lock held */
644 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
645 				  struct sock *sk,
646 				  struct sk_buff *skb,
647 				  u16 proto)
648 {
649 	switch (proto) {
650 	case AF_INET:
651 		return vrf_ip_out(vrf_dev, sk, skb);
652 	case AF_INET6:
653 		return vrf_ip6_out(vrf_dev, sk, skb);
654 	}
655 
656 	return skb;
657 }
658 
659 /* holding rtnl */
660 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
661 {
662 	struct rtable *rth = rtnl_dereference(vrf->rth);
663 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
664 	struct net *net = dev_net(dev);
665 	struct dst_entry *dst;
666 
667 	RCU_INIT_POINTER(vrf->rth, NULL);
668 	RCU_INIT_POINTER(vrf->rth_local, NULL);
669 	synchronize_rcu();
670 
671 	/* move dev in dst's to loopback so this VRF device can be deleted
672 	 * - based on dst_ifdown
673 	 */
674 	if (rth) {
675 		dst = &rth->dst;
676 		dev_put(dst->dev);
677 		dst->dev = net->loopback_dev;
678 		dev_hold(dst->dev);
679 		dst_release(dst);
680 	}
681 
682 	if (rth_local) {
683 		dst = &rth_local->dst;
684 		dev_put(dst->dev);
685 		dst->dev = net->loopback_dev;
686 		dev_hold(dst->dev);
687 		dst_release(dst);
688 	}
689 }
690 
691 static int vrf_rtable_create(struct net_device *dev)
692 {
693 	struct net_vrf *vrf = netdev_priv(dev);
694 	struct rtable *rth, *rth_local;
695 
696 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
697 		return -ENOMEM;
698 
699 	/* create a dst for routing packets out through a VRF device */
700 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
701 	if (!rth)
702 		return -ENOMEM;
703 
704 	/* create a dst for local ingress routing - packets sent locally
705 	 * to local address via the VRF device as a loopback
706 	 */
707 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
708 	if (!rth_local) {
709 		dst_release(&rth->dst);
710 		return -ENOMEM;
711 	}
712 
713 	rth->dst.output	= vrf_output;
714 	rth->rt_table_id = vrf->tb_id;
715 
716 	rth_local->rt_table_id = vrf->tb_id;
717 
718 	rcu_assign_pointer(vrf->rth, rth);
719 	rcu_assign_pointer(vrf->rth_local, rth_local);
720 
721 	return 0;
722 }
723 
724 /**************************** device handling ********************/
725 
726 /* cycle interface to flush neighbor cache and move routes across tables */
727 static void cycle_netdev(struct net_device *dev)
728 {
729 	unsigned int flags = dev->flags;
730 	int ret;
731 
732 	if (!netif_running(dev))
733 		return;
734 
735 	ret = dev_change_flags(dev, flags & ~IFF_UP);
736 	if (ret >= 0)
737 		ret = dev_change_flags(dev, flags);
738 
739 	if (ret < 0) {
740 		netdev_err(dev,
741 			   "Failed to cycle device %s; route tables might be wrong!\n",
742 			   dev->name);
743 	}
744 }
745 
746 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
747 {
748 	int ret;
749 
750 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
751 	if (ret < 0)
752 		return ret;
753 
754 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
755 	cycle_netdev(port_dev);
756 
757 	return 0;
758 }
759 
760 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
761 {
762 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
763 		return -EINVAL;
764 
765 	return do_vrf_add_slave(dev, port_dev);
766 }
767 
768 /* inverse of do_vrf_add_slave */
769 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
770 {
771 	netdev_upper_dev_unlink(port_dev, dev);
772 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
773 
774 	cycle_netdev(port_dev);
775 
776 	return 0;
777 }
778 
779 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
780 {
781 	return do_vrf_del_slave(dev, port_dev);
782 }
783 
784 static void vrf_dev_uninit(struct net_device *dev)
785 {
786 	struct net_vrf *vrf = netdev_priv(dev);
787 	struct net_device *port_dev;
788 	struct list_head *iter;
789 
790 	vrf_rtable_release(dev, vrf);
791 	vrf_rt6_release(dev, vrf);
792 
793 	netdev_for_each_lower_dev(dev, port_dev, iter)
794 		vrf_del_slave(dev, port_dev);
795 
796 	free_percpu(dev->dstats);
797 	dev->dstats = NULL;
798 }
799 
800 static int vrf_dev_init(struct net_device *dev)
801 {
802 	struct net_vrf *vrf = netdev_priv(dev);
803 
804 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
805 	if (!dev->dstats)
806 		goto out_nomem;
807 
808 	/* create the default dst which points back to us */
809 	if (vrf_rtable_create(dev) != 0)
810 		goto out_stats;
811 
812 	if (vrf_rt6_create(dev) != 0)
813 		goto out_rth;
814 
815 	dev->flags = IFF_MASTER | IFF_NOARP;
816 
817 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
818 	dev->mtu = 64 * 1024;
819 
820 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
821 	dev->operstate = IF_OPER_UP;
822 	netdev_lockdep_set_classes(dev);
823 	return 0;
824 
825 out_rth:
826 	vrf_rtable_release(dev, vrf);
827 out_stats:
828 	free_percpu(dev->dstats);
829 	dev->dstats = NULL;
830 out_nomem:
831 	return -ENOMEM;
832 }
833 
834 static const struct net_device_ops vrf_netdev_ops = {
835 	.ndo_init		= vrf_dev_init,
836 	.ndo_uninit		= vrf_dev_uninit,
837 	.ndo_start_xmit		= vrf_xmit,
838 	.ndo_get_stats64	= vrf_get_stats64,
839 	.ndo_add_slave		= vrf_add_slave,
840 	.ndo_del_slave		= vrf_del_slave,
841 };
842 
843 static u32 vrf_fib_table(const struct net_device *dev)
844 {
845 	struct net_vrf *vrf = netdev_priv(dev);
846 
847 	return vrf->tb_id;
848 }
849 
850 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
851 {
852 	return 0;
853 }
854 
855 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
856 				      struct sk_buff *skb,
857 				      struct net_device *dev)
858 {
859 	struct net *net = dev_net(dev);
860 
861 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
862 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
863 
864 	return skb;
865 }
866 
867 #if IS_ENABLED(CONFIG_IPV6)
868 /* neighbor handling is done with actual device; do not want
869  * to flip skb->dev for those ndisc packets. This really fails
870  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
871  * a start.
872  */
873 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
874 {
875 	const struct ipv6hdr *iph = ipv6_hdr(skb);
876 	bool rc = false;
877 
878 	if (iph->nexthdr == NEXTHDR_ICMP) {
879 		const struct icmp6hdr *icmph;
880 		struct icmp6hdr _icmph;
881 
882 		icmph = skb_header_pointer(skb, sizeof(*iph),
883 					   sizeof(_icmph), &_icmph);
884 		if (!icmph)
885 			goto out;
886 
887 		switch (icmph->icmp6_type) {
888 		case NDISC_ROUTER_SOLICITATION:
889 		case NDISC_ROUTER_ADVERTISEMENT:
890 		case NDISC_NEIGHBOUR_SOLICITATION:
891 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
892 		case NDISC_REDIRECT:
893 			rc = true;
894 			break;
895 		}
896 	}
897 
898 out:
899 	return rc;
900 }
901 
902 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
903 					     const struct net_device *dev,
904 					     struct flowi6 *fl6,
905 					     int ifindex,
906 					     int flags)
907 {
908 	struct net_vrf *vrf = netdev_priv(dev);
909 	struct fib6_table *table = NULL;
910 	struct rt6_info *rt6;
911 
912 	rcu_read_lock();
913 
914 	/* fib6_table does not have a refcnt and can not be freed */
915 	rt6 = rcu_dereference(vrf->rt6);
916 	if (likely(rt6))
917 		table = rt6->rt6i_table;
918 
919 	rcu_read_unlock();
920 
921 	if (!table)
922 		return NULL;
923 
924 	return ip6_pol_route(net, table, ifindex, fl6, flags);
925 }
926 
927 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
928 			      int ifindex)
929 {
930 	const struct ipv6hdr *iph = ipv6_hdr(skb);
931 	struct flowi6 fl6 = {
932 		.daddr          = iph->daddr,
933 		.saddr          = iph->saddr,
934 		.flowlabel      = ip6_flowinfo(iph),
935 		.flowi6_mark    = skb->mark,
936 		.flowi6_proto   = iph->nexthdr,
937 		.flowi6_iif     = ifindex,
938 	};
939 	struct net *net = dev_net(vrf_dev);
940 	struct rt6_info *rt6;
941 
942 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
943 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
944 	if (unlikely(!rt6))
945 		return;
946 
947 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
948 		return;
949 
950 	skb_dst_set(skb, &rt6->dst);
951 }
952 
953 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
954 				   struct sk_buff *skb)
955 {
956 	int orig_iif = skb->skb_iif;
957 	bool need_strict;
958 
959 	/* loopback traffic; do not push through packet taps again.
960 	 * Reset pkt_type for upper layers to process skb
961 	 */
962 	if (skb->pkt_type == PACKET_LOOPBACK) {
963 		skb->dev = vrf_dev;
964 		skb->skb_iif = vrf_dev->ifindex;
965 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
966 		skb->pkt_type = PACKET_HOST;
967 		goto out;
968 	}
969 
970 	/* if packet is NDISC or addressed to multicast or link-local
971 	 * then keep the ingress interface
972 	 */
973 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
974 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
975 		vrf_rx_stats(vrf_dev, skb->len);
976 		skb->dev = vrf_dev;
977 		skb->skb_iif = vrf_dev->ifindex;
978 
979 		skb_push(skb, skb->mac_len);
980 		dev_queue_xmit_nit(skb, vrf_dev);
981 		skb_pull(skb, skb->mac_len);
982 
983 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
984 	}
985 
986 	if (need_strict)
987 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
988 
989 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
990 out:
991 	return skb;
992 }
993 
994 #else
995 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
996 				   struct sk_buff *skb)
997 {
998 	return skb;
999 }
1000 #endif
1001 
1002 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1003 				  struct sk_buff *skb)
1004 {
1005 	skb->dev = vrf_dev;
1006 	skb->skb_iif = vrf_dev->ifindex;
1007 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1008 
1009 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1010 		goto out;
1011 
1012 	/* loopback traffic; do not push through packet taps again.
1013 	 * Reset pkt_type for upper layers to process skb
1014 	 */
1015 	if (skb->pkt_type == PACKET_LOOPBACK) {
1016 		skb->pkt_type = PACKET_HOST;
1017 		goto out;
1018 	}
1019 
1020 	vrf_rx_stats(vrf_dev, skb->len);
1021 
1022 	skb_push(skb, skb->mac_len);
1023 	dev_queue_xmit_nit(skb, vrf_dev);
1024 	skb_pull(skb, skb->mac_len);
1025 
1026 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1027 out:
1028 	return skb;
1029 }
1030 
1031 /* called with rcu lock held */
1032 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1033 				  struct sk_buff *skb,
1034 				  u16 proto)
1035 {
1036 	switch (proto) {
1037 	case AF_INET:
1038 		return vrf_ip_rcv(vrf_dev, skb);
1039 	case AF_INET6:
1040 		return vrf_ip6_rcv(vrf_dev, skb);
1041 	}
1042 
1043 	return skb;
1044 }
1045 
1046 #if IS_ENABLED(CONFIG_IPV6)
1047 /* send to link-local or multicast address via interface enslaved to
1048  * VRF device. Force lookup to VRF table without changing flow struct
1049  */
1050 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1051 					      struct flowi6 *fl6)
1052 {
1053 	struct net *net = dev_net(dev);
1054 	int flags = RT6_LOOKUP_F_IFACE;
1055 	struct dst_entry *dst = NULL;
1056 	struct rt6_info *rt;
1057 
1058 	/* VRF device does not have a link-local address and
1059 	 * sending packets to link-local or mcast addresses over
1060 	 * a VRF device does not make sense
1061 	 */
1062 	if (fl6->flowi6_oif == dev->ifindex) {
1063 		dst = &net->ipv6.ip6_null_entry->dst;
1064 		dst_hold(dst);
1065 		return dst;
1066 	}
1067 
1068 	if (!ipv6_addr_any(&fl6->saddr))
1069 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1070 
1071 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1072 	if (rt)
1073 		dst = &rt->dst;
1074 
1075 	return dst;
1076 }
1077 #endif
1078 
1079 static const struct l3mdev_ops vrf_l3mdev_ops = {
1080 	.l3mdev_fib_table	= vrf_fib_table,
1081 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1082 	.l3mdev_l3_out		= vrf_l3_out,
1083 #if IS_ENABLED(CONFIG_IPV6)
1084 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1085 #endif
1086 };
1087 
1088 static void vrf_get_drvinfo(struct net_device *dev,
1089 			    struct ethtool_drvinfo *info)
1090 {
1091 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1092 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1093 }
1094 
1095 static const struct ethtool_ops vrf_ethtool_ops = {
1096 	.get_drvinfo	= vrf_get_drvinfo,
1097 };
1098 
1099 static inline size_t vrf_fib_rule_nl_size(void)
1100 {
1101 	size_t sz;
1102 
1103 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1104 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1105 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1106 
1107 	return sz;
1108 }
1109 
1110 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1111 {
1112 	struct fib_rule_hdr *frh;
1113 	struct nlmsghdr *nlh;
1114 	struct sk_buff *skb;
1115 	int err;
1116 
1117 	if (family == AF_INET6 && !ipv6_mod_enabled())
1118 		return 0;
1119 
1120 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1121 	if (!skb)
1122 		return -ENOMEM;
1123 
1124 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1125 	if (!nlh)
1126 		goto nla_put_failure;
1127 
1128 	/* rule only needs to appear once */
1129 	nlh->nlmsg_flags &= NLM_F_EXCL;
1130 
1131 	frh = nlmsg_data(nlh);
1132 	memset(frh, 0, sizeof(*frh));
1133 	frh->family = family;
1134 	frh->action = FR_ACT_TO_TBL;
1135 
1136 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1137 		goto nla_put_failure;
1138 
1139 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1140 		goto nla_put_failure;
1141 
1142 	nlmsg_end(skb, nlh);
1143 
1144 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1145 	skb->sk = dev_net(dev)->rtnl;
1146 	if (add_it) {
1147 		err = fib_nl_newrule(skb, nlh);
1148 		if (err == -EEXIST)
1149 			err = 0;
1150 	} else {
1151 		err = fib_nl_delrule(skb, nlh);
1152 		if (err == -ENOENT)
1153 			err = 0;
1154 	}
1155 	nlmsg_free(skb);
1156 
1157 	return err;
1158 
1159 nla_put_failure:
1160 	nlmsg_free(skb);
1161 
1162 	return -EMSGSIZE;
1163 }
1164 
1165 static int vrf_add_fib_rules(const struct net_device *dev)
1166 {
1167 	int err;
1168 
1169 	err = vrf_fib_rule(dev, AF_INET,  true);
1170 	if (err < 0)
1171 		goto out_err;
1172 
1173 	err = vrf_fib_rule(dev, AF_INET6, true);
1174 	if (err < 0)
1175 		goto ipv6_err;
1176 
1177 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1178 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1179 	if (err < 0)
1180 		goto ipmr_err;
1181 #endif
1182 
1183 	return 0;
1184 
1185 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1186 ipmr_err:
1187 	vrf_fib_rule(dev, AF_INET6,  false);
1188 #endif
1189 
1190 ipv6_err:
1191 	vrf_fib_rule(dev, AF_INET,  false);
1192 
1193 out_err:
1194 	netdev_err(dev, "Failed to add FIB rules.\n");
1195 	return err;
1196 }
1197 
1198 static void vrf_setup(struct net_device *dev)
1199 {
1200 	ether_setup(dev);
1201 
1202 	/* Initialize the device structure. */
1203 	dev->netdev_ops = &vrf_netdev_ops;
1204 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1205 	dev->ethtool_ops = &vrf_ethtool_ops;
1206 	dev->destructor = free_netdev;
1207 
1208 	/* Fill in device structure with ethernet-generic values. */
1209 	eth_hw_addr_random(dev);
1210 
1211 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1212 	dev->features |= NETIF_F_LLTX;
1213 
1214 	/* don't allow vrf devices to change network namespaces. */
1215 	dev->features |= NETIF_F_NETNS_LOCAL;
1216 
1217 	/* does not make sense for a VLAN to be added to a vrf device */
1218 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1219 
1220 	/* enable offload features */
1221 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1222 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1223 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1224 
1225 	dev->hw_features = dev->features;
1226 	dev->hw_enc_features = dev->features;
1227 
1228 	/* default to no qdisc; user can add if desired */
1229 	dev->priv_flags |= IFF_NO_QUEUE;
1230 }
1231 
1232 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1233 {
1234 	if (tb[IFLA_ADDRESS]) {
1235 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1236 			return -EINVAL;
1237 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1238 			return -EADDRNOTAVAIL;
1239 	}
1240 	return 0;
1241 }
1242 
1243 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1244 {
1245 	unregister_netdevice_queue(dev, head);
1246 }
1247 
1248 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1249 		       struct nlattr *tb[], struct nlattr *data[])
1250 {
1251 	struct net_vrf *vrf = netdev_priv(dev);
1252 	int err;
1253 
1254 	if (!data || !data[IFLA_VRF_TABLE])
1255 		return -EINVAL;
1256 
1257 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1258 	if (vrf->tb_id == RT_TABLE_UNSPEC)
1259 		return -EINVAL;
1260 
1261 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1262 
1263 	err = register_netdevice(dev);
1264 	if (err)
1265 		goto out;
1266 
1267 	if (add_fib_rules) {
1268 		err = vrf_add_fib_rules(dev);
1269 		if (err) {
1270 			unregister_netdevice(dev);
1271 			goto out;
1272 		}
1273 		add_fib_rules = false;
1274 	}
1275 
1276 out:
1277 	return err;
1278 }
1279 
1280 static size_t vrf_nl_getsize(const struct net_device *dev)
1281 {
1282 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1283 }
1284 
1285 static int vrf_fillinfo(struct sk_buff *skb,
1286 			const struct net_device *dev)
1287 {
1288 	struct net_vrf *vrf = netdev_priv(dev);
1289 
1290 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1291 }
1292 
1293 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1294 				 const struct net_device *slave_dev)
1295 {
1296 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1297 }
1298 
1299 static int vrf_fill_slave_info(struct sk_buff *skb,
1300 			       const struct net_device *vrf_dev,
1301 			       const struct net_device *slave_dev)
1302 {
1303 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1304 
1305 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1306 		return -EMSGSIZE;
1307 
1308 	return 0;
1309 }
1310 
1311 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1312 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1313 };
1314 
1315 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1316 	.kind		= DRV_NAME,
1317 	.priv_size	= sizeof(struct net_vrf),
1318 
1319 	.get_size	= vrf_nl_getsize,
1320 	.policy		= vrf_nl_policy,
1321 	.validate	= vrf_validate,
1322 	.fill_info	= vrf_fillinfo,
1323 
1324 	.get_slave_size  = vrf_get_slave_size,
1325 	.fill_slave_info = vrf_fill_slave_info,
1326 
1327 	.newlink	= vrf_newlink,
1328 	.dellink	= vrf_dellink,
1329 	.setup		= vrf_setup,
1330 	.maxtype	= IFLA_VRF_MAX,
1331 };
1332 
1333 static int vrf_device_event(struct notifier_block *unused,
1334 			    unsigned long event, void *ptr)
1335 {
1336 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1337 
1338 	/* only care about unregister events to drop slave references */
1339 	if (event == NETDEV_UNREGISTER) {
1340 		struct net_device *vrf_dev;
1341 
1342 		if (!netif_is_l3_slave(dev))
1343 			goto out;
1344 
1345 		vrf_dev = netdev_master_upper_dev_get(dev);
1346 		vrf_del_slave(vrf_dev, dev);
1347 	}
1348 out:
1349 	return NOTIFY_DONE;
1350 }
1351 
1352 static struct notifier_block vrf_notifier_block __read_mostly = {
1353 	.notifier_call = vrf_device_event,
1354 };
1355 
1356 static int __init vrf_init_module(void)
1357 {
1358 	int rc;
1359 
1360 	register_netdevice_notifier(&vrf_notifier_block);
1361 
1362 	rc = rtnl_link_register(&vrf_link_ops);
1363 	if (rc < 0)
1364 		goto error;
1365 
1366 	return 0;
1367 
1368 error:
1369 	unregister_netdevice_notifier(&vrf_notifier_block);
1370 	return rc;
1371 }
1372 
1373 module_init(vrf_init_module);
1374 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1375 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1376 MODULE_LICENSE("GPL");
1377 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1378 MODULE_VERSION(DRV_VERSION);
1379