1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 #include <net/fib_rules.h> 39 40 #define DRV_NAME "vrf" 41 #define DRV_VERSION "1.0" 42 43 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 44 static bool add_fib_rules = true; 45 46 struct net_vrf { 47 struct rtable __rcu *rth; 48 struct rtable __rcu *rth_local; 49 struct rt6_info __rcu *rt6; 50 struct rt6_info __rcu *rt6_local; 51 u32 tb_id; 52 }; 53 54 struct pcpu_dstats { 55 u64 tx_pkts; 56 u64 tx_bytes; 57 u64 tx_drps; 58 u64 rx_pkts; 59 u64 rx_bytes; 60 u64 rx_drps; 61 struct u64_stats_sync syncp; 62 }; 63 64 static void vrf_rx_stats(struct net_device *dev, int len) 65 { 66 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 67 68 u64_stats_update_begin(&dstats->syncp); 69 dstats->rx_pkts++; 70 dstats->rx_bytes += len; 71 u64_stats_update_end(&dstats->syncp); 72 } 73 74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 75 { 76 vrf_dev->stats.tx_errors++; 77 kfree_skb(skb); 78 } 79 80 static void vrf_get_stats64(struct net_device *dev, 81 struct rtnl_link_stats64 *stats) 82 { 83 int i; 84 85 for_each_possible_cpu(i) { 86 const struct pcpu_dstats *dstats; 87 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 88 unsigned int start; 89 90 dstats = per_cpu_ptr(dev->dstats, i); 91 do { 92 start = u64_stats_fetch_begin_irq(&dstats->syncp); 93 tbytes = dstats->tx_bytes; 94 tpkts = dstats->tx_pkts; 95 tdrops = dstats->tx_drps; 96 rbytes = dstats->rx_bytes; 97 rpkts = dstats->rx_pkts; 98 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 99 stats->tx_bytes += tbytes; 100 stats->tx_packets += tpkts; 101 stats->tx_dropped += tdrops; 102 stats->rx_bytes += rbytes; 103 stats->rx_packets += rpkts; 104 } 105 } 106 107 /* by default VRF devices do not have a qdisc and are expected 108 * to be created with only a single queue. 109 */ 110 static bool qdisc_tx_is_default(const struct net_device *dev) 111 { 112 struct netdev_queue *txq; 113 struct Qdisc *qdisc; 114 115 if (dev->num_tx_queues > 1) 116 return false; 117 118 txq = netdev_get_tx_queue(dev, 0); 119 qdisc = rcu_access_pointer(txq->qdisc); 120 121 return !qdisc->enqueue; 122 } 123 124 /* Local traffic destined to local address. Reinsert the packet to rx 125 * path, similar to loopback handling. 126 */ 127 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 128 struct dst_entry *dst) 129 { 130 int len = skb->len; 131 132 skb_orphan(skb); 133 134 skb_dst_set(skb, dst); 135 skb_dst_force(skb); 136 137 /* set pkt_type to avoid skb hitting packet taps twice - 138 * once on Tx and again in Rx processing 139 */ 140 skb->pkt_type = PACKET_LOOPBACK; 141 142 skb->protocol = eth_type_trans(skb, dev); 143 144 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 145 vrf_rx_stats(dev, len); 146 else 147 this_cpu_inc(dev->dstats->rx_drps); 148 149 return NETDEV_TX_OK; 150 } 151 152 #if IS_ENABLED(CONFIG_IPV6) 153 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 154 struct sk_buff *skb) 155 { 156 int err; 157 158 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 159 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 160 161 if (likely(err == 1)) 162 err = dst_output(net, sk, skb); 163 164 return err; 165 } 166 167 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 168 struct net_device *dev) 169 { 170 const struct ipv6hdr *iph = ipv6_hdr(skb); 171 struct net *net = dev_net(skb->dev); 172 struct flowi6 fl6 = { 173 /* needed to match OIF rule */ 174 .flowi6_oif = dev->ifindex, 175 .flowi6_iif = LOOPBACK_IFINDEX, 176 .daddr = iph->daddr, 177 .saddr = iph->saddr, 178 .flowlabel = ip6_flowinfo(iph), 179 .flowi6_mark = skb->mark, 180 .flowi6_proto = iph->nexthdr, 181 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 182 }; 183 int ret = NET_XMIT_DROP; 184 struct dst_entry *dst; 185 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 186 187 dst = ip6_route_output(net, NULL, &fl6); 188 if (dst == dst_null) 189 goto err; 190 191 skb_dst_drop(skb); 192 193 /* if dst.dev is loopback or the VRF device again this is locally 194 * originated traffic destined to a local address. Short circuit 195 * to Rx path using our local dst 196 */ 197 if (dst->dev == net->loopback_dev || dst->dev == dev) { 198 struct net_vrf *vrf = netdev_priv(dev); 199 struct rt6_info *rt6_local; 200 201 /* release looked up dst and use cached local dst */ 202 dst_release(dst); 203 204 rcu_read_lock(); 205 206 rt6_local = rcu_dereference(vrf->rt6_local); 207 if (unlikely(!rt6_local)) { 208 rcu_read_unlock(); 209 goto err; 210 } 211 212 /* Ordering issue: cached local dst is created on newlink 213 * before the IPv6 initialization. Using the local dst 214 * requires rt6i_idev to be set so make sure it is. 215 */ 216 if (unlikely(!rt6_local->rt6i_idev)) { 217 rt6_local->rt6i_idev = in6_dev_get(dev); 218 if (!rt6_local->rt6i_idev) { 219 rcu_read_unlock(); 220 goto err; 221 } 222 } 223 224 dst = &rt6_local->dst; 225 dst_hold(dst); 226 227 rcu_read_unlock(); 228 229 return vrf_local_xmit(skb, dev, &rt6_local->dst); 230 } 231 232 skb_dst_set(skb, dst); 233 234 /* strip the ethernet header added for pass through VRF device */ 235 __skb_pull(skb, skb_network_offset(skb)); 236 237 ret = vrf_ip6_local_out(net, skb->sk, skb); 238 if (unlikely(net_xmit_eval(ret))) 239 dev->stats.tx_errors++; 240 else 241 ret = NET_XMIT_SUCCESS; 242 243 return ret; 244 err: 245 vrf_tx_error(dev, skb); 246 return NET_XMIT_DROP; 247 } 248 #else 249 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 250 struct net_device *dev) 251 { 252 vrf_tx_error(dev, skb); 253 return NET_XMIT_DROP; 254 } 255 #endif 256 257 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 258 static int vrf_ip_local_out(struct net *net, struct sock *sk, 259 struct sk_buff *skb) 260 { 261 int err; 262 263 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 264 skb, NULL, skb_dst(skb)->dev, dst_output); 265 if (likely(err == 1)) 266 err = dst_output(net, sk, skb); 267 268 return err; 269 } 270 271 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 272 struct net_device *vrf_dev) 273 { 274 struct iphdr *ip4h = ip_hdr(skb); 275 int ret = NET_XMIT_DROP; 276 struct flowi4 fl4 = { 277 /* needed to match OIF rule */ 278 .flowi4_oif = vrf_dev->ifindex, 279 .flowi4_iif = LOOPBACK_IFINDEX, 280 .flowi4_tos = RT_TOS(ip4h->tos), 281 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 282 .flowi4_proto = ip4h->protocol, 283 .daddr = ip4h->daddr, 284 .saddr = ip4h->saddr, 285 }; 286 struct net *net = dev_net(vrf_dev); 287 struct rtable *rt; 288 289 rt = ip_route_output_flow(net, &fl4, NULL); 290 if (IS_ERR(rt)) 291 goto err; 292 293 skb_dst_drop(skb); 294 295 /* if dst.dev is loopback or the VRF device again this is locally 296 * originated traffic destined to a local address. Short circuit 297 * to Rx path using our local dst 298 */ 299 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) { 300 struct net_vrf *vrf = netdev_priv(vrf_dev); 301 struct rtable *rth_local; 302 struct dst_entry *dst = NULL; 303 304 ip_rt_put(rt); 305 306 rcu_read_lock(); 307 308 rth_local = rcu_dereference(vrf->rth_local); 309 if (likely(rth_local)) { 310 dst = &rth_local->dst; 311 dst_hold(dst); 312 } 313 314 rcu_read_unlock(); 315 316 if (unlikely(!dst)) 317 goto err; 318 319 return vrf_local_xmit(skb, vrf_dev, dst); 320 } 321 322 skb_dst_set(skb, &rt->dst); 323 324 /* strip the ethernet header added for pass through VRF device */ 325 __skb_pull(skb, skb_network_offset(skb)); 326 327 if (!ip4h->saddr) { 328 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 329 RT_SCOPE_LINK); 330 } 331 332 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 333 if (unlikely(net_xmit_eval(ret))) 334 vrf_dev->stats.tx_errors++; 335 else 336 ret = NET_XMIT_SUCCESS; 337 338 out: 339 return ret; 340 err: 341 vrf_tx_error(vrf_dev, skb); 342 goto out; 343 } 344 345 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 346 { 347 switch (skb->protocol) { 348 case htons(ETH_P_IP): 349 return vrf_process_v4_outbound(skb, dev); 350 case htons(ETH_P_IPV6): 351 return vrf_process_v6_outbound(skb, dev); 352 default: 353 vrf_tx_error(dev, skb); 354 return NET_XMIT_DROP; 355 } 356 } 357 358 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 359 { 360 int len = skb->len; 361 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 362 363 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 364 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 365 366 u64_stats_update_begin(&dstats->syncp); 367 dstats->tx_pkts++; 368 dstats->tx_bytes += len; 369 u64_stats_update_end(&dstats->syncp); 370 } else { 371 this_cpu_inc(dev->dstats->tx_drps); 372 } 373 374 return ret; 375 } 376 377 static int vrf_finish_direct(struct net *net, struct sock *sk, 378 struct sk_buff *skb) 379 { 380 struct net_device *vrf_dev = skb->dev; 381 382 if (!list_empty(&vrf_dev->ptype_all) && 383 likely(skb_headroom(skb) >= ETH_HLEN)) { 384 struct ethhdr *eth = (struct ethhdr *)skb_push(skb, ETH_HLEN); 385 386 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 387 eth_zero_addr(eth->h_dest); 388 eth->h_proto = skb->protocol; 389 390 rcu_read_lock_bh(); 391 dev_queue_xmit_nit(skb, vrf_dev); 392 rcu_read_unlock_bh(); 393 394 skb_pull(skb, ETH_HLEN); 395 } 396 397 return 1; 398 } 399 400 #if IS_ENABLED(CONFIG_IPV6) 401 /* modelled after ip6_finish_output2 */ 402 static int vrf_finish_output6(struct net *net, struct sock *sk, 403 struct sk_buff *skb) 404 { 405 struct dst_entry *dst = skb_dst(skb); 406 struct net_device *dev = dst->dev; 407 struct neighbour *neigh; 408 struct in6_addr *nexthop; 409 int ret; 410 411 nf_reset(skb); 412 413 skb->protocol = htons(ETH_P_IPV6); 414 skb->dev = dev; 415 416 rcu_read_lock_bh(); 417 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 418 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 419 if (unlikely(!neigh)) 420 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 421 if (!IS_ERR(neigh)) { 422 sock_confirm_neigh(skb, neigh); 423 ret = neigh_output(neigh, skb); 424 rcu_read_unlock_bh(); 425 return ret; 426 } 427 rcu_read_unlock_bh(); 428 429 IP6_INC_STATS(dev_net(dst->dev), 430 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 431 kfree_skb(skb); 432 return -EINVAL; 433 } 434 435 /* modelled after ip6_output */ 436 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 437 { 438 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 439 net, sk, skb, NULL, skb_dst(skb)->dev, 440 vrf_finish_output6, 441 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 442 } 443 444 /* set dst on skb to send packet to us via dev_xmit path. Allows 445 * packet to go through device based features such as qdisc, netfilter 446 * hooks and packet sockets with skb->dev set to vrf device. 447 */ 448 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 449 struct sk_buff *skb) 450 { 451 struct net_vrf *vrf = netdev_priv(vrf_dev); 452 struct dst_entry *dst = NULL; 453 struct rt6_info *rt6; 454 455 rcu_read_lock(); 456 457 rt6 = rcu_dereference(vrf->rt6); 458 if (likely(rt6)) { 459 dst = &rt6->dst; 460 dst_hold(dst); 461 } 462 463 rcu_read_unlock(); 464 465 if (unlikely(!dst)) { 466 vrf_tx_error(vrf_dev, skb); 467 return NULL; 468 } 469 470 skb_dst_drop(skb); 471 skb_dst_set(skb, dst); 472 473 return skb; 474 } 475 476 static int vrf_output6_direct(struct net *net, struct sock *sk, 477 struct sk_buff *skb) 478 { 479 skb->protocol = htons(ETH_P_IPV6); 480 481 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 482 net, sk, skb, NULL, skb->dev, 483 vrf_finish_direct, 484 !(IPCB(skb)->flags & IPSKB_REROUTED)); 485 } 486 487 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 488 struct sock *sk, 489 struct sk_buff *skb) 490 { 491 struct net *net = dev_net(vrf_dev); 492 int err; 493 494 skb->dev = vrf_dev; 495 496 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 497 skb, NULL, vrf_dev, vrf_output6_direct); 498 499 if (likely(err == 1)) 500 err = vrf_output6_direct(net, sk, skb); 501 502 /* reset skb device */ 503 if (likely(err == 1)) 504 nf_reset(skb); 505 else 506 skb = NULL; 507 508 return skb; 509 } 510 511 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 512 struct sock *sk, 513 struct sk_buff *skb) 514 { 515 /* don't divert link scope packets */ 516 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 517 return skb; 518 519 if (qdisc_tx_is_default(vrf_dev)) 520 return vrf_ip6_out_direct(vrf_dev, sk, skb); 521 522 return vrf_ip6_out_redirect(vrf_dev, skb); 523 } 524 525 /* holding rtnl */ 526 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 527 { 528 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 529 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local); 530 struct net *net = dev_net(dev); 531 struct dst_entry *dst; 532 533 RCU_INIT_POINTER(vrf->rt6, NULL); 534 RCU_INIT_POINTER(vrf->rt6_local, NULL); 535 synchronize_rcu(); 536 537 /* move dev in dst's to loopback so this VRF device can be deleted 538 * - based on dst_ifdown 539 */ 540 if (rt6) { 541 dst = &rt6->dst; 542 dev_put(dst->dev); 543 dst->dev = net->loopback_dev; 544 dev_hold(dst->dev); 545 dst_release(dst); 546 } 547 548 if (rt6_local) { 549 if (rt6_local->rt6i_idev) { 550 in6_dev_put(rt6_local->rt6i_idev); 551 rt6_local->rt6i_idev = NULL; 552 } 553 554 dst = &rt6_local->dst; 555 dev_put(dst->dev); 556 dst->dev = net->loopback_dev; 557 dev_hold(dst->dev); 558 dst_release(dst); 559 } 560 } 561 562 static int vrf_rt6_create(struct net_device *dev) 563 { 564 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE; 565 struct net_vrf *vrf = netdev_priv(dev); 566 struct net *net = dev_net(dev); 567 struct fib6_table *rt6i_table; 568 struct rt6_info *rt6, *rt6_local; 569 int rc = -ENOMEM; 570 571 /* IPv6 can be CONFIG enabled and then disabled runtime */ 572 if (!ipv6_mod_enabled()) 573 return 0; 574 575 rt6i_table = fib6_new_table(net, vrf->tb_id); 576 if (!rt6i_table) 577 goto out; 578 579 /* create a dst for routing packets out a VRF device */ 580 rt6 = ip6_dst_alloc(net, dev, flags); 581 if (!rt6) 582 goto out; 583 584 dst_hold(&rt6->dst); 585 586 rt6->rt6i_table = rt6i_table; 587 rt6->dst.output = vrf_output6; 588 589 /* create a dst for local routing - packets sent locally 590 * to local address via the VRF device as a loopback 591 */ 592 rt6_local = ip6_dst_alloc(net, dev, flags); 593 if (!rt6_local) { 594 dst_release(&rt6->dst); 595 goto out; 596 } 597 598 dst_hold(&rt6_local->dst); 599 600 rt6_local->rt6i_idev = in6_dev_get(dev); 601 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL; 602 rt6_local->rt6i_table = rt6i_table; 603 rt6_local->dst.input = ip6_input; 604 605 rcu_assign_pointer(vrf->rt6, rt6); 606 rcu_assign_pointer(vrf->rt6_local, rt6_local); 607 608 rc = 0; 609 out: 610 return rc; 611 } 612 #else 613 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 614 struct sock *sk, 615 struct sk_buff *skb) 616 { 617 return skb; 618 } 619 620 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 621 { 622 } 623 624 static int vrf_rt6_create(struct net_device *dev) 625 { 626 return 0; 627 } 628 #endif 629 630 /* modelled after ip_finish_output2 */ 631 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 632 { 633 struct dst_entry *dst = skb_dst(skb); 634 struct rtable *rt = (struct rtable *)dst; 635 struct net_device *dev = dst->dev; 636 unsigned int hh_len = LL_RESERVED_SPACE(dev); 637 struct neighbour *neigh; 638 u32 nexthop; 639 int ret = -EINVAL; 640 641 nf_reset(skb); 642 643 /* Be paranoid, rather than too clever. */ 644 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 645 struct sk_buff *skb2; 646 647 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 648 if (!skb2) { 649 ret = -ENOMEM; 650 goto err; 651 } 652 if (skb->sk) 653 skb_set_owner_w(skb2, skb->sk); 654 655 consume_skb(skb); 656 skb = skb2; 657 } 658 659 rcu_read_lock_bh(); 660 661 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 662 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 663 if (unlikely(!neigh)) 664 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 665 if (!IS_ERR(neigh)) { 666 sock_confirm_neigh(skb, neigh); 667 ret = neigh_output(neigh, skb); 668 } 669 670 rcu_read_unlock_bh(); 671 err: 672 if (unlikely(ret < 0)) 673 vrf_tx_error(skb->dev, skb); 674 return ret; 675 } 676 677 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 678 { 679 struct net_device *dev = skb_dst(skb)->dev; 680 681 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 682 683 skb->dev = dev; 684 skb->protocol = htons(ETH_P_IP); 685 686 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 687 net, sk, skb, NULL, dev, 688 vrf_finish_output, 689 !(IPCB(skb)->flags & IPSKB_REROUTED)); 690 } 691 692 /* set dst on skb to send packet to us via dev_xmit path. Allows 693 * packet to go through device based features such as qdisc, netfilter 694 * hooks and packet sockets with skb->dev set to vrf device. 695 */ 696 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 697 struct sk_buff *skb) 698 { 699 struct net_vrf *vrf = netdev_priv(vrf_dev); 700 struct dst_entry *dst = NULL; 701 struct rtable *rth; 702 703 rcu_read_lock(); 704 705 rth = rcu_dereference(vrf->rth); 706 if (likely(rth)) { 707 dst = &rth->dst; 708 dst_hold(dst); 709 } 710 711 rcu_read_unlock(); 712 713 if (unlikely(!dst)) { 714 vrf_tx_error(vrf_dev, skb); 715 return NULL; 716 } 717 718 skb_dst_drop(skb); 719 skb_dst_set(skb, dst); 720 721 return skb; 722 } 723 724 static int vrf_output_direct(struct net *net, struct sock *sk, 725 struct sk_buff *skb) 726 { 727 skb->protocol = htons(ETH_P_IP); 728 729 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 730 net, sk, skb, NULL, skb->dev, 731 vrf_finish_direct, 732 !(IPCB(skb)->flags & IPSKB_REROUTED)); 733 } 734 735 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 736 struct sock *sk, 737 struct sk_buff *skb) 738 { 739 struct net *net = dev_net(vrf_dev); 740 int err; 741 742 skb->dev = vrf_dev; 743 744 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 745 skb, NULL, vrf_dev, vrf_output_direct); 746 747 if (likely(err == 1)) 748 err = vrf_output_direct(net, sk, skb); 749 750 /* reset skb device */ 751 if (likely(err == 1)) 752 nf_reset(skb); 753 else 754 skb = NULL; 755 756 return skb; 757 } 758 759 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 760 struct sock *sk, 761 struct sk_buff *skb) 762 { 763 /* don't divert multicast */ 764 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 765 return skb; 766 767 if (qdisc_tx_is_default(vrf_dev)) 768 return vrf_ip_out_direct(vrf_dev, sk, skb); 769 770 return vrf_ip_out_redirect(vrf_dev, skb); 771 } 772 773 /* called with rcu lock held */ 774 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 775 struct sock *sk, 776 struct sk_buff *skb, 777 u16 proto) 778 { 779 switch (proto) { 780 case AF_INET: 781 return vrf_ip_out(vrf_dev, sk, skb); 782 case AF_INET6: 783 return vrf_ip6_out(vrf_dev, sk, skb); 784 } 785 786 return skb; 787 } 788 789 /* holding rtnl */ 790 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 791 { 792 struct rtable *rth = rtnl_dereference(vrf->rth); 793 struct rtable *rth_local = rtnl_dereference(vrf->rth_local); 794 struct net *net = dev_net(dev); 795 struct dst_entry *dst; 796 797 RCU_INIT_POINTER(vrf->rth, NULL); 798 RCU_INIT_POINTER(vrf->rth_local, NULL); 799 synchronize_rcu(); 800 801 /* move dev in dst's to loopback so this VRF device can be deleted 802 * - based on dst_ifdown 803 */ 804 if (rth) { 805 dst = &rth->dst; 806 dev_put(dst->dev); 807 dst->dev = net->loopback_dev; 808 dev_hold(dst->dev); 809 dst_release(dst); 810 } 811 812 if (rth_local) { 813 dst = &rth_local->dst; 814 dev_put(dst->dev); 815 dst->dev = net->loopback_dev; 816 dev_hold(dst->dev); 817 dst_release(dst); 818 } 819 } 820 821 static int vrf_rtable_create(struct net_device *dev) 822 { 823 struct net_vrf *vrf = netdev_priv(dev); 824 struct rtable *rth, *rth_local; 825 826 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 827 return -ENOMEM; 828 829 /* create a dst for routing packets out through a VRF device */ 830 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 831 if (!rth) 832 return -ENOMEM; 833 834 /* create a dst for local ingress routing - packets sent locally 835 * to local address via the VRF device as a loopback 836 */ 837 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0); 838 if (!rth_local) { 839 dst_release(&rth->dst); 840 return -ENOMEM; 841 } 842 843 rth->dst.output = vrf_output; 844 rth->rt_table_id = vrf->tb_id; 845 846 rth_local->rt_table_id = vrf->tb_id; 847 848 rcu_assign_pointer(vrf->rth, rth); 849 rcu_assign_pointer(vrf->rth_local, rth_local); 850 851 return 0; 852 } 853 854 /**************************** device handling ********************/ 855 856 /* cycle interface to flush neighbor cache and move routes across tables */ 857 static void cycle_netdev(struct net_device *dev) 858 { 859 unsigned int flags = dev->flags; 860 int ret; 861 862 if (!netif_running(dev)) 863 return; 864 865 ret = dev_change_flags(dev, flags & ~IFF_UP); 866 if (ret >= 0) 867 ret = dev_change_flags(dev, flags); 868 869 if (ret < 0) { 870 netdev_err(dev, 871 "Failed to cycle device %s; route tables might be wrong!\n", 872 dev->name); 873 } 874 } 875 876 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 877 { 878 int ret; 879 880 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 881 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL); 882 if (ret < 0) 883 goto err; 884 885 cycle_netdev(port_dev); 886 887 return 0; 888 889 err: 890 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 891 return ret; 892 } 893 894 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 895 { 896 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev)) 897 return -EINVAL; 898 899 return do_vrf_add_slave(dev, port_dev); 900 } 901 902 /* inverse of do_vrf_add_slave */ 903 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 904 { 905 netdev_upper_dev_unlink(port_dev, dev); 906 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 907 908 cycle_netdev(port_dev); 909 910 return 0; 911 } 912 913 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 914 { 915 return do_vrf_del_slave(dev, port_dev); 916 } 917 918 static void vrf_dev_uninit(struct net_device *dev) 919 { 920 struct net_vrf *vrf = netdev_priv(dev); 921 struct net_device *port_dev; 922 struct list_head *iter; 923 924 vrf_rtable_release(dev, vrf); 925 vrf_rt6_release(dev, vrf); 926 927 netdev_for_each_lower_dev(dev, port_dev, iter) 928 vrf_del_slave(dev, port_dev); 929 930 free_percpu(dev->dstats); 931 dev->dstats = NULL; 932 } 933 934 static int vrf_dev_init(struct net_device *dev) 935 { 936 struct net_vrf *vrf = netdev_priv(dev); 937 938 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 939 if (!dev->dstats) 940 goto out_nomem; 941 942 /* create the default dst which points back to us */ 943 if (vrf_rtable_create(dev) != 0) 944 goto out_stats; 945 946 if (vrf_rt6_create(dev) != 0) 947 goto out_rth; 948 949 dev->flags = IFF_MASTER | IFF_NOARP; 950 951 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 952 dev->mtu = 64 * 1024; 953 954 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 955 dev->operstate = IF_OPER_UP; 956 netdev_lockdep_set_classes(dev); 957 return 0; 958 959 out_rth: 960 vrf_rtable_release(dev, vrf); 961 out_stats: 962 free_percpu(dev->dstats); 963 dev->dstats = NULL; 964 out_nomem: 965 return -ENOMEM; 966 } 967 968 static const struct net_device_ops vrf_netdev_ops = { 969 .ndo_init = vrf_dev_init, 970 .ndo_uninit = vrf_dev_uninit, 971 .ndo_start_xmit = vrf_xmit, 972 .ndo_get_stats64 = vrf_get_stats64, 973 .ndo_add_slave = vrf_add_slave, 974 .ndo_del_slave = vrf_del_slave, 975 }; 976 977 static u32 vrf_fib_table(const struct net_device *dev) 978 { 979 struct net_vrf *vrf = netdev_priv(dev); 980 981 return vrf->tb_id; 982 } 983 984 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 985 { 986 return 0; 987 } 988 989 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 990 struct sk_buff *skb, 991 struct net_device *dev) 992 { 993 struct net *net = dev_net(dev); 994 995 if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0) 996 skb = NULL; /* kfree_skb(skb) handled by nf code */ 997 998 return skb; 999 } 1000 1001 #if IS_ENABLED(CONFIG_IPV6) 1002 /* neighbor handling is done with actual device; do not want 1003 * to flip skb->dev for those ndisc packets. This really fails 1004 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 1005 * a start. 1006 */ 1007 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 1008 { 1009 const struct ipv6hdr *iph = ipv6_hdr(skb); 1010 bool rc = false; 1011 1012 if (iph->nexthdr == NEXTHDR_ICMP) { 1013 const struct icmp6hdr *icmph; 1014 struct icmp6hdr _icmph; 1015 1016 icmph = skb_header_pointer(skb, sizeof(*iph), 1017 sizeof(_icmph), &_icmph); 1018 if (!icmph) 1019 goto out; 1020 1021 switch (icmph->icmp6_type) { 1022 case NDISC_ROUTER_SOLICITATION: 1023 case NDISC_ROUTER_ADVERTISEMENT: 1024 case NDISC_NEIGHBOUR_SOLICITATION: 1025 case NDISC_NEIGHBOUR_ADVERTISEMENT: 1026 case NDISC_REDIRECT: 1027 rc = true; 1028 break; 1029 } 1030 } 1031 1032 out: 1033 return rc; 1034 } 1035 1036 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 1037 const struct net_device *dev, 1038 struct flowi6 *fl6, 1039 int ifindex, 1040 int flags) 1041 { 1042 struct net_vrf *vrf = netdev_priv(dev); 1043 struct fib6_table *table = NULL; 1044 struct rt6_info *rt6; 1045 1046 rcu_read_lock(); 1047 1048 /* fib6_table does not have a refcnt and can not be freed */ 1049 rt6 = rcu_dereference(vrf->rt6); 1050 if (likely(rt6)) 1051 table = rt6->rt6i_table; 1052 1053 rcu_read_unlock(); 1054 1055 if (!table) 1056 return NULL; 1057 1058 return ip6_pol_route(net, table, ifindex, fl6, flags); 1059 } 1060 1061 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 1062 int ifindex) 1063 { 1064 const struct ipv6hdr *iph = ipv6_hdr(skb); 1065 struct flowi6 fl6 = { 1066 .daddr = iph->daddr, 1067 .saddr = iph->saddr, 1068 .flowlabel = ip6_flowinfo(iph), 1069 .flowi6_mark = skb->mark, 1070 .flowi6_proto = iph->nexthdr, 1071 .flowi6_iif = ifindex, 1072 }; 1073 struct net *net = dev_net(vrf_dev); 1074 struct rt6_info *rt6; 1075 1076 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, 1077 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 1078 if (unlikely(!rt6)) 1079 return; 1080 1081 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 1082 return; 1083 1084 skb_dst_set(skb, &rt6->dst); 1085 } 1086 1087 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1088 struct sk_buff *skb) 1089 { 1090 int orig_iif = skb->skb_iif; 1091 bool need_strict; 1092 1093 /* loopback traffic; do not push through packet taps again. 1094 * Reset pkt_type for upper layers to process skb 1095 */ 1096 if (skb->pkt_type == PACKET_LOOPBACK) { 1097 skb->dev = vrf_dev; 1098 skb->skb_iif = vrf_dev->ifindex; 1099 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1100 skb->pkt_type = PACKET_HOST; 1101 goto out; 1102 } 1103 1104 /* if packet is NDISC or addressed to multicast or link-local 1105 * then keep the ingress interface 1106 */ 1107 need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1108 if (!ipv6_ndisc_frame(skb) && !need_strict) { 1109 vrf_rx_stats(vrf_dev, skb->len); 1110 skb->dev = vrf_dev; 1111 skb->skb_iif = vrf_dev->ifindex; 1112 1113 if (!list_empty(&vrf_dev->ptype_all)) { 1114 skb_push(skb, skb->mac_len); 1115 dev_queue_xmit_nit(skb, vrf_dev); 1116 skb_pull(skb, skb->mac_len); 1117 } 1118 1119 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1120 } 1121 1122 if (need_strict) 1123 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1124 1125 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1126 out: 1127 return skb; 1128 } 1129 1130 #else 1131 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1132 struct sk_buff *skb) 1133 { 1134 return skb; 1135 } 1136 #endif 1137 1138 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1139 struct sk_buff *skb) 1140 { 1141 skb->dev = vrf_dev; 1142 skb->skb_iif = vrf_dev->ifindex; 1143 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1144 1145 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1146 goto out; 1147 1148 /* loopback traffic; do not push through packet taps again. 1149 * Reset pkt_type for upper layers to process skb 1150 */ 1151 if (skb->pkt_type == PACKET_LOOPBACK) { 1152 skb->pkt_type = PACKET_HOST; 1153 goto out; 1154 } 1155 1156 vrf_rx_stats(vrf_dev, skb->len); 1157 1158 if (!list_empty(&vrf_dev->ptype_all)) { 1159 skb_push(skb, skb->mac_len); 1160 dev_queue_xmit_nit(skb, vrf_dev); 1161 skb_pull(skb, skb->mac_len); 1162 } 1163 1164 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1165 out: 1166 return skb; 1167 } 1168 1169 /* called with rcu lock held */ 1170 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1171 struct sk_buff *skb, 1172 u16 proto) 1173 { 1174 switch (proto) { 1175 case AF_INET: 1176 return vrf_ip_rcv(vrf_dev, skb); 1177 case AF_INET6: 1178 return vrf_ip6_rcv(vrf_dev, skb); 1179 } 1180 1181 return skb; 1182 } 1183 1184 #if IS_ENABLED(CONFIG_IPV6) 1185 /* send to link-local or multicast address via interface enslaved to 1186 * VRF device. Force lookup to VRF table without changing flow struct 1187 */ 1188 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1189 struct flowi6 *fl6) 1190 { 1191 struct net *net = dev_net(dev); 1192 int flags = RT6_LOOKUP_F_IFACE; 1193 struct dst_entry *dst = NULL; 1194 struct rt6_info *rt; 1195 1196 /* VRF device does not have a link-local address and 1197 * sending packets to link-local or mcast addresses over 1198 * a VRF device does not make sense 1199 */ 1200 if (fl6->flowi6_oif == dev->ifindex) { 1201 dst = &net->ipv6.ip6_null_entry->dst; 1202 dst_hold(dst); 1203 return dst; 1204 } 1205 1206 if (!ipv6_addr_any(&fl6->saddr)) 1207 flags |= RT6_LOOKUP_F_HAS_SADDR; 1208 1209 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags); 1210 if (rt) 1211 dst = &rt->dst; 1212 1213 return dst; 1214 } 1215 #endif 1216 1217 static const struct l3mdev_ops vrf_l3mdev_ops = { 1218 .l3mdev_fib_table = vrf_fib_table, 1219 .l3mdev_l3_rcv = vrf_l3_rcv, 1220 .l3mdev_l3_out = vrf_l3_out, 1221 #if IS_ENABLED(CONFIG_IPV6) 1222 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1223 #endif 1224 }; 1225 1226 static void vrf_get_drvinfo(struct net_device *dev, 1227 struct ethtool_drvinfo *info) 1228 { 1229 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1230 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1231 } 1232 1233 static const struct ethtool_ops vrf_ethtool_ops = { 1234 .get_drvinfo = vrf_get_drvinfo, 1235 }; 1236 1237 static inline size_t vrf_fib_rule_nl_size(void) 1238 { 1239 size_t sz; 1240 1241 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1242 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1243 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1244 1245 return sz; 1246 } 1247 1248 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1249 { 1250 struct fib_rule_hdr *frh; 1251 struct nlmsghdr *nlh; 1252 struct sk_buff *skb; 1253 int err; 1254 1255 if (family == AF_INET6 && !ipv6_mod_enabled()) 1256 return 0; 1257 1258 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1259 if (!skb) 1260 return -ENOMEM; 1261 1262 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1263 if (!nlh) 1264 goto nla_put_failure; 1265 1266 /* rule only needs to appear once */ 1267 nlh->nlmsg_flags &= NLM_F_EXCL; 1268 1269 frh = nlmsg_data(nlh); 1270 memset(frh, 0, sizeof(*frh)); 1271 frh->family = family; 1272 frh->action = FR_ACT_TO_TBL; 1273 1274 if (nla_put_u32(skb, FRA_L3MDEV, 1)) 1275 goto nla_put_failure; 1276 1277 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1278 goto nla_put_failure; 1279 1280 nlmsg_end(skb, nlh); 1281 1282 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1283 skb->sk = dev_net(dev)->rtnl; 1284 if (add_it) { 1285 err = fib_nl_newrule(skb, nlh); 1286 if (err == -EEXIST) 1287 err = 0; 1288 } else { 1289 err = fib_nl_delrule(skb, nlh); 1290 if (err == -ENOENT) 1291 err = 0; 1292 } 1293 nlmsg_free(skb); 1294 1295 return err; 1296 1297 nla_put_failure: 1298 nlmsg_free(skb); 1299 1300 return -EMSGSIZE; 1301 } 1302 1303 static int vrf_add_fib_rules(const struct net_device *dev) 1304 { 1305 int err; 1306 1307 err = vrf_fib_rule(dev, AF_INET, true); 1308 if (err < 0) 1309 goto out_err; 1310 1311 err = vrf_fib_rule(dev, AF_INET6, true); 1312 if (err < 0) 1313 goto ipv6_err; 1314 1315 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1316 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1317 if (err < 0) 1318 goto ipmr_err; 1319 #endif 1320 1321 return 0; 1322 1323 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1324 ipmr_err: 1325 vrf_fib_rule(dev, AF_INET6, false); 1326 #endif 1327 1328 ipv6_err: 1329 vrf_fib_rule(dev, AF_INET, false); 1330 1331 out_err: 1332 netdev_err(dev, "Failed to add FIB rules.\n"); 1333 return err; 1334 } 1335 1336 static void vrf_setup(struct net_device *dev) 1337 { 1338 ether_setup(dev); 1339 1340 /* Initialize the device structure. */ 1341 dev->netdev_ops = &vrf_netdev_ops; 1342 dev->l3mdev_ops = &vrf_l3mdev_ops; 1343 dev->ethtool_ops = &vrf_ethtool_ops; 1344 dev->destructor = free_netdev; 1345 1346 /* Fill in device structure with ethernet-generic values. */ 1347 eth_hw_addr_random(dev); 1348 1349 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1350 dev->features |= NETIF_F_LLTX; 1351 1352 /* don't allow vrf devices to change network namespaces. */ 1353 dev->features |= NETIF_F_NETNS_LOCAL; 1354 1355 /* does not make sense for a VLAN to be added to a vrf device */ 1356 dev->features |= NETIF_F_VLAN_CHALLENGED; 1357 1358 /* enable offload features */ 1359 dev->features |= NETIF_F_GSO_SOFTWARE; 1360 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM; 1361 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1362 1363 dev->hw_features = dev->features; 1364 dev->hw_enc_features = dev->features; 1365 1366 /* default to no qdisc; user can add if desired */ 1367 dev->priv_flags |= IFF_NO_QUEUE; 1368 } 1369 1370 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) 1371 { 1372 if (tb[IFLA_ADDRESS]) { 1373 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 1374 return -EINVAL; 1375 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 1376 return -EADDRNOTAVAIL; 1377 } 1378 return 0; 1379 } 1380 1381 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1382 { 1383 unregister_netdevice_queue(dev, head); 1384 } 1385 1386 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1387 struct nlattr *tb[], struct nlattr *data[]) 1388 { 1389 struct net_vrf *vrf = netdev_priv(dev); 1390 int err; 1391 1392 if (!data || !data[IFLA_VRF_TABLE]) 1393 return -EINVAL; 1394 1395 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1396 if (vrf->tb_id == RT_TABLE_UNSPEC) 1397 return -EINVAL; 1398 1399 dev->priv_flags |= IFF_L3MDEV_MASTER; 1400 1401 err = register_netdevice(dev); 1402 if (err) 1403 goto out; 1404 1405 if (add_fib_rules) { 1406 err = vrf_add_fib_rules(dev); 1407 if (err) { 1408 unregister_netdevice(dev); 1409 goto out; 1410 } 1411 add_fib_rules = false; 1412 } 1413 1414 out: 1415 return err; 1416 } 1417 1418 static size_t vrf_nl_getsize(const struct net_device *dev) 1419 { 1420 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1421 } 1422 1423 static int vrf_fillinfo(struct sk_buff *skb, 1424 const struct net_device *dev) 1425 { 1426 struct net_vrf *vrf = netdev_priv(dev); 1427 1428 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1429 } 1430 1431 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1432 const struct net_device *slave_dev) 1433 { 1434 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1435 } 1436 1437 static int vrf_fill_slave_info(struct sk_buff *skb, 1438 const struct net_device *vrf_dev, 1439 const struct net_device *slave_dev) 1440 { 1441 struct net_vrf *vrf = netdev_priv(vrf_dev); 1442 1443 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1444 return -EMSGSIZE; 1445 1446 return 0; 1447 } 1448 1449 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1450 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1451 }; 1452 1453 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1454 .kind = DRV_NAME, 1455 .priv_size = sizeof(struct net_vrf), 1456 1457 .get_size = vrf_nl_getsize, 1458 .policy = vrf_nl_policy, 1459 .validate = vrf_validate, 1460 .fill_info = vrf_fillinfo, 1461 1462 .get_slave_size = vrf_get_slave_size, 1463 .fill_slave_info = vrf_fill_slave_info, 1464 1465 .newlink = vrf_newlink, 1466 .dellink = vrf_dellink, 1467 .setup = vrf_setup, 1468 .maxtype = IFLA_VRF_MAX, 1469 }; 1470 1471 static int vrf_device_event(struct notifier_block *unused, 1472 unsigned long event, void *ptr) 1473 { 1474 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1475 1476 /* only care about unregister events to drop slave references */ 1477 if (event == NETDEV_UNREGISTER) { 1478 struct net_device *vrf_dev; 1479 1480 if (!netif_is_l3_slave(dev)) 1481 goto out; 1482 1483 vrf_dev = netdev_master_upper_dev_get(dev); 1484 vrf_del_slave(vrf_dev, dev); 1485 } 1486 out: 1487 return NOTIFY_DONE; 1488 } 1489 1490 static struct notifier_block vrf_notifier_block __read_mostly = { 1491 .notifier_call = vrf_device_event, 1492 }; 1493 1494 static int __init vrf_init_module(void) 1495 { 1496 int rc; 1497 1498 register_netdevice_notifier(&vrf_notifier_block); 1499 1500 rc = rtnl_link_register(&vrf_link_ops); 1501 if (rc < 0) 1502 goto error; 1503 1504 return 0; 1505 1506 error: 1507 unregister_netdevice_notifier(&vrf_notifier_block); 1508 return rc; 1509 } 1510 1511 module_init(vrf_init_module); 1512 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1513 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1514 MODULE_LICENSE("GPL"); 1515 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1516 MODULE_VERSION(DRV_VERSION); 1517