xref: /openbmc/linux/drivers/net/vrf.c (revision 4c1ca831)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ip.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24 #include <linux/spinlock_types.h>
25 
26 #include <linux/inetdevice.h>
27 #include <net/arp.h>
28 #include <net/ip.h>
29 #include <net/ip_fib.h>
30 #include <net/ip6_fib.h>
31 #include <net/ip6_route.h>
32 #include <net/route.h>
33 #include <net/addrconf.h>
34 #include <net/l3mdev.h>
35 #include <net/fib_rules.h>
36 #include <net/netns/generic.h>
37 
38 #define DRV_NAME	"vrf"
39 #define DRV_VERSION	"1.1"
40 
41 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
42 
43 #define HT_MAP_BITS	4
44 #define HASH_INITVAL	((u32)0xcafef00d)
45 
46 struct  vrf_map {
47 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
48 	spinlock_t vmap_lock;
49 
50 	/* shared_tables:
51 	 * count how many distinct tables do not comply with the strict mode
52 	 * requirement.
53 	 * shared_tables value must be 0 in order to enable the strict mode.
54 	 *
55 	 * example of the evolution of shared_tables:
56 	 *                                                        | time
57 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
58 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
59 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
60 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
61 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
62 	 *
63 	 * shared_tables is a "step function" (or "staircase function")
64 	 * and it is increased by one when the second vrf is associated to a
65 	 * table.
66 	 *
67 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
68 	 *
69 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
70 	 * value of shared_tables is still 1.
71 	 * This means that no matter how many new vrfs will register on the
72 	 * table 100, the shared_tables will not increase (considering only
73 	 * table 100).
74 	 *
75 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
76 	 *
77 	 * Looking at the value of shared_tables we can immediately know if
78 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
79 	 * can be enforced iff shared_tables = 0.
80 	 *
81 	 * Conversely, shared_tables is decreased when a vrf is de-associated
82 	 * from a table with exactly two associated vrfs.
83 	 */
84 	u32 shared_tables;
85 
86 	bool strict_mode;
87 };
88 
89 struct vrf_map_elem {
90 	struct hlist_node hnode;
91 	struct list_head vrf_list;  /* VRFs registered to this table */
92 
93 	u32 table_id;
94 	int users;
95 	int ifindex;
96 };
97 
98 static unsigned int vrf_net_id;
99 
100 /* per netns vrf data */
101 struct netns_vrf {
102 	/* protected by rtnl lock */
103 	bool add_fib_rules;
104 
105 	struct vrf_map vmap;
106 	struct ctl_table_header	*ctl_hdr;
107 };
108 
109 struct net_vrf {
110 	struct rtable __rcu	*rth;
111 	struct rt6_info	__rcu	*rt6;
112 #if IS_ENABLED(CONFIG_IPV6)
113 	struct fib6_table	*fib6_table;
114 #endif
115 	u32                     tb_id;
116 
117 	struct list_head	me_list;   /* entry in vrf_map_elem */
118 	int			ifindex;
119 };
120 
121 struct pcpu_dstats {
122 	u64			tx_pkts;
123 	u64			tx_bytes;
124 	u64			tx_drps;
125 	u64			rx_pkts;
126 	u64			rx_bytes;
127 	u64			rx_drps;
128 	struct u64_stats_sync	syncp;
129 };
130 
131 static void vrf_rx_stats(struct net_device *dev, int len)
132 {
133 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
134 
135 	u64_stats_update_begin(&dstats->syncp);
136 	dstats->rx_pkts++;
137 	dstats->rx_bytes += len;
138 	u64_stats_update_end(&dstats->syncp);
139 }
140 
141 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
142 {
143 	vrf_dev->stats.tx_errors++;
144 	kfree_skb(skb);
145 }
146 
147 static void vrf_get_stats64(struct net_device *dev,
148 			    struct rtnl_link_stats64 *stats)
149 {
150 	int i;
151 
152 	for_each_possible_cpu(i) {
153 		const struct pcpu_dstats *dstats;
154 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
155 		unsigned int start;
156 
157 		dstats = per_cpu_ptr(dev->dstats, i);
158 		do {
159 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 			tbytes = dstats->tx_bytes;
161 			tpkts = dstats->tx_pkts;
162 			tdrops = dstats->tx_drps;
163 			rbytes = dstats->rx_bytes;
164 			rpkts = dstats->rx_pkts;
165 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 		stats->tx_bytes += tbytes;
167 		stats->tx_packets += tpkts;
168 		stats->tx_dropped += tdrops;
169 		stats->rx_bytes += rbytes;
170 		stats->rx_packets += rpkts;
171 	}
172 }
173 
174 static struct vrf_map *netns_vrf_map(struct net *net)
175 {
176 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
177 
178 	return &nn_vrf->vmap;
179 }
180 
181 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
182 {
183 	return netns_vrf_map(dev_net(dev));
184 }
185 
186 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
187 {
188 	struct list_head *me_head = &me->vrf_list;
189 	struct net_vrf *vrf;
190 
191 	if (list_empty(me_head))
192 		return -ENODEV;
193 
194 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
195 
196 	return vrf->ifindex;
197 }
198 
199 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
200 {
201 	struct vrf_map_elem *me;
202 
203 	me = kmalloc(sizeof(*me), flags);
204 	if (!me)
205 		return NULL;
206 
207 	return me;
208 }
209 
210 static void vrf_map_elem_free(struct vrf_map_elem *me)
211 {
212 	kfree(me);
213 }
214 
215 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
216 			      int ifindex, int users)
217 {
218 	me->table_id = table_id;
219 	me->ifindex = ifindex;
220 	me->users = users;
221 	INIT_LIST_HEAD(&me->vrf_list);
222 }
223 
224 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
225 						u32 table_id)
226 {
227 	struct vrf_map_elem *me;
228 	u32 key;
229 
230 	key = jhash_1word(table_id, HASH_INITVAL);
231 	hash_for_each_possible(vmap->ht, me, hnode, key) {
232 		if (me->table_id == table_id)
233 			return me;
234 	}
235 
236 	return NULL;
237 }
238 
239 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
240 {
241 	u32 table_id = me->table_id;
242 	u32 key;
243 
244 	key = jhash_1word(table_id, HASH_INITVAL);
245 	hash_add(vmap->ht, &me->hnode, key);
246 }
247 
248 static void vrf_map_del_elem(struct vrf_map_elem *me)
249 {
250 	hash_del(&me->hnode);
251 }
252 
253 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
254 {
255 	spin_lock(&vmap->vmap_lock);
256 }
257 
258 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
259 {
260 	spin_unlock(&vmap->vmap_lock);
261 }
262 
263 /* called with rtnl lock held */
264 static int
265 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
266 {
267 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
268 	struct net_vrf *vrf = netdev_priv(dev);
269 	struct vrf_map_elem *new_me, *me;
270 	u32 table_id = vrf->tb_id;
271 	bool free_new_me = false;
272 	int users;
273 	int res;
274 
275 	/* we pre-allocate elements used in the spin-locked section (so that we
276 	 * keep the spinlock as short as possibile).
277 	 */
278 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
279 	if (!new_me)
280 		return -ENOMEM;
281 
282 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
283 
284 	vrf_map_lock(vmap);
285 
286 	me = vrf_map_lookup_elem(vmap, table_id);
287 	if (!me) {
288 		me = new_me;
289 		vrf_map_add_elem(vmap, me);
290 		goto link_vrf;
291 	}
292 
293 	/* we already have an entry in the vrf_map, so it means there is (at
294 	 * least) a vrf registered on the specific table.
295 	 */
296 	free_new_me = true;
297 	if (vmap->strict_mode) {
298 		/* vrfs cannot share the same table */
299 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
300 		res = -EBUSY;
301 		goto unlock;
302 	}
303 
304 link_vrf:
305 	users = ++me->users;
306 	if (users == 2)
307 		++vmap->shared_tables;
308 
309 	list_add(&vrf->me_list, &me->vrf_list);
310 
311 	res = 0;
312 
313 unlock:
314 	vrf_map_unlock(vmap);
315 
316 	/* clean-up, if needed */
317 	if (free_new_me)
318 		vrf_map_elem_free(new_me);
319 
320 	return res;
321 }
322 
323 /* called with rtnl lock held */
324 static void vrf_map_unregister_dev(struct net_device *dev)
325 {
326 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
327 	struct net_vrf *vrf = netdev_priv(dev);
328 	u32 table_id = vrf->tb_id;
329 	struct vrf_map_elem *me;
330 	int users;
331 
332 	vrf_map_lock(vmap);
333 
334 	me = vrf_map_lookup_elem(vmap, table_id);
335 	if (!me)
336 		goto unlock;
337 
338 	list_del(&vrf->me_list);
339 
340 	users = --me->users;
341 	if (users == 1) {
342 		--vmap->shared_tables;
343 	} else if (users == 0) {
344 		vrf_map_del_elem(me);
345 
346 		/* no one will refer to this element anymore */
347 		vrf_map_elem_free(me);
348 	}
349 
350 unlock:
351 	vrf_map_unlock(vmap);
352 }
353 
354 /* return the vrf device index associated with the table_id */
355 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
356 {
357 	struct vrf_map *vmap = netns_vrf_map(net);
358 	struct vrf_map_elem *me;
359 	int ifindex;
360 
361 	vrf_map_lock(vmap);
362 
363 	if (!vmap->strict_mode) {
364 		ifindex = -EPERM;
365 		goto unlock;
366 	}
367 
368 	me = vrf_map_lookup_elem(vmap, table_id);
369 	if (!me) {
370 		ifindex = -ENODEV;
371 		goto unlock;
372 	}
373 
374 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
375 
376 unlock:
377 	vrf_map_unlock(vmap);
378 
379 	return ifindex;
380 }
381 
382 /* by default VRF devices do not have a qdisc and are expected
383  * to be created with only a single queue.
384  */
385 static bool qdisc_tx_is_default(const struct net_device *dev)
386 {
387 	struct netdev_queue *txq;
388 	struct Qdisc *qdisc;
389 
390 	if (dev->num_tx_queues > 1)
391 		return false;
392 
393 	txq = netdev_get_tx_queue(dev, 0);
394 	qdisc = rcu_access_pointer(txq->qdisc);
395 
396 	return !qdisc->enqueue;
397 }
398 
399 /* Local traffic destined to local address. Reinsert the packet to rx
400  * path, similar to loopback handling.
401  */
402 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
403 			  struct dst_entry *dst)
404 {
405 	int len = skb->len;
406 
407 	skb_orphan(skb);
408 
409 	skb_dst_set(skb, dst);
410 
411 	/* set pkt_type to avoid skb hitting packet taps twice -
412 	 * once on Tx and again in Rx processing
413 	 */
414 	skb->pkt_type = PACKET_LOOPBACK;
415 
416 	skb->protocol = eth_type_trans(skb, dev);
417 
418 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
419 		vrf_rx_stats(dev, len);
420 	else
421 		this_cpu_inc(dev->dstats->rx_drps);
422 
423 	return NETDEV_TX_OK;
424 }
425 
426 #if IS_ENABLED(CONFIG_IPV6)
427 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
428 			     struct sk_buff *skb)
429 {
430 	int err;
431 
432 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
433 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
434 
435 	if (likely(err == 1))
436 		err = dst_output(net, sk, skb);
437 
438 	return err;
439 }
440 
441 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
442 					   struct net_device *dev)
443 {
444 	const struct ipv6hdr *iph;
445 	struct net *net = dev_net(skb->dev);
446 	struct flowi6 fl6;
447 	int ret = NET_XMIT_DROP;
448 	struct dst_entry *dst;
449 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
450 
451 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
452 		goto err;
453 
454 	iph = ipv6_hdr(skb);
455 
456 	memset(&fl6, 0, sizeof(fl6));
457 	/* needed to match OIF rule */
458 	fl6.flowi6_oif = dev->ifindex;
459 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
460 	fl6.daddr = iph->daddr;
461 	fl6.saddr = iph->saddr;
462 	fl6.flowlabel = ip6_flowinfo(iph);
463 	fl6.flowi6_mark = skb->mark;
464 	fl6.flowi6_proto = iph->nexthdr;
465 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
466 
467 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
468 	if (IS_ERR(dst) || dst == dst_null)
469 		goto err;
470 
471 	skb_dst_drop(skb);
472 
473 	/* if dst.dev is loopback or the VRF device again this is locally
474 	 * originated traffic destined to a local address. Short circuit
475 	 * to Rx path
476 	 */
477 	if (dst->dev == dev)
478 		return vrf_local_xmit(skb, dev, dst);
479 
480 	skb_dst_set(skb, dst);
481 
482 	/* strip the ethernet header added for pass through VRF device */
483 	__skb_pull(skb, skb_network_offset(skb));
484 
485 	ret = vrf_ip6_local_out(net, skb->sk, skb);
486 	if (unlikely(net_xmit_eval(ret)))
487 		dev->stats.tx_errors++;
488 	else
489 		ret = NET_XMIT_SUCCESS;
490 
491 	return ret;
492 err:
493 	vrf_tx_error(dev, skb);
494 	return NET_XMIT_DROP;
495 }
496 #else
497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 					   struct net_device *dev)
499 {
500 	vrf_tx_error(dev, skb);
501 	return NET_XMIT_DROP;
502 }
503 #endif
504 
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
507 			    struct sk_buff *skb)
508 {
509 	int err;
510 
511 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 		      skb, NULL, skb_dst(skb)->dev, dst_output);
513 	if (likely(err == 1))
514 		err = dst_output(net, sk, skb);
515 
516 	return err;
517 }
518 
519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 					   struct net_device *vrf_dev)
521 {
522 	struct iphdr *ip4h;
523 	int ret = NET_XMIT_DROP;
524 	struct flowi4 fl4;
525 	struct net *net = dev_net(vrf_dev);
526 	struct rtable *rt;
527 
528 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
529 		goto err;
530 
531 	ip4h = ip_hdr(skb);
532 
533 	memset(&fl4, 0, sizeof(fl4));
534 	/* needed to match OIF rule */
535 	fl4.flowi4_oif = vrf_dev->ifindex;
536 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 	fl4.flowi4_proto = ip4h->protocol;
540 	fl4.daddr = ip4h->daddr;
541 	fl4.saddr = ip4h->saddr;
542 
543 	rt = ip_route_output_flow(net, &fl4, NULL);
544 	if (IS_ERR(rt))
545 		goto err;
546 
547 	skb_dst_drop(skb);
548 
549 	/* if dst.dev is loopback or the VRF device again this is locally
550 	 * originated traffic destined to a local address. Short circuit
551 	 * to Rx path
552 	 */
553 	if (rt->dst.dev == vrf_dev)
554 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
555 
556 	skb_dst_set(skb, &rt->dst);
557 
558 	/* strip the ethernet header added for pass through VRF device */
559 	__skb_pull(skb, skb_network_offset(skb));
560 
561 	if (!ip4h->saddr) {
562 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
563 					       RT_SCOPE_LINK);
564 	}
565 
566 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
567 	if (unlikely(net_xmit_eval(ret)))
568 		vrf_dev->stats.tx_errors++;
569 	else
570 		ret = NET_XMIT_SUCCESS;
571 
572 out:
573 	return ret;
574 err:
575 	vrf_tx_error(vrf_dev, skb);
576 	goto out;
577 }
578 
579 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
580 {
581 	switch (skb->protocol) {
582 	case htons(ETH_P_IP):
583 		return vrf_process_v4_outbound(skb, dev);
584 	case htons(ETH_P_IPV6):
585 		return vrf_process_v6_outbound(skb, dev);
586 	default:
587 		vrf_tx_error(dev, skb);
588 		return NET_XMIT_DROP;
589 	}
590 }
591 
592 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
593 {
594 	int len = skb->len;
595 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
596 
597 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
598 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
599 
600 		u64_stats_update_begin(&dstats->syncp);
601 		dstats->tx_pkts++;
602 		dstats->tx_bytes += len;
603 		u64_stats_update_end(&dstats->syncp);
604 	} else {
605 		this_cpu_inc(dev->dstats->tx_drps);
606 	}
607 
608 	return ret;
609 }
610 
611 static void vrf_finish_direct(struct sk_buff *skb)
612 {
613 	struct net_device *vrf_dev = skb->dev;
614 
615 	if (!list_empty(&vrf_dev->ptype_all) &&
616 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
617 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
618 
619 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
620 		eth_zero_addr(eth->h_dest);
621 		eth->h_proto = skb->protocol;
622 
623 		rcu_read_lock_bh();
624 		dev_queue_xmit_nit(skb, vrf_dev);
625 		rcu_read_unlock_bh();
626 
627 		skb_pull(skb, ETH_HLEN);
628 	}
629 
630 	/* reset skb device */
631 	nf_reset_ct(skb);
632 }
633 
634 #if IS_ENABLED(CONFIG_IPV6)
635 /* modelled after ip6_finish_output2 */
636 static int vrf_finish_output6(struct net *net, struct sock *sk,
637 			      struct sk_buff *skb)
638 {
639 	struct dst_entry *dst = skb_dst(skb);
640 	struct net_device *dev = dst->dev;
641 	const struct in6_addr *nexthop;
642 	struct neighbour *neigh;
643 	int ret;
644 
645 	nf_reset_ct(skb);
646 
647 	skb->protocol = htons(ETH_P_IPV6);
648 	skb->dev = dev;
649 
650 	rcu_read_lock_bh();
651 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
652 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
653 	if (unlikely(!neigh))
654 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
655 	if (!IS_ERR(neigh)) {
656 		sock_confirm_neigh(skb, neigh);
657 		ret = neigh_output(neigh, skb, false);
658 		rcu_read_unlock_bh();
659 		return ret;
660 	}
661 	rcu_read_unlock_bh();
662 
663 	IP6_INC_STATS(dev_net(dst->dev),
664 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
665 	kfree_skb(skb);
666 	return -EINVAL;
667 }
668 
669 /* modelled after ip6_output */
670 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
671 {
672 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
673 			    net, sk, skb, NULL, skb_dst(skb)->dev,
674 			    vrf_finish_output6,
675 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
676 }
677 
678 /* set dst on skb to send packet to us via dev_xmit path. Allows
679  * packet to go through device based features such as qdisc, netfilter
680  * hooks and packet sockets with skb->dev set to vrf device.
681  */
682 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
683 					    struct sk_buff *skb)
684 {
685 	struct net_vrf *vrf = netdev_priv(vrf_dev);
686 	struct dst_entry *dst = NULL;
687 	struct rt6_info *rt6;
688 
689 	rcu_read_lock();
690 
691 	rt6 = rcu_dereference(vrf->rt6);
692 	if (likely(rt6)) {
693 		dst = &rt6->dst;
694 		dst_hold(dst);
695 	}
696 
697 	rcu_read_unlock();
698 
699 	if (unlikely(!dst)) {
700 		vrf_tx_error(vrf_dev, skb);
701 		return NULL;
702 	}
703 
704 	skb_dst_drop(skb);
705 	skb_dst_set(skb, dst);
706 
707 	return skb;
708 }
709 
710 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
711 				     struct sk_buff *skb)
712 {
713 	vrf_finish_direct(skb);
714 
715 	return vrf_ip6_local_out(net, sk, skb);
716 }
717 
718 static int vrf_output6_direct(struct net *net, struct sock *sk,
719 			      struct sk_buff *skb)
720 {
721 	int err = 1;
722 
723 	skb->protocol = htons(ETH_P_IPV6);
724 
725 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
726 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
727 			      NULL, skb->dev, vrf_output6_direct_finish);
728 
729 	if (likely(err == 1))
730 		vrf_finish_direct(skb);
731 
732 	return err;
733 }
734 
735 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
736 				     struct sk_buff *skb)
737 {
738 	int err;
739 
740 	err = vrf_output6_direct(net, sk, skb);
741 	if (likely(err == 1))
742 		err = vrf_ip6_local_out(net, sk, skb);
743 
744 	return err;
745 }
746 
747 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
748 					  struct sock *sk,
749 					  struct sk_buff *skb)
750 {
751 	struct net *net = dev_net(vrf_dev);
752 	int err;
753 
754 	skb->dev = vrf_dev;
755 
756 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
757 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
758 
759 	if (likely(err == 1))
760 		err = vrf_output6_direct(net, sk, skb);
761 
762 	if (likely(err == 1))
763 		return skb;
764 
765 	return NULL;
766 }
767 
768 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
769 				   struct sock *sk,
770 				   struct sk_buff *skb)
771 {
772 	/* don't divert link scope packets */
773 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
774 		return skb;
775 
776 	if (qdisc_tx_is_default(vrf_dev) ||
777 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
778 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
779 
780 	return vrf_ip6_out_redirect(vrf_dev, skb);
781 }
782 
783 /* holding rtnl */
784 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
785 {
786 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
787 	struct net *net = dev_net(dev);
788 	struct dst_entry *dst;
789 
790 	RCU_INIT_POINTER(vrf->rt6, NULL);
791 	synchronize_rcu();
792 
793 	/* move dev in dst's to loopback so this VRF device can be deleted
794 	 * - based on dst_ifdown
795 	 */
796 	if (rt6) {
797 		dst = &rt6->dst;
798 		dev_put(dst->dev);
799 		dst->dev = net->loopback_dev;
800 		dev_hold(dst->dev);
801 		dst_release(dst);
802 	}
803 }
804 
805 static int vrf_rt6_create(struct net_device *dev)
806 {
807 	int flags = DST_NOPOLICY | DST_NOXFRM;
808 	struct net_vrf *vrf = netdev_priv(dev);
809 	struct net *net = dev_net(dev);
810 	struct rt6_info *rt6;
811 	int rc = -ENOMEM;
812 
813 	/* IPv6 can be CONFIG enabled and then disabled runtime */
814 	if (!ipv6_mod_enabled())
815 		return 0;
816 
817 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
818 	if (!vrf->fib6_table)
819 		goto out;
820 
821 	/* create a dst for routing packets out a VRF device */
822 	rt6 = ip6_dst_alloc(net, dev, flags);
823 	if (!rt6)
824 		goto out;
825 
826 	rt6->dst.output	= vrf_output6;
827 
828 	rcu_assign_pointer(vrf->rt6, rt6);
829 
830 	rc = 0;
831 out:
832 	return rc;
833 }
834 #else
835 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
836 				   struct sock *sk,
837 				   struct sk_buff *skb)
838 {
839 	return skb;
840 }
841 
842 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
843 {
844 }
845 
846 static int vrf_rt6_create(struct net_device *dev)
847 {
848 	return 0;
849 }
850 #endif
851 
852 /* modelled after ip_finish_output2 */
853 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
854 {
855 	struct dst_entry *dst = skb_dst(skb);
856 	struct rtable *rt = (struct rtable *)dst;
857 	struct net_device *dev = dst->dev;
858 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
859 	struct neighbour *neigh;
860 	bool is_v6gw = false;
861 	int ret = -EINVAL;
862 
863 	nf_reset_ct(skb);
864 
865 	/* Be paranoid, rather than too clever. */
866 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
867 		struct sk_buff *skb2;
868 
869 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
870 		if (!skb2) {
871 			ret = -ENOMEM;
872 			goto err;
873 		}
874 		if (skb->sk)
875 			skb_set_owner_w(skb2, skb->sk);
876 
877 		consume_skb(skb);
878 		skb = skb2;
879 	}
880 
881 	rcu_read_lock_bh();
882 
883 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
884 	if (!IS_ERR(neigh)) {
885 		sock_confirm_neigh(skb, neigh);
886 		/* if crossing protocols, can not use the cached header */
887 		ret = neigh_output(neigh, skb, is_v6gw);
888 		rcu_read_unlock_bh();
889 		return ret;
890 	}
891 
892 	rcu_read_unlock_bh();
893 err:
894 	vrf_tx_error(skb->dev, skb);
895 	return ret;
896 }
897 
898 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
899 {
900 	struct net_device *dev = skb_dst(skb)->dev;
901 
902 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
903 
904 	skb->dev = dev;
905 	skb->protocol = htons(ETH_P_IP);
906 
907 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
908 			    net, sk, skb, NULL, dev,
909 			    vrf_finish_output,
910 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
911 }
912 
913 /* set dst on skb to send packet to us via dev_xmit path. Allows
914  * packet to go through device based features such as qdisc, netfilter
915  * hooks and packet sockets with skb->dev set to vrf device.
916  */
917 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
918 					   struct sk_buff *skb)
919 {
920 	struct net_vrf *vrf = netdev_priv(vrf_dev);
921 	struct dst_entry *dst = NULL;
922 	struct rtable *rth;
923 
924 	rcu_read_lock();
925 
926 	rth = rcu_dereference(vrf->rth);
927 	if (likely(rth)) {
928 		dst = &rth->dst;
929 		dst_hold(dst);
930 	}
931 
932 	rcu_read_unlock();
933 
934 	if (unlikely(!dst)) {
935 		vrf_tx_error(vrf_dev, skb);
936 		return NULL;
937 	}
938 
939 	skb_dst_drop(skb);
940 	skb_dst_set(skb, dst);
941 
942 	return skb;
943 }
944 
945 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
946 				    struct sk_buff *skb)
947 {
948 	vrf_finish_direct(skb);
949 
950 	return vrf_ip_local_out(net, sk, skb);
951 }
952 
953 static int vrf_output_direct(struct net *net, struct sock *sk,
954 			     struct sk_buff *skb)
955 {
956 	int err = 1;
957 
958 	skb->protocol = htons(ETH_P_IP);
959 
960 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
961 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
962 			      NULL, skb->dev, vrf_output_direct_finish);
963 
964 	if (likely(err == 1))
965 		vrf_finish_direct(skb);
966 
967 	return err;
968 }
969 
970 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
971 				    struct sk_buff *skb)
972 {
973 	int err;
974 
975 	err = vrf_output_direct(net, sk, skb);
976 	if (likely(err == 1))
977 		err = vrf_ip_local_out(net, sk, skb);
978 
979 	return err;
980 }
981 
982 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
983 					 struct sock *sk,
984 					 struct sk_buff *skb)
985 {
986 	struct net *net = dev_net(vrf_dev);
987 	int err;
988 
989 	skb->dev = vrf_dev;
990 
991 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
992 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
993 
994 	if (likely(err == 1))
995 		err = vrf_output_direct(net, sk, skb);
996 
997 	if (likely(err == 1))
998 		return skb;
999 
1000 	return NULL;
1001 }
1002 
1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004 				  struct sock *sk,
1005 				  struct sk_buff *skb)
1006 {
1007 	/* don't divert multicast or local broadcast */
1008 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010 		return skb;
1011 
1012 	if (qdisc_tx_is_default(vrf_dev) ||
1013 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1014 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1015 
1016 	return vrf_ip_out_redirect(vrf_dev, skb);
1017 }
1018 
1019 /* called with rcu lock held */
1020 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1021 				  struct sock *sk,
1022 				  struct sk_buff *skb,
1023 				  u16 proto)
1024 {
1025 	switch (proto) {
1026 	case AF_INET:
1027 		return vrf_ip_out(vrf_dev, sk, skb);
1028 	case AF_INET6:
1029 		return vrf_ip6_out(vrf_dev, sk, skb);
1030 	}
1031 
1032 	return skb;
1033 }
1034 
1035 /* holding rtnl */
1036 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1037 {
1038 	struct rtable *rth = rtnl_dereference(vrf->rth);
1039 	struct net *net = dev_net(dev);
1040 	struct dst_entry *dst;
1041 
1042 	RCU_INIT_POINTER(vrf->rth, NULL);
1043 	synchronize_rcu();
1044 
1045 	/* move dev in dst's to loopback so this VRF device can be deleted
1046 	 * - based on dst_ifdown
1047 	 */
1048 	if (rth) {
1049 		dst = &rth->dst;
1050 		dev_put(dst->dev);
1051 		dst->dev = net->loopback_dev;
1052 		dev_hold(dst->dev);
1053 		dst_release(dst);
1054 	}
1055 }
1056 
1057 static int vrf_rtable_create(struct net_device *dev)
1058 {
1059 	struct net_vrf *vrf = netdev_priv(dev);
1060 	struct rtable *rth;
1061 
1062 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1063 		return -ENOMEM;
1064 
1065 	/* create a dst for routing packets out through a VRF device */
1066 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1067 	if (!rth)
1068 		return -ENOMEM;
1069 
1070 	rth->dst.output	= vrf_output;
1071 
1072 	rcu_assign_pointer(vrf->rth, rth);
1073 
1074 	return 0;
1075 }
1076 
1077 /**************************** device handling ********************/
1078 
1079 /* cycle interface to flush neighbor cache and move routes across tables */
1080 static void cycle_netdev(struct net_device *dev,
1081 			 struct netlink_ext_ack *extack)
1082 {
1083 	unsigned int flags = dev->flags;
1084 	int ret;
1085 
1086 	if (!netif_running(dev))
1087 		return;
1088 
1089 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1090 	if (ret >= 0)
1091 		ret = dev_change_flags(dev, flags, extack);
1092 
1093 	if (ret < 0) {
1094 		netdev_err(dev,
1095 			   "Failed to cycle device %s; route tables might be wrong!\n",
1096 			   dev->name);
1097 	}
1098 }
1099 
1100 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1101 			    struct netlink_ext_ack *extack)
1102 {
1103 	int ret;
1104 
1105 	/* do not allow loopback device to be enslaved to a VRF.
1106 	 * The vrf device acts as the loopback for the vrf.
1107 	 */
1108 	if (port_dev == dev_net(dev)->loopback_dev) {
1109 		NL_SET_ERR_MSG(extack,
1110 			       "Can not enslave loopback device to a VRF");
1111 		return -EOPNOTSUPP;
1112 	}
1113 
1114 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1115 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1116 	if (ret < 0)
1117 		goto err;
1118 
1119 	cycle_netdev(port_dev, extack);
1120 
1121 	return 0;
1122 
1123 err:
1124 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1125 	return ret;
1126 }
1127 
1128 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1129 			 struct netlink_ext_ack *extack)
1130 {
1131 	if (netif_is_l3_master(port_dev)) {
1132 		NL_SET_ERR_MSG(extack,
1133 			       "Can not enslave an L3 master device to a VRF");
1134 		return -EINVAL;
1135 	}
1136 
1137 	if (netif_is_l3_slave(port_dev))
1138 		return -EINVAL;
1139 
1140 	return do_vrf_add_slave(dev, port_dev, extack);
1141 }
1142 
1143 /* inverse of do_vrf_add_slave */
1144 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1145 {
1146 	netdev_upper_dev_unlink(port_dev, dev);
1147 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1148 
1149 	cycle_netdev(port_dev, NULL);
1150 
1151 	return 0;
1152 }
1153 
1154 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1155 {
1156 	return do_vrf_del_slave(dev, port_dev);
1157 }
1158 
1159 static void vrf_dev_uninit(struct net_device *dev)
1160 {
1161 	struct net_vrf *vrf = netdev_priv(dev);
1162 
1163 	vrf_rtable_release(dev, vrf);
1164 	vrf_rt6_release(dev, vrf);
1165 
1166 	free_percpu(dev->dstats);
1167 	dev->dstats = NULL;
1168 }
1169 
1170 static int vrf_dev_init(struct net_device *dev)
1171 {
1172 	struct net_vrf *vrf = netdev_priv(dev);
1173 
1174 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1175 	if (!dev->dstats)
1176 		goto out_nomem;
1177 
1178 	/* create the default dst which points back to us */
1179 	if (vrf_rtable_create(dev) != 0)
1180 		goto out_stats;
1181 
1182 	if (vrf_rt6_create(dev) != 0)
1183 		goto out_rth;
1184 
1185 	dev->flags = IFF_MASTER | IFF_NOARP;
1186 
1187 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
1188 	dev->mtu = 64 * 1024;
1189 
1190 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1191 	dev->operstate = IF_OPER_UP;
1192 	netdev_lockdep_set_classes(dev);
1193 	return 0;
1194 
1195 out_rth:
1196 	vrf_rtable_release(dev, vrf);
1197 out_stats:
1198 	free_percpu(dev->dstats);
1199 	dev->dstats = NULL;
1200 out_nomem:
1201 	return -ENOMEM;
1202 }
1203 
1204 static const struct net_device_ops vrf_netdev_ops = {
1205 	.ndo_init		= vrf_dev_init,
1206 	.ndo_uninit		= vrf_dev_uninit,
1207 	.ndo_start_xmit		= vrf_xmit,
1208 	.ndo_set_mac_address	= eth_mac_addr,
1209 	.ndo_get_stats64	= vrf_get_stats64,
1210 	.ndo_add_slave		= vrf_add_slave,
1211 	.ndo_del_slave		= vrf_del_slave,
1212 };
1213 
1214 static u32 vrf_fib_table(const struct net_device *dev)
1215 {
1216 	struct net_vrf *vrf = netdev_priv(dev);
1217 
1218 	return vrf->tb_id;
1219 }
1220 
1221 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1222 {
1223 	kfree_skb(skb);
1224 	return 0;
1225 }
1226 
1227 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1228 				      struct sk_buff *skb,
1229 				      struct net_device *dev)
1230 {
1231 	struct net *net = dev_net(dev);
1232 
1233 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1234 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1235 
1236 	return skb;
1237 }
1238 
1239 #if IS_ENABLED(CONFIG_IPV6)
1240 /* neighbor handling is done with actual device; do not want
1241  * to flip skb->dev for those ndisc packets. This really fails
1242  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1243  * a start.
1244  */
1245 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1246 {
1247 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1248 	bool rc = false;
1249 
1250 	if (iph->nexthdr == NEXTHDR_ICMP) {
1251 		const struct icmp6hdr *icmph;
1252 		struct icmp6hdr _icmph;
1253 
1254 		icmph = skb_header_pointer(skb, sizeof(*iph),
1255 					   sizeof(_icmph), &_icmph);
1256 		if (!icmph)
1257 			goto out;
1258 
1259 		switch (icmph->icmp6_type) {
1260 		case NDISC_ROUTER_SOLICITATION:
1261 		case NDISC_ROUTER_ADVERTISEMENT:
1262 		case NDISC_NEIGHBOUR_SOLICITATION:
1263 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1264 		case NDISC_REDIRECT:
1265 			rc = true;
1266 			break;
1267 		}
1268 	}
1269 
1270 out:
1271 	return rc;
1272 }
1273 
1274 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1275 					     const struct net_device *dev,
1276 					     struct flowi6 *fl6,
1277 					     int ifindex,
1278 					     const struct sk_buff *skb,
1279 					     int flags)
1280 {
1281 	struct net_vrf *vrf = netdev_priv(dev);
1282 
1283 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1284 }
1285 
1286 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1287 			      int ifindex)
1288 {
1289 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1290 	struct flowi6 fl6 = {
1291 		.flowi6_iif     = ifindex,
1292 		.flowi6_mark    = skb->mark,
1293 		.flowi6_proto   = iph->nexthdr,
1294 		.daddr          = iph->daddr,
1295 		.saddr          = iph->saddr,
1296 		.flowlabel      = ip6_flowinfo(iph),
1297 	};
1298 	struct net *net = dev_net(vrf_dev);
1299 	struct rt6_info *rt6;
1300 
1301 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1302 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1303 	if (unlikely(!rt6))
1304 		return;
1305 
1306 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1307 		return;
1308 
1309 	skb_dst_set(skb, &rt6->dst);
1310 }
1311 
1312 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1313 				   struct sk_buff *skb)
1314 {
1315 	int orig_iif = skb->skb_iif;
1316 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1317 	bool is_ndisc = ipv6_ndisc_frame(skb);
1318 
1319 	/* loopback, multicast & non-ND link-local traffic; do not push through
1320 	 * packet taps again. Reset pkt_type for upper layers to process skb
1321 	 */
1322 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1323 		skb->dev = vrf_dev;
1324 		skb->skb_iif = vrf_dev->ifindex;
1325 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1326 		if (skb->pkt_type == PACKET_LOOPBACK)
1327 			skb->pkt_type = PACKET_HOST;
1328 		goto out;
1329 	}
1330 
1331 	/* if packet is NDISC then keep the ingress interface */
1332 	if (!is_ndisc) {
1333 		vrf_rx_stats(vrf_dev, skb->len);
1334 		skb->dev = vrf_dev;
1335 		skb->skb_iif = vrf_dev->ifindex;
1336 
1337 		if (!list_empty(&vrf_dev->ptype_all)) {
1338 			skb_push(skb, skb->mac_len);
1339 			dev_queue_xmit_nit(skb, vrf_dev);
1340 			skb_pull(skb, skb->mac_len);
1341 		}
1342 
1343 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1344 	}
1345 
1346 	if (need_strict)
1347 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1348 
1349 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1350 out:
1351 	return skb;
1352 }
1353 
1354 #else
1355 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1356 				   struct sk_buff *skb)
1357 {
1358 	return skb;
1359 }
1360 #endif
1361 
1362 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1363 				  struct sk_buff *skb)
1364 {
1365 	skb->dev = vrf_dev;
1366 	skb->skb_iif = vrf_dev->ifindex;
1367 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1368 
1369 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1370 		goto out;
1371 
1372 	/* loopback traffic; do not push through packet taps again.
1373 	 * Reset pkt_type for upper layers to process skb
1374 	 */
1375 	if (skb->pkt_type == PACKET_LOOPBACK) {
1376 		skb->pkt_type = PACKET_HOST;
1377 		goto out;
1378 	}
1379 
1380 	vrf_rx_stats(vrf_dev, skb->len);
1381 
1382 	if (!list_empty(&vrf_dev->ptype_all)) {
1383 		skb_push(skb, skb->mac_len);
1384 		dev_queue_xmit_nit(skb, vrf_dev);
1385 		skb_pull(skb, skb->mac_len);
1386 	}
1387 
1388 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1389 out:
1390 	return skb;
1391 }
1392 
1393 /* called with rcu lock held */
1394 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1395 				  struct sk_buff *skb,
1396 				  u16 proto)
1397 {
1398 	switch (proto) {
1399 	case AF_INET:
1400 		return vrf_ip_rcv(vrf_dev, skb);
1401 	case AF_INET6:
1402 		return vrf_ip6_rcv(vrf_dev, skb);
1403 	}
1404 
1405 	return skb;
1406 }
1407 
1408 #if IS_ENABLED(CONFIG_IPV6)
1409 /* send to link-local or multicast address via interface enslaved to
1410  * VRF device. Force lookup to VRF table without changing flow struct
1411  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1412  * is taken on the dst by this function.
1413  */
1414 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1415 					      struct flowi6 *fl6)
1416 {
1417 	struct net *net = dev_net(dev);
1418 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1419 	struct dst_entry *dst = NULL;
1420 	struct rt6_info *rt;
1421 
1422 	/* VRF device does not have a link-local address and
1423 	 * sending packets to link-local or mcast addresses over
1424 	 * a VRF device does not make sense
1425 	 */
1426 	if (fl6->flowi6_oif == dev->ifindex) {
1427 		dst = &net->ipv6.ip6_null_entry->dst;
1428 		return dst;
1429 	}
1430 
1431 	if (!ipv6_addr_any(&fl6->saddr))
1432 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1433 
1434 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1435 	if (rt)
1436 		dst = &rt->dst;
1437 
1438 	return dst;
1439 }
1440 #endif
1441 
1442 static const struct l3mdev_ops vrf_l3mdev_ops = {
1443 	.l3mdev_fib_table	= vrf_fib_table,
1444 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1445 	.l3mdev_l3_out		= vrf_l3_out,
1446 #if IS_ENABLED(CONFIG_IPV6)
1447 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1448 #endif
1449 };
1450 
1451 static void vrf_get_drvinfo(struct net_device *dev,
1452 			    struct ethtool_drvinfo *info)
1453 {
1454 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1455 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1456 }
1457 
1458 static const struct ethtool_ops vrf_ethtool_ops = {
1459 	.get_drvinfo	= vrf_get_drvinfo,
1460 };
1461 
1462 static inline size_t vrf_fib_rule_nl_size(void)
1463 {
1464 	size_t sz;
1465 
1466 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1467 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1468 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1469 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1470 
1471 	return sz;
1472 }
1473 
1474 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1475 {
1476 	struct fib_rule_hdr *frh;
1477 	struct nlmsghdr *nlh;
1478 	struct sk_buff *skb;
1479 	int err;
1480 
1481 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1482 	    !ipv6_mod_enabled())
1483 		return 0;
1484 
1485 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1486 	if (!skb)
1487 		return -ENOMEM;
1488 
1489 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1490 	if (!nlh)
1491 		goto nla_put_failure;
1492 
1493 	/* rule only needs to appear once */
1494 	nlh->nlmsg_flags |= NLM_F_EXCL;
1495 
1496 	frh = nlmsg_data(nlh);
1497 	memset(frh, 0, sizeof(*frh));
1498 	frh->family = family;
1499 	frh->action = FR_ACT_TO_TBL;
1500 
1501 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1502 		goto nla_put_failure;
1503 
1504 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1505 		goto nla_put_failure;
1506 
1507 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1508 		goto nla_put_failure;
1509 
1510 	nlmsg_end(skb, nlh);
1511 
1512 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1513 	skb->sk = dev_net(dev)->rtnl;
1514 	if (add_it) {
1515 		err = fib_nl_newrule(skb, nlh, NULL);
1516 		if (err == -EEXIST)
1517 			err = 0;
1518 	} else {
1519 		err = fib_nl_delrule(skb, nlh, NULL);
1520 		if (err == -ENOENT)
1521 			err = 0;
1522 	}
1523 	nlmsg_free(skb);
1524 
1525 	return err;
1526 
1527 nla_put_failure:
1528 	nlmsg_free(skb);
1529 
1530 	return -EMSGSIZE;
1531 }
1532 
1533 static int vrf_add_fib_rules(const struct net_device *dev)
1534 {
1535 	int err;
1536 
1537 	err = vrf_fib_rule(dev, AF_INET,  true);
1538 	if (err < 0)
1539 		goto out_err;
1540 
1541 	err = vrf_fib_rule(dev, AF_INET6, true);
1542 	if (err < 0)
1543 		goto ipv6_err;
1544 
1545 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1546 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1547 	if (err < 0)
1548 		goto ipmr_err;
1549 #endif
1550 
1551 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1552 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1553 	if (err < 0)
1554 		goto ip6mr_err;
1555 #endif
1556 
1557 	return 0;
1558 
1559 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1560 ip6mr_err:
1561 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1562 #endif
1563 
1564 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1565 ipmr_err:
1566 	vrf_fib_rule(dev, AF_INET6,  false);
1567 #endif
1568 
1569 ipv6_err:
1570 	vrf_fib_rule(dev, AF_INET,  false);
1571 
1572 out_err:
1573 	netdev_err(dev, "Failed to add FIB rules.\n");
1574 	return err;
1575 }
1576 
1577 static void vrf_setup(struct net_device *dev)
1578 {
1579 	ether_setup(dev);
1580 
1581 	/* Initialize the device structure. */
1582 	dev->netdev_ops = &vrf_netdev_ops;
1583 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1584 	dev->ethtool_ops = &vrf_ethtool_ops;
1585 	dev->needs_free_netdev = true;
1586 
1587 	/* Fill in device structure with ethernet-generic values. */
1588 	eth_hw_addr_random(dev);
1589 
1590 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1591 	dev->features |= NETIF_F_LLTX;
1592 
1593 	/* don't allow vrf devices to change network namespaces. */
1594 	dev->features |= NETIF_F_NETNS_LOCAL;
1595 
1596 	/* does not make sense for a VLAN to be added to a vrf device */
1597 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1598 
1599 	/* enable offload features */
1600 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1601 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1602 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1603 
1604 	dev->hw_features = dev->features;
1605 	dev->hw_enc_features = dev->features;
1606 
1607 	/* default to no qdisc; user can add if desired */
1608 	dev->priv_flags |= IFF_NO_QUEUE;
1609 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1610 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1611 
1612 	/* VRF devices do not care about MTU, but if the MTU is set
1613 	 * too low then the ipv4 and ipv6 protocols are disabled
1614 	 * which breaks networking.
1615 	 */
1616 	dev->min_mtu = IPV6_MIN_MTU;
1617 	dev->max_mtu = ETH_MAX_MTU;
1618 }
1619 
1620 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1621 			struct netlink_ext_ack *extack)
1622 {
1623 	if (tb[IFLA_ADDRESS]) {
1624 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1625 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1626 			return -EINVAL;
1627 		}
1628 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1629 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1630 			return -EADDRNOTAVAIL;
1631 		}
1632 	}
1633 	return 0;
1634 }
1635 
1636 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1637 {
1638 	struct net_device *port_dev;
1639 	struct list_head *iter;
1640 
1641 	netdev_for_each_lower_dev(dev, port_dev, iter)
1642 		vrf_del_slave(dev, port_dev);
1643 
1644 	vrf_map_unregister_dev(dev);
1645 
1646 	unregister_netdevice_queue(dev, head);
1647 }
1648 
1649 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1650 		       struct nlattr *tb[], struct nlattr *data[],
1651 		       struct netlink_ext_ack *extack)
1652 {
1653 	struct net_vrf *vrf = netdev_priv(dev);
1654 	struct netns_vrf *nn_vrf;
1655 	bool *add_fib_rules;
1656 	struct net *net;
1657 	int err;
1658 
1659 	if (!data || !data[IFLA_VRF_TABLE]) {
1660 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1661 		return -EINVAL;
1662 	}
1663 
1664 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1665 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1666 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1667 				    "Invalid VRF table id");
1668 		return -EINVAL;
1669 	}
1670 
1671 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1672 
1673 	err = register_netdevice(dev);
1674 	if (err)
1675 		goto out;
1676 
1677 	/* mapping between table_id and vrf;
1678 	 * note: such binding could not be done in the dev init function
1679 	 * because dev->ifindex id is not available yet.
1680 	 */
1681 	vrf->ifindex = dev->ifindex;
1682 
1683 	err = vrf_map_register_dev(dev, extack);
1684 	if (err) {
1685 		unregister_netdevice(dev);
1686 		goto out;
1687 	}
1688 
1689 	net = dev_net(dev);
1690 	nn_vrf = net_generic(net, vrf_net_id);
1691 
1692 	add_fib_rules = &nn_vrf->add_fib_rules;
1693 	if (*add_fib_rules) {
1694 		err = vrf_add_fib_rules(dev);
1695 		if (err) {
1696 			vrf_map_unregister_dev(dev);
1697 			unregister_netdevice(dev);
1698 			goto out;
1699 		}
1700 		*add_fib_rules = false;
1701 	}
1702 
1703 out:
1704 	return err;
1705 }
1706 
1707 static size_t vrf_nl_getsize(const struct net_device *dev)
1708 {
1709 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1710 }
1711 
1712 static int vrf_fillinfo(struct sk_buff *skb,
1713 			const struct net_device *dev)
1714 {
1715 	struct net_vrf *vrf = netdev_priv(dev);
1716 
1717 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1718 }
1719 
1720 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1721 				 const struct net_device *slave_dev)
1722 {
1723 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1724 }
1725 
1726 static int vrf_fill_slave_info(struct sk_buff *skb,
1727 			       const struct net_device *vrf_dev,
1728 			       const struct net_device *slave_dev)
1729 {
1730 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1731 
1732 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1733 		return -EMSGSIZE;
1734 
1735 	return 0;
1736 }
1737 
1738 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1739 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1740 };
1741 
1742 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1743 	.kind		= DRV_NAME,
1744 	.priv_size	= sizeof(struct net_vrf),
1745 
1746 	.get_size	= vrf_nl_getsize,
1747 	.policy		= vrf_nl_policy,
1748 	.validate	= vrf_validate,
1749 	.fill_info	= vrf_fillinfo,
1750 
1751 	.get_slave_size  = vrf_get_slave_size,
1752 	.fill_slave_info = vrf_fill_slave_info,
1753 
1754 	.newlink	= vrf_newlink,
1755 	.dellink	= vrf_dellink,
1756 	.setup		= vrf_setup,
1757 	.maxtype	= IFLA_VRF_MAX,
1758 };
1759 
1760 static int vrf_device_event(struct notifier_block *unused,
1761 			    unsigned long event, void *ptr)
1762 {
1763 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1764 
1765 	/* only care about unregister events to drop slave references */
1766 	if (event == NETDEV_UNREGISTER) {
1767 		struct net_device *vrf_dev;
1768 
1769 		if (!netif_is_l3_slave(dev))
1770 			goto out;
1771 
1772 		vrf_dev = netdev_master_upper_dev_get(dev);
1773 		vrf_del_slave(vrf_dev, dev);
1774 	}
1775 out:
1776 	return NOTIFY_DONE;
1777 }
1778 
1779 static struct notifier_block vrf_notifier_block __read_mostly = {
1780 	.notifier_call = vrf_device_event,
1781 };
1782 
1783 static int vrf_map_init(struct vrf_map *vmap)
1784 {
1785 	spin_lock_init(&vmap->vmap_lock);
1786 	hash_init(vmap->ht);
1787 
1788 	vmap->strict_mode = false;
1789 
1790 	return 0;
1791 }
1792 
1793 #ifdef CONFIG_SYSCTL
1794 static bool vrf_strict_mode(struct vrf_map *vmap)
1795 {
1796 	bool strict_mode;
1797 
1798 	vrf_map_lock(vmap);
1799 	strict_mode = vmap->strict_mode;
1800 	vrf_map_unlock(vmap);
1801 
1802 	return strict_mode;
1803 }
1804 
1805 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1806 {
1807 	bool *cur_mode;
1808 	int res = 0;
1809 
1810 	vrf_map_lock(vmap);
1811 
1812 	cur_mode = &vmap->strict_mode;
1813 	if (*cur_mode == new_mode)
1814 		goto unlock;
1815 
1816 	if (*cur_mode) {
1817 		/* disable strict mode */
1818 		*cur_mode = false;
1819 	} else {
1820 		if (vmap->shared_tables) {
1821 			/* we cannot allow strict_mode because there are some
1822 			 * vrfs that share one or more tables.
1823 			 */
1824 			res = -EBUSY;
1825 			goto unlock;
1826 		}
1827 
1828 		/* no tables are shared among vrfs, so we can go back
1829 		 * to 1:1 association between a vrf with its table.
1830 		 */
1831 		*cur_mode = true;
1832 	}
1833 
1834 unlock:
1835 	vrf_map_unlock(vmap);
1836 
1837 	return res;
1838 }
1839 
1840 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1841 				    void *buffer, size_t *lenp, loff_t *ppos)
1842 {
1843 	struct net *net = (struct net *)table->extra1;
1844 	struct vrf_map *vmap = netns_vrf_map(net);
1845 	int proc_strict_mode = 0;
1846 	struct ctl_table tmp = {
1847 		.procname	= table->procname,
1848 		.data		= &proc_strict_mode,
1849 		.maxlen		= sizeof(int),
1850 		.mode		= table->mode,
1851 		.extra1		= SYSCTL_ZERO,
1852 		.extra2		= SYSCTL_ONE,
1853 	};
1854 	int ret;
1855 
1856 	if (!write)
1857 		proc_strict_mode = vrf_strict_mode(vmap);
1858 
1859 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1860 
1861 	if (write && ret == 0)
1862 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1863 
1864 	return ret;
1865 }
1866 
1867 static const struct ctl_table vrf_table[] = {
1868 	{
1869 		.procname	= "strict_mode",
1870 		.data		= NULL,
1871 		.maxlen		= sizeof(int),
1872 		.mode		= 0644,
1873 		.proc_handler	= vrf_shared_table_handler,
1874 		/* set by the vrf_netns_init */
1875 		.extra1		= NULL,
1876 	},
1877 	{ },
1878 };
1879 
1880 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1881 {
1882 	struct ctl_table *table;
1883 
1884 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1885 	if (!table)
1886 		return -ENOMEM;
1887 
1888 	/* init the extra1 parameter with the reference to current netns */
1889 	table[0].extra1 = net;
1890 
1891 	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1892 	if (!nn_vrf->ctl_hdr) {
1893 		kfree(table);
1894 		return -ENOMEM;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 static void vrf_netns_exit_sysctl(struct net *net)
1901 {
1902 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1903 	struct ctl_table *table;
1904 
1905 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1906 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1907 	kfree(table);
1908 }
1909 #else
1910 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1911 {
1912 	return 0;
1913 }
1914 
1915 static void vrf_netns_exit_sysctl(struct net *net)
1916 {
1917 }
1918 #endif
1919 
1920 /* Initialize per network namespace state */
1921 static int __net_init vrf_netns_init(struct net *net)
1922 {
1923 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1924 
1925 	nn_vrf->add_fib_rules = true;
1926 	vrf_map_init(&nn_vrf->vmap);
1927 
1928 	return vrf_netns_init_sysctl(net, nn_vrf);
1929 }
1930 
1931 static void __net_exit vrf_netns_exit(struct net *net)
1932 {
1933 	vrf_netns_exit_sysctl(net);
1934 }
1935 
1936 static struct pernet_operations vrf_net_ops __net_initdata = {
1937 	.init = vrf_netns_init,
1938 	.exit = vrf_netns_exit,
1939 	.id   = &vrf_net_id,
1940 	.size = sizeof(struct netns_vrf),
1941 };
1942 
1943 static int __init vrf_init_module(void)
1944 {
1945 	int rc;
1946 
1947 	register_netdevice_notifier(&vrf_notifier_block);
1948 
1949 	rc = register_pernet_subsys(&vrf_net_ops);
1950 	if (rc < 0)
1951 		goto error;
1952 
1953 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1954 					  vrf_ifindex_lookup_by_table_id);
1955 	if (rc < 0)
1956 		goto unreg_pernet;
1957 
1958 	rc = rtnl_link_register(&vrf_link_ops);
1959 	if (rc < 0)
1960 		goto table_lookup_unreg;
1961 
1962 	return 0;
1963 
1964 table_lookup_unreg:
1965 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1966 				       vrf_ifindex_lookup_by_table_id);
1967 
1968 unreg_pernet:
1969 	unregister_pernet_subsys(&vrf_net_ops);
1970 
1971 error:
1972 	unregister_netdevice_notifier(&vrf_notifier_block);
1973 	return rc;
1974 }
1975 
1976 module_init(vrf_init_module);
1977 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1978 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1979 MODULE_LICENSE("GPL");
1980 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1981 MODULE_VERSION(DRV_VERSION);
1982