xref: /openbmc/linux/drivers/net/vrf.c (revision 3f2fb9a834cb1fcddbae22deca7fde136944dc89)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 
39 #define RT_FL_TOS(oldflp4) \
40 	((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41 
42 #define DRV_NAME	"vrf"
43 #define DRV_VERSION	"1.0"
44 
45 #define vrf_master_get_rcu(dev) \
46 	((struct net_device *)rcu_dereference(dev->rx_handler_data))
47 
48 struct net_vrf {
49 	struct rtable           *rth;
50 	struct rt6_info		*rt6;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	struct u64_stats_sync	syncp;
61 };
62 
63 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
64 {
65 	return dst;
66 }
67 
68 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
69 {
70 	return ip_local_out(net, sk, skb);
71 }
72 
73 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
74 {
75 	/* TO-DO: return max ethernet size? */
76 	return dst->dev->mtu;
77 }
78 
79 static void vrf_dst_destroy(struct dst_entry *dst)
80 {
81 	/* our dst lives forever - or until the device is closed */
82 }
83 
84 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
85 {
86 	return 65535 - 40;
87 }
88 
89 static struct dst_ops vrf_dst_ops = {
90 	.family		= AF_INET,
91 	.local_out	= vrf_ip_local_out,
92 	.check		= vrf_ip_check,
93 	.mtu		= vrf_v4_mtu,
94 	.destroy	= vrf_dst_destroy,
95 	.default_advmss	= vrf_default_advmss,
96 };
97 
98 /* neighbor handling is done with actual device; do not want
99  * to flip skb->dev for those ndisc packets. This really fails
100  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
101  * a start.
102  */
103 #if IS_ENABLED(CONFIG_IPV6)
104 static bool check_ipv6_frame(const struct sk_buff *skb)
105 {
106 	const struct ipv6hdr *ipv6h = (struct ipv6hdr *)skb->data;
107 	size_t hlen = sizeof(*ipv6h);
108 	bool rc = true;
109 
110 	if (skb->len < hlen)
111 		goto out;
112 
113 	if (ipv6h->nexthdr == NEXTHDR_ICMP) {
114 		const struct icmp6hdr *icmph;
115 
116 		if (skb->len < hlen + sizeof(*icmph))
117 			goto out;
118 
119 		icmph = (struct icmp6hdr *)(skb->data + sizeof(*ipv6h));
120 		switch (icmph->icmp6_type) {
121 		case NDISC_ROUTER_SOLICITATION:
122 		case NDISC_ROUTER_ADVERTISEMENT:
123 		case NDISC_NEIGHBOUR_SOLICITATION:
124 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
125 		case NDISC_REDIRECT:
126 			rc = false;
127 			break;
128 		}
129 	}
130 
131 out:
132 	return rc;
133 }
134 #else
135 static bool check_ipv6_frame(const struct sk_buff *skb)
136 {
137 	return false;
138 }
139 #endif
140 
141 static bool is_ip_rx_frame(struct sk_buff *skb)
142 {
143 	switch (skb->protocol) {
144 	case htons(ETH_P_IP):
145 		return true;
146 	case htons(ETH_P_IPV6):
147 		return check_ipv6_frame(skb);
148 	}
149 	return false;
150 }
151 
152 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
153 {
154 	vrf_dev->stats.tx_errors++;
155 	kfree_skb(skb);
156 }
157 
158 /* note: already called with rcu_read_lock */
159 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
160 {
161 	struct sk_buff *skb = *pskb;
162 
163 	if (is_ip_rx_frame(skb)) {
164 		struct net_device *dev = vrf_master_get_rcu(skb->dev);
165 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
166 
167 		u64_stats_update_begin(&dstats->syncp);
168 		dstats->rx_pkts++;
169 		dstats->rx_bytes += skb->len;
170 		u64_stats_update_end(&dstats->syncp);
171 
172 		skb->dev = dev;
173 
174 		return RX_HANDLER_ANOTHER;
175 	}
176 	return RX_HANDLER_PASS;
177 }
178 
179 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
180 						 struct rtnl_link_stats64 *stats)
181 {
182 	int i;
183 
184 	for_each_possible_cpu(i) {
185 		const struct pcpu_dstats *dstats;
186 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
187 		unsigned int start;
188 
189 		dstats = per_cpu_ptr(dev->dstats, i);
190 		do {
191 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
192 			tbytes = dstats->tx_bytes;
193 			tpkts = dstats->tx_pkts;
194 			tdrops = dstats->tx_drps;
195 			rbytes = dstats->rx_bytes;
196 			rpkts = dstats->rx_pkts;
197 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
198 		stats->tx_bytes += tbytes;
199 		stats->tx_packets += tpkts;
200 		stats->tx_dropped += tdrops;
201 		stats->rx_bytes += rbytes;
202 		stats->rx_packets += rpkts;
203 	}
204 	return stats;
205 }
206 
207 #if IS_ENABLED(CONFIG_IPV6)
208 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
209 					   struct net_device *dev)
210 {
211 	const struct ipv6hdr *iph = ipv6_hdr(skb);
212 	struct net *net = dev_net(skb->dev);
213 	struct flowi6 fl6 = {
214 		/* needed to match OIF rule */
215 		.flowi6_oif = dev->ifindex,
216 		.flowi6_iif = LOOPBACK_IFINDEX,
217 		.daddr = iph->daddr,
218 		.saddr = iph->saddr,
219 		.flowlabel = ip6_flowinfo(iph),
220 		.flowi6_mark = skb->mark,
221 		.flowi6_proto = iph->nexthdr,
222 		.flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
223 	};
224 	int ret = NET_XMIT_DROP;
225 	struct dst_entry *dst;
226 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
227 
228 	dst = ip6_route_output(net, NULL, &fl6);
229 	if (dst == dst_null)
230 		goto err;
231 
232 	skb_dst_drop(skb);
233 	skb_dst_set(skb, dst);
234 
235 	ret = ip6_local_out(net, skb->sk, skb);
236 	if (unlikely(net_xmit_eval(ret)))
237 		dev->stats.tx_errors++;
238 	else
239 		ret = NET_XMIT_SUCCESS;
240 
241 	return ret;
242 err:
243 	vrf_tx_error(dev, skb);
244 	return NET_XMIT_DROP;
245 }
246 #else
247 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
248 					   struct net_device *dev)
249 {
250 	vrf_tx_error(dev, skb);
251 	return NET_XMIT_DROP;
252 }
253 #endif
254 
255 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
256 			    struct net_device *vrf_dev)
257 {
258 	struct rtable *rt;
259 	int err = 1;
260 
261 	rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
262 	if (IS_ERR(rt))
263 		goto out;
264 
265 	/* TO-DO: what about broadcast ? */
266 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
267 		ip_rt_put(rt);
268 		goto out;
269 	}
270 
271 	skb_dst_drop(skb);
272 	skb_dst_set(skb, &rt->dst);
273 	err = 0;
274 out:
275 	return err;
276 }
277 
278 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
279 					   struct net_device *vrf_dev)
280 {
281 	struct iphdr *ip4h = ip_hdr(skb);
282 	int ret = NET_XMIT_DROP;
283 	struct flowi4 fl4 = {
284 		/* needed to match OIF rule */
285 		.flowi4_oif = vrf_dev->ifindex,
286 		.flowi4_iif = LOOPBACK_IFINDEX,
287 		.flowi4_tos = RT_TOS(ip4h->tos),
288 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
289 				FLOWI_FLAG_SKIP_NH_OIF,
290 		.daddr = ip4h->daddr,
291 	};
292 
293 	if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
294 		goto err;
295 
296 	if (!ip4h->saddr) {
297 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
298 					       RT_SCOPE_LINK);
299 	}
300 
301 	ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
302 	if (unlikely(net_xmit_eval(ret)))
303 		vrf_dev->stats.tx_errors++;
304 	else
305 		ret = NET_XMIT_SUCCESS;
306 
307 out:
308 	return ret;
309 err:
310 	vrf_tx_error(vrf_dev, skb);
311 	goto out;
312 }
313 
314 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
315 {
316 	/* strip the ethernet header added for pass through VRF device */
317 	__skb_pull(skb, skb_network_offset(skb));
318 
319 	switch (skb->protocol) {
320 	case htons(ETH_P_IP):
321 		return vrf_process_v4_outbound(skb, dev);
322 	case htons(ETH_P_IPV6):
323 		return vrf_process_v6_outbound(skb, dev);
324 	default:
325 		vrf_tx_error(dev, skb);
326 		return NET_XMIT_DROP;
327 	}
328 }
329 
330 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
331 {
332 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
333 
334 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
335 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
336 
337 		u64_stats_update_begin(&dstats->syncp);
338 		dstats->tx_pkts++;
339 		dstats->tx_bytes += skb->len;
340 		u64_stats_update_end(&dstats->syncp);
341 	} else {
342 		this_cpu_inc(dev->dstats->tx_drps);
343 	}
344 
345 	return ret;
346 }
347 
348 #if IS_ENABLED(CONFIG_IPV6)
349 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
350 {
351 	return dst;
352 }
353 
354 static struct dst_ops vrf_dst_ops6 = {
355 	.family		= AF_INET6,
356 	.local_out	= ip6_local_out,
357 	.check		= vrf_ip6_check,
358 	.mtu		= vrf_v4_mtu,
359 	.destroy	= vrf_dst_destroy,
360 	.default_advmss	= vrf_default_advmss,
361 };
362 
363 static int init_dst_ops6_kmem_cachep(void)
364 {
365 	vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
366 						     sizeof(struct rt6_info),
367 						     0,
368 						     SLAB_HWCACHE_ALIGN,
369 						     NULL);
370 
371 	if (!vrf_dst_ops6.kmem_cachep)
372 		return -ENOMEM;
373 
374 	return 0;
375 }
376 
377 static void free_dst_ops6_kmem_cachep(void)
378 {
379 	kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
380 }
381 
382 static int vrf_input6(struct sk_buff *skb)
383 {
384 	skb->dev->stats.rx_errors++;
385 	kfree_skb(skb);
386 	return 0;
387 }
388 
389 /* modelled after ip6_finish_output2 */
390 static int vrf_finish_output6(struct net *net, struct sock *sk,
391 			      struct sk_buff *skb)
392 {
393 	struct dst_entry *dst = skb_dst(skb);
394 	struct net_device *dev = dst->dev;
395 	struct neighbour *neigh;
396 	struct in6_addr *nexthop;
397 	int ret;
398 
399 	skb->protocol = htons(ETH_P_IPV6);
400 	skb->dev = dev;
401 
402 	rcu_read_lock_bh();
403 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
404 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
405 	if (unlikely(!neigh))
406 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
407 	if (!IS_ERR(neigh)) {
408 		ret = dst_neigh_output(dst, neigh, skb);
409 		rcu_read_unlock_bh();
410 		return ret;
411 	}
412 	rcu_read_unlock_bh();
413 
414 	IP6_INC_STATS(dev_net(dst->dev),
415 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
416 	kfree_skb(skb);
417 	return -EINVAL;
418 }
419 
420 /* modelled after ip6_output */
421 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
422 {
423 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
424 			    net, sk, skb, NULL, skb_dst(skb)->dev,
425 			    vrf_finish_output6,
426 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
427 }
428 
429 static void vrf_rt6_destroy(struct net_vrf *vrf)
430 {
431 	dst_destroy(&vrf->rt6->dst);
432 	free_percpu(vrf->rt6->rt6i_pcpu);
433 	vrf->rt6 = NULL;
434 }
435 
436 static int vrf_rt6_create(struct net_device *dev)
437 {
438 	struct net_vrf *vrf = netdev_priv(dev);
439 	struct dst_entry *dst;
440 	struct rt6_info *rt6;
441 	int cpu;
442 	int rc = -ENOMEM;
443 
444 	rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
445 			DST_OBSOLETE_NONE,
446 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
447 	if (!rt6)
448 		goto out;
449 
450 	dst = &rt6->dst;
451 
452 	rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
453 	if (!rt6->rt6i_pcpu) {
454 		dst_destroy(dst);
455 		goto out;
456 	}
457 	for_each_possible_cpu(cpu) {
458 		struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
459 		*p =  NULL;
460 	}
461 
462 	memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
463 
464 	INIT_LIST_HEAD(&rt6->rt6i_siblings);
465 	INIT_LIST_HEAD(&rt6->rt6i_uncached);
466 
467 	rt6->dst.input	= vrf_input6;
468 	rt6->dst.output	= vrf_output6;
469 
470 	rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
471 
472 	atomic_set(&rt6->dst.__refcnt, 2);
473 
474 	vrf->rt6 = rt6;
475 	rc = 0;
476 out:
477 	return rc;
478 }
479 #else
480 static int init_dst_ops6_kmem_cachep(void)
481 {
482 	return 0;
483 }
484 
485 static void free_dst_ops6_kmem_cachep(void)
486 {
487 }
488 
489 static void vrf_rt6_destroy(struct net_vrf *vrf)
490 {
491 }
492 
493 static int vrf_rt6_create(struct net_device *dev)
494 {
495 	return 0;
496 }
497 #endif
498 
499 /* modelled after ip_finish_output2 */
500 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
501 {
502 	struct dst_entry *dst = skb_dst(skb);
503 	struct rtable *rt = (struct rtable *)dst;
504 	struct net_device *dev = dst->dev;
505 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
506 	struct neighbour *neigh;
507 	u32 nexthop;
508 	int ret = -EINVAL;
509 
510 	/* Be paranoid, rather than too clever. */
511 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
512 		struct sk_buff *skb2;
513 
514 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
515 		if (!skb2) {
516 			ret = -ENOMEM;
517 			goto err;
518 		}
519 		if (skb->sk)
520 			skb_set_owner_w(skb2, skb->sk);
521 
522 		consume_skb(skb);
523 		skb = skb2;
524 	}
525 
526 	rcu_read_lock_bh();
527 
528 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
529 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
530 	if (unlikely(!neigh))
531 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
532 	if (!IS_ERR(neigh))
533 		ret = dst_neigh_output(dst, neigh, skb);
534 
535 	rcu_read_unlock_bh();
536 err:
537 	if (unlikely(ret < 0))
538 		vrf_tx_error(skb->dev, skb);
539 	return ret;
540 }
541 
542 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
543 {
544 	struct net_device *dev = skb_dst(skb)->dev;
545 
546 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
547 
548 	skb->dev = dev;
549 	skb->protocol = htons(ETH_P_IP);
550 
551 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
552 			    net, sk, skb, NULL, dev,
553 			    vrf_finish_output,
554 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
555 }
556 
557 static void vrf_rtable_destroy(struct net_vrf *vrf)
558 {
559 	struct dst_entry *dst = (struct dst_entry *)vrf->rth;
560 
561 	dst_destroy(dst);
562 	vrf->rth = NULL;
563 }
564 
565 static struct rtable *vrf_rtable_create(struct net_device *dev)
566 {
567 	struct net_vrf *vrf = netdev_priv(dev);
568 	struct rtable *rth;
569 
570 	rth = dst_alloc(&vrf_dst_ops, dev, 2,
571 			DST_OBSOLETE_NONE,
572 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
573 	if (rth) {
574 		rth->dst.output	= vrf_output;
575 		rth->rt_genid	= rt_genid_ipv4(dev_net(dev));
576 		rth->rt_flags	= 0;
577 		rth->rt_type	= RTN_UNICAST;
578 		rth->rt_is_input = 0;
579 		rth->rt_iif	= 0;
580 		rth->rt_pmtu	= 0;
581 		rth->rt_gateway	= 0;
582 		rth->rt_uses_gateway = 0;
583 		rth->rt_table_id = vrf->tb_id;
584 		INIT_LIST_HEAD(&rth->rt_uncached);
585 		rth->rt_uncached_list = NULL;
586 	}
587 
588 	return rth;
589 }
590 
591 /**************************** device handling ********************/
592 
593 /* cycle interface to flush neighbor cache and move routes across tables */
594 static void cycle_netdev(struct net_device *dev)
595 {
596 	unsigned int flags = dev->flags;
597 	int ret;
598 
599 	if (!netif_running(dev))
600 		return;
601 
602 	ret = dev_change_flags(dev, flags & ~IFF_UP);
603 	if (ret >= 0)
604 		ret = dev_change_flags(dev, flags);
605 
606 	if (ret < 0) {
607 		netdev_err(dev,
608 			   "Failed to cycle device %s; route tables might be wrong!\n",
609 			   dev->name);
610 	}
611 }
612 
613 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
614 {
615 	int ret;
616 
617 	/* register the packet handler for slave ports */
618 	ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
619 	if (ret) {
620 		netdev_err(port_dev,
621 			   "Device %s failed to register rx_handler\n",
622 			   port_dev->name);
623 		goto out_fail;
624 	}
625 
626 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
627 	if (ret < 0)
628 		goto out_unregister;
629 
630 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
631 	cycle_netdev(port_dev);
632 
633 	return 0;
634 
635 out_unregister:
636 	netdev_rx_handler_unregister(port_dev);
637 out_fail:
638 	return ret;
639 }
640 
641 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
642 {
643 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
644 		return -EINVAL;
645 
646 	return do_vrf_add_slave(dev, port_dev);
647 }
648 
649 /* inverse of do_vrf_add_slave */
650 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
651 {
652 	netdev_upper_dev_unlink(port_dev, dev);
653 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
654 
655 	netdev_rx_handler_unregister(port_dev);
656 
657 	cycle_netdev(port_dev);
658 
659 	return 0;
660 }
661 
662 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
663 {
664 	return do_vrf_del_slave(dev, port_dev);
665 }
666 
667 static void vrf_dev_uninit(struct net_device *dev)
668 {
669 	struct net_vrf *vrf = netdev_priv(dev);
670 	struct net_device *port_dev;
671 	struct list_head *iter;
672 
673 	vrf_rtable_destroy(vrf);
674 	vrf_rt6_destroy(vrf);
675 
676 	netdev_for_each_lower_dev(dev, port_dev, iter)
677 		vrf_del_slave(dev, port_dev);
678 
679 	free_percpu(dev->dstats);
680 	dev->dstats = NULL;
681 }
682 
683 static int vrf_dev_init(struct net_device *dev)
684 {
685 	struct net_vrf *vrf = netdev_priv(dev);
686 
687 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
688 	if (!dev->dstats)
689 		goto out_nomem;
690 
691 	/* create the default dst which points back to us */
692 	vrf->rth = vrf_rtable_create(dev);
693 	if (!vrf->rth)
694 		goto out_stats;
695 
696 	if (vrf_rt6_create(dev) != 0)
697 		goto out_rth;
698 
699 	dev->flags = IFF_MASTER | IFF_NOARP;
700 
701 	return 0;
702 
703 out_rth:
704 	vrf_rtable_destroy(vrf);
705 out_stats:
706 	free_percpu(dev->dstats);
707 	dev->dstats = NULL;
708 out_nomem:
709 	return -ENOMEM;
710 }
711 
712 static const struct net_device_ops vrf_netdev_ops = {
713 	.ndo_init		= vrf_dev_init,
714 	.ndo_uninit		= vrf_dev_uninit,
715 	.ndo_start_xmit		= vrf_xmit,
716 	.ndo_get_stats64	= vrf_get_stats64,
717 	.ndo_add_slave		= vrf_add_slave,
718 	.ndo_del_slave		= vrf_del_slave,
719 };
720 
721 static u32 vrf_fib_table(const struct net_device *dev)
722 {
723 	struct net_vrf *vrf = netdev_priv(dev);
724 
725 	return vrf->tb_id;
726 }
727 
728 static struct rtable *vrf_get_rtable(const struct net_device *dev,
729 				     const struct flowi4 *fl4)
730 {
731 	struct rtable *rth = NULL;
732 
733 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
734 		struct net_vrf *vrf = netdev_priv(dev);
735 
736 		rth = vrf->rth;
737 		atomic_inc(&rth->dst.__refcnt);
738 	}
739 
740 	return rth;
741 }
742 
743 /* called under rcu_read_lock */
744 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
745 {
746 	struct fib_result res = { .tclassid = 0 };
747 	struct net *net = dev_net(dev);
748 	u32 orig_tos = fl4->flowi4_tos;
749 	u8 flags = fl4->flowi4_flags;
750 	u8 scope = fl4->flowi4_scope;
751 	u8 tos = RT_FL_TOS(fl4);
752 	int rc;
753 
754 	if (unlikely(!fl4->daddr))
755 		return 0;
756 
757 	fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
758 	fl4->flowi4_iif = LOOPBACK_IFINDEX;
759 	fl4->flowi4_tos = tos & IPTOS_RT_MASK;
760 	fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
761 			     RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
762 
763 	rc = fib_lookup(net, fl4, &res, 0);
764 	if (!rc) {
765 		if (res.type == RTN_LOCAL)
766 			fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
767 		else
768 			fib_select_path(net, &res, fl4, -1);
769 	}
770 
771 	fl4->flowi4_flags = flags;
772 	fl4->flowi4_tos = orig_tos;
773 	fl4->flowi4_scope = scope;
774 
775 	return rc;
776 }
777 
778 #if IS_ENABLED(CONFIG_IPV6)
779 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
780 					 const struct flowi6 *fl6)
781 {
782 	struct rt6_info *rt = NULL;
783 
784 	if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
785 		struct net_vrf *vrf = netdev_priv(dev);
786 
787 		rt = vrf->rt6;
788 		atomic_inc(&rt->dst.__refcnt);
789 	}
790 
791 	return (struct dst_entry *)rt;
792 }
793 #endif
794 
795 static const struct l3mdev_ops vrf_l3mdev_ops = {
796 	.l3mdev_fib_table	= vrf_fib_table,
797 	.l3mdev_get_rtable	= vrf_get_rtable,
798 	.l3mdev_get_saddr	= vrf_get_saddr,
799 #if IS_ENABLED(CONFIG_IPV6)
800 	.l3mdev_get_rt6_dst	= vrf_get_rt6_dst,
801 #endif
802 };
803 
804 static void vrf_get_drvinfo(struct net_device *dev,
805 			    struct ethtool_drvinfo *info)
806 {
807 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
808 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
809 }
810 
811 static const struct ethtool_ops vrf_ethtool_ops = {
812 	.get_drvinfo	= vrf_get_drvinfo,
813 };
814 
815 static void vrf_setup(struct net_device *dev)
816 {
817 	ether_setup(dev);
818 
819 	/* Initialize the device structure. */
820 	dev->netdev_ops = &vrf_netdev_ops;
821 	dev->l3mdev_ops = &vrf_l3mdev_ops;
822 	dev->ethtool_ops = &vrf_ethtool_ops;
823 	dev->destructor = free_netdev;
824 
825 	/* Fill in device structure with ethernet-generic values. */
826 	eth_hw_addr_random(dev);
827 
828 	/* don't acquire vrf device's netif_tx_lock when transmitting */
829 	dev->features |= NETIF_F_LLTX;
830 
831 	/* don't allow vrf devices to change network namespaces. */
832 	dev->features |= NETIF_F_NETNS_LOCAL;
833 }
834 
835 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
836 {
837 	if (tb[IFLA_ADDRESS]) {
838 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
839 			return -EINVAL;
840 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
841 			return -EADDRNOTAVAIL;
842 	}
843 	return 0;
844 }
845 
846 static void vrf_dellink(struct net_device *dev, struct list_head *head)
847 {
848 	unregister_netdevice_queue(dev, head);
849 }
850 
851 static int vrf_newlink(struct net *src_net, struct net_device *dev,
852 		       struct nlattr *tb[], struct nlattr *data[])
853 {
854 	struct net_vrf *vrf = netdev_priv(dev);
855 
856 	if (!data || !data[IFLA_VRF_TABLE])
857 		return -EINVAL;
858 
859 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
860 
861 	dev->priv_flags |= IFF_L3MDEV_MASTER;
862 
863 	return register_netdevice(dev);
864 }
865 
866 static size_t vrf_nl_getsize(const struct net_device *dev)
867 {
868 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
869 }
870 
871 static int vrf_fillinfo(struct sk_buff *skb,
872 			const struct net_device *dev)
873 {
874 	struct net_vrf *vrf = netdev_priv(dev);
875 
876 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
877 }
878 
879 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
880 				 const struct net_device *slave_dev)
881 {
882 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
883 }
884 
885 static int vrf_fill_slave_info(struct sk_buff *skb,
886 			       const struct net_device *vrf_dev,
887 			       const struct net_device *slave_dev)
888 {
889 	struct net_vrf *vrf = netdev_priv(vrf_dev);
890 
891 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
892 		return -EMSGSIZE;
893 
894 	return 0;
895 }
896 
897 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
898 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
899 };
900 
901 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
902 	.kind		= DRV_NAME,
903 	.priv_size	= sizeof(struct net_vrf),
904 
905 	.get_size	= vrf_nl_getsize,
906 	.policy		= vrf_nl_policy,
907 	.validate	= vrf_validate,
908 	.fill_info	= vrf_fillinfo,
909 
910 	.get_slave_size  = vrf_get_slave_size,
911 	.fill_slave_info = vrf_fill_slave_info,
912 
913 	.newlink	= vrf_newlink,
914 	.dellink	= vrf_dellink,
915 	.setup		= vrf_setup,
916 	.maxtype	= IFLA_VRF_MAX,
917 };
918 
919 static int vrf_device_event(struct notifier_block *unused,
920 			    unsigned long event, void *ptr)
921 {
922 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
923 
924 	/* only care about unregister events to drop slave references */
925 	if (event == NETDEV_UNREGISTER) {
926 		struct net_device *vrf_dev;
927 
928 		if (!netif_is_l3_slave(dev))
929 			goto out;
930 
931 		vrf_dev = netdev_master_upper_dev_get(dev);
932 		vrf_del_slave(vrf_dev, dev);
933 	}
934 out:
935 	return NOTIFY_DONE;
936 }
937 
938 static struct notifier_block vrf_notifier_block __read_mostly = {
939 	.notifier_call = vrf_device_event,
940 };
941 
942 static int __init vrf_init_module(void)
943 {
944 	int rc;
945 
946 	vrf_dst_ops.kmem_cachep =
947 		kmem_cache_create("vrf_ip_dst_cache",
948 				  sizeof(struct rtable), 0,
949 				  SLAB_HWCACHE_ALIGN,
950 				  NULL);
951 
952 	if (!vrf_dst_ops.kmem_cachep)
953 		return -ENOMEM;
954 
955 	rc = init_dst_ops6_kmem_cachep();
956 	if (rc != 0)
957 		goto error2;
958 
959 	register_netdevice_notifier(&vrf_notifier_block);
960 
961 	rc = rtnl_link_register(&vrf_link_ops);
962 	if (rc < 0)
963 		goto error;
964 
965 	return 0;
966 
967 error:
968 	unregister_netdevice_notifier(&vrf_notifier_block);
969 	free_dst_ops6_kmem_cachep();
970 error2:
971 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
972 	return rc;
973 }
974 
975 static void __exit vrf_cleanup_module(void)
976 {
977 	rtnl_link_unregister(&vrf_link_ops);
978 	unregister_netdevice_notifier(&vrf_notifier_block);
979 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
980 	free_dst_ops6_kmem_cachep();
981 }
982 
983 module_init(vrf_init_module);
984 module_exit(vrf_cleanup_module);
985 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
986 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
987 MODULE_LICENSE("GPL");
988 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
989 MODULE_VERSION(DRV_VERSION);
990