1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/ethtool.h> 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ip.h> 18 #include <linux/init.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netfilter.h> 21 #include <linux/rtnetlink.h> 22 #include <net/rtnetlink.h> 23 #include <linux/u64_stats_sync.h> 24 #include <linux/hashtable.h> 25 #include <linux/spinlock_types.h> 26 27 #include <linux/inetdevice.h> 28 #include <net/arp.h> 29 #include <net/ip.h> 30 #include <net/ip_fib.h> 31 #include <net/ip6_fib.h> 32 #include <net/ip6_route.h> 33 #include <net/route.h> 34 #include <net/addrconf.h> 35 #include <net/l3mdev.h> 36 #include <net/fib_rules.h> 37 #include <net/sch_generic.h> 38 #include <net/netns/generic.h> 39 #include <net/netfilter/nf_conntrack.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.1" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 #define HT_MAP_BITS 4 47 #define HASH_INITVAL ((u32)0xcafef00d) 48 49 struct vrf_map { 50 DECLARE_HASHTABLE(ht, HT_MAP_BITS); 51 spinlock_t vmap_lock; 52 53 /* shared_tables: 54 * count how many distinct tables do not comply with the strict mode 55 * requirement. 56 * shared_tables value must be 0 in order to enable the strict mode. 57 * 58 * example of the evolution of shared_tables: 59 * | time 60 * add vrf0 --> table 100 shared_tables = 0 | t0 61 * add vrf1 --> table 101 shared_tables = 0 | t1 62 * add vrf2 --> table 100 shared_tables = 1 | t2 63 * add vrf3 --> table 100 shared_tables = 1 | t3 64 * add vrf4 --> table 101 shared_tables = 2 v t4 65 * 66 * shared_tables is a "step function" (or "staircase function") 67 * and it is increased by one when the second vrf is associated to a 68 * table. 69 * 70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. 71 * 72 * at t3, another dev (vrf3) is bound to the same table 100 but the 73 * value of shared_tables is still 1. 74 * This means that no matter how many new vrfs will register on the 75 * table 100, the shared_tables will not increase (considering only 76 * table 100). 77 * 78 * at t4, vrf4 is bound to table 101, and shared_tables = 2. 79 * 80 * Looking at the value of shared_tables we can immediately know if 81 * the strict_mode can or cannot be enforced. Indeed, strict_mode 82 * can be enforced iff shared_tables = 0. 83 * 84 * Conversely, shared_tables is decreased when a vrf is de-associated 85 * from a table with exactly two associated vrfs. 86 */ 87 u32 shared_tables; 88 89 bool strict_mode; 90 }; 91 92 struct vrf_map_elem { 93 struct hlist_node hnode; 94 struct list_head vrf_list; /* VRFs registered to this table */ 95 96 u32 table_id; 97 int users; 98 int ifindex; 99 }; 100 101 static unsigned int vrf_net_id; 102 103 /* per netns vrf data */ 104 struct netns_vrf { 105 /* protected by rtnl lock */ 106 bool add_fib_rules; 107 108 struct vrf_map vmap; 109 struct ctl_table_header *ctl_hdr; 110 }; 111 112 struct net_vrf { 113 struct rtable __rcu *rth; 114 struct rt6_info __rcu *rt6; 115 #if IS_ENABLED(CONFIG_IPV6) 116 struct fib6_table *fib6_table; 117 #endif 118 u32 tb_id; 119 120 struct list_head me_list; /* entry in vrf_map_elem */ 121 int ifindex; 122 }; 123 124 static void vrf_rx_stats(struct net_device *dev, int len) 125 { 126 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 127 128 u64_stats_update_begin(&dstats->syncp); 129 dstats->rx_packets++; 130 dstats->rx_bytes += len; 131 u64_stats_update_end(&dstats->syncp); 132 } 133 134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 135 { 136 vrf_dev->stats.tx_errors++; 137 kfree_skb(skb); 138 } 139 140 static void vrf_get_stats64(struct net_device *dev, 141 struct rtnl_link_stats64 *stats) 142 { 143 int i; 144 145 for_each_possible_cpu(i) { 146 const struct pcpu_dstats *dstats; 147 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 148 unsigned int start; 149 150 dstats = per_cpu_ptr(dev->dstats, i); 151 do { 152 start = u64_stats_fetch_begin(&dstats->syncp); 153 tbytes = dstats->tx_bytes; 154 tpkts = dstats->tx_packets; 155 tdrops = dstats->tx_drops; 156 rbytes = dstats->rx_bytes; 157 rpkts = dstats->rx_packets; 158 } while (u64_stats_fetch_retry(&dstats->syncp, start)); 159 stats->tx_bytes += tbytes; 160 stats->tx_packets += tpkts; 161 stats->tx_dropped += tdrops; 162 stats->rx_bytes += rbytes; 163 stats->rx_packets += rpkts; 164 } 165 } 166 167 static struct vrf_map *netns_vrf_map(struct net *net) 168 { 169 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 170 171 return &nn_vrf->vmap; 172 } 173 174 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) 175 { 176 return netns_vrf_map(dev_net(dev)); 177 } 178 179 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) 180 { 181 struct list_head *me_head = &me->vrf_list; 182 struct net_vrf *vrf; 183 184 if (list_empty(me_head)) 185 return -ENODEV; 186 187 vrf = list_first_entry(me_head, struct net_vrf, me_list); 188 189 return vrf->ifindex; 190 } 191 192 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) 193 { 194 struct vrf_map_elem *me; 195 196 me = kmalloc(sizeof(*me), flags); 197 if (!me) 198 return NULL; 199 200 return me; 201 } 202 203 static void vrf_map_elem_free(struct vrf_map_elem *me) 204 { 205 kfree(me); 206 } 207 208 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, 209 int ifindex, int users) 210 { 211 me->table_id = table_id; 212 me->ifindex = ifindex; 213 me->users = users; 214 INIT_LIST_HEAD(&me->vrf_list); 215 } 216 217 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, 218 u32 table_id) 219 { 220 struct vrf_map_elem *me; 221 u32 key; 222 223 key = jhash_1word(table_id, HASH_INITVAL); 224 hash_for_each_possible(vmap->ht, me, hnode, key) { 225 if (me->table_id == table_id) 226 return me; 227 } 228 229 return NULL; 230 } 231 232 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) 233 { 234 u32 table_id = me->table_id; 235 u32 key; 236 237 key = jhash_1word(table_id, HASH_INITVAL); 238 hash_add(vmap->ht, &me->hnode, key); 239 } 240 241 static void vrf_map_del_elem(struct vrf_map_elem *me) 242 { 243 hash_del(&me->hnode); 244 } 245 246 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) 247 { 248 spin_lock(&vmap->vmap_lock); 249 } 250 251 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) 252 { 253 spin_unlock(&vmap->vmap_lock); 254 } 255 256 /* called with rtnl lock held */ 257 static int 258 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) 259 { 260 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 261 struct net_vrf *vrf = netdev_priv(dev); 262 struct vrf_map_elem *new_me, *me; 263 u32 table_id = vrf->tb_id; 264 bool free_new_me = false; 265 int users; 266 int res; 267 268 /* we pre-allocate elements used in the spin-locked section (so that we 269 * keep the spinlock as short as possible). 270 */ 271 new_me = vrf_map_elem_alloc(GFP_KERNEL); 272 if (!new_me) 273 return -ENOMEM; 274 275 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0); 276 277 vrf_map_lock(vmap); 278 279 me = vrf_map_lookup_elem(vmap, table_id); 280 if (!me) { 281 me = new_me; 282 vrf_map_add_elem(vmap, me); 283 goto link_vrf; 284 } 285 286 /* we already have an entry in the vrf_map, so it means there is (at 287 * least) a vrf registered on the specific table. 288 */ 289 free_new_me = true; 290 if (vmap->strict_mode) { 291 /* vrfs cannot share the same table */ 292 NL_SET_ERR_MSG(extack, "Table is used by another VRF"); 293 res = -EBUSY; 294 goto unlock; 295 } 296 297 link_vrf: 298 users = ++me->users; 299 if (users == 2) 300 ++vmap->shared_tables; 301 302 list_add(&vrf->me_list, &me->vrf_list); 303 304 res = 0; 305 306 unlock: 307 vrf_map_unlock(vmap); 308 309 /* clean-up, if needed */ 310 if (free_new_me) 311 vrf_map_elem_free(new_me); 312 313 return res; 314 } 315 316 /* called with rtnl lock held */ 317 static void vrf_map_unregister_dev(struct net_device *dev) 318 { 319 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 320 struct net_vrf *vrf = netdev_priv(dev); 321 u32 table_id = vrf->tb_id; 322 struct vrf_map_elem *me; 323 int users; 324 325 vrf_map_lock(vmap); 326 327 me = vrf_map_lookup_elem(vmap, table_id); 328 if (!me) 329 goto unlock; 330 331 list_del(&vrf->me_list); 332 333 users = --me->users; 334 if (users == 1) { 335 --vmap->shared_tables; 336 } else if (users == 0) { 337 vrf_map_del_elem(me); 338 339 /* no one will refer to this element anymore */ 340 vrf_map_elem_free(me); 341 } 342 343 unlock: 344 vrf_map_unlock(vmap); 345 } 346 347 /* return the vrf device index associated with the table_id */ 348 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) 349 { 350 struct vrf_map *vmap = netns_vrf_map(net); 351 struct vrf_map_elem *me; 352 int ifindex; 353 354 vrf_map_lock(vmap); 355 356 if (!vmap->strict_mode) { 357 ifindex = -EPERM; 358 goto unlock; 359 } 360 361 me = vrf_map_lookup_elem(vmap, table_id); 362 if (!me) { 363 ifindex = -ENODEV; 364 goto unlock; 365 } 366 367 ifindex = vrf_map_elem_get_vrf_ifindex(me); 368 369 unlock: 370 vrf_map_unlock(vmap); 371 372 return ifindex; 373 } 374 375 /* by default VRF devices do not have a qdisc and are expected 376 * to be created with only a single queue. 377 */ 378 static bool qdisc_tx_is_default(const struct net_device *dev) 379 { 380 struct netdev_queue *txq; 381 struct Qdisc *qdisc; 382 383 if (dev->num_tx_queues > 1) 384 return false; 385 386 txq = netdev_get_tx_queue(dev, 0); 387 qdisc = rcu_access_pointer(txq->qdisc); 388 389 return !qdisc->enqueue; 390 } 391 392 /* Local traffic destined to local address. Reinsert the packet to rx 393 * path, similar to loopback handling. 394 */ 395 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 396 struct dst_entry *dst) 397 { 398 int len = skb->len; 399 400 skb_orphan(skb); 401 402 skb_dst_set(skb, dst); 403 404 /* set pkt_type to avoid skb hitting packet taps twice - 405 * once on Tx and again in Rx processing 406 */ 407 skb->pkt_type = PACKET_LOOPBACK; 408 409 skb->protocol = eth_type_trans(skb, dev); 410 411 if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) 412 vrf_rx_stats(dev, len); 413 else 414 this_cpu_inc(dev->dstats->rx_drops); 415 416 return NETDEV_TX_OK; 417 } 418 419 static void vrf_nf_set_untracked(struct sk_buff *skb) 420 { 421 if (skb_get_nfct(skb) == 0) 422 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 423 } 424 425 static void vrf_nf_reset_ct(struct sk_buff *skb) 426 { 427 if (skb_get_nfct(skb) == IP_CT_UNTRACKED) 428 nf_reset_ct(skb); 429 } 430 431 #if IS_ENABLED(CONFIG_IPV6) 432 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 433 struct sk_buff *skb) 434 { 435 int err; 436 437 vrf_nf_reset_ct(skb); 438 439 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 440 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 441 442 if (likely(err == 1)) 443 err = dst_output(net, sk, skb); 444 445 return err; 446 } 447 448 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 449 struct net_device *dev) 450 { 451 const struct ipv6hdr *iph; 452 struct net *net = dev_net(skb->dev); 453 struct flowi6 fl6; 454 int ret = NET_XMIT_DROP; 455 struct dst_entry *dst; 456 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 457 458 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) 459 goto err; 460 461 iph = ipv6_hdr(skb); 462 463 memset(&fl6, 0, sizeof(fl6)); 464 /* needed to match OIF rule */ 465 fl6.flowi6_l3mdev = dev->ifindex; 466 fl6.flowi6_iif = LOOPBACK_IFINDEX; 467 fl6.daddr = iph->daddr; 468 fl6.saddr = iph->saddr; 469 fl6.flowlabel = ip6_flowinfo(iph); 470 fl6.flowi6_mark = skb->mark; 471 fl6.flowi6_proto = iph->nexthdr; 472 473 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); 474 if (IS_ERR(dst) || dst == dst_null) 475 goto err; 476 477 skb_dst_drop(skb); 478 479 /* if dst.dev is the VRF device again this is locally originated traffic 480 * destined to a local address. Short circuit to Rx path. 481 */ 482 if (dst->dev == dev) 483 return vrf_local_xmit(skb, dev, dst); 484 485 skb_dst_set(skb, dst); 486 487 /* strip the ethernet header added for pass through VRF device */ 488 __skb_pull(skb, skb_network_offset(skb)); 489 490 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); 491 ret = vrf_ip6_local_out(net, skb->sk, skb); 492 if (unlikely(net_xmit_eval(ret))) 493 dev->stats.tx_errors++; 494 else 495 ret = NET_XMIT_SUCCESS; 496 497 return ret; 498 err: 499 vrf_tx_error(dev, skb); 500 return NET_XMIT_DROP; 501 } 502 #else 503 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 504 struct net_device *dev) 505 { 506 vrf_tx_error(dev, skb); 507 return NET_XMIT_DROP; 508 } 509 #endif 510 511 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 512 static int vrf_ip_local_out(struct net *net, struct sock *sk, 513 struct sk_buff *skb) 514 { 515 int err; 516 517 vrf_nf_reset_ct(skb); 518 519 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 520 skb, NULL, skb_dst(skb)->dev, dst_output); 521 if (likely(err == 1)) 522 err = dst_output(net, sk, skb); 523 524 return err; 525 } 526 527 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 528 struct net_device *vrf_dev) 529 { 530 struct iphdr *ip4h; 531 int ret = NET_XMIT_DROP; 532 struct flowi4 fl4; 533 struct net *net = dev_net(vrf_dev); 534 struct rtable *rt; 535 536 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) 537 goto err; 538 539 ip4h = ip_hdr(skb); 540 541 memset(&fl4, 0, sizeof(fl4)); 542 /* needed to match OIF rule */ 543 fl4.flowi4_l3mdev = vrf_dev->ifindex; 544 fl4.flowi4_iif = LOOPBACK_IFINDEX; 545 fl4.flowi4_tos = RT_TOS(ip4h->tos); 546 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC; 547 fl4.flowi4_proto = ip4h->protocol; 548 fl4.daddr = ip4h->daddr; 549 fl4.saddr = ip4h->saddr; 550 551 rt = ip_route_output_flow(net, &fl4, NULL); 552 if (IS_ERR(rt)) 553 goto err; 554 555 skb_dst_drop(skb); 556 557 /* if dst.dev is the VRF device again this is locally originated traffic 558 * destined to a local address. Short circuit to Rx path. 559 */ 560 if (rt->dst.dev == vrf_dev) 561 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 562 563 skb_dst_set(skb, &rt->dst); 564 565 /* strip the ethernet header added for pass through VRF device */ 566 __skb_pull(skb, skb_network_offset(skb)); 567 568 if (!ip4h->saddr) { 569 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 570 RT_SCOPE_LINK); 571 } 572 573 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 574 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 575 if (unlikely(net_xmit_eval(ret))) 576 vrf_dev->stats.tx_errors++; 577 else 578 ret = NET_XMIT_SUCCESS; 579 580 out: 581 return ret; 582 err: 583 vrf_tx_error(vrf_dev, skb); 584 goto out; 585 } 586 587 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 588 { 589 switch (skb->protocol) { 590 case htons(ETH_P_IP): 591 return vrf_process_v4_outbound(skb, dev); 592 case htons(ETH_P_IPV6): 593 return vrf_process_v6_outbound(skb, dev); 594 default: 595 vrf_tx_error(dev, skb); 596 return NET_XMIT_DROP; 597 } 598 } 599 600 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 601 { 602 int len = skb->len; 603 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 604 605 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 606 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 607 608 u64_stats_update_begin(&dstats->syncp); 609 dstats->tx_packets++; 610 dstats->tx_bytes += len; 611 u64_stats_update_end(&dstats->syncp); 612 } else { 613 this_cpu_inc(dev->dstats->tx_drops); 614 } 615 616 return ret; 617 } 618 619 static void vrf_finish_direct(struct sk_buff *skb) 620 { 621 struct net_device *vrf_dev = skb->dev; 622 623 if (!list_empty(&vrf_dev->ptype_all) && 624 likely(skb_headroom(skb) >= ETH_HLEN)) { 625 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 626 627 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 628 eth_zero_addr(eth->h_dest); 629 eth->h_proto = skb->protocol; 630 631 rcu_read_lock_bh(); 632 dev_queue_xmit_nit(skb, vrf_dev); 633 rcu_read_unlock_bh(); 634 635 skb_pull(skb, ETH_HLEN); 636 } 637 638 vrf_nf_reset_ct(skb); 639 } 640 641 #if IS_ENABLED(CONFIG_IPV6) 642 /* modelled after ip6_finish_output2 */ 643 static int vrf_finish_output6(struct net *net, struct sock *sk, 644 struct sk_buff *skb) 645 { 646 struct dst_entry *dst = skb_dst(skb); 647 struct net_device *dev = dst->dev; 648 const struct in6_addr *nexthop; 649 struct neighbour *neigh; 650 int ret; 651 652 vrf_nf_reset_ct(skb); 653 654 skb->protocol = htons(ETH_P_IPV6); 655 skb->dev = dev; 656 657 rcu_read_lock(); 658 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 659 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 660 if (unlikely(!neigh)) 661 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 662 if (!IS_ERR(neigh)) { 663 sock_confirm_neigh(skb, neigh); 664 ret = neigh_output(neigh, skb, false); 665 rcu_read_unlock(); 666 return ret; 667 } 668 rcu_read_unlock(); 669 670 IP6_INC_STATS(dev_net(dst->dev), 671 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 672 kfree_skb(skb); 673 return -EINVAL; 674 } 675 676 /* modelled after ip6_output */ 677 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 678 { 679 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 680 net, sk, skb, NULL, skb_dst(skb)->dev, 681 vrf_finish_output6, 682 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 683 } 684 685 /* set dst on skb to send packet to us via dev_xmit path. Allows 686 * packet to go through device based features such as qdisc, netfilter 687 * hooks and packet sockets with skb->dev set to vrf device. 688 */ 689 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 690 struct sk_buff *skb) 691 { 692 struct net_vrf *vrf = netdev_priv(vrf_dev); 693 struct dst_entry *dst = NULL; 694 struct rt6_info *rt6; 695 696 rcu_read_lock(); 697 698 rt6 = rcu_dereference(vrf->rt6); 699 if (likely(rt6)) { 700 dst = &rt6->dst; 701 dst_hold(dst); 702 } 703 704 rcu_read_unlock(); 705 706 if (unlikely(!dst)) { 707 vrf_tx_error(vrf_dev, skb); 708 return NULL; 709 } 710 711 skb_dst_drop(skb); 712 skb_dst_set(skb, dst); 713 714 return skb; 715 } 716 717 static int vrf_output6_direct_finish(struct net *net, struct sock *sk, 718 struct sk_buff *skb) 719 { 720 vrf_finish_direct(skb); 721 722 return vrf_ip6_local_out(net, sk, skb); 723 } 724 725 static int vrf_output6_direct(struct net *net, struct sock *sk, 726 struct sk_buff *skb) 727 { 728 int err = 1; 729 730 skb->protocol = htons(ETH_P_IPV6); 731 732 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 733 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, 734 NULL, skb->dev, vrf_output6_direct_finish); 735 736 if (likely(err == 1)) 737 vrf_finish_direct(skb); 738 739 return err; 740 } 741 742 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, 743 struct sk_buff *skb) 744 { 745 int err; 746 747 err = vrf_output6_direct(net, sk, skb); 748 if (likely(err == 1)) 749 err = vrf_ip6_local_out(net, sk, skb); 750 751 return err; 752 } 753 754 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 755 struct sock *sk, 756 struct sk_buff *skb) 757 { 758 struct net *net = dev_net(vrf_dev); 759 int err; 760 761 skb->dev = vrf_dev; 762 763 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 764 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish); 765 766 if (likely(err == 1)) 767 err = vrf_output6_direct(net, sk, skb); 768 769 if (likely(err == 1)) 770 return skb; 771 772 return NULL; 773 } 774 775 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 776 struct sock *sk, 777 struct sk_buff *skb) 778 { 779 /* don't divert link scope packets */ 780 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 781 return skb; 782 783 vrf_nf_set_untracked(skb); 784 785 if (qdisc_tx_is_default(vrf_dev) || 786 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 787 return vrf_ip6_out_direct(vrf_dev, sk, skb); 788 789 return vrf_ip6_out_redirect(vrf_dev, skb); 790 } 791 792 /* holding rtnl */ 793 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 794 { 795 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 796 struct net *net = dev_net(dev); 797 struct dst_entry *dst; 798 799 RCU_INIT_POINTER(vrf->rt6, NULL); 800 synchronize_rcu(); 801 802 /* move dev in dst's to loopback so this VRF device can be deleted 803 * - based on dst_ifdown 804 */ 805 if (rt6) { 806 dst = &rt6->dst; 807 netdev_ref_replace(dst->dev, net->loopback_dev, 808 &dst->dev_tracker, GFP_KERNEL); 809 dst->dev = net->loopback_dev; 810 dst_release(dst); 811 } 812 } 813 814 static int vrf_rt6_create(struct net_device *dev) 815 { 816 int flags = DST_NOPOLICY | DST_NOXFRM; 817 struct net_vrf *vrf = netdev_priv(dev); 818 struct net *net = dev_net(dev); 819 struct rt6_info *rt6; 820 int rc = -ENOMEM; 821 822 /* IPv6 can be CONFIG enabled and then disabled runtime */ 823 if (!ipv6_mod_enabled()) 824 return 0; 825 826 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 827 if (!vrf->fib6_table) 828 goto out; 829 830 /* create a dst for routing packets out a VRF device */ 831 rt6 = ip6_dst_alloc(net, dev, flags); 832 if (!rt6) 833 goto out; 834 835 rt6->dst.output = vrf_output6; 836 837 rcu_assign_pointer(vrf->rt6, rt6); 838 839 rc = 0; 840 out: 841 return rc; 842 } 843 #else 844 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 845 struct sock *sk, 846 struct sk_buff *skb) 847 { 848 return skb; 849 } 850 851 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 852 { 853 } 854 855 static int vrf_rt6_create(struct net_device *dev) 856 { 857 return 0; 858 } 859 #endif 860 861 /* modelled after ip_finish_output2 */ 862 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 863 { 864 struct dst_entry *dst = skb_dst(skb); 865 struct rtable *rt = (struct rtable *)dst; 866 struct net_device *dev = dst->dev; 867 unsigned int hh_len = LL_RESERVED_SPACE(dev); 868 struct neighbour *neigh; 869 bool is_v6gw = false; 870 871 vrf_nf_reset_ct(skb); 872 873 /* Be paranoid, rather than too clever. */ 874 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 875 skb = skb_expand_head(skb, hh_len); 876 if (!skb) { 877 dev->stats.tx_errors++; 878 return -ENOMEM; 879 } 880 } 881 882 rcu_read_lock(); 883 884 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 885 if (!IS_ERR(neigh)) { 886 int ret; 887 888 sock_confirm_neigh(skb, neigh); 889 /* if crossing protocols, can not use the cached header */ 890 ret = neigh_output(neigh, skb, is_v6gw); 891 rcu_read_unlock(); 892 return ret; 893 } 894 895 rcu_read_unlock(); 896 vrf_tx_error(skb->dev, skb); 897 return -EINVAL; 898 } 899 900 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 901 { 902 struct net_device *dev = skb_dst(skb)->dev; 903 904 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 905 906 skb->dev = dev; 907 skb->protocol = htons(ETH_P_IP); 908 909 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 910 net, sk, skb, NULL, dev, 911 vrf_finish_output, 912 !(IPCB(skb)->flags & IPSKB_REROUTED)); 913 } 914 915 /* set dst on skb to send packet to us via dev_xmit path. Allows 916 * packet to go through device based features such as qdisc, netfilter 917 * hooks and packet sockets with skb->dev set to vrf device. 918 */ 919 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 920 struct sk_buff *skb) 921 { 922 struct net_vrf *vrf = netdev_priv(vrf_dev); 923 struct dst_entry *dst = NULL; 924 struct rtable *rth; 925 926 rcu_read_lock(); 927 928 rth = rcu_dereference(vrf->rth); 929 if (likely(rth)) { 930 dst = &rth->dst; 931 dst_hold(dst); 932 } 933 934 rcu_read_unlock(); 935 936 if (unlikely(!dst)) { 937 vrf_tx_error(vrf_dev, skb); 938 return NULL; 939 } 940 941 skb_dst_drop(skb); 942 skb_dst_set(skb, dst); 943 944 return skb; 945 } 946 947 static int vrf_output_direct_finish(struct net *net, struct sock *sk, 948 struct sk_buff *skb) 949 { 950 vrf_finish_direct(skb); 951 952 return vrf_ip_local_out(net, sk, skb); 953 } 954 955 static int vrf_output_direct(struct net *net, struct sock *sk, 956 struct sk_buff *skb) 957 { 958 int err = 1; 959 960 skb->protocol = htons(ETH_P_IP); 961 962 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 963 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, 964 NULL, skb->dev, vrf_output_direct_finish); 965 966 if (likely(err == 1)) 967 vrf_finish_direct(skb); 968 969 return err; 970 } 971 972 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, 973 struct sk_buff *skb) 974 { 975 int err; 976 977 err = vrf_output_direct(net, sk, skb); 978 if (likely(err == 1)) 979 err = vrf_ip_local_out(net, sk, skb); 980 981 return err; 982 } 983 984 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 985 struct sock *sk, 986 struct sk_buff *skb) 987 { 988 struct net *net = dev_net(vrf_dev); 989 int err; 990 991 skb->dev = vrf_dev; 992 993 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 994 skb, NULL, vrf_dev, vrf_ip_out_direct_finish); 995 996 if (likely(err == 1)) 997 err = vrf_output_direct(net, sk, skb); 998 999 if (likely(err == 1)) 1000 return skb; 1001 1002 return NULL; 1003 } 1004 1005 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 1006 struct sock *sk, 1007 struct sk_buff *skb) 1008 { 1009 /* don't divert multicast or local broadcast */ 1010 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 1011 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 1012 return skb; 1013 1014 vrf_nf_set_untracked(skb); 1015 1016 if (qdisc_tx_is_default(vrf_dev) || 1017 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 1018 return vrf_ip_out_direct(vrf_dev, sk, skb); 1019 1020 return vrf_ip_out_redirect(vrf_dev, skb); 1021 } 1022 1023 /* called with rcu lock held */ 1024 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 1025 struct sock *sk, 1026 struct sk_buff *skb, 1027 u16 proto) 1028 { 1029 switch (proto) { 1030 case AF_INET: 1031 return vrf_ip_out(vrf_dev, sk, skb); 1032 case AF_INET6: 1033 return vrf_ip6_out(vrf_dev, sk, skb); 1034 } 1035 1036 return skb; 1037 } 1038 1039 /* holding rtnl */ 1040 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 1041 { 1042 struct rtable *rth = rtnl_dereference(vrf->rth); 1043 struct net *net = dev_net(dev); 1044 struct dst_entry *dst; 1045 1046 RCU_INIT_POINTER(vrf->rth, NULL); 1047 synchronize_rcu(); 1048 1049 /* move dev in dst's to loopback so this VRF device can be deleted 1050 * - based on dst_ifdown 1051 */ 1052 if (rth) { 1053 dst = &rth->dst; 1054 netdev_ref_replace(dst->dev, net->loopback_dev, 1055 &dst->dev_tracker, GFP_KERNEL); 1056 dst->dev = net->loopback_dev; 1057 dst_release(dst); 1058 } 1059 } 1060 1061 static int vrf_rtable_create(struct net_device *dev) 1062 { 1063 struct net_vrf *vrf = netdev_priv(dev); 1064 struct rtable *rth; 1065 1066 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 1067 return -ENOMEM; 1068 1069 /* create a dst for routing packets out through a VRF device */ 1070 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1); 1071 if (!rth) 1072 return -ENOMEM; 1073 1074 rth->dst.output = vrf_output; 1075 1076 rcu_assign_pointer(vrf->rth, rth); 1077 1078 return 0; 1079 } 1080 1081 /**************************** device handling ********************/ 1082 1083 /* cycle interface to flush neighbor cache and move routes across tables */ 1084 static void cycle_netdev(struct net_device *dev, 1085 struct netlink_ext_ack *extack) 1086 { 1087 unsigned int flags = dev->flags; 1088 int ret; 1089 1090 if (!netif_running(dev)) 1091 return; 1092 1093 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 1094 if (ret >= 0) 1095 ret = dev_change_flags(dev, flags, extack); 1096 1097 if (ret < 0) { 1098 netdev_err(dev, 1099 "Failed to cycle device %s; route tables might be wrong!\n", 1100 dev->name); 1101 } 1102 } 1103 1104 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1105 struct netlink_ext_ack *extack) 1106 { 1107 int ret; 1108 1109 /* do not allow loopback device to be enslaved to a VRF. 1110 * The vrf device acts as the loopback for the vrf. 1111 */ 1112 if (port_dev == dev_net(dev)->loopback_dev) { 1113 NL_SET_ERR_MSG(extack, 1114 "Can not enslave loopback device to a VRF"); 1115 return -EOPNOTSUPP; 1116 } 1117 1118 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 1119 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 1120 if (ret < 0) 1121 goto err; 1122 1123 cycle_netdev(port_dev, extack); 1124 1125 return 0; 1126 1127 err: 1128 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1129 return ret; 1130 } 1131 1132 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1133 struct netlink_ext_ack *extack) 1134 { 1135 if (netif_is_l3_master(port_dev)) { 1136 NL_SET_ERR_MSG(extack, 1137 "Can not enslave an L3 master device to a VRF"); 1138 return -EINVAL; 1139 } 1140 1141 if (netif_is_l3_slave(port_dev)) 1142 return -EINVAL; 1143 1144 return do_vrf_add_slave(dev, port_dev, extack); 1145 } 1146 1147 /* inverse of do_vrf_add_slave */ 1148 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1149 { 1150 netdev_upper_dev_unlink(port_dev, dev); 1151 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1152 1153 cycle_netdev(port_dev, NULL); 1154 1155 return 0; 1156 } 1157 1158 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1159 { 1160 return do_vrf_del_slave(dev, port_dev); 1161 } 1162 1163 static void vrf_dev_uninit(struct net_device *dev) 1164 { 1165 struct net_vrf *vrf = netdev_priv(dev); 1166 1167 vrf_rtable_release(dev, vrf); 1168 vrf_rt6_release(dev, vrf); 1169 } 1170 1171 static int vrf_dev_init(struct net_device *dev) 1172 { 1173 struct net_vrf *vrf = netdev_priv(dev); 1174 1175 /* create the default dst which points back to us */ 1176 if (vrf_rtable_create(dev) != 0) 1177 goto out_nomem; 1178 1179 if (vrf_rt6_create(dev) != 0) 1180 goto out_rth; 1181 1182 dev->flags = IFF_MASTER | IFF_NOARP; 1183 1184 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 1185 dev->operstate = IF_OPER_UP; 1186 netdev_lockdep_set_classes(dev); 1187 return 0; 1188 1189 out_rth: 1190 vrf_rtable_release(dev, vrf); 1191 out_nomem: 1192 return -ENOMEM; 1193 } 1194 1195 static const struct net_device_ops vrf_netdev_ops = { 1196 .ndo_init = vrf_dev_init, 1197 .ndo_uninit = vrf_dev_uninit, 1198 .ndo_start_xmit = vrf_xmit, 1199 .ndo_set_mac_address = eth_mac_addr, 1200 .ndo_get_stats64 = vrf_get_stats64, 1201 .ndo_add_slave = vrf_add_slave, 1202 .ndo_del_slave = vrf_del_slave, 1203 }; 1204 1205 static u32 vrf_fib_table(const struct net_device *dev) 1206 { 1207 struct net_vrf *vrf = netdev_priv(dev); 1208 1209 return vrf->tb_id; 1210 } 1211 1212 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 1213 { 1214 kfree_skb(skb); 1215 return 0; 1216 } 1217 1218 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 1219 struct sk_buff *skb, 1220 struct net_device *dev) 1221 { 1222 struct net *net = dev_net(dev); 1223 1224 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 1225 skb = NULL; /* kfree_skb(skb) handled by nf code */ 1226 1227 return skb; 1228 } 1229 1230 static int vrf_prepare_mac_header(struct sk_buff *skb, 1231 struct net_device *vrf_dev, u16 proto) 1232 { 1233 struct ethhdr *eth; 1234 int err; 1235 1236 /* in general, we do not know if there is enough space in the head of 1237 * the packet for hosting the mac header. 1238 */ 1239 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); 1240 if (unlikely(err)) 1241 /* no space in the skb head */ 1242 return -ENOBUFS; 1243 1244 __skb_push(skb, ETH_HLEN); 1245 eth = (struct ethhdr *)skb->data; 1246 1247 skb_reset_mac_header(skb); 1248 skb_reset_mac_len(skb); 1249 1250 /* we set the ethernet destination and the source addresses to the 1251 * address of the VRF device. 1252 */ 1253 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr); 1254 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 1255 eth->h_proto = htons(proto); 1256 1257 /* the destination address of the Ethernet frame corresponds to the 1258 * address set on the VRF interface; therefore, the packet is intended 1259 * to be processed locally. 1260 */ 1261 skb->protocol = eth->h_proto; 1262 skb->pkt_type = PACKET_HOST; 1263 1264 skb_postpush_rcsum(skb, skb->data, ETH_HLEN); 1265 1266 skb_pull_inline(skb, ETH_HLEN); 1267 1268 return 0; 1269 } 1270 1271 /* prepare and add the mac header to the packet if it was not set previously. 1272 * In this way, packet sniffers such as tcpdump can parse the packet correctly. 1273 * If the mac header was already set, the original mac header is left 1274 * untouched and the function returns immediately. 1275 */ 1276 static int vrf_add_mac_header_if_unset(struct sk_buff *skb, 1277 struct net_device *vrf_dev, 1278 u16 proto, struct net_device *orig_dev) 1279 { 1280 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev)) 1281 return 0; 1282 1283 return vrf_prepare_mac_header(skb, vrf_dev, proto); 1284 } 1285 1286 #if IS_ENABLED(CONFIG_IPV6) 1287 /* neighbor handling is done with actual device; do not want 1288 * to flip skb->dev for those ndisc packets. This really fails 1289 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 1290 * a start. 1291 */ 1292 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 1293 { 1294 const struct ipv6hdr *iph = ipv6_hdr(skb); 1295 bool rc = false; 1296 1297 if (iph->nexthdr == NEXTHDR_ICMP) { 1298 const struct icmp6hdr *icmph; 1299 struct icmp6hdr _icmph; 1300 1301 icmph = skb_header_pointer(skb, sizeof(*iph), 1302 sizeof(_icmph), &_icmph); 1303 if (!icmph) 1304 goto out; 1305 1306 switch (icmph->icmp6_type) { 1307 case NDISC_ROUTER_SOLICITATION: 1308 case NDISC_ROUTER_ADVERTISEMENT: 1309 case NDISC_NEIGHBOUR_SOLICITATION: 1310 case NDISC_NEIGHBOUR_ADVERTISEMENT: 1311 case NDISC_REDIRECT: 1312 rc = true; 1313 break; 1314 } 1315 } 1316 1317 out: 1318 return rc; 1319 } 1320 1321 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 1322 const struct net_device *dev, 1323 struct flowi6 *fl6, 1324 int ifindex, 1325 const struct sk_buff *skb, 1326 int flags) 1327 { 1328 struct net_vrf *vrf = netdev_priv(dev); 1329 1330 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 1331 } 1332 1333 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 1334 int ifindex) 1335 { 1336 const struct ipv6hdr *iph = ipv6_hdr(skb); 1337 struct flowi6 fl6 = { 1338 .flowi6_iif = ifindex, 1339 .flowi6_mark = skb->mark, 1340 .flowi6_proto = iph->nexthdr, 1341 .daddr = iph->daddr, 1342 .saddr = iph->saddr, 1343 .flowlabel = ip6_flowinfo(iph), 1344 }; 1345 struct net *net = dev_net(vrf_dev); 1346 struct rt6_info *rt6; 1347 1348 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 1349 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 1350 if (unlikely(!rt6)) 1351 return; 1352 1353 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 1354 return; 1355 1356 skb_dst_set(skb, &rt6->dst); 1357 } 1358 1359 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1360 struct sk_buff *skb) 1361 { 1362 int orig_iif = skb->skb_iif; 1363 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1364 bool is_ndisc = ipv6_ndisc_frame(skb); 1365 1366 /* loopback, multicast & non-ND link-local traffic; do not push through 1367 * packet taps again. Reset pkt_type for upper layers to process skb. 1368 * For non-loopback strict packets, determine the dst using the original 1369 * ifindex. 1370 */ 1371 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 1372 skb->dev = vrf_dev; 1373 skb->skb_iif = vrf_dev->ifindex; 1374 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1375 1376 if (skb->pkt_type == PACKET_LOOPBACK) 1377 skb->pkt_type = PACKET_HOST; 1378 else 1379 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1380 1381 goto out; 1382 } 1383 1384 /* if packet is NDISC then keep the ingress interface */ 1385 if (!is_ndisc) { 1386 struct net_device *orig_dev = skb->dev; 1387 1388 vrf_rx_stats(vrf_dev, skb->len); 1389 skb->dev = vrf_dev; 1390 skb->skb_iif = vrf_dev->ifindex; 1391 1392 if (!list_empty(&vrf_dev->ptype_all)) { 1393 int err; 1394 1395 err = vrf_add_mac_header_if_unset(skb, vrf_dev, 1396 ETH_P_IPV6, 1397 orig_dev); 1398 if (likely(!err)) { 1399 skb_push(skb, skb->mac_len); 1400 dev_queue_xmit_nit(skb, vrf_dev); 1401 skb_pull(skb, skb->mac_len); 1402 } 1403 } 1404 1405 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1406 } 1407 1408 if (need_strict) 1409 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1410 1411 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1412 out: 1413 return skb; 1414 } 1415 1416 #else 1417 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1418 struct sk_buff *skb) 1419 { 1420 return skb; 1421 } 1422 #endif 1423 1424 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1425 struct sk_buff *skb) 1426 { 1427 struct net_device *orig_dev = skb->dev; 1428 1429 skb->dev = vrf_dev; 1430 skb->skb_iif = vrf_dev->ifindex; 1431 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1432 1433 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1434 goto out; 1435 1436 /* loopback traffic; do not push through packet taps again. 1437 * Reset pkt_type for upper layers to process skb 1438 */ 1439 if (skb->pkt_type == PACKET_LOOPBACK) { 1440 skb->pkt_type = PACKET_HOST; 1441 goto out; 1442 } 1443 1444 vrf_rx_stats(vrf_dev, skb->len); 1445 1446 if (!list_empty(&vrf_dev->ptype_all)) { 1447 int err; 1448 1449 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP, 1450 orig_dev); 1451 if (likely(!err)) { 1452 skb_push(skb, skb->mac_len); 1453 dev_queue_xmit_nit(skb, vrf_dev); 1454 skb_pull(skb, skb->mac_len); 1455 } 1456 } 1457 1458 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1459 out: 1460 return skb; 1461 } 1462 1463 /* called with rcu lock held */ 1464 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1465 struct sk_buff *skb, 1466 u16 proto) 1467 { 1468 switch (proto) { 1469 case AF_INET: 1470 return vrf_ip_rcv(vrf_dev, skb); 1471 case AF_INET6: 1472 return vrf_ip6_rcv(vrf_dev, skb); 1473 } 1474 1475 return skb; 1476 } 1477 1478 #if IS_ENABLED(CONFIG_IPV6) 1479 /* send to link-local or multicast address via interface enslaved to 1480 * VRF device. Force lookup to VRF table without changing flow struct 1481 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1482 * is taken on the dst by this function. 1483 */ 1484 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1485 struct flowi6 *fl6) 1486 { 1487 struct net *net = dev_net(dev); 1488 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1489 struct dst_entry *dst = NULL; 1490 struct rt6_info *rt; 1491 1492 /* VRF device does not have a link-local address and 1493 * sending packets to link-local or mcast addresses over 1494 * a VRF device does not make sense 1495 */ 1496 if (fl6->flowi6_oif == dev->ifindex) { 1497 dst = &net->ipv6.ip6_null_entry->dst; 1498 return dst; 1499 } 1500 1501 if (!ipv6_addr_any(&fl6->saddr)) 1502 flags |= RT6_LOOKUP_F_HAS_SADDR; 1503 1504 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1505 if (rt) 1506 dst = &rt->dst; 1507 1508 return dst; 1509 } 1510 #endif 1511 1512 static const struct l3mdev_ops vrf_l3mdev_ops = { 1513 .l3mdev_fib_table = vrf_fib_table, 1514 .l3mdev_l3_rcv = vrf_l3_rcv, 1515 .l3mdev_l3_out = vrf_l3_out, 1516 #if IS_ENABLED(CONFIG_IPV6) 1517 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1518 #endif 1519 }; 1520 1521 static void vrf_get_drvinfo(struct net_device *dev, 1522 struct ethtool_drvinfo *info) 1523 { 1524 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1525 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1526 } 1527 1528 static const struct ethtool_ops vrf_ethtool_ops = { 1529 .get_drvinfo = vrf_get_drvinfo, 1530 }; 1531 1532 static inline size_t vrf_fib_rule_nl_size(void) 1533 { 1534 size_t sz; 1535 1536 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1537 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1538 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1539 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1540 1541 return sz; 1542 } 1543 1544 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1545 { 1546 struct fib_rule_hdr *frh; 1547 struct nlmsghdr *nlh; 1548 struct sk_buff *skb; 1549 int err; 1550 1551 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && 1552 !ipv6_mod_enabled()) 1553 return 0; 1554 1555 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1556 if (!skb) 1557 return -ENOMEM; 1558 1559 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1560 if (!nlh) 1561 goto nla_put_failure; 1562 1563 /* rule only needs to appear once */ 1564 nlh->nlmsg_flags |= NLM_F_EXCL; 1565 1566 frh = nlmsg_data(nlh); 1567 memset(frh, 0, sizeof(*frh)); 1568 frh->family = family; 1569 frh->action = FR_ACT_TO_TBL; 1570 1571 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1572 goto nla_put_failure; 1573 1574 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1575 goto nla_put_failure; 1576 1577 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1578 goto nla_put_failure; 1579 1580 nlmsg_end(skb, nlh); 1581 1582 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1583 skb->sk = dev_net(dev)->rtnl; 1584 if (add_it) { 1585 err = fib_nl_newrule(skb, nlh, NULL); 1586 if (err == -EEXIST) 1587 err = 0; 1588 } else { 1589 err = fib_nl_delrule(skb, nlh, NULL); 1590 if (err == -ENOENT) 1591 err = 0; 1592 } 1593 nlmsg_free(skb); 1594 1595 return err; 1596 1597 nla_put_failure: 1598 nlmsg_free(skb); 1599 1600 return -EMSGSIZE; 1601 } 1602 1603 static int vrf_add_fib_rules(const struct net_device *dev) 1604 { 1605 int err; 1606 1607 err = vrf_fib_rule(dev, AF_INET, true); 1608 if (err < 0) 1609 goto out_err; 1610 1611 err = vrf_fib_rule(dev, AF_INET6, true); 1612 if (err < 0) 1613 goto ipv6_err; 1614 1615 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1616 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1617 if (err < 0) 1618 goto ipmr_err; 1619 #endif 1620 1621 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1622 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1623 if (err < 0) 1624 goto ip6mr_err; 1625 #endif 1626 1627 return 0; 1628 1629 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1630 ip6mr_err: 1631 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1632 #endif 1633 1634 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1635 ipmr_err: 1636 vrf_fib_rule(dev, AF_INET6, false); 1637 #endif 1638 1639 ipv6_err: 1640 vrf_fib_rule(dev, AF_INET, false); 1641 1642 out_err: 1643 netdev_err(dev, "Failed to add FIB rules.\n"); 1644 return err; 1645 } 1646 1647 static void vrf_setup(struct net_device *dev) 1648 { 1649 ether_setup(dev); 1650 1651 /* Initialize the device structure. */ 1652 dev->netdev_ops = &vrf_netdev_ops; 1653 dev->l3mdev_ops = &vrf_l3mdev_ops; 1654 dev->ethtool_ops = &vrf_ethtool_ops; 1655 dev->needs_free_netdev = true; 1656 1657 /* Fill in device structure with ethernet-generic values. */ 1658 eth_hw_addr_random(dev); 1659 1660 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1661 dev->features |= NETIF_F_LLTX; 1662 1663 /* don't allow vrf devices to change network namespaces. */ 1664 dev->features |= NETIF_F_NETNS_LOCAL; 1665 1666 /* does not make sense for a VLAN to be added to a vrf device */ 1667 dev->features |= NETIF_F_VLAN_CHALLENGED; 1668 1669 /* enable offload features */ 1670 dev->features |= NETIF_F_GSO_SOFTWARE; 1671 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1672 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1673 1674 dev->hw_features = dev->features; 1675 dev->hw_enc_features = dev->features; 1676 1677 /* default to no qdisc; user can add if desired */ 1678 dev->priv_flags |= IFF_NO_QUEUE; 1679 dev->priv_flags |= IFF_NO_RX_HANDLER; 1680 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1681 1682 /* VRF devices do not care about MTU, but if the MTU is set 1683 * too low then the ipv4 and ipv6 protocols are disabled 1684 * which breaks networking. 1685 */ 1686 dev->min_mtu = IPV6_MIN_MTU; 1687 dev->max_mtu = IP6_MAX_MTU; 1688 dev->mtu = dev->max_mtu; 1689 1690 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS; 1691 } 1692 1693 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1694 struct netlink_ext_ack *extack) 1695 { 1696 if (tb[IFLA_ADDRESS]) { 1697 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1698 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1699 return -EINVAL; 1700 } 1701 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1702 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1703 return -EADDRNOTAVAIL; 1704 } 1705 } 1706 return 0; 1707 } 1708 1709 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1710 { 1711 struct net_device *port_dev; 1712 struct list_head *iter; 1713 1714 netdev_for_each_lower_dev(dev, port_dev, iter) 1715 vrf_del_slave(dev, port_dev); 1716 1717 vrf_map_unregister_dev(dev); 1718 1719 unregister_netdevice_queue(dev, head); 1720 } 1721 1722 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1723 struct nlattr *tb[], struct nlattr *data[], 1724 struct netlink_ext_ack *extack) 1725 { 1726 struct net_vrf *vrf = netdev_priv(dev); 1727 struct netns_vrf *nn_vrf; 1728 bool *add_fib_rules; 1729 struct net *net; 1730 int err; 1731 1732 if (!data || !data[IFLA_VRF_TABLE]) { 1733 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1734 return -EINVAL; 1735 } 1736 1737 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1738 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1739 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1740 "Invalid VRF table id"); 1741 return -EINVAL; 1742 } 1743 1744 dev->priv_flags |= IFF_L3MDEV_MASTER; 1745 1746 err = register_netdevice(dev); 1747 if (err) 1748 goto out; 1749 1750 /* mapping between table_id and vrf; 1751 * note: such binding could not be done in the dev init function 1752 * because dev->ifindex id is not available yet. 1753 */ 1754 vrf->ifindex = dev->ifindex; 1755 1756 err = vrf_map_register_dev(dev, extack); 1757 if (err) { 1758 unregister_netdevice(dev); 1759 goto out; 1760 } 1761 1762 net = dev_net(dev); 1763 nn_vrf = net_generic(net, vrf_net_id); 1764 1765 add_fib_rules = &nn_vrf->add_fib_rules; 1766 if (*add_fib_rules) { 1767 err = vrf_add_fib_rules(dev); 1768 if (err) { 1769 vrf_map_unregister_dev(dev); 1770 unregister_netdevice(dev); 1771 goto out; 1772 } 1773 *add_fib_rules = false; 1774 } 1775 1776 out: 1777 return err; 1778 } 1779 1780 static size_t vrf_nl_getsize(const struct net_device *dev) 1781 { 1782 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1783 } 1784 1785 static int vrf_fillinfo(struct sk_buff *skb, 1786 const struct net_device *dev) 1787 { 1788 struct net_vrf *vrf = netdev_priv(dev); 1789 1790 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1791 } 1792 1793 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1794 const struct net_device *slave_dev) 1795 { 1796 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1797 } 1798 1799 static int vrf_fill_slave_info(struct sk_buff *skb, 1800 const struct net_device *vrf_dev, 1801 const struct net_device *slave_dev) 1802 { 1803 struct net_vrf *vrf = netdev_priv(vrf_dev); 1804 1805 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1806 return -EMSGSIZE; 1807 1808 return 0; 1809 } 1810 1811 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1812 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1813 }; 1814 1815 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1816 .kind = DRV_NAME, 1817 .priv_size = sizeof(struct net_vrf), 1818 1819 .get_size = vrf_nl_getsize, 1820 .policy = vrf_nl_policy, 1821 .validate = vrf_validate, 1822 .fill_info = vrf_fillinfo, 1823 1824 .get_slave_size = vrf_get_slave_size, 1825 .fill_slave_info = vrf_fill_slave_info, 1826 1827 .newlink = vrf_newlink, 1828 .dellink = vrf_dellink, 1829 .setup = vrf_setup, 1830 .maxtype = IFLA_VRF_MAX, 1831 }; 1832 1833 static int vrf_device_event(struct notifier_block *unused, 1834 unsigned long event, void *ptr) 1835 { 1836 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1837 1838 /* only care about unregister events to drop slave references */ 1839 if (event == NETDEV_UNREGISTER) { 1840 struct net_device *vrf_dev; 1841 1842 if (!netif_is_l3_slave(dev)) 1843 goto out; 1844 1845 vrf_dev = netdev_master_upper_dev_get(dev); 1846 vrf_del_slave(vrf_dev, dev); 1847 } 1848 out: 1849 return NOTIFY_DONE; 1850 } 1851 1852 static struct notifier_block vrf_notifier_block __read_mostly = { 1853 .notifier_call = vrf_device_event, 1854 }; 1855 1856 static int vrf_map_init(struct vrf_map *vmap) 1857 { 1858 spin_lock_init(&vmap->vmap_lock); 1859 hash_init(vmap->ht); 1860 1861 vmap->strict_mode = false; 1862 1863 return 0; 1864 } 1865 1866 #ifdef CONFIG_SYSCTL 1867 static bool vrf_strict_mode(struct vrf_map *vmap) 1868 { 1869 bool strict_mode; 1870 1871 vrf_map_lock(vmap); 1872 strict_mode = vmap->strict_mode; 1873 vrf_map_unlock(vmap); 1874 1875 return strict_mode; 1876 } 1877 1878 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) 1879 { 1880 bool *cur_mode; 1881 int res = 0; 1882 1883 vrf_map_lock(vmap); 1884 1885 cur_mode = &vmap->strict_mode; 1886 if (*cur_mode == new_mode) 1887 goto unlock; 1888 1889 if (*cur_mode) { 1890 /* disable strict mode */ 1891 *cur_mode = false; 1892 } else { 1893 if (vmap->shared_tables) { 1894 /* we cannot allow strict_mode because there are some 1895 * vrfs that share one or more tables. 1896 */ 1897 res = -EBUSY; 1898 goto unlock; 1899 } 1900 1901 /* no tables are shared among vrfs, so we can go back 1902 * to 1:1 association between a vrf with its table. 1903 */ 1904 *cur_mode = true; 1905 } 1906 1907 unlock: 1908 vrf_map_unlock(vmap); 1909 1910 return res; 1911 } 1912 1913 static int vrf_shared_table_handler(struct ctl_table *table, int write, 1914 void *buffer, size_t *lenp, loff_t *ppos) 1915 { 1916 struct net *net = (struct net *)table->extra1; 1917 struct vrf_map *vmap = netns_vrf_map(net); 1918 int proc_strict_mode = 0; 1919 struct ctl_table tmp = { 1920 .procname = table->procname, 1921 .data = &proc_strict_mode, 1922 .maxlen = sizeof(int), 1923 .mode = table->mode, 1924 .extra1 = SYSCTL_ZERO, 1925 .extra2 = SYSCTL_ONE, 1926 }; 1927 int ret; 1928 1929 if (!write) 1930 proc_strict_mode = vrf_strict_mode(vmap); 1931 1932 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 1933 1934 if (write && ret == 0) 1935 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode); 1936 1937 return ret; 1938 } 1939 1940 static const struct ctl_table vrf_table[] = { 1941 { 1942 .procname = "strict_mode", 1943 .data = NULL, 1944 .maxlen = sizeof(int), 1945 .mode = 0644, 1946 .proc_handler = vrf_shared_table_handler, 1947 /* set by the vrf_netns_init */ 1948 .extra1 = NULL, 1949 }, 1950 { }, 1951 }; 1952 1953 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1954 { 1955 struct ctl_table *table; 1956 1957 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); 1958 if (!table) 1959 return -ENOMEM; 1960 1961 /* init the extra1 parameter with the reference to current netns */ 1962 table[0].extra1 = net; 1963 1964 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table, 1965 ARRAY_SIZE(vrf_table)); 1966 if (!nn_vrf->ctl_hdr) { 1967 kfree(table); 1968 return -ENOMEM; 1969 } 1970 1971 return 0; 1972 } 1973 1974 static void vrf_netns_exit_sysctl(struct net *net) 1975 { 1976 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 1977 struct ctl_table *table; 1978 1979 table = nn_vrf->ctl_hdr->ctl_table_arg; 1980 unregister_net_sysctl_table(nn_vrf->ctl_hdr); 1981 kfree(table); 1982 } 1983 #else 1984 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1985 { 1986 return 0; 1987 } 1988 1989 static void vrf_netns_exit_sysctl(struct net *net) 1990 { 1991 } 1992 #endif 1993 1994 /* Initialize per network namespace state */ 1995 static int __net_init vrf_netns_init(struct net *net) 1996 { 1997 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 1998 1999 nn_vrf->add_fib_rules = true; 2000 vrf_map_init(&nn_vrf->vmap); 2001 2002 return vrf_netns_init_sysctl(net, nn_vrf); 2003 } 2004 2005 static void __net_exit vrf_netns_exit(struct net *net) 2006 { 2007 vrf_netns_exit_sysctl(net); 2008 } 2009 2010 static struct pernet_operations vrf_net_ops __net_initdata = { 2011 .init = vrf_netns_init, 2012 .exit = vrf_netns_exit, 2013 .id = &vrf_net_id, 2014 .size = sizeof(struct netns_vrf), 2015 }; 2016 2017 static int __init vrf_init_module(void) 2018 { 2019 int rc; 2020 2021 register_netdevice_notifier(&vrf_notifier_block); 2022 2023 rc = register_pernet_subsys(&vrf_net_ops); 2024 if (rc < 0) 2025 goto error; 2026 2027 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF, 2028 vrf_ifindex_lookup_by_table_id); 2029 if (rc < 0) 2030 goto unreg_pernet; 2031 2032 rc = rtnl_link_register(&vrf_link_ops); 2033 if (rc < 0) 2034 goto table_lookup_unreg; 2035 2036 return 0; 2037 2038 table_lookup_unreg: 2039 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF, 2040 vrf_ifindex_lookup_by_table_id); 2041 2042 unreg_pernet: 2043 unregister_pernet_subsys(&vrf_net_ops); 2044 2045 error: 2046 unregister_netdevice_notifier(&vrf_notifier_block); 2047 return rc; 2048 } 2049 2050 module_init(vrf_init_module); 2051 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 2052 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 2053 MODULE_LICENSE("GPL"); 2054 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 2055 MODULE_VERSION(DRV_VERSION); 2056