1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_fib.h> 34 #include <net/ip6_route.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/l3mdev.h> 38 #include <net/fib_rules.h> 39 #include <net/netns/generic.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.0" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 static unsigned int vrf_net_id; 47 48 struct net_vrf { 49 struct rtable __rcu *rth; 50 struct rt6_info __rcu *rt6; 51 #if IS_ENABLED(CONFIG_IPV6) 52 struct fib6_table *fib6_table; 53 #endif 54 u32 tb_id; 55 }; 56 57 struct pcpu_dstats { 58 u64 tx_pkts; 59 u64 tx_bytes; 60 u64 tx_drps; 61 u64 rx_pkts; 62 u64 rx_bytes; 63 u64 rx_drps; 64 struct u64_stats_sync syncp; 65 }; 66 67 static void vrf_rx_stats(struct net_device *dev, int len) 68 { 69 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 70 71 u64_stats_update_begin(&dstats->syncp); 72 dstats->rx_pkts++; 73 dstats->rx_bytes += len; 74 u64_stats_update_end(&dstats->syncp); 75 } 76 77 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 78 { 79 vrf_dev->stats.tx_errors++; 80 kfree_skb(skb); 81 } 82 83 static void vrf_get_stats64(struct net_device *dev, 84 struct rtnl_link_stats64 *stats) 85 { 86 int i; 87 88 for_each_possible_cpu(i) { 89 const struct pcpu_dstats *dstats; 90 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 91 unsigned int start; 92 93 dstats = per_cpu_ptr(dev->dstats, i); 94 do { 95 start = u64_stats_fetch_begin_irq(&dstats->syncp); 96 tbytes = dstats->tx_bytes; 97 tpkts = dstats->tx_pkts; 98 tdrops = dstats->tx_drps; 99 rbytes = dstats->rx_bytes; 100 rpkts = dstats->rx_pkts; 101 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 102 stats->tx_bytes += tbytes; 103 stats->tx_packets += tpkts; 104 stats->tx_dropped += tdrops; 105 stats->rx_bytes += rbytes; 106 stats->rx_packets += rpkts; 107 } 108 } 109 110 /* by default VRF devices do not have a qdisc and are expected 111 * to be created with only a single queue. 112 */ 113 static bool qdisc_tx_is_default(const struct net_device *dev) 114 { 115 struct netdev_queue *txq; 116 struct Qdisc *qdisc; 117 118 if (dev->num_tx_queues > 1) 119 return false; 120 121 txq = netdev_get_tx_queue(dev, 0); 122 qdisc = rcu_access_pointer(txq->qdisc); 123 124 return !qdisc->enqueue; 125 } 126 127 /* Local traffic destined to local address. Reinsert the packet to rx 128 * path, similar to loopback handling. 129 */ 130 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 131 struct dst_entry *dst) 132 { 133 int len = skb->len; 134 135 skb_orphan(skb); 136 137 skb_dst_set(skb, dst); 138 139 /* set pkt_type to avoid skb hitting packet taps twice - 140 * once on Tx and again in Rx processing 141 */ 142 skb->pkt_type = PACKET_LOOPBACK; 143 144 skb->protocol = eth_type_trans(skb, dev); 145 146 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 147 vrf_rx_stats(dev, len); 148 else 149 this_cpu_inc(dev->dstats->rx_drps); 150 151 return NETDEV_TX_OK; 152 } 153 154 #if IS_ENABLED(CONFIG_IPV6) 155 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 156 struct sk_buff *skb) 157 { 158 int err; 159 160 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 161 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 162 163 if (likely(err == 1)) 164 err = dst_output(net, sk, skb); 165 166 return err; 167 } 168 169 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 170 struct net_device *dev) 171 { 172 const struct ipv6hdr *iph = ipv6_hdr(skb); 173 struct net *net = dev_net(skb->dev); 174 struct flowi6 fl6 = { 175 /* needed to match OIF rule */ 176 .flowi6_oif = dev->ifindex, 177 .flowi6_iif = LOOPBACK_IFINDEX, 178 .daddr = iph->daddr, 179 .saddr = iph->saddr, 180 .flowlabel = ip6_flowinfo(iph), 181 .flowi6_mark = skb->mark, 182 .flowi6_proto = iph->nexthdr, 183 .flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF, 184 }; 185 int ret = NET_XMIT_DROP; 186 struct dst_entry *dst; 187 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 188 189 dst = ip6_route_output(net, NULL, &fl6); 190 if (dst == dst_null) 191 goto err; 192 193 skb_dst_drop(skb); 194 195 /* if dst.dev is loopback or the VRF device again this is locally 196 * originated traffic destined to a local address. Short circuit 197 * to Rx path 198 */ 199 if (dst->dev == dev) 200 return vrf_local_xmit(skb, dev, dst); 201 202 skb_dst_set(skb, dst); 203 204 /* strip the ethernet header added for pass through VRF device */ 205 __skb_pull(skb, skb_network_offset(skb)); 206 207 ret = vrf_ip6_local_out(net, skb->sk, skb); 208 if (unlikely(net_xmit_eval(ret))) 209 dev->stats.tx_errors++; 210 else 211 ret = NET_XMIT_SUCCESS; 212 213 return ret; 214 err: 215 vrf_tx_error(dev, skb); 216 return NET_XMIT_DROP; 217 } 218 #else 219 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 220 struct net_device *dev) 221 { 222 vrf_tx_error(dev, skb); 223 return NET_XMIT_DROP; 224 } 225 #endif 226 227 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 228 static int vrf_ip_local_out(struct net *net, struct sock *sk, 229 struct sk_buff *skb) 230 { 231 int err; 232 233 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 234 skb, NULL, skb_dst(skb)->dev, dst_output); 235 if (likely(err == 1)) 236 err = dst_output(net, sk, skb); 237 238 return err; 239 } 240 241 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 242 struct net_device *vrf_dev) 243 { 244 struct iphdr *ip4h = ip_hdr(skb); 245 int ret = NET_XMIT_DROP; 246 struct flowi4 fl4 = { 247 /* needed to match OIF rule */ 248 .flowi4_oif = vrf_dev->ifindex, 249 .flowi4_iif = LOOPBACK_IFINDEX, 250 .flowi4_tos = RT_TOS(ip4h->tos), 251 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF, 252 .flowi4_proto = ip4h->protocol, 253 .daddr = ip4h->daddr, 254 .saddr = ip4h->saddr, 255 }; 256 struct net *net = dev_net(vrf_dev); 257 struct rtable *rt; 258 259 rt = ip_route_output_flow(net, &fl4, NULL); 260 if (IS_ERR(rt)) 261 goto err; 262 263 skb_dst_drop(skb); 264 265 /* if dst.dev is loopback or the VRF device again this is locally 266 * originated traffic destined to a local address. Short circuit 267 * to Rx path 268 */ 269 if (rt->dst.dev == vrf_dev) 270 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 271 272 skb_dst_set(skb, &rt->dst); 273 274 /* strip the ethernet header added for pass through VRF device */ 275 __skb_pull(skb, skb_network_offset(skb)); 276 277 if (!ip4h->saddr) { 278 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 279 RT_SCOPE_LINK); 280 } 281 282 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 283 if (unlikely(net_xmit_eval(ret))) 284 vrf_dev->stats.tx_errors++; 285 else 286 ret = NET_XMIT_SUCCESS; 287 288 out: 289 return ret; 290 err: 291 vrf_tx_error(vrf_dev, skb); 292 goto out; 293 } 294 295 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 296 { 297 switch (skb->protocol) { 298 case htons(ETH_P_IP): 299 return vrf_process_v4_outbound(skb, dev); 300 case htons(ETH_P_IPV6): 301 return vrf_process_v6_outbound(skb, dev); 302 default: 303 vrf_tx_error(dev, skb); 304 return NET_XMIT_DROP; 305 } 306 } 307 308 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 309 { 310 int len = skb->len; 311 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 312 313 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 314 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 315 316 u64_stats_update_begin(&dstats->syncp); 317 dstats->tx_pkts++; 318 dstats->tx_bytes += len; 319 u64_stats_update_end(&dstats->syncp); 320 } else { 321 this_cpu_inc(dev->dstats->tx_drps); 322 } 323 324 return ret; 325 } 326 327 static int vrf_finish_direct(struct net *net, struct sock *sk, 328 struct sk_buff *skb) 329 { 330 struct net_device *vrf_dev = skb->dev; 331 332 if (!list_empty(&vrf_dev->ptype_all) && 333 likely(skb_headroom(skb) >= ETH_HLEN)) { 334 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 335 336 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 337 eth_zero_addr(eth->h_dest); 338 eth->h_proto = skb->protocol; 339 340 rcu_read_lock_bh(); 341 dev_queue_xmit_nit(skb, vrf_dev); 342 rcu_read_unlock_bh(); 343 344 skb_pull(skb, ETH_HLEN); 345 } 346 347 return 1; 348 } 349 350 #if IS_ENABLED(CONFIG_IPV6) 351 /* modelled after ip6_finish_output2 */ 352 static int vrf_finish_output6(struct net *net, struct sock *sk, 353 struct sk_buff *skb) 354 { 355 struct dst_entry *dst = skb_dst(skb); 356 struct net_device *dev = dst->dev; 357 struct neighbour *neigh; 358 struct in6_addr *nexthop; 359 int ret; 360 361 nf_reset(skb); 362 363 skb->protocol = htons(ETH_P_IPV6); 364 skb->dev = dev; 365 366 rcu_read_lock_bh(); 367 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 368 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 369 if (unlikely(!neigh)) 370 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 371 if (!IS_ERR(neigh)) { 372 sock_confirm_neigh(skb, neigh); 373 ret = neigh_output(neigh, skb, false); 374 rcu_read_unlock_bh(); 375 return ret; 376 } 377 rcu_read_unlock_bh(); 378 379 IP6_INC_STATS(dev_net(dst->dev), 380 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 381 kfree_skb(skb); 382 return -EINVAL; 383 } 384 385 /* modelled after ip6_output */ 386 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 387 { 388 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 389 net, sk, skb, NULL, skb_dst(skb)->dev, 390 vrf_finish_output6, 391 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 392 } 393 394 /* set dst on skb to send packet to us via dev_xmit path. Allows 395 * packet to go through device based features such as qdisc, netfilter 396 * hooks and packet sockets with skb->dev set to vrf device. 397 */ 398 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 399 struct sk_buff *skb) 400 { 401 struct net_vrf *vrf = netdev_priv(vrf_dev); 402 struct dst_entry *dst = NULL; 403 struct rt6_info *rt6; 404 405 rcu_read_lock(); 406 407 rt6 = rcu_dereference(vrf->rt6); 408 if (likely(rt6)) { 409 dst = &rt6->dst; 410 dst_hold(dst); 411 } 412 413 rcu_read_unlock(); 414 415 if (unlikely(!dst)) { 416 vrf_tx_error(vrf_dev, skb); 417 return NULL; 418 } 419 420 skb_dst_drop(skb); 421 skb_dst_set(skb, dst); 422 423 return skb; 424 } 425 426 static int vrf_output6_direct(struct net *net, struct sock *sk, 427 struct sk_buff *skb) 428 { 429 skb->protocol = htons(ETH_P_IPV6); 430 431 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 432 net, sk, skb, NULL, skb->dev, 433 vrf_finish_direct, 434 !(IPCB(skb)->flags & IPSKB_REROUTED)); 435 } 436 437 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 438 struct sock *sk, 439 struct sk_buff *skb) 440 { 441 struct net *net = dev_net(vrf_dev); 442 int err; 443 444 skb->dev = vrf_dev; 445 446 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 447 skb, NULL, vrf_dev, vrf_output6_direct); 448 449 if (likely(err == 1)) 450 err = vrf_output6_direct(net, sk, skb); 451 452 /* reset skb device */ 453 if (likely(err == 1)) 454 nf_reset(skb); 455 else 456 skb = NULL; 457 458 return skb; 459 } 460 461 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 462 struct sock *sk, 463 struct sk_buff *skb) 464 { 465 /* don't divert link scope packets */ 466 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 467 return skb; 468 469 if (qdisc_tx_is_default(vrf_dev)) 470 return vrf_ip6_out_direct(vrf_dev, sk, skb); 471 472 return vrf_ip6_out_redirect(vrf_dev, skb); 473 } 474 475 /* holding rtnl */ 476 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 477 { 478 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 479 struct net *net = dev_net(dev); 480 struct dst_entry *dst; 481 482 RCU_INIT_POINTER(vrf->rt6, NULL); 483 synchronize_rcu(); 484 485 /* move dev in dst's to loopback so this VRF device can be deleted 486 * - based on dst_ifdown 487 */ 488 if (rt6) { 489 dst = &rt6->dst; 490 dev_put(dst->dev); 491 dst->dev = net->loopback_dev; 492 dev_hold(dst->dev); 493 dst_release(dst); 494 } 495 } 496 497 static int vrf_rt6_create(struct net_device *dev) 498 { 499 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM; 500 struct net_vrf *vrf = netdev_priv(dev); 501 struct net *net = dev_net(dev); 502 struct rt6_info *rt6; 503 int rc = -ENOMEM; 504 505 /* IPv6 can be CONFIG enabled and then disabled runtime */ 506 if (!ipv6_mod_enabled()) 507 return 0; 508 509 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 510 if (!vrf->fib6_table) 511 goto out; 512 513 /* create a dst for routing packets out a VRF device */ 514 rt6 = ip6_dst_alloc(net, dev, flags); 515 if (!rt6) 516 goto out; 517 518 rt6->dst.output = vrf_output6; 519 520 rcu_assign_pointer(vrf->rt6, rt6); 521 522 rc = 0; 523 out: 524 return rc; 525 } 526 #else 527 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 528 struct sock *sk, 529 struct sk_buff *skb) 530 { 531 return skb; 532 } 533 534 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 535 { 536 } 537 538 static int vrf_rt6_create(struct net_device *dev) 539 { 540 return 0; 541 } 542 #endif 543 544 /* modelled after ip_finish_output2 */ 545 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 546 { 547 struct dst_entry *dst = skb_dst(skb); 548 struct rtable *rt = (struct rtable *)dst; 549 struct net_device *dev = dst->dev; 550 unsigned int hh_len = LL_RESERVED_SPACE(dev); 551 struct neighbour *neigh; 552 bool is_v6gw = false; 553 int ret = -EINVAL; 554 555 nf_reset(skb); 556 557 /* Be paranoid, rather than too clever. */ 558 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 559 struct sk_buff *skb2; 560 561 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 562 if (!skb2) { 563 ret = -ENOMEM; 564 goto err; 565 } 566 if (skb->sk) 567 skb_set_owner_w(skb2, skb->sk); 568 569 consume_skb(skb); 570 skb = skb2; 571 } 572 573 rcu_read_lock_bh(); 574 575 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 576 if (!IS_ERR(neigh)) { 577 sock_confirm_neigh(skb, neigh); 578 /* if crossing protocols, can not use the cached header */ 579 ret = neigh_output(neigh, skb, is_v6gw); 580 rcu_read_unlock_bh(); 581 return ret; 582 } 583 584 rcu_read_unlock_bh(); 585 err: 586 vrf_tx_error(skb->dev, skb); 587 return ret; 588 } 589 590 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 591 { 592 struct net_device *dev = skb_dst(skb)->dev; 593 594 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 595 596 skb->dev = dev; 597 skb->protocol = htons(ETH_P_IP); 598 599 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 600 net, sk, skb, NULL, dev, 601 vrf_finish_output, 602 !(IPCB(skb)->flags & IPSKB_REROUTED)); 603 } 604 605 /* set dst on skb to send packet to us via dev_xmit path. Allows 606 * packet to go through device based features such as qdisc, netfilter 607 * hooks and packet sockets with skb->dev set to vrf device. 608 */ 609 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 610 struct sk_buff *skb) 611 { 612 struct net_vrf *vrf = netdev_priv(vrf_dev); 613 struct dst_entry *dst = NULL; 614 struct rtable *rth; 615 616 rcu_read_lock(); 617 618 rth = rcu_dereference(vrf->rth); 619 if (likely(rth)) { 620 dst = &rth->dst; 621 dst_hold(dst); 622 } 623 624 rcu_read_unlock(); 625 626 if (unlikely(!dst)) { 627 vrf_tx_error(vrf_dev, skb); 628 return NULL; 629 } 630 631 skb_dst_drop(skb); 632 skb_dst_set(skb, dst); 633 634 return skb; 635 } 636 637 static int vrf_output_direct(struct net *net, struct sock *sk, 638 struct sk_buff *skb) 639 { 640 skb->protocol = htons(ETH_P_IP); 641 642 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 643 net, sk, skb, NULL, skb->dev, 644 vrf_finish_direct, 645 !(IPCB(skb)->flags & IPSKB_REROUTED)); 646 } 647 648 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 649 struct sock *sk, 650 struct sk_buff *skb) 651 { 652 struct net *net = dev_net(vrf_dev); 653 int err; 654 655 skb->dev = vrf_dev; 656 657 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 658 skb, NULL, vrf_dev, vrf_output_direct); 659 660 if (likely(err == 1)) 661 err = vrf_output_direct(net, sk, skb); 662 663 /* reset skb device */ 664 if (likely(err == 1)) 665 nf_reset(skb); 666 else 667 skb = NULL; 668 669 return skb; 670 } 671 672 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 673 struct sock *sk, 674 struct sk_buff *skb) 675 { 676 /* don't divert multicast or local broadcast */ 677 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 678 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 679 return skb; 680 681 if (qdisc_tx_is_default(vrf_dev)) 682 return vrf_ip_out_direct(vrf_dev, sk, skb); 683 684 return vrf_ip_out_redirect(vrf_dev, skb); 685 } 686 687 /* called with rcu lock held */ 688 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 689 struct sock *sk, 690 struct sk_buff *skb, 691 u16 proto) 692 { 693 switch (proto) { 694 case AF_INET: 695 return vrf_ip_out(vrf_dev, sk, skb); 696 case AF_INET6: 697 return vrf_ip6_out(vrf_dev, sk, skb); 698 } 699 700 return skb; 701 } 702 703 /* holding rtnl */ 704 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 705 { 706 struct rtable *rth = rtnl_dereference(vrf->rth); 707 struct net *net = dev_net(dev); 708 struct dst_entry *dst; 709 710 RCU_INIT_POINTER(vrf->rth, NULL); 711 synchronize_rcu(); 712 713 /* move dev in dst's to loopback so this VRF device can be deleted 714 * - based on dst_ifdown 715 */ 716 if (rth) { 717 dst = &rth->dst; 718 dev_put(dst->dev); 719 dst->dev = net->loopback_dev; 720 dev_hold(dst->dev); 721 dst_release(dst); 722 } 723 } 724 725 static int vrf_rtable_create(struct net_device *dev) 726 { 727 struct net_vrf *vrf = netdev_priv(dev); 728 struct rtable *rth; 729 730 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 731 return -ENOMEM; 732 733 /* create a dst for routing packets out through a VRF device */ 734 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 735 if (!rth) 736 return -ENOMEM; 737 738 rth->dst.output = vrf_output; 739 740 rcu_assign_pointer(vrf->rth, rth); 741 742 return 0; 743 } 744 745 /**************************** device handling ********************/ 746 747 /* cycle interface to flush neighbor cache and move routes across tables */ 748 static void cycle_netdev(struct net_device *dev, 749 struct netlink_ext_ack *extack) 750 { 751 unsigned int flags = dev->flags; 752 int ret; 753 754 if (!netif_running(dev)) 755 return; 756 757 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 758 if (ret >= 0) 759 ret = dev_change_flags(dev, flags, extack); 760 761 if (ret < 0) { 762 netdev_err(dev, 763 "Failed to cycle device %s; route tables might be wrong!\n", 764 dev->name); 765 } 766 } 767 768 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 769 struct netlink_ext_ack *extack) 770 { 771 int ret; 772 773 /* do not allow loopback device to be enslaved to a VRF. 774 * The vrf device acts as the loopback for the vrf. 775 */ 776 if (port_dev == dev_net(dev)->loopback_dev) { 777 NL_SET_ERR_MSG(extack, 778 "Can not enslave loopback device to a VRF"); 779 return -EOPNOTSUPP; 780 } 781 782 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 783 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 784 if (ret < 0) 785 goto err; 786 787 cycle_netdev(port_dev, extack); 788 789 return 0; 790 791 err: 792 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 793 return ret; 794 } 795 796 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 797 struct netlink_ext_ack *extack) 798 { 799 if (netif_is_l3_master(port_dev)) { 800 NL_SET_ERR_MSG(extack, 801 "Can not enslave an L3 master device to a VRF"); 802 return -EINVAL; 803 } 804 805 if (netif_is_l3_slave(port_dev)) 806 return -EINVAL; 807 808 return do_vrf_add_slave(dev, port_dev, extack); 809 } 810 811 /* inverse of do_vrf_add_slave */ 812 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 813 { 814 netdev_upper_dev_unlink(port_dev, dev); 815 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 816 817 cycle_netdev(port_dev, NULL); 818 819 return 0; 820 } 821 822 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 823 { 824 return do_vrf_del_slave(dev, port_dev); 825 } 826 827 static void vrf_dev_uninit(struct net_device *dev) 828 { 829 struct net_vrf *vrf = netdev_priv(dev); 830 831 vrf_rtable_release(dev, vrf); 832 vrf_rt6_release(dev, vrf); 833 834 free_percpu(dev->dstats); 835 dev->dstats = NULL; 836 } 837 838 static int vrf_dev_init(struct net_device *dev) 839 { 840 struct net_vrf *vrf = netdev_priv(dev); 841 842 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 843 if (!dev->dstats) 844 goto out_nomem; 845 846 /* create the default dst which points back to us */ 847 if (vrf_rtable_create(dev) != 0) 848 goto out_stats; 849 850 if (vrf_rt6_create(dev) != 0) 851 goto out_rth; 852 853 dev->flags = IFF_MASTER | IFF_NOARP; 854 855 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 856 dev->mtu = 64 * 1024; 857 858 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 859 dev->operstate = IF_OPER_UP; 860 netdev_lockdep_set_classes(dev); 861 return 0; 862 863 out_rth: 864 vrf_rtable_release(dev, vrf); 865 out_stats: 866 free_percpu(dev->dstats); 867 dev->dstats = NULL; 868 out_nomem: 869 return -ENOMEM; 870 } 871 872 static const struct net_device_ops vrf_netdev_ops = { 873 .ndo_init = vrf_dev_init, 874 .ndo_uninit = vrf_dev_uninit, 875 .ndo_start_xmit = vrf_xmit, 876 .ndo_get_stats64 = vrf_get_stats64, 877 .ndo_add_slave = vrf_add_slave, 878 .ndo_del_slave = vrf_del_slave, 879 }; 880 881 static u32 vrf_fib_table(const struct net_device *dev) 882 { 883 struct net_vrf *vrf = netdev_priv(dev); 884 885 return vrf->tb_id; 886 } 887 888 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 889 { 890 kfree_skb(skb); 891 return 0; 892 } 893 894 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 895 struct sk_buff *skb, 896 struct net_device *dev) 897 { 898 struct net *net = dev_net(dev); 899 900 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 901 skb = NULL; /* kfree_skb(skb) handled by nf code */ 902 903 return skb; 904 } 905 906 #if IS_ENABLED(CONFIG_IPV6) 907 /* neighbor handling is done with actual device; do not want 908 * to flip skb->dev for those ndisc packets. This really fails 909 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 910 * a start. 911 */ 912 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 913 { 914 const struct ipv6hdr *iph = ipv6_hdr(skb); 915 bool rc = false; 916 917 if (iph->nexthdr == NEXTHDR_ICMP) { 918 const struct icmp6hdr *icmph; 919 struct icmp6hdr _icmph; 920 921 icmph = skb_header_pointer(skb, sizeof(*iph), 922 sizeof(_icmph), &_icmph); 923 if (!icmph) 924 goto out; 925 926 switch (icmph->icmp6_type) { 927 case NDISC_ROUTER_SOLICITATION: 928 case NDISC_ROUTER_ADVERTISEMENT: 929 case NDISC_NEIGHBOUR_SOLICITATION: 930 case NDISC_NEIGHBOUR_ADVERTISEMENT: 931 case NDISC_REDIRECT: 932 rc = true; 933 break; 934 } 935 } 936 937 out: 938 return rc; 939 } 940 941 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 942 const struct net_device *dev, 943 struct flowi6 *fl6, 944 int ifindex, 945 const struct sk_buff *skb, 946 int flags) 947 { 948 struct net_vrf *vrf = netdev_priv(dev); 949 950 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 951 } 952 953 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 954 int ifindex) 955 { 956 const struct ipv6hdr *iph = ipv6_hdr(skb); 957 struct flowi6 fl6 = { 958 .flowi6_iif = ifindex, 959 .flowi6_mark = skb->mark, 960 .flowi6_proto = iph->nexthdr, 961 .daddr = iph->daddr, 962 .saddr = iph->saddr, 963 .flowlabel = ip6_flowinfo(iph), 964 }; 965 struct net *net = dev_net(vrf_dev); 966 struct rt6_info *rt6; 967 968 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 969 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 970 if (unlikely(!rt6)) 971 return; 972 973 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 974 return; 975 976 skb_dst_set(skb, &rt6->dst); 977 } 978 979 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 980 struct sk_buff *skb) 981 { 982 int orig_iif = skb->skb_iif; 983 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 984 bool is_ndisc = ipv6_ndisc_frame(skb); 985 986 /* loopback, multicast & non-ND link-local traffic; do not push through 987 * packet taps again. Reset pkt_type for upper layers to process skb 988 */ 989 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 990 skb->dev = vrf_dev; 991 skb->skb_iif = vrf_dev->ifindex; 992 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 993 if (skb->pkt_type == PACKET_LOOPBACK) 994 skb->pkt_type = PACKET_HOST; 995 goto out; 996 } 997 998 /* if packet is NDISC then keep the ingress interface */ 999 if (!is_ndisc) { 1000 vrf_rx_stats(vrf_dev, skb->len); 1001 skb->dev = vrf_dev; 1002 skb->skb_iif = vrf_dev->ifindex; 1003 1004 if (!list_empty(&vrf_dev->ptype_all)) { 1005 skb_push(skb, skb->mac_len); 1006 dev_queue_xmit_nit(skb, vrf_dev); 1007 skb_pull(skb, skb->mac_len); 1008 } 1009 1010 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1011 } 1012 1013 if (need_strict) 1014 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1015 1016 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1017 out: 1018 return skb; 1019 } 1020 1021 #else 1022 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1023 struct sk_buff *skb) 1024 { 1025 return skb; 1026 } 1027 #endif 1028 1029 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1030 struct sk_buff *skb) 1031 { 1032 skb->dev = vrf_dev; 1033 skb->skb_iif = vrf_dev->ifindex; 1034 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1035 1036 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1037 goto out; 1038 1039 /* loopback traffic; do not push through packet taps again. 1040 * Reset pkt_type for upper layers to process skb 1041 */ 1042 if (skb->pkt_type == PACKET_LOOPBACK) { 1043 skb->pkt_type = PACKET_HOST; 1044 goto out; 1045 } 1046 1047 vrf_rx_stats(vrf_dev, skb->len); 1048 1049 if (!list_empty(&vrf_dev->ptype_all)) { 1050 skb_push(skb, skb->mac_len); 1051 dev_queue_xmit_nit(skb, vrf_dev); 1052 skb_pull(skb, skb->mac_len); 1053 } 1054 1055 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1056 out: 1057 return skb; 1058 } 1059 1060 /* called with rcu lock held */ 1061 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1062 struct sk_buff *skb, 1063 u16 proto) 1064 { 1065 switch (proto) { 1066 case AF_INET: 1067 return vrf_ip_rcv(vrf_dev, skb); 1068 case AF_INET6: 1069 return vrf_ip6_rcv(vrf_dev, skb); 1070 } 1071 1072 return skb; 1073 } 1074 1075 #if IS_ENABLED(CONFIG_IPV6) 1076 /* send to link-local or multicast address via interface enslaved to 1077 * VRF device. Force lookup to VRF table without changing flow struct 1078 */ 1079 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1080 struct flowi6 *fl6) 1081 { 1082 struct net *net = dev_net(dev); 1083 int flags = RT6_LOOKUP_F_IFACE; 1084 struct dst_entry *dst = NULL; 1085 struct rt6_info *rt; 1086 1087 /* VRF device does not have a link-local address and 1088 * sending packets to link-local or mcast addresses over 1089 * a VRF device does not make sense 1090 */ 1091 if (fl6->flowi6_oif == dev->ifindex) { 1092 dst = &net->ipv6.ip6_null_entry->dst; 1093 dst_hold(dst); 1094 return dst; 1095 } 1096 1097 if (!ipv6_addr_any(&fl6->saddr)) 1098 flags |= RT6_LOOKUP_F_HAS_SADDR; 1099 1100 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1101 if (rt) 1102 dst = &rt->dst; 1103 1104 return dst; 1105 } 1106 #endif 1107 1108 static const struct l3mdev_ops vrf_l3mdev_ops = { 1109 .l3mdev_fib_table = vrf_fib_table, 1110 .l3mdev_l3_rcv = vrf_l3_rcv, 1111 .l3mdev_l3_out = vrf_l3_out, 1112 #if IS_ENABLED(CONFIG_IPV6) 1113 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1114 #endif 1115 }; 1116 1117 static void vrf_get_drvinfo(struct net_device *dev, 1118 struct ethtool_drvinfo *info) 1119 { 1120 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1121 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1122 } 1123 1124 static const struct ethtool_ops vrf_ethtool_ops = { 1125 .get_drvinfo = vrf_get_drvinfo, 1126 }; 1127 1128 static inline size_t vrf_fib_rule_nl_size(void) 1129 { 1130 size_t sz; 1131 1132 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1133 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1134 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1135 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1136 1137 return sz; 1138 } 1139 1140 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1141 { 1142 struct fib_rule_hdr *frh; 1143 struct nlmsghdr *nlh; 1144 struct sk_buff *skb; 1145 int err; 1146 1147 if (family == AF_INET6 && !ipv6_mod_enabled()) 1148 return 0; 1149 1150 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1151 if (!skb) 1152 return -ENOMEM; 1153 1154 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1155 if (!nlh) 1156 goto nla_put_failure; 1157 1158 /* rule only needs to appear once */ 1159 nlh->nlmsg_flags |= NLM_F_EXCL; 1160 1161 frh = nlmsg_data(nlh); 1162 memset(frh, 0, sizeof(*frh)); 1163 frh->family = family; 1164 frh->action = FR_ACT_TO_TBL; 1165 1166 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1167 goto nla_put_failure; 1168 1169 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1170 goto nla_put_failure; 1171 1172 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1173 goto nla_put_failure; 1174 1175 nlmsg_end(skb, nlh); 1176 1177 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1178 skb->sk = dev_net(dev)->rtnl; 1179 if (add_it) { 1180 err = fib_nl_newrule(skb, nlh, NULL); 1181 if (err == -EEXIST) 1182 err = 0; 1183 } else { 1184 err = fib_nl_delrule(skb, nlh, NULL); 1185 if (err == -ENOENT) 1186 err = 0; 1187 } 1188 nlmsg_free(skb); 1189 1190 return err; 1191 1192 nla_put_failure: 1193 nlmsg_free(skb); 1194 1195 return -EMSGSIZE; 1196 } 1197 1198 static int vrf_add_fib_rules(const struct net_device *dev) 1199 { 1200 int err; 1201 1202 err = vrf_fib_rule(dev, AF_INET, true); 1203 if (err < 0) 1204 goto out_err; 1205 1206 err = vrf_fib_rule(dev, AF_INET6, true); 1207 if (err < 0) 1208 goto ipv6_err; 1209 1210 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1211 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1212 if (err < 0) 1213 goto ipmr_err; 1214 #endif 1215 1216 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1217 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1218 if (err < 0) 1219 goto ip6mr_err; 1220 #endif 1221 1222 return 0; 1223 1224 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1225 ip6mr_err: 1226 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1227 #endif 1228 1229 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1230 ipmr_err: 1231 vrf_fib_rule(dev, AF_INET6, false); 1232 #endif 1233 1234 ipv6_err: 1235 vrf_fib_rule(dev, AF_INET, false); 1236 1237 out_err: 1238 netdev_err(dev, "Failed to add FIB rules.\n"); 1239 return err; 1240 } 1241 1242 static void vrf_setup(struct net_device *dev) 1243 { 1244 ether_setup(dev); 1245 1246 /* Initialize the device structure. */ 1247 dev->netdev_ops = &vrf_netdev_ops; 1248 dev->l3mdev_ops = &vrf_l3mdev_ops; 1249 dev->ethtool_ops = &vrf_ethtool_ops; 1250 dev->needs_free_netdev = true; 1251 1252 /* Fill in device structure with ethernet-generic values. */ 1253 eth_hw_addr_random(dev); 1254 1255 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1256 dev->features |= NETIF_F_LLTX; 1257 1258 /* don't allow vrf devices to change network namespaces. */ 1259 dev->features |= NETIF_F_NETNS_LOCAL; 1260 1261 /* does not make sense for a VLAN to be added to a vrf device */ 1262 dev->features |= NETIF_F_VLAN_CHALLENGED; 1263 1264 /* enable offload features */ 1265 dev->features |= NETIF_F_GSO_SOFTWARE; 1266 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1267 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1268 1269 dev->hw_features = dev->features; 1270 dev->hw_enc_features = dev->features; 1271 1272 /* default to no qdisc; user can add if desired */ 1273 dev->priv_flags |= IFF_NO_QUEUE; 1274 dev->priv_flags |= IFF_NO_RX_HANDLER; 1275 1276 /* VRF devices do not care about MTU, but if the MTU is set 1277 * too low then the ipv4 and ipv6 protocols are disabled 1278 * which breaks networking. 1279 */ 1280 dev->min_mtu = IPV6_MIN_MTU; 1281 dev->max_mtu = ETH_MAX_MTU; 1282 } 1283 1284 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1285 struct netlink_ext_ack *extack) 1286 { 1287 if (tb[IFLA_ADDRESS]) { 1288 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1289 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1290 return -EINVAL; 1291 } 1292 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1293 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1294 return -EADDRNOTAVAIL; 1295 } 1296 } 1297 return 0; 1298 } 1299 1300 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1301 { 1302 struct net_device *port_dev; 1303 struct list_head *iter; 1304 1305 netdev_for_each_lower_dev(dev, port_dev, iter) 1306 vrf_del_slave(dev, port_dev); 1307 1308 unregister_netdevice_queue(dev, head); 1309 } 1310 1311 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1312 struct nlattr *tb[], struct nlattr *data[], 1313 struct netlink_ext_ack *extack) 1314 { 1315 struct net_vrf *vrf = netdev_priv(dev); 1316 bool *add_fib_rules; 1317 struct net *net; 1318 int err; 1319 1320 if (!data || !data[IFLA_VRF_TABLE]) { 1321 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1322 return -EINVAL; 1323 } 1324 1325 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1326 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1327 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1328 "Invalid VRF table id"); 1329 return -EINVAL; 1330 } 1331 1332 dev->priv_flags |= IFF_L3MDEV_MASTER; 1333 1334 err = register_netdevice(dev); 1335 if (err) 1336 goto out; 1337 1338 net = dev_net(dev); 1339 add_fib_rules = net_generic(net, vrf_net_id); 1340 if (*add_fib_rules) { 1341 err = vrf_add_fib_rules(dev); 1342 if (err) { 1343 unregister_netdevice(dev); 1344 goto out; 1345 } 1346 *add_fib_rules = false; 1347 } 1348 1349 out: 1350 return err; 1351 } 1352 1353 static size_t vrf_nl_getsize(const struct net_device *dev) 1354 { 1355 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1356 } 1357 1358 static int vrf_fillinfo(struct sk_buff *skb, 1359 const struct net_device *dev) 1360 { 1361 struct net_vrf *vrf = netdev_priv(dev); 1362 1363 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1364 } 1365 1366 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1367 const struct net_device *slave_dev) 1368 { 1369 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1370 } 1371 1372 static int vrf_fill_slave_info(struct sk_buff *skb, 1373 const struct net_device *vrf_dev, 1374 const struct net_device *slave_dev) 1375 { 1376 struct net_vrf *vrf = netdev_priv(vrf_dev); 1377 1378 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1379 return -EMSGSIZE; 1380 1381 return 0; 1382 } 1383 1384 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1385 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1386 }; 1387 1388 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1389 .kind = DRV_NAME, 1390 .priv_size = sizeof(struct net_vrf), 1391 1392 .get_size = vrf_nl_getsize, 1393 .policy = vrf_nl_policy, 1394 .validate = vrf_validate, 1395 .fill_info = vrf_fillinfo, 1396 1397 .get_slave_size = vrf_get_slave_size, 1398 .fill_slave_info = vrf_fill_slave_info, 1399 1400 .newlink = vrf_newlink, 1401 .dellink = vrf_dellink, 1402 .setup = vrf_setup, 1403 .maxtype = IFLA_VRF_MAX, 1404 }; 1405 1406 static int vrf_device_event(struct notifier_block *unused, 1407 unsigned long event, void *ptr) 1408 { 1409 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1410 1411 /* only care about unregister events to drop slave references */ 1412 if (event == NETDEV_UNREGISTER) { 1413 struct net_device *vrf_dev; 1414 1415 if (!netif_is_l3_slave(dev)) 1416 goto out; 1417 1418 vrf_dev = netdev_master_upper_dev_get(dev); 1419 vrf_del_slave(vrf_dev, dev); 1420 } 1421 out: 1422 return NOTIFY_DONE; 1423 } 1424 1425 static struct notifier_block vrf_notifier_block __read_mostly = { 1426 .notifier_call = vrf_device_event, 1427 }; 1428 1429 /* Initialize per network namespace state */ 1430 static int __net_init vrf_netns_init(struct net *net) 1431 { 1432 bool *add_fib_rules = net_generic(net, vrf_net_id); 1433 1434 *add_fib_rules = true; 1435 1436 return 0; 1437 } 1438 1439 static struct pernet_operations vrf_net_ops __net_initdata = { 1440 .init = vrf_netns_init, 1441 .id = &vrf_net_id, 1442 .size = sizeof(bool), 1443 }; 1444 1445 static int __init vrf_init_module(void) 1446 { 1447 int rc; 1448 1449 register_netdevice_notifier(&vrf_notifier_block); 1450 1451 rc = register_pernet_subsys(&vrf_net_ops); 1452 if (rc < 0) 1453 goto error; 1454 1455 rc = rtnl_link_register(&vrf_link_ops); 1456 if (rc < 0) { 1457 unregister_pernet_subsys(&vrf_net_ops); 1458 goto error; 1459 } 1460 1461 return 0; 1462 1463 error: 1464 unregister_netdevice_notifier(&vrf_notifier_block); 1465 return rc; 1466 } 1467 1468 module_init(vrf_init_module); 1469 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1470 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1471 MODULE_LICENSE("GPL"); 1472 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1473 MODULE_VERSION(DRV_VERSION); 1474