xref: /openbmc/linux/drivers/net/vrf.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 
41 #define DRV_NAME	"vrf"
42 #define DRV_VERSION	"1.1"
43 
44 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
45 
46 #define HT_MAP_BITS	4
47 #define HASH_INITVAL	((u32)0xcafef00d)
48 
49 struct  vrf_map {
50 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 	spinlock_t vmap_lock;
52 
53 	/* shared_tables:
54 	 * count how many distinct tables do not comply with the strict mode
55 	 * requirement.
56 	 * shared_tables value must be 0 in order to enable the strict mode.
57 	 *
58 	 * example of the evolution of shared_tables:
59 	 *                                                        | time
60 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
61 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
62 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
63 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
64 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
65 	 *
66 	 * shared_tables is a "step function" (or "staircase function")
67 	 * and it is increased by one when the second vrf is associated to a
68 	 * table.
69 	 *
70 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 	 *
72 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 	 * value of shared_tables is still 1.
74 	 * This means that no matter how many new vrfs will register on the
75 	 * table 100, the shared_tables will not increase (considering only
76 	 * table 100).
77 	 *
78 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 	 *
80 	 * Looking at the value of shared_tables we can immediately know if
81 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 	 * can be enforced iff shared_tables = 0.
83 	 *
84 	 * Conversely, shared_tables is decreased when a vrf is de-associated
85 	 * from a table with exactly two associated vrfs.
86 	 */
87 	u32 shared_tables;
88 
89 	bool strict_mode;
90 };
91 
92 struct vrf_map_elem {
93 	struct hlist_node hnode;
94 	struct list_head vrf_list;  /* VRFs registered to this table */
95 
96 	u32 table_id;
97 	int users;
98 	int ifindex;
99 };
100 
101 static unsigned int vrf_net_id;
102 
103 /* per netns vrf data */
104 struct netns_vrf {
105 	/* protected by rtnl lock */
106 	bool add_fib_rules;
107 
108 	struct vrf_map vmap;
109 	struct ctl_table_header	*ctl_hdr;
110 };
111 
112 struct net_vrf {
113 	struct rtable __rcu	*rth;
114 	struct rt6_info	__rcu	*rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 	struct fib6_table	*fib6_table;
117 #endif
118 	u32                     tb_id;
119 
120 	struct list_head	me_list;   /* entry in vrf_map_elem */
121 	int			ifindex;
122 };
123 
124 struct pcpu_dstats {
125 	u64			tx_pkts;
126 	u64			tx_bytes;
127 	u64			tx_drps;
128 	u64			rx_pkts;
129 	u64			rx_bytes;
130 	u64			rx_drps;
131 	struct u64_stats_sync	syncp;
132 };
133 
134 static void vrf_rx_stats(struct net_device *dev, int len)
135 {
136 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
137 
138 	u64_stats_update_begin(&dstats->syncp);
139 	dstats->rx_pkts++;
140 	dstats->rx_bytes += len;
141 	u64_stats_update_end(&dstats->syncp);
142 }
143 
144 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
145 {
146 	vrf_dev->stats.tx_errors++;
147 	kfree_skb(skb);
148 }
149 
150 static void vrf_get_stats64(struct net_device *dev,
151 			    struct rtnl_link_stats64 *stats)
152 {
153 	int i;
154 
155 	for_each_possible_cpu(i) {
156 		const struct pcpu_dstats *dstats;
157 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
158 		unsigned int start;
159 
160 		dstats = per_cpu_ptr(dev->dstats, i);
161 		do {
162 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
163 			tbytes = dstats->tx_bytes;
164 			tpkts = dstats->tx_pkts;
165 			tdrops = dstats->tx_drps;
166 			rbytes = dstats->rx_bytes;
167 			rpkts = dstats->rx_pkts;
168 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
169 		stats->tx_bytes += tbytes;
170 		stats->tx_packets += tpkts;
171 		stats->tx_dropped += tdrops;
172 		stats->rx_bytes += rbytes;
173 		stats->rx_packets += rpkts;
174 	}
175 }
176 
177 static struct vrf_map *netns_vrf_map(struct net *net)
178 {
179 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
180 
181 	return &nn_vrf->vmap;
182 }
183 
184 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
185 {
186 	return netns_vrf_map(dev_net(dev));
187 }
188 
189 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
190 {
191 	struct list_head *me_head = &me->vrf_list;
192 	struct net_vrf *vrf;
193 
194 	if (list_empty(me_head))
195 		return -ENODEV;
196 
197 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
198 
199 	return vrf->ifindex;
200 }
201 
202 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
203 {
204 	struct vrf_map_elem *me;
205 
206 	me = kmalloc(sizeof(*me), flags);
207 	if (!me)
208 		return NULL;
209 
210 	return me;
211 }
212 
213 static void vrf_map_elem_free(struct vrf_map_elem *me)
214 {
215 	kfree(me);
216 }
217 
218 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
219 			      int ifindex, int users)
220 {
221 	me->table_id = table_id;
222 	me->ifindex = ifindex;
223 	me->users = users;
224 	INIT_LIST_HEAD(&me->vrf_list);
225 }
226 
227 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
228 						u32 table_id)
229 {
230 	struct vrf_map_elem *me;
231 	u32 key;
232 
233 	key = jhash_1word(table_id, HASH_INITVAL);
234 	hash_for_each_possible(vmap->ht, me, hnode, key) {
235 		if (me->table_id == table_id)
236 			return me;
237 	}
238 
239 	return NULL;
240 }
241 
242 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
243 {
244 	u32 table_id = me->table_id;
245 	u32 key;
246 
247 	key = jhash_1word(table_id, HASH_INITVAL);
248 	hash_add(vmap->ht, &me->hnode, key);
249 }
250 
251 static void vrf_map_del_elem(struct vrf_map_elem *me)
252 {
253 	hash_del(&me->hnode);
254 }
255 
256 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
257 {
258 	spin_lock(&vmap->vmap_lock);
259 }
260 
261 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
262 {
263 	spin_unlock(&vmap->vmap_lock);
264 }
265 
266 /* called with rtnl lock held */
267 static int
268 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
269 {
270 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
271 	struct net_vrf *vrf = netdev_priv(dev);
272 	struct vrf_map_elem *new_me, *me;
273 	u32 table_id = vrf->tb_id;
274 	bool free_new_me = false;
275 	int users;
276 	int res;
277 
278 	/* we pre-allocate elements used in the spin-locked section (so that we
279 	 * keep the spinlock as short as possible).
280 	 */
281 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
282 	if (!new_me)
283 		return -ENOMEM;
284 
285 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
286 
287 	vrf_map_lock(vmap);
288 
289 	me = vrf_map_lookup_elem(vmap, table_id);
290 	if (!me) {
291 		me = new_me;
292 		vrf_map_add_elem(vmap, me);
293 		goto link_vrf;
294 	}
295 
296 	/* we already have an entry in the vrf_map, so it means there is (at
297 	 * least) a vrf registered on the specific table.
298 	 */
299 	free_new_me = true;
300 	if (vmap->strict_mode) {
301 		/* vrfs cannot share the same table */
302 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
303 		res = -EBUSY;
304 		goto unlock;
305 	}
306 
307 link_vrf:
308 	users = ++me->users;
309 	if (users == 2)
310 		++vmap->shared_tables;
311 
312 	list_add(&vrf->me_list, &me->vrf_list);
313 
314 	res = 0;
315 
316 unlock:
317 	vrf_map_unlock(vmap);
318 
319 	/* clean-up, if needed */
320 	if (free_new_me)
321 		vrf_map_elem_free(new_me);
322 
323 	return res;
324 }
325 
326 /* called with rtnl lock held */
327 static void vrf_map_unregister_dev(struct net_device *dev)
328 {
329 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
330 	struct net_vrf *vrf = netdev_priv(dev);
331 	u32 table_id = vrf->tb_id;
332 	struct vrf_map_elem *me;
333 	int users;
334 
335 	vrf_map_lock(vmap);
336 
337 	me = vrf_map_lookup_elem(vmap, table_id);
338 	if (!me)
339 		goto unlock;
340 
341 	list_del(&vrf->me_list);
342 
343 	users = --me->users;
344 	if (users == 1) {
345 		--vmap->shared_tables;
346 	} else if (users == 0) {
347 		vrf_map_del_elem(me);
348 
349 		/* no one will refer to this element anymore */
350 		vrf_map_elem_free(me);
351 	}
352 
353 unlock:
354 	vrf_map_unlock(vmap);
355 }
356 
357 /* return the vrf device index associated with the table_id */
358 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
359 {
360 	struct vrf_map *vmap = netns_vrf_map(net);
361 	struct vrf_map_elem *me;
362 	int ifindex;
363 
364 	vrf_map_lock(vmap);
365 
366 	if (!vmap->strict_mode) {
367 		ifindex = -EPERM;
368 		goto unlock;
369 	}
370 
371 	me = vrf_map_lookup_elem(vmap, table_id);
372 	if (!me) {
373 		ifindex = -ENODEV;
374 		goto unlock;
375 	}
376 
377 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
378 
379 unlock:
380 	vrf_map_unlock(vmap);
381 
382 	return ifindex;
383 }
384 
385 /* by default VRF devices do not have a qdisc and are expected
386  * to be created with only a single queue.
387  */
388 static bool qdisc_tx_is_default(const struct net_device *dev)
389 {
390 	struct netdev_queue *txq;
391 	struct Qdisc *qdisc;
392 
393 	if (dev->num_tx_queues > 1)
394 		return false;
395 
396 	txq = netdev_get_tx_queue(dev, 0);
397 	qdisc = rcu_access_pointer(txq->qdisc);
398 
399 	return !qdisc->enqueue;
400 }
401 
402 /* Local traffic destined to local address. Reinsert the packet to rx
403  * path, similar to loopback handling.
404  */
405 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
406 			  struct dst_entry *dst)
407 {
408 	int len = skb->len;
409 
410 	skb_orphan(skb);
411 
412 	skb_dst_set(skb, dst);
413 
414 	/* set pkt_type to avoid skb hitting packet taps twice -
415 	 * once on Tx and again in Rx processing
416 	 */
417 	skb->pkt_type = PACKET_LOOPBACK;
418 
419 	skb->protocol = eth_type_trans(skb, dev);
420 
421 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
422 		vrf_rx_stats(dev, len);
423 	else
424 		this_cpu_inc(dev->dstats->rx_drps);
425 
426 	return NETDEV_TX_OK;
427 }
428 
429 static void vrf_nf_set_untracked(struct sk_buff *skb)
430 {
431 	if (skb_get_nfct(skb) == 0)
432 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
433 }
434 
435 static void vrf_nf_reset_ct(struct sk_buff *skb)
436 {
437 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
438 		nf_reset_ct(skb);
439 }
440 
441 #if IS_ENABLED(CONFIG_IPV6)
442 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
443 			     struct sk_buff *skb)
444 {
445 	int err;
446 
447 	vrf_nf_reset_ct(skb);
448 
449 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
450 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
451 
452 	if (likely(err == 1))
453 		err = dst_output(net, sk, skb);
454 
455 	return err;
456 }
457 
458 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
459 					   struct net_device *dev)
460 {
461 	const struct ipv6hdr *iph;
462 	struct net *net = dev_net(skb->dev);
463 	struct flowi6 fl6;
464 	int ret = NET_XMIT_DROP;
465 	struct dst_entry *dst;
466 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
467 
468 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
469 		goto err;
470 
471 	iph = ipv6_hdr(skb);
472 
473 	memset(&fl6, 0, sizeof(fl6));
474 	/* needed to match OIF rule */
475 	fl6.flowi6_oif = dev->ifindex;
476 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
477 	fl6.daddr = iph->daddr;
478 	fl6.saddr = iph->saddr;
479 	fl6.flowlabel = ip6_flowinfo(iph);
480 	fl6.flowi6_mark = skb->mark;
481 	fl6.flowi6_proto = iph->nexthdr;
482 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
483 
484 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
485 	if (IS_ERR(dst) || dst == dst_null)
486 		goto err;
487 
488 	skb_dst_drop(skb);
489 
490 	/* if dst.dev is the VRF device again this is locally originated traffic
491 	 * destined to a local address. Short circuit to Rx path.
492 	 */
493 	if (dst->dev == dev)
494 		return vrf_local_xmit(skb, dev, dst);
495 
496 	skb_dst_set(skb, dst);
497 
498 	/* strip the ethernet header added for pass through VRF device */
499 	__skb_pull(skb, skb_network_offset(skb));
500 
501 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
502 	ret = vrf_ip6_local_out(net, skb->sk, skb);
503 	if (unlikely(net_xmit_eval(ret)))
504 		dev->stats.tx_errors++;
505 	else
506 		ret = NET_XMIT_SUCCESS;
507 
508 	return ret;
509 err:
510 	vrf_tx_error(dev, skb);
511 	return NET_XMIT_DROP;
512 }
513 #else
514 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
515 					   struct net_device *dev)
516 {
517 	vrf_tx_error(dev, skb);
518 	return NET_XMIT_DROP;
519 }
520 #endif
521 
522 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
523 static int vrf_ip_local_out(struct net *net, struct sock *sk,
524 			    struct sk_buff *skb)
525 {
526 	int err;
527 
528 	vrf_nf_reset_ct(skb);
529 
530 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
531 		      skb, NULL, skb_dst(skb)->dev, dst_output);
532 	if (likely(err == 1))
533 		err = dst_output(net, sk, skb);
534 
535 	return err;
536 }
537 
538 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
539 					   struct net_device *vrf_dev)
540 {
541 	struct iphdr *ip4h;
542 	int ret = NET_XMIT_DROP;
543 	struct flowi4 fl4;
544 	struct net *net = dev_net(vrf_dev);
545 	struct rtable *rt;
546 
547 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
548 		goto err;
549 
550 	ip4h = ip_hdr(skb);
551 
552 	memset(&fl4, 0, sizeof(fl4));
553 	/* needed to match OIF rule */
554 	fl4.flowi4_oif = vrf_dev->ifindex;
555 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
556 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
557 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
558 	fl4.flowi4_proto = ip4h->protocol;
559 	fl4.daddr = ip4h->daddr;
560 	fl4.saddr = ip4h->saddr;
561 
562 	rt = ip_route_output_flow(net, &fl4, NULL);
563 	if (IS_ERR(rt))
564 		goto err;
565 
566 	skb_dst_drop(skb);
567 
568 	/* if dst.dev is the VRF device again this is locally originated traffic
569 	 * destined to a local address. Short circuit to Rx path.
570 	 */
571 	if (rt->dst.dev == vrf_dev)
572 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
573 
574 	skb_dst_set(skb, &rt->dst);
575 
576 	/* strip the ethernet header added for pass through VRF device */
577 	__skb_pull(skb, skb_network_offset(skb));
578 
579 	if (!ip4h->saddr) {
580 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
581 					       RT_SCOPE_LINK);
582 	}
583 
584 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
585 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
586 	if (unlikely(net_xmit_eval(ret)))
587 		vrf_dev->stats.tx_errors++;
588 	else
589 		ret = NET_XMIT_SUCCESS;
590 
591 out:
592 	return ret;
593 err:
594 	vrf_tx_error(vrf_dev, skb);
595 	goto out;
596 }
597 
598 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
599 {
600 	switch (skb->protocol) {
601 	case htons(ETH_P_IP):
602 		return vrf_process_v4_outbound(skb, dev);
603 	case htons(ETH_P_IPV6):
604 		return vrf_process_v6_outbound(skb, dev);
605 	default:
606 		vrf_tx_error(dev, skb);
607 		return NET_XMIT_DROP;
608 	}
609 }
610 
611 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
612 {
613 	int len = skb->len;
614 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
615 
616 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
617 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
618 
619 		u64_stats_update_begin(&dstats->syncp);
620 		dstats->tx_pkts++;
621 		dstats->tx_bytes += len;
622 		u64_stats_update_end(&dstats->syncp);
623 	} else {
624 		this_cpu_inc(dev->dstats->tx_drps);
625 	}
626 
627 	return ret;
628 }
629 
630 static void vrf_finish_direct(struct sk_buff *skb)
631 {
632 	struct net_device *vrf_dev = skb->dev;
633 
634 	if (!list_empty(&vrf_dev->ptype_all) &&
635 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
636 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
637 
638 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
639 		eth_zero_addr(eth->h_dest);
640 		eth->h_proto = skb->protocol;
641 
642 		rcu_read_lock_bh();
643 		dev_queue_xmit_nit(skb, vrf_dev);
644 		rcu_read_unlock_bh();
645 
646 		skb_pull(skb, ETH_HLEN);
647 	}
648 
649 	vrf_nf_reset_ct(skb);
650 }
651 
652 #if IS_ENABLED(CONFIG_IPV6)
653 /* modelled after ip6_finish_output2 */
654 static int vrf_finish_output6(struct net *net, struct sock *sk,
655 			      struct sk_buff *skb)
656 {
657 	struct dst_entry *dst = skb_dst(skb);
658 	struct net_device *dev = dst->dev;
659 	const struct in6_addr *nexthop;
660 	struct neighbour *neigh;
661 	int ret;
662 
663 	vrf_nf_reset_ct(skb);
664 
665 	skb->protocol = htons(ETH_P_IPV6);
666 	skb->dev = dev;
667 
668 	rcu_read_lock_bh();
669 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
670 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
671 	if (unlikely(!neigh))
672 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
673 	if (!IS_ERR(neigh)) {
674 		sock_confirm_neigh(skb, neigh);
675 		ret = neigh_output(neigh, skb, false);
676 		rcu_read_unlock_bh();
677 		return ret;
678 	}
679 	rcu_read_unlock_bh();
680 
681 	IP6_INC_STATS(dev_net(dst->dev),
682 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
683 	kfree_skb(skb);
684 	return -EINVAL;
685 }
686 
687 /* modelled after ip6_output */
688 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
689 {
690 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
691 			    net, sk, skb, NULL, skb_dst(skb)->dev,
692 			    vrf_finish_output6,
693 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
694 }
695 
696 /* set dst on skb to send packet to us via dev_xmit path. Allows
697  * packet to go through device based features such as qdisc, netfilter
698  * hooks and packet sockets with skb->dev set to vrf device.
699  */
700 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
701 					    struct sk_buff *skb)
702 {
703 	struct net_vrf *vrf = netdev_priv(vrf_dev);
704 	struct dst_entry *dst = NULL;
705 	struct rt6_info *rt6;
706 
707 	rcu_read_lock();
708 
709 	rt6 = rcu_dereference(vrf->rt6);
710 	if (likely(rt6)) {
711 		dst = &rt6->dst;
712 		dst_hold(dst);
713 	}
714 
715 	rcu_read_unlock();
716 
717 	if (unlikely(!dst)) {
718 		vrf_tx_error(vrf_dev, skb);
719 		return NULL;
720 	}
721 
722 	skb_dst_drop(skb);
723 	skb_dst_set(skb, dst);
724 
725 	return skb;
726 }
727 
728 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
729 				     struct sk_buff *skb)
730 {
731 	vrf_finish_direct(skb);
732 
733 	return vrf_ip6_local_out(net, sk, skb);
734 }
735 
736 static int vrf_output6_direct(struct net *net, struct sock *sk,
737 			      struct sk_buff *skb)
738 {
739 	int err = 1;
740 
741 	skb->protocol = htons(ETH_P_IPV6);
742 
743 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
744 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
745 			      NULL, skb->dev, vrf_output6_direct_finish);
746 
747 	if (likely(err == 1))
748 		vrf_finish_direct(skb);
749 
750 	return err;
751 }
752 
753 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
754 				     struct sk_buff *skb)
755 {
756 	int err;
757 
758 	err = vrf_output6_direct(net, sk, skb);
759 	if (likely(err == 1))
760 		err = vrf_ip6_local_out(net, sk, skb);
761 
762 	return err;
763 }
764 
765 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
766 					  struct sock *sk,
767 					  struct sk_buff *skb)
768 {
769 	struct net *net = dev_net(vrf_dev);
770 	int err;
771 
772 	skb->dev = vrf_dev;
773 
774 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
775 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
776 
777 	if (likely(err == 1))
778 		err = vrf_output6_direct(net, sk, skb);
779 
780 	if (likely(err == 1))
781 		return skb;
782 
783 	return NULL;
784 }
785 
786 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
787 				   struct sock *sk,
788 				   struct sk_buff *skb)
789 {
790 	/* don't divert link scope packets */
791 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
792 		return skb;
793 
794 	vrf_nf_set_untracked(skb);
795 
796 	if (qdisc_tx_is_default(vrf_dev) ||
797 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
798 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
799 
800 	return vrf_ip6_out_redirect(vrf_dev, skb);
801 }
802 
803 /* holding rtnl */
804 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
805 {
806 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
807 	struct net *net = dev_net(dev);
808 	struct dst_entry *dst;
809 
810 	RCU_INIT_POINTER(vrf->rt6, NULL);
811 	synchronize_rcu();
812 
813 	/* move dev in dst's to loopback so this VRF device can be deleted
814 	 * - based on dst_ifdown
815 	 */
816 	if (rt6) {
817 		dst = &rt6->dst;
818 		dev_replace_track(dst->dev, net->loopback_dev,
819 				  &dst->dev_tracker, GFP_KERNEL);
820 		dst->dev = net->loopback_dev;
821 		dst_release(dst);
822 	}
823 }
824 
825 static int vrf_rt6_create(struct net_device *dev)
826 {
827 	int flags = DST_NOPOLICY | DST_NOXFRM;
828 	struct net_vrf *vrf = netdev_priv(dev);
829 	struct net *net = dev_net(dev);
830 	struct rt6_info *rt6;
831 	int rc = -ENOMEM;
832 
833 	/* IPv6 can be CONFIG enabled and then disabled runtime */
834 	if (!ipv6_mod_enabled())
835 		return 0;
836 
837 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
838 	if (!vrf->fib6_table)
839 		goto out;
840 
841 	/* create a dst for routing packets out a VRF device */
842 	rt6 = ip6_dst_alloc(net, dev, flags);
843 	if (!rt6)
844 		goto out;
845 
846 	rt6->dst.output	= vrf_output6;
847 
848 	rcu_assign_pointer(vrf->rt6, rt6);
849 
850 	rc = 0;
851 out:
852 	return rc;
853 }
854 #else
855 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
856 				   struct sock *sk,
857 				   struct sk_buff *skb)
858 {
859 	return skb;
860 }
861 
862 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
863 {
864 }
865 
866 static int vrf_rt6_create(struct net_device *dev)
867 {
868 	return 0;
869 }
870 #endif
871 
872 /* modelled after ip_finish_output2 */
873 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
874 {
875 	struct dst_entry *dst = skb_dst(skb);
876 	struct rtable *rt = (struct rtable *)dst;
877 	struct net_device *dev = dst->dev;
878 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
879 	struct neighbour *neigh;
880 	bool is_v6gw = false;
881 
882 	vrf_nf_reset_ct(skb);
883 
884 	/* Be paranoid, rather than too clever. */
885 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
886 		skb = skb_expand_head(skb, hh_len);
887 		if (!skb) {
888 			dev->stats.tx_errors++;
889 			return -ENOMEM;
890 		}
891 	}
892 
893 	rcu_read_lock_bh();
894 
895 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
896 	if (!IS_ERR(neigh)) {
897 		int ret;
898 
899 		sock_confirm_neigh(skb, neigh);
900 		/* if crossing protocols, can not use the cached header */
901 		ret = neigh_output(neigh, skb, is_v6gw);
902 		rcu_read_unlock_bh();
903 		return ret;
904 	}
905 
906 	rcu_read_unlock_bh();
907 	vrf_tx_error(skb->dev, skb);
908 	return -EINVAL;
909 }
910 
911 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
912 {
913 	struct net_device *dev = skb_dst(skb)->dev;
914 
915 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
916 
917 	skb->dev = dev;
918 	skb->protocol = htons(ETH_P_IP);
919 
920 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
921 			    net, sk, skb, NULL, dev,
922 			    vrf_finish_output,
923 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
924 }
925 
926 /* set dst on skb to send packet to us via dev_xmit path. Allows
927  * packet to go through device based features such as qdisc, netfilter
928  * hooks and packet sockets with skb->dev set to vrf device.
929  */
930 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
931 					   struct sk_buff *skb)
932 {
933 	struct net_vrf *vrf = netdev_priv(vrf_dev);
934 	struct dst_entry *dst = NULL;
935 	struct rtable *rth;
936 
937 	rcu_read_lock();
938 
939 	rth = rcu_dereference(vrf->rth);
940 	if (likely(rth)) {
941 		dst = &rth->dst;
942 		dst_hold(dst);
943 	}
944 
945 	rcu_read_unlock();
946 
947 	if (unlikely(!dst)) {
948 		vrf_tx_error(vrf_dev, skb);
949 		return NULL;
950 	}
951 
952 	skb_dst_drop(skb);
953 	skb_dst_set(skb, dst);
954 
955 	return skb;
956 }
957 
958 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
959 				    struct sk_buff *skb)
960 {
961 	vrf_finish_direct(skb);
962 
963 	return vrf_ip_local_out(net, sk, skb);
964 }
965 
966 static int vrf_output_direct(struct net *net, struct sock *sk,
967 			     struct sk_buff *skb)
968 {
969 	int err = 1;
970 
971 	skb->protocol = htons(ETH_P_IP);
972 
973 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
974 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
975 			      NULL, skb->dev, vrf_output_direct_finish);
976 
977 	if (likely(err == 1))
978 		vrf_finish_direct(skb);
979 
980 	return err;
981 }
982 
983 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
984 				    struct sk_buff *skb)
985 {
986 	int err;
987 
988 	err = vrf_output_direct(net, sk, skb);
989 	if (likely(err == 1))
990 		err = vrf_ip_local_out(net, sk, skb);
991 
992 	return err;
993 }
994 
995 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
996 					 struct sock *sk,
997 					 struct sk_buff *skb)
998 {
999 	struct net *net = dev_net(vrf_dev);
1000 	int err;
1001 
1002 	skb->dev = vrf_dev;
1003 
1004 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1005 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1006 
1007 	if (likely(err == 1))
1008 		err = vrf_output_direct(net, sk, skb);
1009 
1010 	if (likely(err == 1))
1011 		return skb;
1012 
1013 	return NULL;
1014 }
1015 
1016 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1017 				  struct sock *sk,
1018 				  struct sk_buff *skb)
1019 {
1020 	/* don't divert multicast or local broadcast */
1021 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1022 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1023 		return skb;
1024 
1025 	vrf_nf_set_untracked(skb);
1026 
1027 	if (qdisc_tx_is_default(vrf_dev) ||
1028 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1029 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1030 
1031 	return vrf_ip_out_redirect(vrf_dev, skb);
1032 }
1033 
1034 /* called with rcu lock held */
1035 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1036 				  struct sock *sk,
1037 				  struct sk_buff *skb,
1038 				  u16 proto)
1039 {
1040 	switch (proto) {
1041 	case AF_INET:
1042 		return vrf_ip_out(vrf_dev, sk, skb);
1043 	case AF_INET6:
1044 		return vrf_ip6_out(vrf_dev, sk, skb);
1045 	}
1046 
1047 	return skb;
1048 }
1049 
1050 /* holding rtnl */
1051 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1052 {
1053 	struct rtable *rth = rtnl_dereference(vrf->rth);
1054 	struct net *net = dev_net(dev);
1055 	struct dst_entry *dst;
1056 
1057 	RCU_INIT_POINTER(vrf->rth, NULL);
1058 	synchronize_rcu();
1059 
1060 	/* move dev in dst's to loopback so this VRF device can be deleted
1061 	 * - based on dst_ifdown
1062 	 */
1063 	if (rth) {
1064 		dst = &rth->dst;
1065 		dev_replace_track(dst->dev, net->loopback_dev,
1066 				  &dst->dev_tracker, GFP_KERNEL);
1067 		dst->dev = net->loopback_dev;
1068 		dst_release(dst);
1069 	}
1070 }
1071 
1072 static int vrf_rtable_create(struct net_device *dev)
1073 {
1074 	struct net_vrf *vrf = netdev_priv(dev);
1075 	struct rtable *rth;
1076 
1077 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1078 		return -ENOMEM;
1079 
1080 	/* create a dst for routing packets out through a VRF device */
1081 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1082 	if (!rth)
1083 		return -ENOMEM;
1084 
1085 	rth->dst.output	= vrf_output;
1086 
1087 	rcu_assign_pointer(vrf->rth, rth);
1088 
1089 	return 0;
1090 }
1091 
1092 /**************************** device handling ********************/
1093 
1094 /* cycle interface to flush neighbor cache and move routes across tables */
1095 static void cycle_netdev(struct net_device *dev,
1096 			 struct netlink_ext_ack *extack)
1097 {
1098 	unsigned int flags = dev->flags;
1099 	int ret;
1100 
1101 	if (!netif_running(dev))
1102 		return;
1103 
1104 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1105 	if (ret >= 0)
1106 		ret = dev_change_flags(dev, flags, extack);
1107 
1108 	if (ret < 0) {
1109 		netdev_err(dev,
1110 			   "Failed to cycle device %s; route tables might be wrong!\n",
1111 			   dev->name);
1112 	}
1113 }
1114 
1115 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1116 			    struct netlink_ext_ack *extack)
1117 {
1118 	int ret;
1119 
1120 	/* do not allow loopback device to be enslaved to a VRF.
1121 	 * The vrf device acts as the loopback for the vrf.
1122 	 */
1123 	if (port_dev == dev_net(dev)->loopback_dev) {
1124 		NL_SET_ERR_MSG(extack,
1125 			       "Can not enslave loopback device to a VRF");
1126 		return -EOPNOTSUPP;
1127 	}
1128 
1129 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1130 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1131 	if (ret < 0)
1132 		goto err;
1133 
1134 	cycle_netdev(port_dev, extack);
1135 
1136 	return 0;
1137 
1138 err:
1139 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1140 	return ret;
1141 }
1142 
1143 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1144 			 struct netlink_ext_ack *extack)
1145 {
1146 	if (netif_is_l3_master(port_dev)) {
1147 		NL_SET_ERR_MSG(extack,
1148 			       "Can not enslave an L3 master device to a VRF");
1149 		return -EINVAL;
1150 	}
1151 
1152 	if (netif_is_l3_slave(port_dev))
1153 		return -EINVAL;
1154 
1155 	return do_vrf_add_slave(dev, port_dev, extack);
1156 }
1157 
1158 /* inverse of do_vrf_add_slave */
1159 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1160 {
1161 	netdev_upper_dev_unlink(port_dev, dev);
1162 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1163 
1164 	cycle_netdev(port_dev, NULL);
1165 
1166 	return 0;
1167 }
1168 
1169 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1170 {
1171 	return do_vrf_del_slave(dev, port_dev);
1172 }
1173 
1174 static void vrf_dev_uninit(struct net_device *dev)
1175 {
1176 	struct net_vrf *vrf = netdev_priv(dev);
1177 
1178 	vrf_rtable_release(dev, vrf);
1179 	vrf_rt6_release(dev, vrf);
1180 
1181 	free_percpu(dev->dstats);
1182 	dev->dstats = NULL;
1183 }
1184 
1185 static int vrf_dev_init(struct net_device *dev)
1186 {
1187 	struct net_vrf *vrf = netdev_priv(dev);
1188 
1189 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1190 	if (!dev->dstats)
1191 		goto out_nomem;
1192 
1193 	/* create the default dst which points back to us */
1194 	if (vrf_rtable_create(dev) != 0)
1195 		goto out_stats;
1196 
1197 	if (vrf_rt6_create(dev) != 0)
1198 		goto out_rth;
1199 
1200 	dev->flags = IFF_MASTER | IFF_NOARP;
1201 
1202 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1203 	dev->operstate = IF_OPER_UP;
1204 	netdev_lockdep_set_classes(dev);
1205 	return 0;
1206 
1207 out_rth:
1208 	vrf_rtable_release(dev, vrf);
1209 out_stats:
1210 	free_percpu(dev->dstats);
1211 	dev->dstats = NULL;
1212 out_nomem:
1213 	return -ENOMEM;
1214 }
1215 
1216 static const struct net_device_ops vrf_netdev_ops = {
1217 	.ndo_init		= vrf_dev_init,
1218 	.ndo_uninit		= vrf_dev_uninit,
1219 	.ndo_start_xmit		= vrf_xmit,
1220 	.ndo_set_mac_address	= eth_mac_addr,
1221 	.ndo_get_stats64	= vrf_get_stats64,
1222 	.ndo_add_slave		= vrf_add_slave,
1223 	.ndo_del_slave		= vrf_del_slave,
1224 };
1225 
1226 static u32 vrf_fib_table(const struct net_device *dev)
1227 {
1228 	struct net_vrf *vrf = netdev_priv(dev);
1229 
1230 	return vrf->tb_id;
1231 }
1232 
1233 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1234 {
1235 	kfree_skb(skb);
1236 	return 0;
1237 }
1238 
1239 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1240 				      struct sk_buff *skb,
1241 				      struct net_device *dev)
1242 {
1243 	struct net *net = dev_net(dev);
1244 
1245 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1246 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1247 
1248 	return skb;
1249 }
1250 
1251 static int vrf_prepare_mac_header(struct sk_buff *skb,
1252 				  struct net_device *vrf_dev, u16 proto)
1253 {
1254 	struct ethhdr *eth;
1255 	int err;
1256 
1257 	/* in general, we do not know if there is enough space in the head of
1258 	 * the packet for hosting the mac header.
1259 	 */
1260 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1261 	if (unlikely(err))
1262 		/* no space in the skb head */
1263 		return -ENOBUFS;
1264 
1265 	__skb_push(skb, ETH_HLEN);
1266 	eth = (struct ethhdr *)skb->data;
1267 
1268 	skb_reset_mac_header(skb);
1269 
1270 	/* we set the ethernet destination and the source addresses to the
1271 	 * address of the VRF device.
1272 	 */
1273 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1274 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1275 	eth->h_proto = htons(proto);
1276 
1277 	/* the destination address of the Ethernet frame corresponds to the
1278 	 * address set on the VRF interface; therefore, the packet is intended
1279 	 * to be processed locally.
1280 	 */
1281 	skb->protocol = eth->h_proto;
1282 	skb->pkt_type = PACKET_HOST;
1283 
1284 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1285 
1286 	skb_pull_inline(skb, ETH_HLEN);
1287 
1288 	return 0;
1289 }
1290 
1291 /* prepare and add the mac header to the packet if it was not set previously.
1292  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1293  * If the mac header was already set, the original mac header is left
1294  * untouched and the function returns immediately.
1295  */
1296 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1297 				       struct net_device *vrf_dev,
1298 				       u16 proto)
1299 {
1300 	if (skb_mac_header_was_set(skb))
1301 		return 0;
1302 
1303 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1304 }
1305 
1306 #if IS_ENABLED(CONFIG_IPV6)
1307 /* neighbor handling is done with actual device; do not want
1308  * to flip skb->dev for those ndisc packets. This really fails
1309  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1310  * a start.
1311  */
1312 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1313 {
1314 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1315 	bool rc = false;
1316 
1317 	if (iph->nexthdr == NEXTHDR_ICMP) {
1318 		const struct icmp6hdr *icmph;
1319 		struct icmp6hdr _icmph;
1320 
1321 		icmph = skb_header_pointer(skb, sizeof(*iph),
1322 					   sizeof(_icmph), &_icmph);
1323 		if (!icmph)
1324 			goto out;
1325 
1326 		switch (icmph->icmp6_type) {
1327 		case NDISC_ROUTER_SOLICITATION:
1328 		case NDISC_ROUTER_ADVERTISEMENT:
1329 		case NDISC_NEIGHBOUR_SOLICITATION:
1330 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1331 		case NDISC_REDIRECT:
1332 			rc = true;
1333 			break;
1334 		}
1335 	}
1336 
1337 out:
1338 	return rc;
1339 }
1340 
1341 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1342 					     const struct net_device *dev,
1343 					     struct flowi6 *fl6,
1344 					     int ifindex,
1345 					     const struct sk_buff *skb,
1346 					     int flags)
1347 {
1348 	struct net_vrf *vrf = netdev_priv(dev);
1349 
1350 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1351 }
1352 
1353 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1354 			      int ifindex)
1355 {
1356 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1357 	struct flowi6 fl6 = {
1358 		.flowi6_iif     = ifindex,
1359 		.flowi6_mark    = skb->mark,
1360 		.flowi6_proto   = iph->nexthdr,
1361 		.daddr          = iph->daddr,
1362 		.saddr          = iph->saddr,
1363 		.flowlabel      = ip6_flowinfo(iph),
1364 	};
1365 	struct net *net = dev_net(vrf_dev);
1366 	struct rt6_info *rt6;
1367 
1368 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1369 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1370 	if (unlikely(!rt6))
1371 		return;
1372 
1373 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1374 		return;
1375 
1376 	skb_dst_set(skb, &rt6->dst);
1377 }
1378 
1379 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1380 				   struct sk_buff *skb)
1381 {
1382 	int orig_iif = skb->skb_iif;
1383 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1384 	bool is_ndisc = ipv6_ndisc_frame(skb);
1385 
1386 	/* loopback, multicast & non-ND link-local traffic; do not push through
1387 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1388 	 * For strict packets with a source LLA, determine the dst using the
1389 	 * original ifindex.
1390 	 */
1391 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1392 		skb->dev = vrf_dev;
1393 		skb->skb_iif = vrf_dev->ifindex;
1394 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1395 
1396 		if (skb->pkt_type == PACKET_LOOPBACK)
1397 			skb->pkt_type = PACKET_HOST;
1398 		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1399 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1400 
1401 		goto out;
1402 	}
1403 
1404 	/* if packet is NDISC then keep the ingress interface */
1405 	if (!is_ndisc) {
1406 		vrf_rx_stats(vrf_dev, skb->len);
1407 		skb->dev = vrf_dev;
1408 		skb->skb_iif = vrf_dev->ifindex;
1409 
1410 		if (!list_empty(&vrf_dev->ptype_all)) {
1411 			int err;
1412 
1413 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1414 							  ETH_P_IPV6);
1415 			if (likely(!err)) {
1416 				skb_push(skb, skb->mac_len);
1417 				dev_queue_xmit_nit(skb, vrf_dev);
1418 				skb_pull(skb, skb->mac_len);
1419 			}
1420 		}
1421 
1422 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1423 	}
1424 
1425 	if (need_strict)
1426 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1427 
1428 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1429 out:
1430 	return skb;
1431 }
1432 
1433 #else
1434 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1435 				   struct sk_buff *skb)
1436 {
1437 	return skb;
1438 }
1439 #endif
1440 
1441 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1442 				  struct sk_buff *skb)
1443 {
1444 	skb->dev = vrf_dev;
1445 	skb->skb_iif = vrf_dev->ifindex;
1446 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1447 
1448 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1449 		goto out;
1450 
1451 	/* loopback traffic; do not push through packet taps again.
1452 	 * Reset pkt_type for upper layers to process skb
1453 	 */
1454 	if (skb->pkt_type == PACKET_LOOPBACK) {
1455 		skb->pkt_type = PACKET_HOST;
1456 		goto out;
1457 	}
1458 
1459 	vrf_rx_stats(vrf_dev, skb->len);
1460 
1461 	if (!list_empty(&vrf_dev->ptype_all)) {
1462 		int err;
1463 
1464 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1465 		if (likely(!err)) {
1466 			skb_push(skb, skb->mac_len);
1467 			dev_queue_xmit_nit(skb, vrf_dev);
1468 			skb_pull(skb, skb->mac_len);
1469 		}
1470 	}
1471 
1472 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1473 out:
1474 	return skb;
1475 }
1476 
1477 /* called with rcu lock held */
1478 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1479 				  struct sk_buff *skb,
1480 				  u16 proto)
1481 {
1482 	switch (proto) {
1483 	case AF_INET:
1484 		return vrf_ip_rcv(vrf_dev, skb);
1485 	case AF_INET6:
1486 		return vrf_ip6_rcv(vrf_dev, skb);
1487 	}
1488 
1489 	return skb;
1490 }
1491 
1492 #if IS_ENABLED(CONFIG_IPV6)
1493 /* send to link-local or multicast address via interface enslaved to
1494  * VRF device. Force lookup to VRF table without changing flow struct
1495  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1496  * is taken on the dst by this function.
1497  */
1498 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1499 					      struct flowi6 *fl6)
1500 {
1501 	struct net *net = dev_net(dev);
1502 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1503 	struct dst_entry *dst = NULL;
1504 	struct rt6_info *rt;
1505 
1506 	/* VRF device does not have a link-local address and
1507 	 * sending packets to link-local or mcast addresses over
1508 	 * a VRF device does not make sense
1509 	 */
1510 	if (fl6->flowi6_oif == dev->ifindex) {
1511 		dst = &net->ipv6.ip6_null_entry->dst;
1512 		return dst;
1513 	}
1514 
1515 	if (!ipv6_addr_any(&fl6->saddr))
1516 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1517 
1518 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1519 	if (rt)
1520 		dst = &rt->dst;
1521 
1522 	return dst;
1523 }
1524 #endif
1525 
1526 static const struct l3mdev_ops vrf_l3mdev_ops = {
1527 	.l3mdev_fib_table	= vrf_fib_table,
1528 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1529 	.l3mdev_l3_out		= vrf_l3_out,
1530 #if IS_ENABLED(CONFIG_IPV6)
1531 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1532 #endif
1533 };
1534 
1535 static void vrf_get_drvinfo(struct net_device *dev,
1536 			    struct ethtool_drvinfo *info)
1537 {
1538 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1539 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1540 }
1541 
1542 static const struct ethtool_ops vrf_ethtool_ops = {
1543 	.get_drvinfo	= vrf_get_drvinfo,
1544 };
1545 
1546 static inline size_t vrf_fib_rule_nl_size(void)
1547 {
1548 	size_t sz;
1549 
1550 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1551 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1552 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1553 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1554 
1555 	return sz;
1556 }
1557 
1558 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1559 {
1560 	struct fib_rule_hdr *frh;
1561 	struct nlmsghdr *nlh;
1562 	struct sk_buff *skb;
1563 	int err;
1564 
1565 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1566 	    !ipv6_mod_enabled())
1567 		return 0;
1568 
1569 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1570 	if (!skb)
1571 		return -ENOMEM;
1572 
1573 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1574 	if (!nlh)
1575 		goto nla_put_failure;
1576 
1577 	/* rule only needs to appear once */
1578 	nlh->nlmsg_flags |= NLM_F_EXCL;
1579 
1580 	frh = nlmsg_data(nlh);
1581 	memset(frh, 0, sizeof(*frh));
1582 	frh->family = family;
1583 	frh->action = FR_ACT_TO_TBL;
1584 
1585 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1586 		goto nla_put_failure;
1587 
1588 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1589 		goto nla_put_failure;
1590 
1591 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1592 		goto nla_put_failure;
1593 
1594 	nlmsg_end(skb, nlh);
1595 
1596 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1597 	skb->sk = dev_net(dev)->rtnl;
1598 	if (add_it) {
1599 		err = fib_nl_newrule(skb, nlh, NULL);
1600 		if (err == -EEXIST)
1601 			err = 0;
1602 	} else {
1603 		err = fib_nl_delrule(skb, nlh, NULL);
1604 		if (err == -ENOENT)
1605 			err = 0;
1606 	}
1607 	nlmsg_free(skb);
1608 
1609 	return err;
1610 
1611 nla_put_failure:
1612 	nlmsg_free(skb);
1613 
1614 	return -EMSGSIZE;
1615 }
1616 
1617 static int vrf_add_fib_rules(const struct net_device *dev)
1618 {
1619 	int err;
1620 
1621 	err = vrf_fib_rule(dev, AF_INET,  true);
1622 	if (err < 0)
1623 		goto out_err;
1624 
1625 	err = vrf_fib_rule(dev, AF_INET6, true);
1626 	if (err < 0)
1627 		goto ipv6_err;
1628 
1629 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1630 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1631 	if (err < 0)
1632 		goto ipmr_err;
1633 #endif
1634 
1635 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1636 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1637 	if (err < 0)
1638 		goto ip6mr_err;
1639 #endif
1640 
1641 	return 0;
1642 
1643 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1644 ip6mr_err:
1645 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1646 #endif
1647 
1648 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1649 ipmr_err:
1650 	vrf_fib_rule(dev, AF_INET6,  false);
1651 #endif
1652 
1653 ipv6_err:
1654 	vrf_fib_rule(dev, AF_INET,  false);
1655 
1656 out_err:
1657 	netdev_err(dev, "Failed to add FIB rules.\n");
1658 	return err;
1659 }
1660 
1661 static void vrf_setup(struct net_device *dev)
1662 {
1663 	ether_setup(dev);
1664 
1665 	/* Initialize the device structure. */
1666 	dev->netdev_ops = &vrf_netdev_ops;
1667 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1668 	dev->ethtool_ops = &vrf_ethtool_ops;
1669 	dev->needs_free_netdev = true;
1670 
1671 	/* Fill in device structure with ethernet-generic values. */
1672 	eth_hw_addr_random(dev);
1673 
1674 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1675 	dev->features |= NETIF_F_LLTX;
1676 
1677 	/* don't allow vrf devices to change network namespaces. */
1678 	dev->features |= NETIF_F_NETNS_LOCAL;
1679 
1680 	/* does not make sense for a VLAN to be added to a vrf device */
1681 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1682 
1683 	/* enable offload features */
1684 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1685 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1686 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1687 
1688 	dev->hw_features = dev->features;
1689 	dev->hw_enc_features = dev->features;
1690 
1691 	/* default to no qdisc; user can add if desired */
1692 	dev->priv_flags |= IFF_NO_QUEUE;
1693 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1694 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1695 
1696 	/* VRF devices do not care about MTU, but if the MTU is set
1697 	 * too low then the ipv4 and ipv6 protocols are disabled
1698 	 * which breaks networking.
1699 	 */
1700 	dev->min_mtu = IPV6_MIN_MTU;
1701 	dev->max_mtu = IP6_MAX_MTU;
1702 	dev->mtu = dev->max_mtu;
1703 }
1704 
1705 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1706 			struct netlink_ext_ack *extack)
1707 {
1708 	if (tb[IFLA_ADDRESS]) {
1709 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1710 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1711 			return -EINVAL;
1712 		}
1713 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1714 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1715 			return -EADDRNOTAVAIL;
1716 		}
1717 	}
1718 	return 0;
1719 }
1720 
1721 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1722 {
1723 	struct net_device *port_dev;
1724 	struct list_head *iter;
1725 
1726 	netdev_for_each_lower_dev(dev, port_dev, iter)
1727 		vrf_del_slave(dev, port_dev);
1728 
1729 	vrf_map_unregister_dev(dev);
1730 
1731 	unregister_netdevice_queue(dev, head);
1732 }
1733 
1734 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1735 		       struct nlattr *tb[], struct nlattr *data[],
1736 		       struct netlink_ext_ack *extack)
1737 {
1738 	struct net_vrf *vrf = netdev_priv(dev);
1739 	struct netns_vrf *nn_vrf;
1740 	bool *add_fib_rules;
1741 	struct net *net;
1742 	int err;
1743 
1744 	if (!data || !data[IFLA_VRF_TABLE]) {
1745 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1746 		return -EINVAL;
1747 	}
1748 
1749 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1750 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1751 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1752 				    "Invalid VRF table id");
1753 		return -EINVAL;
1754 	}
1755 
1756 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1757 
1758 	err = register_netdevice(dev);
1759 	if (err)
1760 		goto out;
1761 
1762 	/* mapping between table_id and vrf;
1763 	 * note: such binding could not be done in the dev init function
1764 	 * because dev->ifindex id is not available yet.
1765 	 */
1766 	vrf->ifindex = dev->ifindex;
1767 
1768 	err = vrf_map_register_dev(dev, extack);
1769 	if (err) {
1770 		unregister_netdevice(dev);
1771 		goto out;
1772 	}
1773 
1774 	net = dev_net(dev);
1775 	nn_vrf = net_generic(net, vrf_net_id);
1776 
1777 	add_fib_rules = &nn_vrf->add_fib_rules;
1778 	if (*add_fib_rules) {
1779 		err = vrf_add_fib_rules(dev);
1780 		if (err) {
1781 			vrf_map_unregister_dev(dev);
1782 			unregister_netdevice(dev);
1783 			goto out;
1784 		}
1785 		*add_fib_rules = false;
1786 	}
1787 
1788 out:
1789 	return err;
1790 }
1791 
1792 static size_t vrf_nl_getsize(const struct net_device *dev)
1793 {
1794 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1795 }
1796 
1797 static int vrf_fillinfo(struct sk_buff *skb,
1798 			const struct net_device *dev)
1799 {
1800 	struct net_vrf *vrf = netdev_priv(dev);
1801 
1802 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1803 }
1804 
1805 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1806 				 const struct net_device *slave_dev)
1807 {
1808 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1809 }
1810 
1811 static int vrf_fill_slave_info(struct sk_buff *skb,
1812 			       const struct net_device *vrf_dev,
1813 			       const struct net_device *slave_dev)
1814 {
1815 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1816 
1817 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1818 		return -EMSGSIZE;
1819 
1820 	return 0;
1821 }
1822 
1823 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1824 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1825 };
1826 
1827 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1828 	.kind		= DRV_NAME,
1829 	.priv_size	= sizeof(struct net_vrf),
1830 
1831 	.get_size	= vrf_nl_getsize,
1832 	.policy		= vrf_nl_policy,
1833 	.validate	= vrf_validate,
1834 	.fill_info	= vrf_fillinfo,
1835 
1836 	.get_slave_size  = vrf_get_slave_size,
1837 	.fill_slave_info = vrf_fill_slave_info,
1838 
1839 	.newlink	= vrf_newlink,
1840 	.dellink	= vrf_dellink,
1841 	.setup		= vrf_setup,
1842 	.maxtype	= IFLA_VRF_MAX,
1843 };
1844 
1845 static int vrf_device_event(struct notifier_block *unused,
1846 			    unsigned long event, void *ptr)
1847 {
1848 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1849 
1850 	/* only care about unregister events to drop slave references */
1851 	if (event == NETDEV_UNREGISTER) {
1852 		struct net_device *vrf_dev;
1853 
1854 		if (!netif_is_l3_slave(dev))
1855 			goto out;
1856 
1857 		vrf_dev = netdev_master_upper_dev_get(dev);
1858 		vrf_del_slave(vrf_dev, dev);
1859 	}
1860 out:
1861 	return NOTIFY_DONE;
1862 }
1863 
1864 static struct notifier_block vrf_notifier_block __read_mostly = {
1865 	.notifier_call = vrf_device_event,
1866 };
1867 
1868 static int vrf_map_init(struct vrf_map *vmap)
1869 {
1870 	spin_lock_init(&vmap->vmap_lock);
1871 	hash_init(vmap->ht);
1872 
1873 	vmap->strict_mode = false;
1874 
1875 	return 0;
1876 }
1877 
1878 #ifdef CONFIG_SYSCTL
1879 static bool vrf_strict_mode(struct vrf_map *vmap)
1880 {
1881 	bool strict_mode;
1882 
1883 	vrf_map_lock(vmap);
1884 	strict_mode = vmap->strict_mode;
1885 	vrf_map_unlock(vmap);
1886 
1887 	return strict_mode;
1888 }
1889 
1890 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1891 {
1892 	bool *cur_mode;
1893 	int res = 0;
1894 
1895 	vrf_map_lock(vmap);
1896 
1897 	cur_mode = &vmap->strict_mode;
1898 	if (*cur_mode == new_mode)
1899 		goto unlock;
1900 
1901 	if (*cur_mode) {
1902 		/* disable strict mode */
1903 		*cur_mode = false;
1904 	} else {
1905 		if (vmap->shared_tables) {
1906 			/* we cannot allow strict_mode because there are some
1907 			 * vrfs that share one or more tables.
1908 			 */
1909 			res = -EBUSY;
1910 			goto unlock;
1911 		}
1912 
1913 		/* no tables are shared among vrfs, so we can go back
1914 		 * to 1:1 association between a vrf with its table.
1915 		 */
1916 		*cur_mode = true;
1917 	}
1918 
1919 unlock:
1920 	vrf_map_unlock(vmap);
1921 
1922 	return res;
1923 }
1924 
1925 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1926 				    void *buffer, size_t *lenp, loff_t *ppos)
1927 {
1928 	struct net *net = (struct net *)table->extra1;
1929 	struct vrf_map *vmap = netns_vrf_map(net);
1930 	int proc_strict_mode = 0;
1931 	struct ctl_table tmp = {
1932 		.procname	= table->procname,
1933 		.data		= &proc_strict_mode,
1934 		.maxlen		= sizeof(int),
1935 		.mode		= table->mode,
1936 		.extra1		= SYSCTL_ZERO,
1937 		.extra2		= SYSCTL_ONE,
1938 	};
1939 	int ret;
1940 
1941 	if (!write)
1942 		proc_strict_mode = vrf_strict_mode(vmap);
1943 
1944 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1945 
1946 	if (write && ret == 0)
1947 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1948 
1949 	return ret;
1950 }
1951 
1952 static const struct ctl_table vrf_table[] = {
1953 	{
1954 		.procname	= "strict_mode",
1955 		.data		= NULL,
1956 		.maxlen		= sizeof(int),
1957 		.mode		= 0644,
1958 		.proc_handler	= vrf_shared_table_handler,
1959 		/* set by the vrf_netns_init */
1960 		.extra1		= NULL,
1961 	},
1962 	{ },
1963 };
1964 
1965 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1966 {
1967 	struct ctl_table *table;
1968 
1969 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1970 	if (!table)
1971 		return -ENOMEM;
1972 
1973 	/* init the extra1 parameter with the reference to current netns */
1974 	table[0].extra1 = net;
1975 
1976 	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1977 	if (!nn_vrf->ctl_hdr) {
1978 		kfree(table);
1979 		return -ENOMEM;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 static void vrf_netns_exit_sysctl(struct net *net)
1986 {
1987 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1988 	struct ctl_table *table;
1989 
1990 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1991 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1992 	kfree(table);
1993 }
1994 #else
1995 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1996 {
1997 	return 0;
1998 }
1999 
2000 static void vrf_netns_exit_sysctl(struct net *net)
2001 {
2002 }
2003 #endif
2004 
2005 /* Initialize per network namespace state */
2006 static int __net_init vrf_netns_init(struct net *net)
2007 {
2008 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2009 
2010 	nn_vrf->add_fib_rules = true;
2011 	vrf_map_init(&nn_vrf->vmap);
2012 
2013 	return vrf_netns_init_sysctl(net, nn_vrf);
2014 }
2015 
2016 static void __net_exit vrf_netns_exit(struct net *net)
2017 {
2018 	vrf_netns_exit_sysctl(net);
2019 }
2020 
2021 static struct pernet_operations vrf_net_ops __net_initdata = {
2022 	.init = vrf_netns_init,
2023 	.exit = vrf_netns_exit,
2024 	.id   = &vrf_net_id,
2025 	.size = sizeof(struct netns_vrf),
2026 };
2027 
2028 static int __init vrf_init_module(void)
2029 {
2030 	int rc;
2031 
2032 	register_netdevice_notifier(&vrf_notifier_block);
2033 
2034 	rc = register_pernet_subsys(&vrf_net_ops);
2035 	if (rc < 0)
2036 		goto error;
2037 
2038 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2039 					  vrf_ifindex_lookup_by_table_id);
2040 	if (rc < 0)
2041 		goto unreg_pernet;
2042 
2043 	rc = rtnl_link_register(&vrf_link_ops);
2044 	if (rc < 0)
2045 		goto table_lookup_unreg;
2046 
2047 	return 0;
2048 
2049 table_lookup_unreg:
2050 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2051 				       vrf_ifindex_lookup_by_table_id);
2052 
2053 unreg_pernet:
2054 	unregister_pernet_subsys(&vrf_net_ops);
2055 
2056 error:
2057 	unregister_netdevice_notifier(&vrf_notifier_block);
2058 	return rc;
2059 }
2060 
2061 module_init(vrf_init_module);
2062 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2063 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2064 MODULE_LICENSE("GPL");
2065 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2066 MODULE_VERSION(DRV_VERSION);
2067