1 /* 2 * vrf.c: device driver to encapsulate a VRF space 3 * 4 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 7 * 8 * Based on dummy, team and ipvlan drivers 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/netdevice.h> 19 #include <linux/etherdevice.h> 20 #include <linux/ip.h> 21 #include <linux/init.h> 22 #include <linux/moduleparam.h> 23 #include <linux/netfilter.h> 24 #include <linux/rtnetlink.h> 25 #include <net/rtnetlink.h> 26 #include <linux/u64_stats_sync.h> 27 #include <linux/hashtable.h> 28 29 #include <linux/inetdevice.h> 30 #include <net/arp.h> 31 #include <net/ip.h> 32 #include <net/ip_fib.h> 33 #include <net/ip6_route.h> 34 #include <net/rtnetlink.h> 35 #include <net/route.h> 36 #include <net/addrconf.h> 37 #include <net/vrf.h> 38 39 #define DRV_NAME "vrf" 40 #define DRV_VERSION "1.0" 41 42 #define vrf_is_slave(dev) ((dev)->flags & IFF_SLAVE) 43 44 #define vrf_master_get_rcu(dev) \ 45 ((struct net_device *)rcu_dereference(dev->rx_handler_data)) 46 47 struct pcpu_dstats { 48 u64 tx_pkts; 49 u64 tx_bytes; 50 u64 tx_drps; 51 u64 rx_pkts; 52 u64 rx_bytes; 53 struct u64_stats_sync syncp; 54 }; 55 56 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie) 57 { 58 return dst; 59 } 60 61 static int vrf_ip_local_out(struct sk_buff *skb) 62 { 63 return ip_local_out(skb); 64 } 65 66 static unsigned int vrf_v4_mtu(const struct dst_entry *dst) 67 { 68 /* TO-DO: return max ethernet size? */ 69 return dst->dev->mtu; 70 } 71 72 static void vrf_dst_destroy(struct dst_entry *dst) 73 { 74 /* our dst lives forever - or until the device is closed */ 75 } 76 77 static unsigned int vrf_default_advmss(const struct dst_entry *dst) 78 { 79 return 65535 - 40; 80 } 81 82 static struct dst_ops vrf_dst_ops = { 83 .family = AF_INET, 84 .local_out = vrf_ip_local_out, 85 .check = vrf_ip_check, 86 .mtu = vrf_v4_mtu, 87 .destroy = vrf_dst_destroy, 88 .default_advmss = vrf_default_advmss, 89 }; 90 91 static bool is_ip_rx_frame(struct sk_buff *skb) 92 { 93 switch (skb->protocol) { 94 case htons(ETH_P_IP): 95 case htons(ETH_P_IPV6): 96 return true; 97 } 98 return false; 99 } 100 101 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 102 { 103 vrf_dev->stats.tx_errors++; 104 kfree_skb(skb); 105 } 106 107 /* note: already called with rcu_read_lock */ 108 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb) 109 { 110 struct sk_buff *skb = *pskb; 111 112 if (is_ip_rx_frame(skb)) { 113 struct net_device *dev = vrf_master_get_rcu(skb->dev); 114 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 115 116 u64_stats_update_begin(&dstats->syncp); 117 dstats->rx_pkts++; 118 dstats->rx_bytes += skb->len; 119 u64_stats_update_end(&dstats->syncp); 120 121 skb->dev = dev; 122 123 return RX_HANDLER_ANOTHER; 124 } 125 return RX_HANDLER_PASS; 126 } 127 128 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev, 129 struct rtnl_link_stats64 *stats) 130 { 131 int i; 132 133 for_each_possible_cpu(i) { 134 const struct pcpu_dstats *dstats; 135 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 136 unsigned int start; 137 138 dstats = per_cpu_ptr(dev->dstats, i); 139 do { 140 start = u64_stats_fetch_begin_irq(&dstats->syncp); 141 tbytes = dstats->tx_bytes; 142 tpkts = dstats->tx_pkts; 143 tdrops = dstats->tx_drps; 144 rbytes = dstats->rx_bytes; 145 rpkts = dstats->rx_pkts; 146 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 147 stats->tx_bytes += tbytes; 148 stats->tx_packets += tpkts; 149 stats->tx_dropped += tdrops; 150 stats->rx_bytes += rbytes; 151 stats->rx_packets += rpkts; 152 } 153 return stats; 154 } 155 156 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 157 struct net_device *dev) 158 { 159 vrf_tx_error(dev, skb); 160 return NET_XMIT_DROP; 161 } 162 163 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4, 164 struct net_device *vrf_dev) 165 { 166 struct rtable *rt; 167 int err = 1; 168 169 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL); 170 if (IS_ERR(rt)) 171 goto out; 172 173 /* TO-DO: what about broadcast ? */ 174 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { 175 ip_rt_put(rt); 176 goto out; 177 } 178 179 skb_dst_drop(skb); 180 skb_dst_set(skb, &rt->dst); 181 err = 0; 182 out: 183 return err; 184 } 185 186 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 187 struct net_device *vrf_dev) 188 { 189 struct iphdr *ip4h = ip_hdr(skb); 190 int ret = NET_XMIT_DROP; 191 struct flowi4 fl4 = { 192 /* needed to match OIF rule */ 193 .flowi4_oif = vrf_dev->ifindex, 194 .flowi4_iif = LOOPBACK_IFINDEX, 195 .flowi4_tos = RT_TOS(ip4h->tos), 196 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_VRFSRC | 197 FLOWI_FLAG_SKIP_NH_OIF, 198 .daddr = ip4h->daddr, 199 }; 200 201 if (vrf_send_v4_prep(skb, &fl4, vrf_dev)) 202 goto err; 203 204 if (!ip4h->saddr) { 205 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 206 RT_SCOPE_LINK); 207 } 208 209 ret = ip_local_out(skb); 210 if (unlikely(net_xmit_eval(ret))) 211 vrf_dev->stats.tx_errors++; 212 else 213 ret = NET_XMIT_SUCCESS; 214 215 out: 216 return ret; 217 err: 218 vrf_tx_error(vrf_dev, skb); 219 goto out; 220 } 221 222 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 223 { 224 /* strip the ethernet header added for pass through VRF device */ 225 __skb_pull(skb, skb_network_offset(skb)); 226 227 switch (skb->protocol) { 228 case htons(ETH_P_IP): 229 return vrf_process_v4_outbound(skb, dev); 230 case htons(ETH_P_IPV6): 231 return vrf_process_v6_outbound(skb, dev); 232 default: 233 vrf_tx_error(dev, skb); 234 return NET_XMIT_DROP; 235 } 236 } 237 238 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 239 { 240 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 241 242 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 243 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 244 245 u64_stats_update_begin(&dstats->syncp); 246 dstats->tx_pkts++; 247 dstats->tx_bytes += skb->len; 248 u64_stats_update_end(&dstats->syncp); 249 } else { 250 this_cpu_inc(dev->dstats->tx_drps); 251 } 252 253 return ret; 254 } 255 256 /* modelled after ip_finish_output2 */ 257 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 258 { 259 struct dst_entry *dst = skb_dst(skb); 260 struct rtable *rt = (struct rtable *)dst; 261 struct net_device *dev = dst->dev; 262 unsigned int hh_len = LL_RESERVED_SPACE(dev); 263 struct neighbour *neigh; 264 u32 nexthop; 265 int ret = -EINVAL; 266 267 /* Be paranoid, rather than too clever. */ 268 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 269 struct sk_buff *skb2; 270 271 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 272 if (!skb2) { 273 ret = -ENOMEM; 274 goto err; 275 } 276 if (skb->sk) 277 skb_set_owner_w(skb2, skb->sk); 278 279 consume_skb(skb); 280 skb = skb2; 281 } 282 283 rcu_read_lock_bh(); 284 285 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr); 286 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 287 if (unlikely(!neigh)) 288 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 289 if (!IS_ERR(neigh)) 290 ret = dst_neigh_output(dst, neigh, skb); 291 292 rcu_read_unlock_bh(); 293 err: 294 if (unlikely(ret < 0)) 295 vrf_tx_error(skb->dev, skb); 296 return ret; 297 } 298 299 static int vrf_output(struct sock *sk, struct sk_buff *skb) 300 { 301 struct net_device *dev = skb_dst(skb)->dev; 302 struct net *net = dev_net(dev); 303 304 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 305 306 skb->dev = dev; 307 skb->protocol = htons(ETH_P_IP); 308 309 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 310 net, sk, skb, NULL, dev, 311 vrf_finish_output, 312 !(IPCB(skb)->flags & IPSKB_REROUTED)); 313 } 314 315 static void vrf_rtable_destroy(struct net_vrf *vrf) 316 { 317 struct dst_entry *dst = (struct dst_entry *)vrf->rth; 318 319 dst_destroy(dst); 320 vrf->rth = NULL; 321 } 322 323 static struct rtable *vrf_rtable_create(struct net_device *dev) 324 { 325 struct net_vrf *vrf = netdev_priv(dev); 326 struct rtable *rth; 327 328 rth = dst_alloc(&vrf_dst_ops, dev, 2, 329 DST_OBSOLETE_NONE, 330 (DST_HOST | DST_NOPOLICY | DST_NOXFRM)); 331 if (rth) { 332 rth->dst.output = vrf_output; 333 rth->rt_genid = rt_genid_ipv4(dev_net(dev)); 334 rth->rt_flags = 0; 335 rth->rt_type = RTN_UNICAST; 336 rth->rt_is_input = 0; 337 rth->rt_iif = 0; 338 rth->rt_pmtu = 0; 339 rth->rt_gateway = 0; 340 rth->rt_uses_gateway = 0; 341 rth->rt_table_id = vrf->tb_id; 342 INIT_LIST_HEAD(&rth->rt_uncached); 343 rth->rt_uncached_list = NULL; 344 } 345 346 return rth; 347 } 348 349 /**************************** device handling ********************/ 350 351 /* cycle interface to flush neighbor cache and move routes across tables */ 352 static void cycle_netdev(struct net_device *dev) 353 { 354 unsigned int flags = dev->flags; 355 int ret; 356 357 if (!netif_running(dev)) 358 return; 359 360 ret = dev_change_flags(dev, flags & ~IFF_UP); 361 if (ret >= 0) 362 ret = dev_change_flags(dev, flags); 363 364 if (ret < 0) { 365 netdev_err(dev, 366 "Failed to cycle device %s; route tables might be wrong!\n", 367 dev->name); 368 } 369 } 370 371 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue, 372 struct net_device *dev) 373 { 374 struct list_head *head = &queue->all_slaves; 375 struct slave *slave; 376 377 list_for_each_entry(slave, head, list) { 378 if (slave->dev == dev) 379 return slave; 380 } 381 382 return NULL; 383 } 384 385 /* inverse of __vrf_insert_slave */ 386 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave) 387 { 388 list_del(&slave->list); 389 } 390 391 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave) 392 { 393 list_add(&slave->list, &queue->all_slaves); 394 } 395 396 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 397 { 398 struct net_vrf_dev *vrf_ptr = kmalloc(sizeof(*vrf_ptr), GFP_KERNEL); 399 struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL); 400 struct net_vrf *vrf = netdev_priv(dev); 401 struct slave_queue *queue = &vrf->queue; 402 int ret = -ENOMEM; 403 404 if (!slave || !vrf_ptr) 405 goto out_fail; 406 407 slave->dev = port_dev; 408 vrf_ptr->ifindex = dev->ifindex; 409 vrf_ptr->tb_id = vrf->tb_id; 410 411 /* register the packet handler for slave ports */ 412 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev); 413 if (ret) { 414 netdev_err(port_dev, 415 "Device %s failed to register rx_handler\n", 416 port_dev->name); 417 goto out_fail; 418 } 419 420 ret = netdev_master_upper_dev_link(port_dev, dev); 421 if (ret < 0) 422 goto out_unregister; 423 424 port_dev->flags |= IFF_SLAVE; 425 __vrf_insert_slave(queue, slave); 426 rcu_assign_pointer(port_dev->vrf_ptr, vrf_ptr); 427 cycle_netdev(port_dev); 428 429 return 0; 430 431 out_unregister: 432 netdev_rx_handler_unregister(port_dev); 433 out_fail: 434 kfree(vrf_ptr); 435 kfree(slave); 436 return ret; 437 } 438 439 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev) 440 { 441 if (netif_is_l3_master(port_dev) || vrf_is_slave(port_dev)) 442 return -EINVAL; 443 444 return do_vrf_add_slave(dev, port_dev); 445 } 446 447 /* inverse of do_vrf_add_slave */ 448 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 449 { 450 struct net_vrf_dev *vrf_ptr = rtnl_dereference(port_dev->vrf_ptr); 451 struct net_vrf *vrf = netdev_priv(dev); 452 struct slave_queue *queue = &vrf->queue; 453 struct slave *slave; 454 455 RCU_INIT_POINTER(port_dev->vrf_ptr, NULL); 456 457 netdev_upper_dev_unlink(port_dev, dev); 458 port_dev->flags &= ~IFF_SLAVE; 459 460 netdev_rx_handler_unregister(port_dev); 461 462 /* after netdev_rx_handler_unregister for synchronize_rcu */ 463 kfree(vrf_ptr); 464 465 cycle_netdev(port_dev); 466 467 slave = __vrf_find_slave_dev(queue, port_dev); 468 if (slave) 469 __vrf_remove_slave(queue, slave); 470 471 kfree(slave); 472 473 return 0; 474 } 475 476 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 477 { 478 return do_vrf_del_slave(dev, port_dev); 479 } 480 481 static void vrf_dev_uninit(struct net_device *dev) 482 { 483 struct net_vrf *vrf = netdev_priv(dev); 484 struct slave_queue *queue = &vrf->queue; 485 struct list_head *head = &queue->all_slaves; 486 struct slave *slave, *next; 487 488 vrf_rtable_destroy(vrf); 489 490 list_for_each_entry_safe(slave, next, head, list) 491 vrf_del_slave(dev, slave->dev); 492 493 free_percpu(dev->dstats); 494 dev->dstats = NULL; 495 } 496 497 static int vrf_dev_init(struct net_device *dev) 498 { 499 struct net_vrf *vrf = netdev_priv(dev); 500 501 INIT_LIST_HEAD(&vrf->queue.all_slaves); 502 503 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 504 if (!dev->dstats) 505 goto out_nomem; 506 507 /* create the default dst which points back to us */ 508 vrf->rth = vrf_rtable_create(dev); 509 if (!vrf->rth) 510 goto out_stats; 511 512 dev->flags = IFF_MASTER | IFF_NOARP; 513 514 return 0; 515 516 out_stats: 517 free_percpu(dev->dstats); 518 dev->dstats = NULL; 519 out_nomem: 520 return -ENOMEM; 521 } 522 523 static const struct net_device_ops vrf_netdev_ops = { 524 .ndo_init = vrf_dev_init, 525 .ndo_uninit = vrf_dev_uninit, 526 .ndo_start_xmit = vrf_xmit, 527 .ndo_get_stats64 = vrf_get_stats64, 528 .ndo_add_slave = vrf_add_slave, 529 .ndo_del_slave = vrf_del_slave, 530 }; 531 532 static void vrf_get_drvinfo(struct net_device *dev, 533 struct ethtool_drvinfo *info) 534 { 535 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 536 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 537 } 538 539 static const struct ethtool_ops vrf_ethtool_ops = { 540 .get_drvinfo = vrf_get_drvinfo, 541 }; 542 543 static void vrf_setup(struct net_device *dev) 544 { 545 ether_setup(dev); 546 547 /* Initialize the device structure. */ 548 dev->netdev_ops = &vrf_netdev_ops; 549 dev->ethtool_ops = &vrf_ethtool_ops; 550 dev->destructor = free_netdev; 551 552 /* Fill in device structure with ethernet-generic values. */ 553 eth_hw_addr_random(dev); 554 555 /* don't acquire vrf device's netif_tx_lock when transmitting */ 556 dev->features |= NETIF_F_LLTX; 557 558 /* don't allow vrf devices to change network namespaces. */ 559 dev->features |= NETIF_F_NETNS_LOCAL; 560 } 561 562 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[]) 563 { 564 if (tb[IFLA_ADDRESS]) { 565 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 566 return -EINVAL; 567 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 568 return -EADDRNOTAVAIL; 569 } 570 return 0; 571 } 572 573 static void vrf_dellink(struct net_device *dev, struct list_head *head) 574 { 575 struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr); 576 577 RCU_INIT_POINTER(dev->vrf_ptr, NULL); 578 kfree_rcu(vrf_ptr, rcu); 579 unregister_netdevice_queue(dev, head); 580 } 581 582 static int vrf_newlink(struct net *src_net, struct net_device *dev, 583 struct nlattr *tb[], struct nlattr *data[]) 584 { 585 struct net_vrf *vrf = netdev_priv(dev); 586 struct net_vrf_dev *vrf_ptr; 587 int err; 588 589 if (!data || !data[IFLA_VRF_TABLE]) 590 return -EINVAL; 591 592 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 593 594 dev->priv_flags |= IFF_L3MDEV_MASTER; 595 596 err = -ENOMEM; 597 vrf_ptr = kmalloc(sizeof(*dev->vrf_ptr), GFP_KERNEL); 598 if (!vrf_ptr) 599 goto out_fail; 600 601 vrf_ptr->ifindex = dev->ifindex; 602 vrf_ptr->tb_id = vrf->tb_id; 603 604 err = register_netdevice(dev); 605 if (err < 0) 606 goto out_fail; 607 608 rcu_assign_pointer(dev->vrf_ptr, vrf_ptr); 609 610 return 0; 611 612 out_fail: 613 kfree(vrf_ptr); 614 free_netdev(dev); 615 return err; 616 } 617 618 static size_t vrf_nl_getsize(const struct net_device *dev) 619 { 620 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 621 } 622 623 static int vrf_fillinfo(struct sk_buff *skb, 624 const struct net_device *dev) 625 { 626 struct net_vrf *vrf = netdev_priv(dev); 627 628 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 629 } 630 631 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 632 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 633 }; 634 635 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 636 .kind = DRV_NAME, 637 .priv_size = sizeof(struct net_vrf), 638 639 .get_size = vrf_nl_getsize, 640 .policy = vrf_nl_policy, 641 .validate = vrf_validate, 642 .fill_info = vrf_fillinfo, 643 644 .newlink = vrf_newlink, 645 .dellink = vrf_dellink, 646 .setup = vrf_setup, 647 .maxtype = IFLA_VRF_MAX, 648 }; 649 650 static int vrf_device_event(struct notifier_block *unused, 651 unsigned long event, void *ptr) 652 { 653 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 654 655 /* only care about unregister events to drop slave references */ 656 if (event == NETDEV_UNREGISTER) { 657 struct net_vrf_dev *vrf_ptr = rtnl_dereference(dev->vrf_ptr); 658 struct net_device *vrf_dev; 659 660 if (!vrf_ptr || netif_is_l3_master(dev)) 661 goto out; 662 663 vrf_dev = netdev_master_upper_dev_get(dev); 664 vrf_del_slave(vrf_dev, dev); 665 } 666 out: 667 return NOTIFY_DONE; 668 } 669 670 static struct notifier_block vrf_notifier_block __read_mostly = { 671 .notifier_call = vrf_device_event, 672 }; 673 674 static int __init vrf_init_module(void) 675 { 676 int rc; 677 678 vrf_dst_ops.kmem_cachep = 679 kmem_cache_create("vrf_ip_dst_cache", 680 sizeof(struct rtable), 0, 681 SLAB_HWCACHE_ALIGN, 682 NULL); 683 684 if (!vrf_dst_ops.kmem_cachep) 685 return -ENOMEM; 686 687 register_netdevice_notifier(&vrf_notifier_block); 688 689 rc = rtnl_link_register(&vrf_link_ops); 690 if (rc < 0) 691 goto error; 692 693 return 0; 694 695 error: 696 unregister_netdevice_notifier(&vrf_notifier_block); 697 kmem_cache_destroy(vrf_dst_ops.kmem_cachep); 698 return rc; 699 } 700 701 static void __exit vrf_cleanup_module(void) 702 { 703 rtnl_link_unregister(&vrf_link_ops); 704 unregister_netdevice_notifier(&vrf_notifier_block); 705 kmem_cache_destroy(vrf_dst_ops.kmem_cachep); 706 } 707 708 module_init(vrf_init_module); 709 module_exit(vrf_cleanup_module); 710 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 711 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 712 MODULE_LICENSE("GPL"); 713 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 714 MODULE_VERSION(DRV_VERSION); 715