1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ip.h> 17 #include <linux/init.h> 18 #include <linux/moduleparam.h> 19 #include <linux/netfilter.h> 20 #include <linux/rtnetlink.h> 21 #include <net/rtnetlink.h> 22 #include <linux/u64_stats_sync.h> 23 #include <linux/hashtable.h> 24 25 #include <linux/inetdevice.h> 26 #include <net/arp.h> 27 #include <net/ip.h> 28 #include <net/ip_fib.h> 29 #include <net/ip6_fib.h> 30 #include <net/ip6_route.h> 31 #include <net/route.h> 32 #include <net/addrconf.h> 33 #include <net/l3mdev.h> 34 #include <net/fib_rules.h> 35 #include <net/netns/generic.h> 36 37 #define DRV_NAME "vrf" 38 #define DRV_VERSION "1.0" 39 40 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 41 42 static unsigned int vrf_net_id; 43 44 struct net_vrf { 45 struct rtable __rcu *rth; 46 struct rt6_info __rcu *rt6; 47 #if IS_ENABLED(CONFIG_IPV6) 48 struct fib6_table *fib6_table; 49 #endif 50 u32 tb_id; 51 }; 52 53 struct pcpu_dstats { 54 u64 tx_pkts; 55 u64 tx_bytes; 56 u64 tx_drps; 57 u64 rx_pkts; 58 u64 rx_bytes; 59 u64 rx_drps; 60 struct u64_stats_sync syncp; 61 }; 62 63 static void vrf_rx_stats(struct net_device *dev, int len) 64 { 65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 66 67 u64_stats_update_begin(&dstats->syncp); 68 dstats->rx_pkts++; 69 dstats->rx_bytes += len; 70 u64_stats_update_end(&dstats->syncp); 71 } 72 73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 74 { 75 vrf_dev->stats.tx_errors++; 76 kfree_skb(skb); 77 } 78 79 static void vrf_get_stats64(struct net_device *dev, 80 struct rtnl_link_stats64 *stats) 81 { 82 int i; 83 84 for_each_possible_cpu(i) { 85 const struct pcpu_dstats *dstats; 86 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 87 unsigned int start; 88 89 dstats = per_cpu_ptr(dev->dstats, i); 90 do { 91 start = u64_stats_fetch_begin_irq(&dstats->syncp); 92 tbytes = dstats->tx_bytes; 93 tpkts = dstats->tx_pkts; 94 tdrops = dstats->tx_drps; 95 rbytes = dstats->rx_bytes; 96 rpkts = dstats->rx_pkts; 97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start)); 98 stats->tx_bytes += tbytes; 99 stats->tx_packets += tpkts; 100 stats->tx_dropped += tdrops; 101 stats->rx_bytes += rbytes; 102 stats->rx_packets += rpkts; 103 } 104 } 105 106 /* by default VRF devices do not have a qdisc and are expected 107 * to be created with only a single queue. 108 */ 109 static bool qdisc_tx_is_default(const struct net_device *dev) 110 { 111 struct netdev_queue *txq; 112 struct Qdisc *qdisc; 113 114 if (dev->num_tx_queues > 1) 115 return false; 116 117 txq = netdev_get_tx_queue(dev, 0); 118 qdisc = rcu_access_pointer(txq->qdisc); 119 120 return !qdisc->enqueue; 121 } 122 123 /* Local traffic destined to local address. Reinsert the packet to rx 124 * path, similar to loopback handling. 125 */ 126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 127 struct dst_entry *dst) 128 { 129 int len = skb->len; 130 131 skb_orphan(skb); 132 133 skb_dst_set(skb, dst); 134 135 /* set pkt_type to avoid skb hitting packet taps twice - 136 * once on Tx and again in Rx processing 137 */ 138 skb->pkt_type = PACKET_LOOPBACK; 139 140 skb->protocol = eth_type_trans(skb, dev); 141 142 if (likely(netif_rx(skb) == NET_RX_SUCCESS)) 143 vrf_rx_stats(dev, len); 144 else 145 this_cpu_inc(dev->dstats->rx_drps); 146 147 return NETDEV_TX_OK; 148 } 149 150 #if IS_ENABLED(CONFIG_IPV6) 151 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 152 struct sk_buff *skb) 153 { 154 int err; 155 156 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 157 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 158 159 if (likely(err == 1)) 160 err = dst_output(net, sk, skb); 161 162 return err; 163 } 164 165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 166 struct net_device *dev) 167 { 168 const struct ipv6hdr *iph; 169 struct net *net = dev_net(skb->dev); 170 struct flowi6 fl6; 171 int ret = NET_XMIT_DROP; 172 struct dst_entry *dst; 173 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 174 175 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) 176 goto err; 177 178 iph = ipv6_hdr(skb); 179 180 memset(&fl6, 0, sizeof(fl6)); 181 /* needed to match OIF rule */ 182 fl6.flowi6_oif = dev->ifindex; 183 fl6.flowi6_iif = LOOPBACK_IFINDEX; 184 fl6.daddr = iph->daddr; 185 fl6.saddr = iph->saddr; 186 fl6.flowlabel = ip6_flowinfo(iph); 187 fl6.flowi6_mark = skb->mark; 188 fl6.flowi6_proto = iph->nexthdr; 189 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF; 190 191 dst = ip6_route_output(net, NULL, &fl6); 192 if (dst == dst_null) 193 goto err; 194 195 skb_dst_drop(skb); 196 197 /* if dst.dev is loopback or the VRF device again this is locally 198 * originated traffic destined to a local address. Short circuit 199 * to Rx path 200 */ 201 if (dst->dev == dev) 202 return vrf_local_xmit(skb, dev, dst); 203 204 skb_dst_set(skb, dst); 205 206 /* strip the ethernet header added for pass through VRF device */ 207 __skb_pull(skb, skb_network_offset(skb)); 208 209 ret = vrf_ip6_local_out(net, skb->sk, skb); 210 if (unlikely(net_xmit_eval(ret))) 211 dev->stats.tx_errors++; 212 else 213 ret = NET_XMIT_SUCCESS; 214 215 return ret; 216 err: 217 vrf_tx_error(dev, skb); 218 return NET_XMIT_DROP; 219 } 220 #else 221 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 222 struct net_device *dev) 223 { 224 vrf_tx_error(dev, skb); 225 return NET_XMIT_DROP; 226 } 227 #endif 228 229 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 230 static int vrf_ip_local_out(struct net *net, struct sock *sk, 231 struct sk_buff *skb) 232 { 233 int err; 234 235 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 236 skb, NULL, skb_dst(skb)->dev, dst_output); 237 if (likely(err == 1)) 238 err = dst_output(net, sk, skb); 239 240 return err; 241 } 242 243 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 244 struct net_device *vrf_dev) 245 { 246 struct iphdr *ip4h; 247 int ret = NET_XMIT_DROP; 248 struct flowi4 fl4; 249 struct net *net = dev_net(vrf_dev); 250 struct rtable *rt; 251 252 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) 253 goto err; 254 255 ip4h = ip_hdr(skb); 256 257 memset(&fl4, 0, sizeof(fl4)); 258 /* needed to match OIF rule */ 259 fl4.flowi4_oif = vrf_dev->ifindex; 260 fl4.flowi4_iif = LOOPBACK_IFINDEX; 261 fl4.flowi4_tos = RT_TOS(ip4h->tos); 262 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF; 263 fl4.flowi4_proto = ip4h->protocol; 264 fl4.daddr = ip4h->daddr; 265 fl4.saddr = ip4h->saddr; 266 267 rt = ip_route_output_flow(net, &fl4, NULL); 268 if (IS_ERR(rt)) 269 goto err; 270 271 skb_dst_drop(skb); 272 273 /* if dst.dev is loopback or the VRF device again this is locally 274 * originated traffic destined to a local address. Short circuit 275 * to Rx path 276 */ 277 if (rt->dst.dev == vrf_dev) 278 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 279 280 skb_dst_set(skb, &rt->dst); 281 282 /* strip the ethernet header added for pass through VRF device */ 283 __skb_pull(skb, skb_network_offset(skb)); 284 285 if (!ip4h->saddr) { 286 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 287 RT_SCOPE_LINK); 288 } 289 290 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 291 if (unlikely(net_xmit_eval(ret))) 292 vrf_dev->stats.tx_errors++; 293 else 294 ret = NET_XMIT_SUCCESS; 295 296 out: 297 return ret; 298 err: 299 vrf_tx_error(vrf_dev, skb); 300 goto out; 301 } 302 303 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 304 { 305 switch (skb->protocol) { 306 case htons(ETH_P_IP): 307 return vrf_process_v4_outbound(skb, dev); 308 case htons(ETH_P_IPV6): 309 return vrf_process_v6_outbound(skb, dev); 310 default: 311 vrf_tx_error(dev, skb); 312 return NET_XMIT_DROP; 313 } 314 } 315 316 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 317 { 318 int len = skb->len; 319 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 320 321 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 322 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 323 324 u64_stats_update_begin(&dstats->syncp); 325 dstats->tx_pkts++; 326 dstats->tx_bytes += len; 327 u64_stats_update_end(&dstats->syncp); 328 } else { 329 this_cpu_inc(dev->dstats->tx_drps); 330 } 331 332 return ret; 333 } 334 335 static int vrf_finish_direct(struct net *net, struct sock *sk, 336 struct sk_buff *skb) 337 { 338 struct net_device *vrf_dev = skb->dev; 339 340 if (!list_empty(&vrf_dev->ptype_all) && 341 likely(skb_headroom(skb) >= ETH_HLEN)) { 342 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 343 344 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 345 eth_zero_addr(eth->h_dest); 346 eth->h_proto = skb->protocol; 347 348 rcu_read_lock_bh(); 349 dev_queue_xmit_nit(skb, vrf_dev); 350 rcu_read_unlock_bh(); 351 352 skb_pull(skb, ETH_HLEN); 353 } 354 355 return 1; 356 } 357 358 #if IS_ENABLED(CONFIG_IPV6) 359 /* modelled after ip6_finish_output2 */ 360 static int vrf_finish_output6(struct net *net, struct sock *sk, 361 struct sk_buff *skb) 362 { 363 struct dst_entry *dst = skb_dst(skb); 364 struct net_device *dev = dst->dev; 365 const struct in6_addr *nexthop; 366 struct neighbour *neigh; 367 int ret; 368 369 nf_reset_ct(skb); 370 371 skb->protocol = htons(ETH_P_IPV6); 372 skb->dev = dev; 373 374 rcu_read_lock_bh(); 375 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 376 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 377 if (unlikely(!neigh)) 378 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 379 if (!IS_ERR(neigh)) { 380 sock_confirm_neigh(skb, neigh); 381 ret = neigh_output(neigh, skb, false); 382 rcu_read_unlock_bh(); 383 return ret; 384 } 385 rcu_read_unlock_bh(); 386 387 IP6_INC_STATS(dev_net(dst->dev), 388 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 389 kfree_skb(skb); 390 return -EINVAL; 391 } 392 393 /* modelled after ip6_output */ 394 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 395 { 396 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 397 net, sk, skb, NULL, skb_dst(skb)->dev, 398 vrf_finish_output6, 399 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 400 } 401 402 /* set dst on skb to send packet to us via dev_xmit path. Allows 403 * packet to go through device based features such as qdisc, netfilter 404 * hooks and packet sockets with skb->dev set to vrf device. 405 */ 406 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 407 struct sk_buff *skb) 408 { 409 struct net_vrf *vrf = netdev_priv(vrf_dev); 410 struct dst_entry *dst = NULL; 411 struct rt6_info *rt6; 412 413 rcu_read_lock(); 414 415 rt6 = rcu_dereference(vrf->rt6); 416 if (likely(rt6)) { 417 dst = &rt6->dst; 418 dst_hold(dst); 419 } 420 421 rcu_read_unlock(); 422 423 if (unlikely(!dst)) { 424 vrf_tx_error(vrf_dev, skb); 425 return NULL; 426 } 427 428 skb_dst_drop(skb); 429 skb_dst_set(skb, dst); 430 431 return skb; 432 } 433 434 static int vrf_output6_direct(struct net *net, struct sock *sk, 435 struct sk_buff *skb) 436 { 437 skb->protocol = htons(ETH_P_IPV6); 438 439 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 440 net, sk, skb, NULL, skb->dev, 441 vrf_finish_direct, 442 !(IPCB(skb)->flags & IPSKB_REROUTED)); 443 } 444 445 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 446 struct sock *sk, 447 struct sk_buff *skb) 448 { 449 struct net *net = dev_net(vrf_dev); 450 int err; 451 452 skb->dev = vrf_dev; 453 454 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 455 skb, NULL, vrf_dev, vrf_output6_direct); 456 457 if (likely(err == 1)) 458 err = vrf_output6_direct(net, sk, skb); 459 460 /* reset skb device */ 461 if (likely(err == 1)) 462 nf_reset_ct(skb); 463 else 464 skb = NULL; 465 466 return skb; 467 } 468 469 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 470 struct sock *sk, 471 struct sk_buff *skb) 472 { 473 /* don't divert link scope packets */ 474 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 475 return skb; 476 477 if (qdisc_tx_is_default(vrf_dev)) 478 return vrf_ip6_out_direct(vrf_dev, sk, skb); 479 480 return vrf_ip6_out_redirect(vrf_dev, skb); 481 } 482 483 /* holding rtnl */ 484 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 485 { 486 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 487 struct net *net = dev_net(dev); 488 struct dst_entry *dst; 489 490 RCU_INIT_POINTER(vrf->rt6, NULL); 491 synchronize_rcu(); 492 493 /* move dev in dst's to loopback so this VRF device can be deleted 494 * - based on dst_ifdown 495 */ 496 if (rt6) { 497 dst = &rt6->dst; 498 dev_put(dst->dev); 499 dst->dev = net->loopback_dev; 500 dev_hold(dst->dev); 501 dst_release(dst); 502 } 503 } 504 505 static int vrf_rt6_create(struct net_device *dev) 506 { 507 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM; 508 struct net_vrf *vrf = netdev_priv(dev); 509 struct net *net = dev_net(dev); 510 struct rt6_info *rt6; 511 int rc = -ENOMEM; 512 513 /* IPv6 can be CONFIG enabled and then disabled runtime */ 514 if (!ipv6_mod_enabled()) 515 return 0; 516 517 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 518 if (!vrf->fib6_table) 519 goto out; 520 521 /* create a dst for routing packets out a VRF device */ 522 rt6 = ip6_dst_alloc(net, dev, flags); 523 if (!rt6) 524 goto out; 525 526 rt6->dst.output = vrf_output6; 527 528 rcu_assign_pointer(vrf->rt6, rt6); 529 530 rc = 0; 531 out: 532 return rc; 533 } 534 #else 535 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 536 struct sock *sk, 537 struct sk_buff *skb) 538 { 539 return skb; 540 } 541 542 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 543 { 544 } 545 546 static int vrf_rt6_create(struct net_device *dev) 547 { 548 return 0; 549 } 550 #endif 551 552 /* modelled after ip_finish_output2 */ 553 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 554 { 555 struct dst_entry *dst = skb_dst(skb); 556 struct rtable *rt = (struct rtable *)dst; 557 struct net_device *dev = dst->dev; 558 unsigned int hh_len = LL_RESERVED_SPACE(dev); 559 struct neighbour *neigh; 560 bool is_v6gw = false; 561 int ret = -EINVAL; 562 563 nf_reset_ct(skb); 564 565 /* Be paranoid, rather than too clever. */ 566 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 567 struct sk_buff *skb2; 568 569 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 570 if (!skb2) { 571 ret = -ENOMEM; 572 goto err; 573 } 574 if (skb->sk) 575 skb_set_owner_w(skb2, skb->sk); 576 577 consume_skb(skb); 578 skb = skb2; 579 } 580 581 rcu_read_lock_bh(); 582 583 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 584 if (!IS_ERR(neigh)) { 585 sock_confirm_neigh(skb, neigh); 586 /* if crossing protocols, can not use the cached header */ 587 ret = neigh_output(neigh, skb, is_v6gw); 588 rcu_read_unlock_bh(); 589 return ret; 590 } 591 592 rcu_read_unlock_bh(); 593 err: 594 vrf_tx_error(skb->dev, skb); 595 return ret; 596 } 597 598 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 599 { 600 struct net_device *dev = skb_dst(skb)->dev; 601 602 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 603 604 skb->dev = dev; 605 skb->protocol = htons(ETH_P_IP); 606 607 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 608 net, sk, skb, NULL, dev, 609 vrf_finish_output, 610 !(IPCB(skb)->flags & IPSKB_REROUTED)); 611 } 612 613 /* set dst on skb to send packet to us via dev_xmit path. Allows 614 * packet to go through device based features such as qdisc, netfilter 615 * hooks and packet sockets with skb->dev set to vrf device. 616 */ 617 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 618 struct sk_buff *skb) 619 { 620 struct net_vrf *vrf = netdev_priv(vrf_dev); 621 struct dst_entry *dst = NULL; 622 struct rtable *rth; 623 624 rcu_read_lock(); 625 626 rth = rcu_dereference(vrf->rth); 627 if (likely(rth)) { 628 dst = &rth->dst; 629 dst_hold(dst); 630 } 631 632 rcu_read_unlock(); 633 634 if (unlikely(!dst)) { 635 vrf_tx_error(vrf_dev, skb); 636 return NULL; 637 } 638 639 skb_dst_drop(skb); 640 skb_dst_set(skb, dst); 641 642 return skb; 643 } 644 645 static int vrf_output_direct(struct net *net, struct sock *sk, 646 struct sk_buff *skb) 647 { 648 skb->protocol = htons(ETH_P_IP); 649 650 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 651 net, sk, skb, NULL, skb->dev, 652 vrf_finish_direct, 653 !(IPCB(skb)->flags & IPSKB_REROUTED)); 654 } 655 656 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 657 struct sock *sk, 658 struct sk_buff *skb) 659 { 660 struct net *net = dev_net(vrf_dev); 661 int err; 662 663 skb->dev = vrf_dev; 664 665 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 666 skb, NULL, vrf_dev, vrf_output_direct); 667 668 if (likely(err == 1)) 669 err = vrf_output_direct(net, sk, skb); 670 671 /* reset skb device */ 672 if (likely(err == 1)) 673 nf_reset_ct(skb); 674 else 675 skb = NULL; 676 677 return skb; 678 } 679 680 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 681 struct sock *sk, 682 struct sk_buff *skb) 683 { 684 /* don't divert multicast or local broadcast */ 685 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 686 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 687 return skb; 688 689 if (qdisc_tx_is_default(vrf_dev)) 690 return vrf_ip_out_direct(vrf_dev, sk, skb); 691 692 return vrf_ip_out_redirect(vrf_dev, skb); 693 } 694 695 /* called with rcu lock held */ 696 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 697 struct sock *sk, 698 struct sk_buff *skb, 699 u16 proto) 700 { 701 switch (proto) { 702 case AF_INET: 703 return vrf_ip_out(vrf_dev, sk, skb); 704 case AF_INET6: 705 return vrf_ip6_out(vrf_dev, sk, skb); 706 } 707 708 return skb; 709 } 710 711 /* holding rtnl */ 712 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 713 { 714 struct rtable *rth = rtnl_dereference(vrf->rth); 715 struct net *net = dev_net(dev); 716 struct dst_entry *dst; 717 718 RCU_INIT_POINTER(vrf->rth, NULL); 719 synchronize_rcu(); 720 721 /* move dev in dst's to loopback so this VRF device can be deleted 722 * - based on dst_ifdown 723 */ 724 if (rth) { 725 dst = &rth->dst; 726 dev_put(dst->dev); 727 dst->dev = net->loopback_dev; 728 dev_hold(dst->dev); 729 dst_release(dst); 730 } 731 } 732 733 static int vrf_rtable_create(struct net_device *dev) 734 { 735 struct net_vrf *vrf = netdev_priv(dev); 736 struct rtable *rth; 737 738 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 739 return -ENOMEM; 740 741 /* create a dst for routing packets out through a VRF device */ 742 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0); 743 if (!rth) 744 return -ENOMEM; 745 746 rth->dst.output = vrf_output; 747 748 rcu_assign_pointer(vrf->rth, rth); 749 750 return 0; 751 } 752 753 /**************************** device handling ********************/ 754 755 /* cycle interface to flush neighbor cache and move routes across tables */ 756 static void cycle_netdev(struct net_device *dev, 757 struct netlink_ext_ack *extack) 758 { 759 unsigned int flags = dev->flags; 760 int ret; 761 762 if (!netif_running(dev)) 763 return; 764 765 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 766 if (ret >= 0) 767 ret = dev_change_flags(dev, flags, extack); 768 769 if (ret < 0) { 770 netdev_err(dev, 771 "Failed to cycle device %s; route tables might be wrong!\n", 772 dev->name); 773 } 774 } 775 776 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 777 struct netlink_ext_ack *extack) 778 { 779 int ret; 780 781 /* do not allow loopback device to be enslaved to a VRF. 782 * The vrf device acts as the loopback for the vrf. 783 */ 784 if (port_dev == dev_net(dev)->loopback_dev) { 785 NL_SET_ERR_MSG(extack, 786 "Can not enslave loopback device to a VRF"); 787 return -EOPNOTSUPP; 788 } 789 790 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 791 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 792 if (ret < 0) 793 goto err; 794 795 cycle_netdev(port_dev, extack); 796 797 return 0; 798 799 err: 800 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 801 return ret; 802 } 803 804 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 805 struct netlink_ext_ack *extack) 806 { 807 if (netif_is_l3_master(port_dev)) { 808 NL_SET_ERR_MSG(extack, 809 "Can not enslave an L3 master device to a VRF"); 810 return -EINVAL; 811 } 812 813 if (netif_is_l3_slave(port_dev)) 814 return -EINVAL; 815 816 return do_vrf_add_slave(dev, port_dev, extack); 817 } 818 819 /* inverse of do_vrf_add_slave */ 820 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 821 { 822 netdev_upper_dev_unlink(port_dev, dev); 823 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 824 825 cycle_netdev(port_dev, NULL); 826 827 return 0; 828 } 829 830 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 831 { 832 return do_vrf_del_slave(dev, port_dev); 833 } 834 835 static void vrf_dev_uninit(struct net_device *dev) 836 { 837 struct net_vrf *vrf = netdev_priv(dev); 838 839 vrf_rtable_release(dev, vrf); 840 vrf_rt6_release(dev, vrf); 841 842 free_percpu(dev->dstats); 843 dev->dstats = NULL; 844 } 845 846 static int vrf_dev_init(struct net_device *dev) 847 { 848 struct net_vrf *vrf = netdev_priv(dev); 849 850 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 851 if (!dev->dstats) 852 goto out_nomem; 853 854 /* create the default dst which points back to us */ 855 if (vrf_rtable_create(dev) != 0) 856 goto out_stats; 857 858 if (vrf_rt6_create(dev) != 0) 859 goto out_rth; 860 861 dev->flags = IFF_MASTER | IFF_NOARP; 862 863 /* MTU is irrelevant for VRF device; set to 64k similar to lo */ 864 dev->mtu = 64 * 1024; 865 866 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 867 dev->operstate = IF_OPER_UP; 868 netdev_lockdep_set_classes(dev); 869 return 0; 870 871 out_rth: 872 vrf_rtable_release(dev, vrf); 873 out_stats: 874 free_percpu(dev->dstats); 875 dev->dstats = NULL; 876 out_nomem: 877 return -ENOMEM; 878 } 879 880 static const struct net_device_ops vrf_netdev_ops = { 881 .ndo_init = vrf_dev_init, 882 .ndo_uninit = vrf_dev_uninit, 883 .ndo_start_xmit = vrf_xmit, 884 .ndo_set_mac_address = eth_mac_addr, 885 .ndo_get_stats64 = vrf_get_stats64, 886 .ndo_add_slave = vrf_add_slave, 887 .ndo_del_slave = vrf_del_slave, 888 }; 889 890 static u32 vrf_fib_table(const struct net_device *dev) 891 { 892 struct net_vrf *vrf = netdev_priv(dev); 893 894 return vrf->tb_id; 895 } 896 897 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 898 { 899 kfree_skb(skb); 900 return 0; 901 } 902 903 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 904 struct sk_buff *skb, 905 struct net_device *dev) 906 { 907 struct net *net = dev_net(dev); 908 909 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 910 skb = NULL; /* kfree_skb(skb) handled by nf code */ 911 912 return skb; 913 } 914 915 #if IS_ENABLED(CONFIG_IPV6) 916 /* neighbor handling is done with actual device; do not want 917 * to flip skb->dev for those ndisc packets. This really fails 918 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 919 * a start. 920 */ 921 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 922 { 923 const struct ipv6hdr *iph = ipv6_hdr(skb); 924 bool rc = false; 925 926 if (iph->nexthdr == NEXTHDR_ICMP) { 927 const struct icmp6hdr *icmph; 928 struct icmp6hdr _icmph; 929 930 icmph = skb_header_pointer(skb, sizeof(*iph), 931 sizeof(_icmph), &_icmph); 932 if (!icmph) 933 goto out; 934 935 switch (icmph->icmp6_type) { 936 case NDISC_ROUTER_SOLICITATION: 937 case NDISC_ROUTER_ADVERTISEMENT: 938 case NDISC_NEIGHBOUR_SOLICITATION: 939 case NDISC_NEIGHBOUR_ADVERTISEMENT: 940 case NDISC_REDIRECT: 941 rc = true; 942 break; 943 } 944 } 945 946 out: 947 return rc; 948 } 949 950 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 951 const struct net_device *dev, 952 struct flowi6 *fl6, 953 int ifindex, 954 const struct sk_buff *skb, 955 int flags) 956 { 957 struct net_vrf *vrf = netdev_priv(dev); 958 959 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 960 } 961 962 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 963 int ifindex) 964 { 965 const struct ipv6hdr *iph = ipv6_hdr(skb); 966 struct flowi6 fl6 = { 967 .flowi6_iif = ifindex, 968 .flowi6_mark = skb->mark, 969 .flowi6_proto = iph->nexthdr, 970 .daddr = iph->daddr, 971 .saddr = iph->saddr, 972 .flowlabel = ip6_flowinfo(iph), 973 }; 974 struct net *net = dev_net(vrf_dev); 975 struct rt6_info *rt6; 976 977 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 978 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 979 if (unlikely(!rt6)) 980 return; 981 982 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 983 return; 984 985 skb_dst_set(skb, &rt6->dst); 986 } 987 988 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 989 struct sk_buff *skb) 990 { 991 int orig_iif = skb->skb_iif; 992 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 993 bool is_ndisc = ipv6_ndisc_frame(skb); 994 995 /* loopback, multicast & non-ND link-local traffic; do not push through 996 * packet taps again. Reset pkt_type for upper layers to process skb 997 */ 998 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 999 skb->dev = vrf_dev; 1000 skb->skb_iif = vrf_dev->ifindex; 1001 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1002 if (skb->pkt_type == PACKET_LOOPBACK) 1003 skb->pkt_type = PACKET_HOST; 1004 goto out; 1005 } 1006 1007 /* if packet is NDISC then keep the ingress interface */ 1008 if (!is_ndisc) { 1009 vrf_rx_stats(vrf_dev, skb->len); 1010 skb->dev = vrf_dev; 1011 skb->skb_iif = vrf_dev->ifindex; 1012 1013 if (!list_empty(&vrf_dev->ptype_all)) { 1014 skb_push(skb, skb->mac_len); 1015 dev_queue_xmit_nit(skb, vrf_dev); 1016 skb_pull(skb, skb->mac_len); 1017 } 1018 1019 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1020 } 1021 1022 if (need_strict) 1023 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1024 1025 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1026 out: 1027 return skb; 1028 } 1029 1030 #else 1031 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1032 struct sk_buff *skb) 1033 { 1034 return skb; 1035 } 1036 #endif 1037 1038 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1039 struct sk_buff *skb) 1040 { 1041 skb->dev = vrf_dev; 1042 skb->skb_iif = vrf_dev->ifindex; 1043 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1044 1045 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1046 goto out; 1047 1048 /* loopback traffic; do not push through packet taps again. 1049 * Reset pkt_type for upper layers to process skb 1050 */ 1051 if (skb->pkt_type == PACKET_LOOPBACK) { 1052 skb->pkt_type = PACKET_HOST; 1053 goto out; 1054 } 1055 1056 vrf_rx_stats(vrf_dev, skb->len); 1057 1058 if (!list_empty(&vrf_dev->ptype_all)) { 1059 skb_push(skb, skb->mac_len); 1060 dev_queue_xmit_nit(skb, vrf_dev); 1061 skb_pull(skb, skb->mac_len); 1062 } 1063 1064 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1065 out: 1066 return skb; 1067 } 1068 1069 /* called with rcu lock held */ 1070 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1071 struct sk_buff *skb, 1072 u16 proto) 1073 { 1074 switch (proto) { 1075 case AF_INET: 1076 return vrf_ip_rcv(vrf_dev, skb); 1077 case AF_INET6: 1078 return vrf_ip6_rcv(vrf_dev, skb); 1079 } 1080 1081 return skb; 1082 } 1083 1084 #if IS_ENABLED(CONFIG_IPV6) 1085 /* send to link-local or multicast address via interface enslaved to 1086 * VRF device. Force lookup to VRF table without changing flow struct 1087 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1088 * is taken on the dst by this function. 1089 */ 1090 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1091 struct flowi6 *fl6) 1092 { 1093 struct net *net = dev_net(dev); 1094 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1095 struct dst_entry *dst = NULL; 1096 struct rt6_info *rt; 1097 1098 /* VRF device does not have a link-local address and 1099 * sending packets to link-local or mcast addresses over 1100 * a VRF device does not make sense 1101 */ 1102 if (fl6->flowi6_oif == dev->ifindex) { 1103 dst = &net->ipv6.ip6_null_entry->dst; 1104 return dst; 1105 } 1106 1107 if (!ipv6_addr_any(&fl6->saddr)) 1108 flags |= RT6_LOOKUP_F_HAS_SADDR; 1109 1110 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1111 if (rt) 1112 dst = &rt->dst; 1113 1114 return dst; 1115 } 1116 #endif 1117 1118 static const struct l3mdev_ops vrf_l3mdev_ops = { 1119 .l3mdev_fib_table = vrf_fib_table, 1120 .l3mdev_l3_rcv = vrf_l3_rcv, 1121 .l3mdev_l3_out = vrf_l3_out, 1122 #if IS_ENABLED(CONFIG_IPV6) 1123 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1124 #endif 1125 }; 1126 1127 static void vrf_get_drvinfo(struct net_device *dev, 1128 struct ethtool_drvinfo *info) 1129 { 1130 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1131 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1132 } 1133 1134 static const struct ethtool_ops vrf_ethtool_ops = { 1135 .get_drvinfo = vrf_get_drvinfo, 1136 }; 1137 1138 static inline size_t vrf_fib_rule_nl_size(void) 1139 { 1140 size_t sz; 1141 1142 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1143 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1144 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1145 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1146 1147 return sz; 1148 } 1149 1150 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1151 { 1152 struct fib_rule_hdr *frh; 1153 struct nlmsghdr *nlh; 1154 struct sk_buff *skb; 1155 int err; 1156 1157 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && 1158 !ipv6_mod_enabled()) 1159 return 0; 1160 1161 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1162 if (!skb) 1163 return -ENOMEM; 1164 1165 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1166 if (!nlh) 1167 goto nla_put_failure; 1168 1169 /* rule only needs to appear once */ 1170 nlh->nlmsg_flags |= NLM_F_EXCL; 1171 1172 frh = nlmsg_data(nlh); 1173 memset(frh, 0, sizeof(*frh)); 1174 frh->family = family; 1175 frh->action = FR_ACT_TO_TBL; 1176 1177 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1178 goto nla_put_failure; 1179 1180 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1181 goto nla_put_failure; 1182 1183 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1184 goto nla_put_failure; 1185 1186 nlmsg_end(skb, nlh); 1187 1188 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1189 skb->sk = dev_net(dev)->rtnl; 1190 if (add_it) { 1191 err = fib_nl_newrule(skb, nlh, NULL); 1192 if (err == -EEXIST) 1193 err = 0; 1194 } else { 1195 err = fib_nl_delrule(skb, nlh, NULL); 1196 if (err == -ENOENT) 1197 err = 0; 1198 } 1199 nlmsg_free(skb); 1200 1201 return err; 1202 1203 nla_put_failure: 1204 nlmsg_free(skb); 1205 1206 return -EMSGSIZE; 1207 } 1208 1209 static int vrf_add_fib_rules(const struct net_device *dev) 1210 { 1211 int err; 1212 1213 err = vrf_fib_rule(dev, AF_INET, true); 1214 if (err < 0) 1215 goto out_err; 1216 1217 err = vrf_fib_rule(dev, AF_INET6, true); 1218 if (err < 0) 1219 goto ipv6_err; 1220 1221 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1222 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1223 if (err < 0) 1224 goto ipmr_err; 1225 #endif 1226 1227 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1228 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1229 if (err < 0) 1230 goto ip6mr_err; 1231 #endif 1232 1233 return 0; 1234 1235 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1236 ip6mr_err: 1237 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1238 #endif 1239 1240 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1241 ipmr_err: 1242 vrf_fib_rule(dev, AF_INET6, false); 1243 #endif 1244 1245 ipv6_err: 1246 vrf_fib_rule(dev, AF_INET, false); 1247 1248 out_err: 1249 netdev_err(dev, "Failed to add FIB rules.\n"); 1250 return err; 1251 } 1252 1253 static void vrf_setup(struct net_device *dev) 1254 { 1255 ether_setup(dev); 1256 1257 /* Initialize the device structure. */ 1258 dev->netdev_ops = &vrf_netdev_ops; 1259 dev->l3mdev_ops = &vrf_l3mdev_ops; 1260 dev->ethtool_ops = &vrf_ethtool_ops; 1261 dev->needs_free_netdev = true; 1262 1263 /* Fill in device structure with ethernet-generic values. */ 1264 eth_hw_addr_random(dev); 1265 1266 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1267 dev->features |= NETIF_F_LLTX; 1268 1269 /* don't allow vrf devices to change network namespaces. */ 1270 dev->features |= NETIF_F_NETNS_LOCAL; 1271 1272 /* does not make sense for a VLAN to be added to a vrf device */ 1273 dev->features |= NETIF_F_VLAN_CHALLENGED; 1274 1275 /* enable offload features */ 1276 dev->features |= NETIF_F_GSO_SOFTWARE; 1277 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1278 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1279 1280 dev->hw_features = dev->features; 1281 dev->hw_enc_features = dev->features; 1282 1283 /* default to no qdisc; user can add if desired */ 1284 dev->priv_flags |= IFF_NO_QUEUE; 1285 dev->priv_flags |= IFF_NO_RX_HANDLER; 1286 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1287 1288 /* VRF devices do not care about MTU, but if the MTU is set 1289 * too low then the ipv4 and ipv6 protocols are disabled 1290 * which breaks networking. 1291 */ 1292 dev->min_mtu = IPV6_MIN_MTU; 1293 dev->max_mtu = ETH_MAX_MTU; 1294 } 1295 1296 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1297 struct netlink_ext_ack *extack) 1298 { 1299 if (tb[IFLA_ADDRESS]) { 1300 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1301 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1302 return -EINVAL; 1303 } 1304 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1305 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1306 return -EADDRNOTAVAIL; 1307 } 1308 } 1309 return 0; 1310 } 1311 1312 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1313 { 1314 struct net_device *port_dev; 1315 struct list_head *iter; 1316 1317 netdev_for_each_lower_dev(dev, port_dev, iter) 1318 vrf_del_slave(dev, port_dev); 1319 1320 unregister_netdevice_queue(dev, head); 1321 } 1322 1323 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1324 struct nlattr *tb[], struct nlattr *data[], 1325 struct netlink_ext_ack *extack) 1326 { 1327 struct net_vrf *vrf = netdev_priv(dev); 1328 bool *add_fib_rules; 1329 struct net *net; 1330 int err; 1331 1332 if (!data || !data[IFLA_VRF_TABLE]) { 1333 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1334 return -EINVAL; 1335 } 1336 1337 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1338 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1339 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1340 "Invalid VRF table id"); 1341 return -EINVAL; 1342 } 1343 1344 dev->priv_flags |= IFF_L3MDEV_MASTER; 1345 1346 err = register_netdevice(dev); 1347 if (err) 1348 goto out; 1349 1350 net = dev_net(dev); 1351 add_fib_rules = net_generic(net, vrf_net_id); 1352 if (*add_fib_rules) { 1353 err = vrf_add_fib_rules(dev); 1354 if (err) { 1355 unregister_netdevice(dev); 1356 goto out; 1357 } 1358 *add_fib_rules = false; 1359 } 1360 1361 out: 1362 return err; 1363 } 1364 1365 static size_t vrf_nl_getsize(const struct net_device *dev) 1366 { 1367 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1368 } 1369 1370 static int vrf_fillinfo(struct sk_buff *skb, 1371 const struct net_device *dev) 1372 { 1373 struct net_vrf *vrf = netdev_priv(dev); 1374 1375 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1376 } 1377 1378 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1379 const struct net_device *slave_dev) 1380 { 1381 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1382 } 1383 1384 static int vrf_fill_slave_info(struct sk_buff *skb, 1385 const struct net_device *vrf_dev, 1386 const struct net_device *slave_dev) 1387 { 1388 struct net_vrf *vrf = netdev_priv(vrf_dev); 1389 1390 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1391 return -EMSGSIZE; 1392 1393 return 0; 1394 } 1395 1396 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1397 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1398 }; 1399 1400 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1401 .kind = DRV_NAME, 1402 .priv_size = sizeof(struct net_vrf), 1403 1404 .get_size = vrf_nl_getsize, 1405 .policy = vrf_nl_policy, 1406 .validate = vrf_validate, 1407 .fill_info = vrf_fillinfo, 1408 1409 .get_slave_size = vrf_get_slave_size, 1410 .fill_slave_info = vrf_fill_slave_info, 1411 1412 .newlink = vrf_newlink, 1413 .dellink = vrf_dellink, 1414 .setup = vrf_setup, 1415 .maxtype = IFLA_VRF_MAX, 1416 }; 1417 1418 static int vrf_device_event(struct notifier_block *unused, 1419 unsigned long event, void *ptr) 1420 { 1421 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1422 1423 /* only care about unregister events to drop slave references */ 1424 if (event == NETDEV_UNREGISTER) { 1425 struct net_device *vrf_dev; 1426 1427 if (!netif_is_l3_slave(dev)) 1428 goto out; 1429 1430 vrf_dev = netdev_master_upper_dev_get(dev); 1431 vrf_del_slave(vrf_dev, dev); 1432 } 1433 out: 1434 return NOTIFY_DONE; 1435 } 1436 1437 static struct notifier_block vrf_notifier_block __read_mostly = { 1438 .notifier_call = vrf_device_event, 1439 }; 1440 1441 /* Initialize per network namespace state */ 1442 static int __net_init vrf_netns_init(struct net *net) 1443 { 1444 bool *add_fib_rules = net_generic(net, vrf_net_id); 1445 1446 *add_fib_rules = true; 1447 1448 return 0; 1449 } 1450 1451 static struct pernet_operations vrf_net_ops __net_initdata = { 1452 .init = vrf_netns_init, 1453 .id = &vrf_net_id, 1454 .size = sizeof(bool), 1455 }; 1456 1457 static int __init vrf_init_module(void) 1458 { 1459 int rc; 1460 1461 register_netdevice_notifier(&vrf_notifier_block); 1462 1463 rc = register_pernet_subsys(&vrf_net_ops); 1464 if (rc < 0) 1465 goto error; 1466 1467 rc = rtnl_link_register(&vrf_link_ops); 1468 if (rc < 0) { 1469 unregister_pernet_subsys(&vrf_net_ops); 1470 goto error; 1471 } 1472 1473 return 0; 1474 1475 error: 1476 unregister_netdevice_notifier(&vrf_notifier_block); 1477 return rc; 1478 } 1479 1480 module_init(vrf_init_module); 1481 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 1482 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 1483 MODULE_LICENSE("GPL"); 1484 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1485 MODULE_VERSION(DRV_VERSION); 1486