xref: /openbmc/linux/drivers/net/veth.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  *  drivers/net/veth.c
3  *
4  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
5  *
6  * Author: Pavel Emelianov <xemul@openvz.org>
7  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
8  *
9  */
10 
11 #include <linux/netdevice.h>
12 #include <linux/slab.h>
13 #include <linux/ethtool.h>
14 #include <linux/etherdevice.h>
15 #include <linux/u64_stats_sync.h>
16 
17 #include <net/rtnetlink.h>
18 #include <net/dst.h>
19 #include <net/xfrm.h>
20 #include <net/xdp.h>
21 #include <linux/veth.h>
22 #include <linux/module.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <linux/bpf_trace.h>
27 #include <linux/net_tstamp.h>
28 
29 #define DRV_NAME	"veth"
30 #define DRV_VERSION	"1.0"
31 
32 #define VETH_XDP_FLAG		BIT(0)
33 #define VETH_RING_SIZE		256
34 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
35 
36 /* Separating two types of XDP xmit */
37 #define VETH_XDP_TX		BIT(0)
38 #define VETH_XDP_REDIR		BIT(1)
39 
40 struct pcpu_vstats {
41 	u64			packets;
42 	u64			bytes;
43 	struct u64_stats_sync	syncp;
44 };
45 
46 struct veth_rq {
47 	struct napi_struct	xdp_napi;
48 	struct net_device	*dev;
49 	struct bpf_prog __rcu	*xdp_prog;
50 	struct xdp_mem_info	xdp_mem;
51 	bool			rx_notify_masked;
52 	struct ptr_ring		xdp_ring;
53 	struct xdp_rxq_info	xdp_rxq;
54 };
55 
56 struct veth_priv {
57 	struct net_device __rcu	*peer;
58 	atomic64_t		dropped;
59 	struct bpf_prog		*_xdp_prog;
60 	struct veth_rq		*rq;
61 	unsigned int		requested_headroom;
62 };
63 
64 /*
65  * ethtool interface
66  */
67 
68 static struct {
69 	const char string[ETH_GSTRING_LEN];
70 } ethtool_stats_keys[] = {
71 	{ "peer_ifindex" },
72 };
73 
74 static int veth_get_link_ksettings(struct net_device *dev,
75 				   struct ethtool_link_ksettings *cmd)
76 {
77 	cmd->base.speed		= SPEED_10000;
78 	cmd->base.duplex	= DUPLEX_FULL;
79 	cmd->base.port		= PORT_TP;
80 	cmd->base.autoneg	= AUTONEG_DISABLE;
81 	return 0;
82 }
83 
84 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
85 {
86 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
87 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
88 }
89 
90 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
91 {
92 	switch(stringset) {
93 	case ETH_SS_STATS:
94 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
95 		break;
96 	}
97 }
98 
99 static int veth_get_sset_count(struct net_device *dev, int sset)
100 {
101 	switch (sset) {
102 	case ETH_SS_STATS:
103 		return ARRAY_SIZE(ethtool_stats_keys);
104 	default:
105 		return -EOPNOTSUPP;
106 	}
107 }
108 
109 static void veth_get_ethtool_stats(struct net_device *dev,
110 		struct ethtool_stats *stats, u64 *data)
111 {
112 	struct veth_priv *priv = netdev_priv(dev);
113 	struct net_device *peer = rtnl_dereference(priv->peer);
114 
115 	data[0] = peer ? peer->ifindex : 0;
116 }
117 
118 static int veth_get_ts_info(struct net_device *dev,
119 			    struct ethtool_ts_info *info)
120 {
121 	info->so_timestamping =
122 		SOF_TIMESTAMPING_TX_SOFTWARE |
123 		SOF_TIMESTAMPING_RX_SOFTWARE |
124 		SOF_TIMESTAMPING_SOFTWARE;
125 	info->phc_index = -1;
126 
127 	return 0;
128 }
129 
130 static const struct ethtool_ops veth_ethtool_ops = {
131 	.get_drvinfo		= veth_get_drvinfo,
132 	.get_link		= ethtool_op_get_link,
133 	.get_strings		= veth_get_strings,
134 	.get_sset_count		= veth_get_sset_count,
135 	.get_ethtool_stats	= veth_get_ethtool_stats,
136 	.get_link_ksettings	= veth_get_link_ksettings,
137 	.get_ts_info		= veth_get_ts_info,
138 };
139 
140 /* general routines */
141 
142 static bool veth_is_xdp_frame(void *ptr)
143 {
144 	return (unsigned long)ptr & VETH_XDP_FLAG;
145 }
146 
147 static void *veth_ptr_to_xdp(void *ptr)
148 {
149 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
150 }
151 
152 static void *veth_xdp_to_ptr(void *ptr)
153 {
154 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
155 }
156 
157 static void veth_ptr_free(void *ptr)
158 {
159 	if (veth_is_xdp_frame(ptr))
160 		xdp_return_frame(veth_ptr_to_xdp(ptr));
161 	else
162 		kfree_skb(ptr);
163 }
164 
165 static void __veth_xdp_flush(struct veth_rq *rq)
166 {
167 	/* Write ptr_ring before reading rx_notify_masked */
168 	smp_mb();
169 	if (!rq->rx_notify_masked) {
170 		rq->rx_notify_masked = true;
171 		napi_schedule(&rq->xdp_napi);
172 	}
173 }
174 
175 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
176 {
177 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
178 		dev_kfree_skb_any(skb);
179 		return NET_RX_DROP;
180 	}
181 
182 	return NET_RX_SUCCESS;
183 }
184 
185 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
186 			    struct veth_rq *rq, bool xdp)
187 {
188 	return __dev_forward_skb(dev, skb) ?: xdp ?
189 		veth_xdp_rx(rq, skb) :
190 		netif_rx(skb);
191 }
192 
193 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
194 {
195 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
196 	struct veth_rq *rq = NULL;
197 	struct net_device *rcv;
198 	int length = skb->len;
199 	bool rcv_xdp = false;
200 	int rxq;
201 
202 	rcu_read_lock();
203 	rcv = rcu_dereference(priv->peer);
204 	if (unlikely(!rcv)) {
205 		kfree_skb(skb);
206 		goto drop;
207 	}
208 
209 	rcv_priv = netdev_priv(rcv);
210 	rxq = skb_get_queue_mapping(skb);
211 	if (rxq < rcv->real_num_rx_queues) {
212 		rq = &rcv_priv->rq[rxq];
213 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
214 		if (rcv_xdp)
215 			skb_record_rx_queue(skb, rxq);
216 	}
217 
218 	skb_tx_timestamp(skb);
219 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
220 		struct pcpu_vstats *stats = this_cpu_ptr(dev->vstats);
221 
222 		u64_stats_update_begin(&stats->syncp);
223 		stats->bytes += length;
224 		stats->packets++;
225 		u64_stats_update_end(&stats->syncp);
226 	} else {
227 drop:
228 		atomic64_inc(&priv->dropped);
229 	}
230 
231 	if (rcv_xdp)
232 		__veth_xdp_flush(rq);
233 
234 	rcu_read_unlock();
235 
236 	return NETDEV_TX_OK;
237 }
238 
239 static u64 veth_stats_one(struct pcpu_vstats *result, struct net_device *dev)
240 {
241 	struct veth_priv *priv = netdev_priv(dev);
242 	int cpu;
243 
244 	result->packets = 0;
245 	result->bytes = 0;
246 	for_each_possible_cpu(cpu) {
247 		struct pcpu_vstats *stats = per_cpu_ptr(dev->vstats, cpu);
248 		u64 packets, bytes;
249 		unsigned int start;
250 
251 		do {
252 			start = u64_stats_fetch_begin_irq(&stats->syncp);
253 			packets = stats->packets;
254 			bytes = stats->bytes;
255 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
256 		result->packets += packets;
257 		result->bytes += bytes;
258 	}
259 	return atomic64_read(&priv->dropped);
260 }
261 
262 static void veth_get_stats64(struct net_device *dev,
263 			     struct rtnl_link_stats64 *tot)
264 {
265 	struct veth_priv *priv = netdev_priv(dev);
266 	struct net_device *peer;
267 	struct pcpu_vstats one;
268 
269 	tot->tx_dropped = veth_stats_one(&one, dev);
270 	tot->tx_bytes = one.bytes;
271 	tot->tx_packets = one.packets;
272 
273 	rcu_read_lock();
274 	peer = rcu_dereference(priv->peer);
275 	if (peer) {
276 		tot->rx_dropped = veth_stats_one(&one, peer);
277 		tot->rx_bytes = one.bytes;
278 		tot->rx_packets = one.packets;
279 	}
280 	rcu_read_unlock();
281 }
282 
283 /* fake multicast ability */
284 static void veth_set_multicast_list(struct net_device *dev)
285 {
286 }
287 
288 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
289 				      int buflen)
290 {
291 	struct sk_buff *skb;
292 
293 	if (!buflen) {
294 		buflen = SKB_DATA_ALIGN(headroom + len) +
295 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
296 	}
297 	skb = build_skb(head, buflen);
298 	if (!skb)
299 		return NULL;
300 
301 	skb_reserve(skb, headroom);
302 	skb_put(skb, len);
303 
304 	return skb;
305 }
306 
307 static int veth_select_rxq(struct net_device *dev)
308 {
309 	return smp_processor_id() % dev->real_num_rx_queues;
310 }
311 
312 static int veth_xdp_xmit(struct net_device *dev, int n,
313 			 struct xdp_frame **frames, u32 flags)
314 {
315 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
316 	struct net_device *rcv;
317 	unsigned int max_len;
318 	struct veth_rq *rq;
319 	int i, drops = 0;
320 
321 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
322 		return -EINVAL;
323 
324 	rcv = rcu_dereference(priv->peer);
325 	if (unlikely(!rcv))
326 		return -ENXIO;
327 
328 	rcv_priv = netdev_priv(rcv);
329 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
330 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
331 	 * side. This means an XDP program is loaded on the peer and the peer
332 	 * device is up.
333 	 */
334 	if (!rcu_access_pointer(rq->xdp_prog))
335 		return -ENXIO;
336 
337 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
338 
339 	spin_lock(&rq->xdp_ring.producer_lock);
340 	for (i = 0; i < n; i++) {
341 		struct xdp_frame *frame = frames[i];
342 		void *ptr = veth_xdp_to_ptr(frame);
343 
344 		if (unlikely(frame->len > max_len ||
345 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
346 			xdp_return_frame_rx_napi(frame);
347 			drops++;
348 		}
349 	}
350 	spin_unlock(&rq->xdp_ring.producer_lock);
351 
352 	if (flags & XDP_XMIT_FLUSH)
353 		__veth_xdp_flush(rq);
354 
355 	return n - drops;
356 }
357 
358 static void veth_xdp_flush(struct net_device *dev)
359 {
360 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
361 	struct net_device *rcv;
362 	struct veth_rq *rq;
363 
364 	rcu_read_lock();
365 	rcv = rcu_dereference(priv->peer);
366 	if (unlikely(!rcv))
367 		goto out;
368 
369 	rcv_priv = netdev_priv(rcv);
370 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
371 	/* xdp_ring is initialized on receive side? */
372 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
373 		goto out;
374 
375 	__veth_xdp_flush(rq);
376 out:
377 	rcu_read_unlock();
378 }
379 
380 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp)
381 {
382 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
383 
384 	if (unlikely(!frame))
385 		return -EOVERFLOW;
386 
387 	return veth_xdp_xmit(dev, 1, &frame, 0);
388 }
389 
390 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
391 					struct xdp_frame *frame,
392 					unsigned int *xdp_xmit)
393 {
394 	void *hard_start = frame->data - frame->headroom;
395 	void *head = hard_start - sizeof(struct xdp_frame);
396 	int len = frame->len, delta = 0;
397 	struct xdp_frame orig_frame;
398 	struct bpf_prog *xdp_prog;
399 	unsigned int headroom;
400 	struct sk_buff *skb;
401 
402 	rcu_read_lock();
403 	xdp_prog = rcu_dereference(rq->xdp_prog);
404 	if (likely(xdp_prog)) {
405 		struct xdp_buff xdp;
406 		u32 act;
407 
408 		xdp.data_hard_start = hard_start;
409 		xdp.data = frame->data;
410 		xdp.data_end = frame->data + frame->len;
411 		xdp.data_meta = frame->data - frame->metasize;
412 		xdp.rxq = &rq->xdp_rxq;
413 
414 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
415 
416 		switch (act) {
417 		case XDP_PASS:
418 			delta = frame->data - xdp.data;
419 			len = xdp.data_end - xdp.data;
420 			break;
421 		case XDP_TX:
422 			orig_frame = *frame;
423 			xdp.data_hard_start = head;
424 			xdp.rxq->mem = frame->mem;
425 			if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
426 				trace_xdp_exception(rq->dev, xdp_prog, act);
427 				frame = &orig_frame;
428 				goto err_xdp;
429 			}
430 			*xdp_xmit |= VETH_XDP_TX;
431 			rcu_read_unlock();
432 			goto xdp_xmit;
433 		case XDP_REDIRECT:
434 			orig_frame = *frame;
435 			xdp.data_hard_start = head;
436 			xdp.rxq->mem = frame->mem;
437 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
438 				frame = &orig_frame;
439 				goto err_xdp;
440 			}
441 			*xdp_xmit |= VETH_XDP_REDIR;
442 			rcu_read_unlock();
443 			goto xdp_xmit;
444 		default:
445 			bpf_warn_invalid_xdp_action(act);
446 		case XDP_ABORTED:
447 			trace_xdp_exception(rq->dev, xdp_prog, act);
448 		case XDP_DROP:
449 			goto err_xdp;
450 		}
451 	}
452 	rcu_read_unlock();
453 
454 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
455 	skb = veth_build_skb(head, headroom, len, 0);
456 	if (!skb) {
457 		xdp_return_frame(frame);
458 		goto err;
459 	}
460 
461 	xdp_scrub_frame(frame);
462 	skb->protocol = eth_type_trans(skb, rq->dev);
463 err:
464 	return skb;
465 err_xdp:
466 	rcu_read_unlock();
467 	xdp_return_frame(frame);
468 xdp_xmit:
469 	return NULL;
470 }
471 
472 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
473 					unsigned int *xdp_xmit)
474 {
475 	u32 pktlen, headroom, act, metalen;
476 	void *orig_data, *orig_data_end;
477 	struct bpf_prog *xdp_prog;
478 	int mac_len, delta, off;
479 	struct xdp_buff xdp;
480 
481 	rcu_read_lock();
482 	xdp_prog = rcu_dereference(rq->xdp_prog);
483 	if (unlikely(!xdp_prog)) {
484 		rcu_read_unlock();
485 		goto out;
486 	}
487 
488 	mac_len = skb->data - skb_mac_header(skb);
489 	pktlen = skb->len + mac_len;
490 	headroom = skb_headroom(skb) - mac_len;
491 
492 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
493 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
494 		struct sk_buff *nskb;
495 		int size, head_off;
496 		void *head, *start;
497 		struct page *page;
498 
499 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
500 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 		if (size > PAGE_SIZE)
502 			goto drop;
503 
504 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
505 		if (!page)
506 			goto drop;
507 
508 		head = page_address(page);
509 		start = head + VETH_XDP_HEADROOM;
510 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
511 			page_frag_free(head);
512 			goto drop;
513 		}
514 
515 		nskb = veth_build_skb(head,
516 				      VETH_XDP_HEADROOM + mac_len, skb->len,
517 				      PAGE_SIZE);
518 		if (!nskb) {
519 			page_frag_free(head);
520 			goto drop;
521 		}
522 
523 		skb_copy_header(nskb, skb);
524 		head_off = skb_headroom(nskb) - skb_headroom(skb);
525 		skb_headers_offset_update(nskb, head_off);
526 		if (skb->sk)
527 			skb_set_owner_w(nskb, skb->sk);
528 		consume_skb(skb);
529 		skb = nskb;
530 	}
531 
532 	xdp.data_hard_start = skb->head;
533 	xdp.data = skb_mac_header(skb);
534 	xdp.data_end = xdp.data + pktlen;
535 	xdp.data_meta = xdp.data;
536 	xdp.rxq = &rq->xdp_rxq;
537 	orig_data = xdp.data;
538 	orig_data_end = xdp.data_end;
539 
540 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
541 
542 	switch (act) {
543 	case XDP_PASS:
544 		break;
545 	case XDP_TX:
546 		get_page(virt_to_page(xdp.data));
547 		consume_skb(skb);
548 		xdp.rxq->mem = rq->xdp_mem;
549 		if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
550 			trace_xdp_exception(rq->dev, xdp_prog, act);
551 			goto err_xdp;
552 		}
553 		*xdp_xmit |= VETH_XDP_TX;
554 		rcu_read_unlock();
555 		goto xdp_xmit;
556 	case XDP_REDIRECT:
557 		get_page(virt_to_page(xdp.data));
558 		consume_skb(skb);
559 		xdp.rxq->mem = rq->xdp_mem;
560 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
561 			goto err_xdp;
562 		*xdp_xmit |= VETH_XDP_REDIR;
563 		rcu_read_unlock();
564 		goto xdp_xmit;
565 	default:
566 		bpf_warn_invalid_xdp_action(act);
567 	case XDP_ABORTED:
568 		trace_xdp_exception(rq->dev, xdp_prog, act);
569 	case XDP_DROP:
570 		goto drop;
571 	}
572 	rcu_read_unlock();
573 
574 	delta = orig_data - xdp.data;
575 	off = mac_len + delta;
576 	if (off > 0)
577 		__skb_push(skb, off);
578 	else if (off < 0)
579 		__skb_pull(skb, -off);
580 	skb->mac_header -= delta;
581 	off = xdp.data_end - orig_data_end;
582 	if (off != 0)
583 		__skb_put(skb, off);
584 	skb->protocol = eth_type_trans(skb, rq->dev);
585 
586 	metalen = xdp.data - xdp.data_meta;
587 	if (metalen)
588 		skb_metadata_set(skb, metalen);
589 out:
590 	return skb;
591 drop:
592 	rcu_read_unlock();
593 	kfree_skb(skb);
594 	return NULL;
595 err_xdp:
596 	rcu_read_unlock();
597 	page_frag_free(xdp.data);
598 xdp_xmit:
599 	return NULL;
600 }
601 
602 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit)
603 {
604 	int i, done = 0;
605 
606 	for (i = 0; i < budget; i++) {
607 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
608 		struct sk_buff *skb;
609 
610 		if (!ptr)
611 			break;
612 
613 		if (veth_is_xdp_frame(ptr)) {
614 			skb = veth_xdp_rcv_one(rq, veth_ptr_to_xdp(ptr),
615 					       xdp_xmit);
616 		} else {
617 			skb = veth_xdp_rcv_skb(rq, ptr, xdp_xmit);
618 		}
619 
620 		if (skb)
621 			napi_gro_receive(&rq->xdp_napi, skb);
622 
623 		done++;
624 	}
625 
626 	return done;
627 }
628 
629 static int veth_poll(struct napi_struct *napi, int budget)
630 {
631 	struct veth_rq *rq =
632 		container_of(napi, struct veth_rq, xdp_napi);
633 	unsigned int xdp_xmit = 0;
634 	int done;
635 
636 	xdp_set_return_frame_no_direct();
637 	done = veth_xdp_rcv(rq, budget, &xdp_xmit);
638 
639 	if (done < budget && napi_complete_done(napi, done)) {
640 		/* Write rx_notify_masked before reading ptr_ring */
641 		smp_store_mb(rq->rx_notify_masked, false);
642 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
643 			rq->rx_notify_masked = true;
644 			napi_schedule(&rq->xdp_napi);
645 		}
646 	}
647 
648 	if (xdp_xmit & VETH_XDP_TX)
649 		veth_xdp_flush(rq->dev);
650 	if (xdp_xmit & VETH_XDP_REDIR)
651 		xdp_do_flush_map();
652 	xdp_clear_return_frame_no_direct();
653 
654 	return done;
655 }
656 
657 static int veth_napi_add(struct net_device *dev)
658 {
659 	struct veth_priv *priv = netdev_priv(dev);
660 	int err, i;
661 
662 	for (i = 0; i < dev->real_num_rx_queues; i++) {
663 		struct veth_rq *rq = &priv->rq[i];
664 
665 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
666 		if (err)
667 			goto err_xdp_ring;
668 	}
669 
670 	for (i = 0; i < dev->real_num_rx_queues; i++) {
671 		struct veth_rq *rq = &priv->rq[i];
672 
673 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
674 		napi_enable(&rq->xdp_napi);
675 	}
676 
677 	return 0;
678 err_xdp_ring:
679 	for (i--; i >= 0; i--)
680 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
681 
682 	return err;
683 }
684 
685 static void veth_napi_del(struct net_device *dev)
686 {
687 	struct veth_priv *priv = netdev_priv(dev);
688 	int i;
689 
690 	for (i = 0; i < dev->real_num_rx_queues; i++) {
691 		struct veth_rq *rq = &priv->rq[i];
692 
693 		napi_disable(&rq->xdp_napi);
694 		napi_hash_del(&rq->xdp_napi);
695 	}
696 	synchronize_net();
697 
698 	for (i = 0; i < dev->real_num_rx_queues; i++) {
699 		struct veth_rq *rq = &priv->rq[i];
700 
701 		netif_napi_del(&rq->xdp_napi);
702 		rq->rx_notify_masked = false;
703 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
704 	}
705 }
706 
707 static int veth_enable_xdp(struct net_device *dev)
708 {
709 	struct veth_priv *priv = netdev_priv(dev);
710 	int err, i;
711 
712 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
713 		for (i = 0; i < dev->real_num_rx_queues; i++) {
714 			struct veth_rq *rq = &priv->rq[i];
715 
716 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
717 			if (err < 0)
718 				goto err_rxq_reg;
719 
720 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
721 							 MEM_TYPE_PAGE_SHARED,
722 							 NULL);
723 			if (err < 0)
724 				goto err_reg_mem;
725 
726 			/* Save original mem info as it can be overwritten */
727 			rq->xdp_mem = rq->xdp_rxq.mem;
728 		}
729 
730 		err = veth_napi_add(dev);
731 		if (err)
732 			goto err_rxq_reg;
733 	}
734 
735 	for (i = 0; i < dev->real_num_rx_queues; i++)
736 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
737 
738 	return 0;
739 err_reg_mem:
740 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
741 err_rxq_reg:
742 	for (i--; i >= 0; i--)
743 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
744 
745 	return err;
746 }
747 
748 static void veth_disable_xdp(struct net_device *dev)
749 {
750 	struct veth_priv *priv = netdev_priv(dev);
751 	int i;
752 
753 	for (i = 0; i < dev->real_num_rx_queues; i++)
754 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
755 	veth_napi_del(dev);
756 	for (i = 0; i < dev->real_num_rx_queues; i++) {
757 		struct veth_rq *rq = &priv->rq[i];
758 
759 		rq->xdp_rxq.mem = rq->xdp_mem;
760 		xdp_rxq_info_unreg(&rq->xdp_rxq);
761 	}
762 }
763 
764 static int veth_open(struct net_device *dev)
765 {
766 	struct veth_priv *priv = netdev_priv(dev);
767 	struct net_device *peer = rtnl_dereference(priv->peer);
768 	int err;
769 
770 	if (!peer)
771 		return -ENOTCONN;
772 
773 	if (priv->_xdp_prog) {
774 		err = veth_enable_xdp(dev);
775 		if (err)
776 			return err;
777 	}
778 
779 	if (peer->flags & IFF_UP) {
780 		netif_carrier_on(dev);
781 		netif_carrier_on(peer);
782 	}
783 
784 	return 0;
785 }
786 
787 static int veth_close(struct net_device *dev)
788 {
789 	struct veth_priv *priv = netdev_priv(dev);
790 	struct net_device *peer = rtnl_dereference(priv->peer);
791 
792 	netif_carrier_off(dev);
793 	if (peer)
794 		netif_carrier_off(peer);
795 
796 	if (priv->_xdp_prog)
797 		veth_disable_xdp(dev);
798 
799 	return 0;
800 }
801 
802 static int is_valid_veth_mtu(int mtu)
803 {
804 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
805 }
806 
807 static int veth_alloc_queues(struct net_device *dev)
808 {
809 	struct veth_priv *priv = netdev_priv(dev);
810 	int i;
811 
812 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
813 	if (!priv->rq)
814 		return -ENOMEM;
815 
816 	for (i = 0; i < dev->num_rx_queues; i++)
817 		priv->rq[i].dev = dev;
818 
819 	return 0;
820 }
821 
822 static void veth_free_queues(struct net_device *dev)
823 {
824 	struct veth_priv *priv = netdev_priv(dev);
825 
826 	kfree(priv->rq);
827 }
828 
829 static int veth_dev_init(struct net_device *dev)
830 {
831 	int err;
832 
833 	dev->vstats = netdev_alloc_pcpu_stats(struct pcpu_vstats);
834 	if (!dev->vstats)
835 		return -ENOMEM;
836 
837 	err = veth_alloc_queues(dev);
838 	if (err) {
839 		free_percpu(dev->vstats);
840 		return err;
841 	}
842 
843 	return 0;
844 }
845 
846 static void veth_dev_free(struct net_device *dev)
847 {
848 	veth_free_queues(dev);
849 	free_percpu(dev->vstats);
850 }
851 
852 #ifdef CONFIG_NET_POLL_CONTROLLER
853 static void veth_poll_controller(struct net_device *dev)
854 {
855 	/* veth only receives frames when its peer sends one
856 	 * Since it has nothing to do with disabling irqs, we are guaranteed
857 	 * never to have pending data when we poll for it so
858 	 * there is nothing to do here.
859 	 *
860 	 * We need this though so netpoll recognizes us as an interface that
861 	 * supports polling, which enables bridge devices in virt setups to
862 	 * still use netconsole
863 	 */
864 }
865 #endif	/* CONFIG_NET_POLL_CONTROLLER */
866 
867 static int veth_get_iflink(const struct net_device *dev)
868 {
869 	struct veth_priv *priv = netdev_priv(dev);
870 	struct net_device *peer;
871 	int iflink;
872 
873 	rcu_read_lock();
874 	peer = rcu_dereference(priv->peer);
875 	iflink = peer ? peer->ifindex : 0;
876 	rcu_read_unlock();
877 
878 	return iflink;
879 }
880 
881 static netdev_features_t veth_fix_features(struct net_device *dev,
882 					   netdev_features_t features)
883 {
884 	struct veth_priv *priv = netdev_priv(dev);
885 	struct net_device *peer;
886 
887 	peer = rtnl_dereference(priv->peer);
888 	if (peer) {
889 		struct veth_priv *peer_priv = netdev_priv(peer);
890 
891 		if (peer_priv->_xdp_prog)
892 			features &= ~NETIF_F_GSO_SOFTWARE;
893 	}
894 
895 	return features;
896 }
897 
898 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
899 {
900 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
901 	struct net_device *peer;
902 
903 	if (new_hr < 0)
904 		new_hr = 0;
905 
906 	rcu_read_lock();
907 	peer = rcu_dereference(priv->peer);
908 	if (unlikely(!peer))
909 		goto out;
910 
911 	peer_priv = netdev_priv(peer);
912 	priv->requested_headroom = new_hr;
913 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
914 	dev->needed_headroom = new_hr;
915 	peer->needed_headroom = new_hr;
916 
917 out:
918 	rcu_read_unlock();
919 }
920 
921 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
922 			struct netlink_ext_ack *extack)
923 {
924 	struct veth_priv *priv = netdev_priv(dev);
925 	struct bpf_prog *old_prog;
926 	struct net_device *peer;
927 	unsigned int max_mtu;
928 	int err;
929 
930 	old_prog = priv->_xdp_prog;
931 	priv->_xdp_prog = prog;
932 	peer = rtnl_dereference(priv->peer);
933 
934 	if (prog) {
935 		if (!peer) {
936 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
937 			err = -ENOTCONN;
938 			goto err;
939 		}
940 
941 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
942 			  peer->hard_header_len -
943 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
944 		if (peer->mtu > max_mtu) {
945 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
946 			err = -ERANGE;
947 			goto err;
948 		}
949 
950 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
951 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
952 			err = -ENOSPC;
953 			goto err;
954 		}
955 
956 		if (dev->flags & IFF_UP) {
957 			err = veth_enable_xdp(dev);
958 			if (err) {
959 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
960 				goto err;
961 			}
962 		}
963 
964 		if (!old_prog) {
965 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
966 			peer->max_mtu = max_mtu;
967 		}
968 	}
969 
970 	if (old_prog) {
971 		if (!prog) {
972 			if (dev->flags & IFF_UP)
973 				veth_disable_xdp(dev);
974 
975 			if (peer) {
976 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
977 				peer->max_mtu = ETH_MAX_MTU;
978 			}
979 		}
980 		bpf_prog_put(old_prog);
981 	}
982 
983 	if ((!!old_prog ^ !!prog) && peer)
984 		netdev_update_features(peer);
985 
986 	return 0;
987 err:
988 	priv->_xdp_prog = old_prog;
989 
990 	return err;
991 }
992 
993 static u32 veth_xdp_query(struct net_device *dev)
994 {
995 	struct veth_priv *priv = netdev_priv(dev);
996 	const struct bpf_prog *xdp_prog;
997 
998 	xdp_prog = priv->_xdp_prog;
999 	if (xdp_prog)
1000 		return xdp_prog->aux->id;
1001 
1002 	return 0;
1003 }
1004 
1005 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1006 {
1007 	switch (xdp->command) {
1008 	case XDP_SETUP_PROG:
1009 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1010 	case XDP_QUERY_PROG:
1011 		xdp->prog_id = veth_xdp_query(dev);
1012 		return 0;
1013 	default:
1014 		return -EINVAL;
1015 	}
1016 }
1017 
1018 static const struct net_device_ops veth_netdev_ops = {
1019 	.ndo_init            = veth_dev_init,
1020 	.ndo_open            = veth_open,
1021 	.ndo_stop            = veth_close,
1022 	.ndo_start_xmit      = veth_xmit,
1023 	.ndo_get_stats64     = veth_get_stats64,
1024 	.ndo_set_rx_mode     = veth_set_multicast_list,
1025 	.ndo_set_mac_address = eth_mac_addr,
1026 #ifdef CONFIG_NET_POLL_CONTROLLER
1027 	.ndo_poll_controller	= veth_poll_controller,
1028 #endif
1029 	.ndo_get_iflink		= veth_get_iflink,
1030 	.ndo_fix_features	= veth_fix_features,
1031 	.ndo_features_check	= passthru_features_check,
1032 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1033 	.ndo_bpf		= veth_xdp,
1034 	.ndo_xdp_xmit		= veth_xdp_xmit,
1035 };
1036 
1037 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1038 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1039 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1040 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1041 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1042 
1043 static void veth_setup(struct net_device *dev)
1044 {
1045 	ether_setup(dev);
1046 
1047 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1048 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1049 	dev->priv_flags |= IFF_NO_QUEUE;
1050 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1051 
1052 	dev->netdev_ops = &veth_netdev_ops;
1053 	dev->ethtool_ops = &veth_ethtool_ops;
1054 	dev->features |= NETIF_F_LLTX;
1055 	dev->features |= VETH_FEATURES;
1056 	dev->vlan_features = dev->features &
1057 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1058 			       NETIF_F_HW_VLAN_STAG_TX |
1059 			       NETIF_F_HW_VLAN_CTAG_RX |
1060 			       NETIF_F_HW_VLAN_STAG_RX);
1061 	dev->needs_free_netdev = true;
1062 	dev->priv_destructor = veth_dev_free;
1063 	dev->max_mtu = ETH_MAX_MTU;
1064 
1065 	dev->hw_features = VETH_FEATURES;
1066 	dev->hw_enc_features = VETH_FEATURES;
1067 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1068 }
1069 
1070 /*
1071  * netlink interface
1072  */
1073 
1074 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1075 			 struct netlink_ext_ack *extack)
1076 {
1077 	if (tb[IFLA_ADDRESS]) {
1078 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1079 			return -EINVAL;
1080 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1081 			return -EADDRNOTAVAIL;
1082 	}
1083 	if (tb[IFLA_MTU]) {
1084 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1085 			return -EINVAL;
1086 	}
1087 	return 0;
1088 }
1089 
1090 static struct rtnl_link_ops veth_link_ops;
1091 
1092 static int veth_newlink(struct net *src_net, struct net_device *dev,
1093 			struct nlattr *tb[], struct nlattr *data[],
1094 			struct netlink_ext_ack *extack)
1095 {
1096 	int err;
1097 	struct net_device *peer;
1098 	struct veth_priv *priv;
1099 	char ifname[IFNAMSIZ];
1100 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1101 	unsigned char name_assign_type;
1102 	struct ifinfomsg *ifmp;
1103 	struct net *net;
1104 
1105 	/*
1106 	 * create and register peer first
1107 	 */
1108 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1109 		struct nlattr *nla_peer;
1110 
1111 		nla_peer = data[VETH_INFO_PEER];
1112 		ifmp = nla_data(nla_peer);
1113 		err = rtnl_nla_parse_ifla(peer_tb,
1114 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1115 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1116 					  NULL);
1117 		if (err < 0)
1118 			return err;
1119 
1120 		err = veth_validate(peer_tb, NULL, extack);
1121 		if (err < 0)
1122 			return err;
1123 
1124 		tbp = peer_tb;
1125 	} else {
1126 		ifmp = NULL;
1127 		tbp = tb;
1128 	}
1129 
1130 	if (ifmp && tbp[IFLA_IFNAME]) {
1131 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1132 		name_assign_type = NET_NAME_USER;
1133 	} else {
1134 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1135 		name_assign_type = NET_NAME_ENUM;
1136 	}
1137 
1138 	net = rtnl_link_get_net(src_net, tbp);
1139 	if (IS_ERR(net))
1140 		return PTR_ERR(net);
1141 
1142 	peer = rtnl_create_link(net, ifname, name_assign_type,
1143 				&veth_link_ops, tbp);
1144 	if (IS_ERR(peer)) {
1145 		put_net(net);
1146 		return PTR_ERR(peer);
1147 	}
1148 
1149 	if (!ifmp || !tbp[IFLA_ADDRESS])
1150 		eth_hw_addr_random(peer);
1151 
1152 	if (ifmp && (dev->ifindex != 0))
1153 		peer->ifindex = ifmp->ifi_index;
1154 
1155 	peer->gso_max_size = dev->gso_max_size;
1156 	peer->gso_max_segs = dev->gso_max_segs;
1157 
1158 	err = register_netdevice(peer);
1159 	put_net(net);
1160 	net = NULL;
1161 	if (err < 0)
1162 		goto err_register_peer;
1163 
1164 	netif_carrier_off(peer);
1165 
1166 	err = rtnl_configure_link(peer, ifmp);
1167 	if (err < 0)
1168 		goto err_configure_peer;
1169 
1170 	/*
1171 	 * register dev last
1172 	 *
1173 	 * note, that since we've registered new device the dev's name
1174 	 * should be re-allocated
1175 	 */
1176 
1177 	if (tb[IFLA_ADDRESS] == NULL)
1178 		eth_hw_addr_random(dev);
1179 
1180 	if (tb[IFLA_IFNAME])
1181 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1182 	else
1183 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1184 
1185 	err = register_netdevice(dev);
1186 	if (err < 0)
1187 		goto err_register_dev;
1188 
1189 	netif_carrier_off(dev);
1190 
1191 	/*
1192 	 * tie the deviced together
1193 	 */
1194 
1195 	priv = netdev_priv(dev);
1196 	rcu_assign_pointer(priv->peer, peer);
1197 
1198 	priv = netdev_priv(peer);
1199 	rcu_assign_pointer(priv->peer, dev);
1200 
1201 	return 0;
1202 
1203 err_register_dev:
1204 	/* nothing to do */
1205 err_configure_peer:
1206 	unregister_netdevice(peer);
1207 	return err;
1208 
1209 err_register_peer:
1210 	free_netdev(peer);
1211 	return err;
1212 }
1213 
1214 static void veth_dellink(struct net_device *dev, struct list_head *head)
1215 {
1216 	struct veth_priv *priv;
1217 	struct net_device *peer;
1218 
1219 	priv = netdev_priv(dev);
1220 	peer = rtnl_dereference(priv->peer);
1221 
1222 	/* Note : dellink() is called from default_device_exit_batch(),
1223 	 * before a rcu_synchronize() point. The devices are guaranteed
1224 	 * not being freed before one RCU grace period.
1225 	 */
1226 	RCU_INIT_POINTER(priv->peer, NULL);
1227 	unregister_netdevice_queue(dev, head);
1228 
1229 	if (peer) {
1230 		priv = netdev_priv(peer);
1231 		RCU_INIT_POINTER(priv->peer, NULL);
1232 		unregister_netdevice_queue(peer, head);
1233 	}
1234 }
1235 
1236 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1237 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1238 };
1239 
1240 static struct net *veth_get_link_net(const struct net_device *dev)
1241 {
1242 	struct veth_priv *priv = netdev_priv(dev);
1243 	struct net_device *peer = rtnl_dereference(priv->peer);
1244 
1245 	return peer ? dev_net(peer) : dev_net(dev);
1246 }
1247 
1248 static struct rtnl_link_ops veth_link_ops = {
1249 	.kind		= DRV_NAME,
1250 	.priv_size	= sizeof(struct veth_priv),
1251 	.setup		= veth_setup,
1252 	.validate	= veth_validate,
1253 	.newlink	= veth_newlink,
1254 	.dellink	= veth_dellink,
1255 	.policy		= veth_policy,
1256 	.maxtype	= VETH_INFO_MAX,
1257 	.get_link_net	= veth_get_link_net,
1258 };
1259 
1260 /*
1261  * init/fini
1262  */
1263 
1264 static __init int veth_init(void)
1265 {
1266 	return rtnl_link_register(&veth_link_ops);
1267 }
1268 
1269 static __exit void veth_exit(void)
1270 {
1271 	rtnl_link_unregister(&veth_link_ops);
1272 }
1273 
1274 module_init(veth_init);
1275 module_exit(veth_exit);
1276 
1277 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1278 MODULE_LICENSE("GPL v2");
1279 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1280