1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/net/veth.c 4 * 5 * Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc 6 * 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com> 9 * 10 */ 11 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ethtool.h> 15 #include <linux/etherdevice.h> 16 #include <linux/u64_stats_sync.h> 17 18 #include <net/rtnetlink.h> 19 #include <net/dst.h> 20 #include <net/xfrm.h> 21 #include <net/xdp.h> 22 #include <linux/veth.h> 23 #include <linux/module.h> 24 #include <linux/bpf.h> 25 #include <linux/filter.h> 26 #include <linux/ptr_ring.h> 27 #include <linux/bpf_trace.h> 28 #include <linux/net_tstamp.h> 29 30 #define DRV_NAME "veth" 31 #define DRV_VERSION "1.0" 32 33 #define VETH_XDP_FLAG BIT(0) 34 #define VETH_RING_SIZE 256 35 #define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN) 36 37 #define VETH_XDP_TX_BULK_SIZE 16 38 #define VETH_XDP_BATCH 16 39 40 struct veth_stats { 41 u64 rx_drops; 42 /* xdp */ 43 u64 xdp_packets; 44 u64 xdp_bytes; 45 u64 xdp_redirect; 46 u64 xdp_drops; 47 u64 xdp_tx; 48 u64 xdp_tx_err; 49 u64 peer_tq_xdp_xmit; 50 u64 peer_tq_xdp_xmit_err; 51 }; 52 53 struct veth_rq_stats { 54 struct veth_stats vs; 55 struct u64_stats_sync syncp; 56 }; 57 58 struct veth_rq { 59 struct napi_struct xdp_napi; 60 struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */ 61 struct net_device *dev; 62 struct bpf_prog __rcu *xdp_prog; 63 struct xdp_mem_info xdp_mem; 64 struct veth_rq_stats stats; 65 bool rx_notify_masked; 66 struct ptr_ring xdp_ring; 67 struct xdp_rxq_info xdp_rxq; 68 }; 69 70 struct veth_priv { 71 struct net_device __rcu *peer; 72 atomic64_t dropped; 73 struct bpf_prog *_xdp_prog; 74 struct veth_rq *rq; 75 unsigned int requested_headroom; 76 }; 77 78 struct veth_xdp_tx_bq { 79 struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE]; 80 unsigned int count; 81 }; 82 83 /* 84 * ethtool interface 85 */ 86 87 struct veth_q_stat_desc { 88 char desc[ETH_GSTRING_LEN]; 89 size_t offset; 90 }; 91 92 #define VETH_RQ_STAT(m) offsetof(struct veth_stats, m) 93 94 static const struct veth_q_stat_desc veth_rq_stats_desc[] = { 95 { "xdp_packets", VETH_RQ_STAT(xdp_packets) }, 96 { "xdp_bytes", VETH_RQ_STAT(xdp_bytes) }, 97 { "drops", VETH_RQ_STAT(rx_drops) }, 98 { "xdp_redirect", VETH_RQ_STAT(xdp_redirect) }, 99 { "xdp_drops", VETH_RQ_STAT(xdp_drops) }, 100 { "xdp_tx", VETH_RQ_STAT(xdp_tx) }, 101 { "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) }, 102 }; 103 104 #define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc) 105 106 static const struct veth_q_stat_desc veth_tq_stats_desc[] = { 107 { "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) }, 108 { "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) }, 109 }; 110 111 #define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc) 112 113 static struct { 114 const char string[ETH_GSTRING_LEN]; 115 } ethtool_stats_keys[] = { 116 { "peer_ifindex" }, 117 }; 118 119 static int veth_get_link_ksettings(struct net_device *dev, 120 struct ethtool_link_ksettings *cmd) 121 { 122 cmd->base.speed = SPEED_10000; 123 cmd->base.duplex = DUPLEX_FULL; 124 cmd->base.port = PORT_TP; 125 cmd->base.autoneg = AUTONEG_DISABLE; 126 return 0; 127 } 128 129 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 130 { 131 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 132 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 133 } 134 135 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 136 { 137 u8 *p = buf; 138 int i, j; 139 140 switch(stringset) { 141 case ETH_SS_STATS: 142 memcpy(p, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 143 p += sizeof(ethtool_stats_keys); 144 for (i = 0; i < dev->real_num_rx_queues; i++) 145 for (j = 0; j < VETH_RQ_STATS_LEN; j++) 146 ethtool_sprintf(&p, "rx_queue_%u_%.18s", 147 i, veth_rq_stats_desc[j].desc); 148 149 for (i = 0; i < dev->real_num_tx_queues; i++) 150 for (j = 0; j < VETH_TQ_STATS_LEN; j++) 151 ethtool_sprintf(&p, "tx_queue_%u_%.18s", 152 i, veth_tq_stats_desc[j].desc); 153 break; 154 } 155 } 156 157 static int veth_get_sset_count(struct net_device *dev, int sset) 158 { 159 switch (sset) { 160 case ETH_SS_STATS: 161 return ARRAY_SIZE(ethtool_stats_keys) + 162 VETH_RQ_STATS_LEN * dev->real_num_rx_queues + 163 VETH_TQ_STATS_LEN * dev->real_num_tx_queues; 164 default: 165 return -EOPNOTSUPP; 166 } 167 } 168 169 static void veth_get_ethtool_stats(struct net_device *dev, 170 struct ethtool_stats *stats, u64 *data) 171 { 172 struct veth_priv *rcv_priv, *priv = netdev_priv(dev); 173 struct net_device *peer = rtnl_dereference(priv->peer); 174 int i, j, idx; 175 176 data[0] = peer ? peer->ifindex : 0; 177 idx = 1; 178 for (i = 0; i < dev->real_num_rx_queues; i++) { 179 const struct veth_rq_stats *rq_stats = &priv->rq[i].stats; 180 const void *stats_base = (void *)&rq_stats->vs; 181 unsigned int start; 182 size_t offset; 183 184 do { 185 start = u64_stats_fetch_begin_irq(&rq_stats->syncp); 186 for (j = 0; j < VETH_RQ_STATS_LEN; j++) { 187 offset = veth_rq_stats_desc[j].offset; 188 data[idx + j] = *(u64 *)(stats_base + offset); 189 } 190 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start)); 191 idx += VETH_RQ_STATS_LEN; 192 } 193 194 if (!peer) 195 return; 196 197 rcv_priv = netdev_priv(peer); 198 for (i = 0; i < peer->real_num_rx_queues; i++) { 199 const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats; 200 const void *base = (void *)&rq_stats->vs; 201 unsigned int start, tx_idx = idx; 202 size_t offset; 203 204 tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN; 205 do { 206 start = u64_stats_fetch_begin_irq(&rq_stats->syncp); 207 for (j = 0; j < VETH_TQ_STATS_LEN; j++) { 208 offset = veth_tq_stats_desc[j].offset; 209 data[tx_idx + j] += *(u64 *)(base + offset); 210 } 211 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start)); 212 } 213 } 214 215 static void veth_get_channels(struct net_device *dev, 216 struct ethtool_channels *channels) 217 { 218 channels->tx_count = dev->real_num_tx_queues; 219 channels->rx_count = dev->real_num_rx_queues; 220 channels->max_tx = dev->num_tx_queues; 221 channels->max_rx = dev->num_rx_queues; 222 } 223 224 static int veth_set_channels(struct net_device *dev, 225 struct ethtool_channels *ch); 226 227 static const struct ethtool_ops veth_ethtool_ops = { 228 .get_drvinfo = veth_get_drvinfo, 229 .get_link = ethtool_op_get_link, 230 .get_strings = veth_get_strings, 231 .get_sset_count = veth_get_sset_count, 232 .get_ethtool_stats = veth_get_ethtool_stats, 233 .get_link_ksettings = veth_get_link_ksettings, 234 .get_ts_info = ethtool_op_get_ts_info, 235 .get_channels = veth_get_channels, 236 .set_channels = veth_set_channels, 237 }; 238 239 /* general routines */ 240 241 static bool veth_is_xdp_frame(void *ptr) 242 { 243 return (unsigned long)ptr & VETH_XDP_FLAG; 244 } 245 246 static struct xdp_frame *veth_ptr_to_xdp(void *ptr) 247 { 248 return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG); 249 } 250 251 static void *veth_xdp_to_ptr(struct xdp_frame *xdp) 252 { 253 return (void *)((unsigned long)xdp | VETH_XDP_FLAG); 254 } 255 256 static void veth_ptr_free(void *ptr) 257 { 258 if (veth_is_xdp_frame(ptr)) 259 xdp_return_frame(veth_ptr_to_xdp(ptr)); 260 else 261 kfree_skb(ptr); 262 } 263 264 static void __veth_xdp_flush(struct veth_rq *rq) 265 { 266 /* Write ptr_ring before reading rx_notify_masked */ 267 smp_mb(); 268 if (!rq->rx_notify_masked) { 269 rq->rx_notify_masked = true; 270 napi_schedule(&rq->xdp_napi); 271 } 272 } 273 274 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb) 275 { 276 if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) { 277 dev_kfree_skb_any(skb); 278 return NET_RX_DROP; 279 } 280 281 return NET_RX_SUCCESS; 282 } 283 284 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb, 285 struct veth_rq *rq, bool xdp) 286 { 287 return __dev_forward_skb(dev, skb) ?: xdp ? 288 veth_xdp_rx(rq, skb) : 289 netif_rx(skb); 290 } 291 292 /* return true if the specified skb has chances of GRO aggregation 293 * Don't strive for accuracy, but try to avoid GRO overhead in the most 294 * common scenarios. 295 * When XDP is enabled, all traffic is considered eligible, as the xmit 296 * device has TSO off. 297 * When TSO is enabled on the xmit device, we are likely interested only 298 * in UDP aggregation, explicitly check for that if the skb is suspected 299 * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets - 300 * to belong to locally generated UDP traffic. 301 */ 302 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev, 303 const struct net_device *rcv, 304 const struct sk_buff *skb) 305 { 306 return !(dev->features & NETIF_F_ALL_TSO) || 307 (skb->destructor == sock_wfree && 308 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD)); 309 } 310 311 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev) 312 { 313 struct veth_priv *rcv_priv, *priv = netdev_priv(dev); 314 struct veth_rq *rq = NULL; 315 struct net_device *rcv; 316 int length = skb->len; 317 bool use_napi = false; 318 int rxq; 319 320 rcu_read_lock(); 321 rcv = rcu_dereference(priv->peer); 322 if (unlikely(!rcv)) { 323 kfree_skb(skb); 324 goto drop; 325 } 326 327 rcv_priv = netdev_priv(rcv); 328 rxq = skb_get_queue_mapping(skb); 329 if (rxq < rcv->real_num_rx_queues) { 330 rq = &rcv_priv->rq[rxq]; 331 332 /* The napi pointer is available when an XDP program is 333 * attached or when GRO is enabled 334 * Don't bother with napi/GRO if the skb can't be aggregated 335 */ 336 use_napi = rcu_access_pointer(rq->napi) && 337 veth_skb_is_eligible_for_gro(dev, rcv, skb); 338 skb_record_rx_queue(skb, rxq); 339 } 340 341 skb_tx_timestamp(skb); 342 if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) { 343 if (!use_napi) 344 dev_lstats_add(dev, length); 345 } else { 346 drop: 347 atomic64_inc(&priv->dropped); 348 } 349 350 if (use_napi) 351 __veth_xdp_flush(rq); 352 353 rcu_read_unlock(); 354 355 return NETDEV_TX_OK; 356 } 357 358 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes) 359 { 360 struct veth_priv *priv = netdev_priv(dev); 361 362 dev_lstats_read(dev, packets, bytes); 363 return atomic64_read(&priv->dropped); 364 } 365 366 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev) 367 { 368 struct veth_priv *priv = netdev_priv(dev); 369 int i; 370 371 result->peer_tq_xdp_xmit_err = 0; 372 result->xdp_packets = 0; 373 result->xdp_tx_err = 0; 374 result->xdp_bytes = 0; 375 result->rx_drops = 0; 376 for (i = 0; i < dev->num_rx_queues; i++) { 377 u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err; 378 struct veth_rq_stats *stats = &priv->rq[i].stats; 379 unsigned int start; 380 381 do { 382 start = u64_stats_fetch_begin_irq(&stats->syncp); 383 peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err; 384 xdp_tx_err = stats->vs.xdp_tx_err; 385 packets = stats->vs.xdp_packets; 386 bytes = stats->vs.xdp_bytes; 387 drops = stats->vs.rx_drops; 388 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 389 result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err; 390 result->xdp_tx_err += xdp_tx_err; 391 result->xdp_packets += packets; 392 result->xdp_bytes += bytes; 393 result->rx_drops += drops; 394 } 395 } 396 397 static void veth_get_stats64(struct net_device *dev, 398 struct rtnl_link_stats64 *tot) 399 { 400 struct veth_priv *priv = netdev_priv(dev); 401 struct net_device *peer; 402 struct veth_stats rx; 403 u64 packets, bytes; 404 405 tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes); 406 tot->tx_bytes = bytes; 407 tot->tx_packets = packets; 408 409 veth_stats_rx(&rx, dev); 410 tot->tx_dropped += rx.xdp_tx_err; 411 tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err; 412 tot->rx_bytes = rx.xdp_bytes; 413 tot->rx_packets = rx.xdp_packets; 414 415 rcu_read_lock(); 416 peer = rcu_dereference(priv->peer); 417 if (peer) { 418 veth_stats_tx(peer, &packets, &bytes); 419 tot->rx_bytes += bytes; 420 tot->rx_packets += packets; 421 422 veth_stats_rx(&rx, peer); 423 tot->tx_dropped += rx.peer_tq_xdp_xmit_err; 424 tot->rx_dropped += rx.xdp_tx_err; 425 tot->tx_bytes += rx.xdp_bytes; 426 tot->tx_packets += rx.xdp_packets; 427 } 428 rcu_read_unlock(); 429 } 430 431 /* fake multicast ability */ 432 static void veth_set_multicast_list(struct net_device *dev) 433 { 434 } 435 436 static struct sk_buff *veth_build_skb(void *head, int headroom, int len, 437 int buflen) 438 { 439 struct sk_buff *skb; 440 441 skb = build_skb(head, buflen); 442 if (!skb) 443 return NULL; 444 445 skb_reserve(skb, headroom); 446 skb_put(skb, len); 447 448 return skb; 449 } 450 451 static int veth_select_rxq(struct net_device *dev) 452 { 453 return smp_processor_id() % dev->real_num_rx_queues; 454 } 455 456 static struct net_device *veth_peer_dev(struct net_device *dev) 457 { 458 struct veth_priv *priv = netdev_priv(dev); 459 460 /* Callers must be under RCU read side. */ 461 return rcu_dereference(priv->peer); 462 } 463 464 static int veth_xdp_xmit(struct net_device *dev, int n, 465 struct xdp_frame **frames, 466 u32 flags, bool ndo_xmit) 467 { 468 struct veth_priv *rcv_priv, *priv = netdev_priv(dev); 469 int i, ret = -ENXIO, nxmit = 0; 470 struct net_device *rcv; 471 unsigned int max_len; 472 struct veth_rq *rq; 473 474 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 475 return -EINVAL; 476 477 rcu_read_lock(); 478 rcv = rcu_dereference(priv->peer); 479 if (unlikely(!rcv)) 480 goto out; 481 482 rcv_priv = netdev_priv(rcv); 483 rq = &rcv_priv->rq[veth_select_rxq(rcv)]; 484 /* The napi pointer is set if NAPI is enabled, which ensures that 485 * xdp_ring is initialized on receive side and the peer device is up. 486 */ 487 if (!rcu_access_pointer(rq->napi)) 488 goto out; 489 490 max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN; 491 492 spin_lock(&rq->xdp_ring.producer_lock); 493 for (i = 0; i < n; i++) { 494 struct xdp_frame *frame = frames[i]; 495 void *ptr = veth_xdp_to_ptr(frame); 496 497 if (unlikely(frame->len > max_len || 498 __ptr_ring_produce(&rq->xdp_ring, ptr))) 499 break; 500 nxmit++; 501 } 502 spin_unlock(&rq->xdp_ring.producer_lock); 503 504 if (flags & XDP_XMIT_FLUSH) 505 __veth_xdp_flush(rq); 506 507 ret = nxmit; 508 if (ndo_xmit) { 509 u64_stats_update_begin(&rq->stats.syncp); 510 rq->stats.vs.peer_tq_xdp_xmit += nxmit; 511 rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit; 512 u64_stats_update_end(&rq->stats.syncp); 513 } 514 515 out: 516 rcu_read_unlock(); 517 518 return ret; 519 } 520 521 static int veth_ndo_xdp_xmit(struct net_device *dev, int n, 522 struct xdp_frame **frames, u32 flags) 523 { 524 int err; 525 526 err = veth_xdp_xmit(dev, n, frames, flags, true); 527 if (err < 0) { 528 struct veth_priv *priv = netdev_priv(dev); 529 530 atomic64_add(n, &priv->dropped); 531 } 532 533 return err; 534 } 535 536 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq) 537 { 538 int sent, i, err = 0, drops; 539 540 sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false); 541 if (sent < 0) { 542 err = sent; 543 sent = 0; 544 } 545 546 for (i = sent; unlikely(i < bq->count); i++) 547 xdp_return_frame(bq->q[i]); 548 549 drops = bq->count - sent; 550 trace_xdp_bulk_tx(rq->dev, sent, drops, err); 551 552 u64_stats_update_begin(&rq->stats.syncp); 553 rq->stats.vs.xdp_tx += sent; 554 rq->stats.vs.xdp_tx_err += drops; 555 u64_stats_update_end(&rq->stats.syncp); 556 557 bq->count = 0; 558 } 559 560 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq) 561 { 562 struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev); 563 struct net_device *rcv; 564 struct veth_rq *rcv_rq; 565 566 rcu_read_lock(); 567 veth_xdp_flush_bq(rq, bq); 568 rcv = rcu_dereference(priv->peer); 569 if (unlikely(!rcv)) 570 goto out; 571 572 rcv_priv = netdev_priv(rcv); 573 rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)]; 574 /* xdp_ring is initialized on receive side? */ 575 if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog))) 576 goto out; 577 578 __veth_xdp_flush(rcv_rq); 579 out: 580 rcu_read_unlock(); 581 } 582 583 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp, 584 struct veth_xdp_tx_bq *bq) 585 { 586 struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp); 587 588 if (unlikely(!frame)) 589 return -EOVERFLOW; 590 591 if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE)) 592 veth_xdp_flush_bq(rq, bq); 593 594 bq->q[bq->count++] = frame; 595 596 return 0; 597 } 598 599 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq, 600 struct xdp_frame *frame, 601 struct veth_xdp_tx_bq *bq, 602 struct veth_stats *stats) 603 { 604 struct xdp_frame orig_frame; 605 struct bpf_prog *xdp_prog; 606 607 rcu_read_lock(); 608 xdp_prog = rcu_dereference(rq->xdp_prog); 609 if (likely(xdp_prog)) { 610 struct xdp_buff xdp; 611 u32 act; 612 613 xdp_convert_frame_to_buff(frame, &xdp); 614 xdp.rxq = &rq->xdp_rxq; 615 616 act = bpf_prog_run_xdp(xdp_prog, &xdp); 617 618 switch (act) { 619 case XDP_PASS: 620 if (xdp_update_frame_from_buff(&xdp, frame)) 621 goto err_xdp; 622 break; 623 case XDP_TX: 624 orig_frame = *frame; 625 xdp.rxq->mem = frame->mem; 626 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) { 627 trace_xdp_exception(rq->dev, xdp_prog, act); 628 frame = &orig_frame; 629 stats->rx_drops++; 630 goto err_xdp; 631 } 632 stats->xdp_tx++; 633 rcu_read_unlock(); 634 goto xdp_xmit; 635 case XDP_REDIRECT: 636 orig_frame = *frame; 637 xdp.rxq->mem = frame->mem; 638 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) { 639 frame = &orig_frame; 640 stats->rx_drops++; 641 goto err_xdp; 642 } 643 stats->xdp_redirect++; 644 rcu_read_unlock(); 645 goto xdp_xmit; 646 default: 647 bpf_warn_invalid_xdp_action(act); 648 fallthrough; 649 case XDP_ABORTED: 650 trace_xdp_exception(rq->dev, xdp_prog, act); 651 fallthrough; 652 case XDP_DROP: 653 stats->xdp_drops++; 654 goto err_xdp; 655 } 656 } 657 rcu_read_unlock(); 658 659 return frame; 660 err_xdp: 661 rcu_read_unlock(); 662 xdp_return_frame(frame); 663 xdp_xmit: 664 return NULL; 665 } 666 667 /* frames array contains VETH_XDP_BATCH at most */ 668 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames, 669 int n_xdpf, struct veth_xdp_tx_bq *bq, 670 struct veth_stats *stats) 671 { 672 void *skbs[VETH_XDP_BATCH]; 673 int i; 674 675 if (xdp_alloc_skb_bulk(skbs, n_xdpf, 676 GFP_ATOMIC | __GFP_ZERO) < 0) { 677 for (i = 0; i < n_xdpf; i++) 678 xdp_return_frame(frames[i]); 679 stats->rx_drops += n_xdpf; 680 681 return; 682 } 683 684 for (i = 0; i < n_xdpf; i++) { 685 struct sk_buff *skb = skbs[i]; 686 687 skb = __xdp_build_skb_from_frame(frames[i], skb, 688 rq->dev); 689 if (!skb) { 690 xdp_return_frame(frames[i]); 691 stats->rx_drops++; 692 continue; 693 } 694 napi_gro_receive(&rq->xdp_napi, skb); 695 } 696 } 697 698 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, 699 struct sk_buff *skb, 700 struct veth_xdp_tx_bq *bq, 701 struct veth_stats *stats) 702 { 703 u32 pktlen, headroom, act, metalen, frame_sz; 704 void *orig_data, *orig_data_end; 705 struct bpf_prog *xdp_prog; 706 int mac_len, delta, off; 707 struct xdp_buff xdp; 708 709 skb_prepare_for_gro(skb); 710 711 rcu_read_lock(); 712 xdp_prog = rcu_dereference(rq->xdp_prog); 713 if (unlikely(!xdp_prog)) { 714 rcu_read_unlock(); 715 goto out; 716 } 717 718 mac_len = skb->data - skb_mac_header(skb); 719 pktlen = skb->len + mac_len; 720 headroom = skb_headroom(skb) - mac_len; 721 722 if (skb_shared(skb) || skb_head_is_locked(skb) || 723 skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) { 724 struct sk_buff *nskb; 725 int size, head_off; 726 void *head, *start; 727 struct page *page; 728 729 size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) + 730 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 731 if (size > PAGE_SIZE) 732 goto drop; 733 734 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); 735 if (!page) 736 goto drop; 737 738 head = page_address(page); 739 start = head + VETH_XDP_HEADROOM; 740 if (skb_copy_bits(skb, -mac_len, start, pktlen)) { 741 page_frag_free(head); 742 goto drop; 743 } 744 745 nskb = veth_build_skb(head, VETH_XDP_HEADROOM + mac_len, 746 skb->len, PAGE_SIZE); 747 if (!nskb) { 748 page_frag_free(head); 749 goto drop; 750 } 751 752 skb_copy_header(nskb, skb); 753 head_off = skb_headroom(nskb) - skb_headroom(skb); 754 skb_headers_offset_update(nskb, head_off); 755 consume_skb(skb); 756 skb = nskb; 757 } 758 759 /* SKB "head" area always have tailroom for skb_shared_info */ 760 frame_sz = skb_end_pointer(skb) - skb->head; 761 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 762 xdp_init_buff(&xdp, frame_sz, &rq->xdp_rxq); 763 xdp_prepare_buff(&xdp, skb->head, skb->mac_header, pktlen, true); 764 765 orig_data = xdp.data; 766 orig_data_end = xdp.data_end; 767 768 act = bpf_prog_run_xdp(xdp_prog, &xdp); 769 770 switch (act) { 771 case XDP_PASS: 772 break; 773 case XDP_TX: 774 get_page(virt_to_page(xdp.data)); 775 consume_skb(skb); 776 xdp.rxq->mem = rq->xdp_mem; 777 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) { 778 trace_xdp_exception(rq->dev, xdp_prog, act); 779 stats->rx_drops++; 780 goto err_xdp; 781 } 782 stats->xdp_tx++; 783 rcu_read_unlock(); 784 goto xdp_xmit; 785 case XDP_REDIRECT: 786 get_page(virt_to_page(xdp.data)); 787 consume_skb(skb); 788 xdp.rxq->mem = rq->xdp_mem; 789 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) { 790 stats->rx_drops++; 791 goto err_xdp; 792 } 793 stats->xdp_redirect++; 794 rcu_read_unlock(); 795 goto xdp_xmit; 796 default: 797 bpf_warn_invalid_xdp_action(act); 798 fallthrough; 799 case XDP_ABORTED: 800 trace_xdp_exception(rq->dev, xdp_prog, act); 801 fallthrough; 802 case XDP_DROP: 803 stats->xdp_drops++; 804 goto xdp_drop; 805 } 806 rcu_read_unlock(); 807 808 /* check if bpf_xdp_adjust_head was used */ 809 delta = orig_data - xdp.data; 810 off = mac_len + delta; 811 if (off > 0) 812 __skb_push(skb, off); 813 else if (off < 0) 814 __skb_pull(skb, -off); 815 skb->mac_header -= delta; 816 817 /* check if bpf_xdp_adjust_tail was used */ 818 off = xdp.data_end - orig_data_end; 819 if (off != 0) 820 __skb_put(skb, off); /* positive on grow, negative on shrink */ 821 skb->protocol = eth_type_trans(skb, rq->dev); 822 823 metalen = xdp.data - xdp.data_meta; 824 if (metalen) 825 skb_metadata_set(skb, metalen); 826 out: 827 return skb; 828 drop: 829 stats->rx_drops++; 830 xdp_drop: 831 rcu_read_unlock(); 832 kfree_skb(skb); 833 return NULL; 834 err_xdp: 835 rcu_read_unlock(); 836 page_frag_free(xdp.data); 837 xdp_xmit: 838 return NULL; 839 } 840 841 static int veth_xdp_rcv(struct veth_rq *rq, int budget, 842 struct veth_xdp_tx_bq *bq, 843 struct veth_stats *stats) 844 { 845 int i, done = 0, n_xdpf = 0; 846 void *xdpf[VETH_XDP_BATCH]; 847 848 for (i = 0; i < budget; i++) { 849 void *ptr = __ptr_ring_consume(&rq->xdp_ring); 850 851 if (!ptr) 852 break; 853 854 if (veth_is_xdp_frame(ptr)) { 855 /* ndo_xdp_xmit */ 856 struct xdp_frame *frame = veth_ptr_to_xdp(ptr); 857 858 stats->xdp_bytes += frame->len; 859 frame = veth_xdp_rcv_one(rq, frame, bq, stats); 860 if (frame) { 861 /* XDP_PASS */ 862 xdpf[n_xdpf++] = frame; 863 if (n_xdpf == VETH_XDP_BATCH) { 864 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, 865 bq, stats); 866 n_xdpf = 0; 867 } 868 } 869 } else { 870 /* ndo_start_xmit */ 871 struct sk_buff *skb = ptr; 872 873 stats->xdp_bytes += skb->len; 874 skb = veth_xdp_rcv_skb(rq, skb, bq, stats); 875 if (skb) 876 napi_gro_receive(&rq->xdp_napi, skb); 877 } 878 done++; 879 } 880 881 if (n_xdpf) 882 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats); 883 884 u64_stats_update_begin(&rq->stats.syncp); 885 rq->stats.vs.xdp_redirect += stats->xdp_redirect; 886 rq->stats.vs.xdp_bytes += stats->xdp_bytes; 887 rq->stats.vs.xdp_drops += stats->xdp_drops; 888 rq->stats.vs.rx_drops += stats->rx_drops; 889 rq->stats.vs.xdp_packets += done; 890 u64_stats_update_end(&rq->stats.syncp); 891 892 return done; 893 } 894 895 static int veth_poll(struct napi_struct *napi, int budget) 896 { 897 struct veth_rq *rq = 898 container_of(napi, struct veth_rq, xdp_napi); 899 struct veth_stats stats = {}; 900 struct veth_xdp_tx_bq bq; 901 int done; 902 903 bq.count = 0; 904 905 xdp_set_return_frame_no_direct(); 906 done = veth_xdp_rcv(rq, budget, &bq, &stats); 907 908 if (done < budget && napi_complete_done(napi, done)) { 909 /* Write rx_notify_masked before reading ptr_ring */ 910 smp_store_mb(rq->rx_notify_masked, false); 911 if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) { 912 rq->rx_notify_masked = true; 913 napi_schedule(&rq->xdp_napi); 914 } 915 } 916 917 if (stats.xdp_tx > 0) 918 veth_xdp_flush(rq, &bq); 919 if (stats.xdp_redirect > 0) 920 xdp_do_flush(); 921 xdp_clear_return_frame_no_direct(); 922 923 return done; 924 } 925 926 static int __veth_napi_enable_range(struct net_device *dev, int start, int end) 927 { 928 struct veth_priv *priv = netdev_priv(dev); 929 int err, i; 930 931 for (i = start; i < end; i++) { 932 struct veth_rq *rq = &priv->rq[i]; 933 934 err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL); 935 if (err) 936 goto err_xdp_ring; 937 } 938 939 for (i = start; i < end; i++) { 940 struct veth_rq *rq = &priv->rq[i]; 941 942 napi_enable(&rq->xdp_napi); 943 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi); 944 } 945 946 return 0; 947 948 err_xdp_ring: 949 for (i--; i >= start; i--) 950 ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free); 951 952 return err; 953 } 954 955 static int __veth_napi_enable(struct net_device *dev) 956 { 957 return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues); 958 } 959 960 static void veth_napi_del_range(struct net_device *dev, int start, int end) 961 { 962 struct veth_priv *priv = netdev_priv(dev); 963 int i; 964 965 for (i = start; i < end; i++) { 966 struct veth_rq *rq = &priv->rq[i]; 967 968 rcu_assign_pointer(priv->rq[i].napi, NULL); 969 napi_disable(&rq->xdp_napi); 970 __netif_napi_del(&rq->xdp_napi); 971 } 972 synchronize_net(); 973 974 for (i = start; i < end; i++) { 975 struct veth_rq *rq = &priv->rq[i]; 976 977 rq->rx_notify_masked = false; 978 ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free); 979 } 980 } 981 982 static void veth_napi_del(struct net_device *dev) 983 { 984 veth_napi_del_range(dev, 0, dev->real_num_rx_queues); 985 } 986 987 static bool veth_gro_requested(const struct net_device *dev) 988 { 989 return !!(dev->wanted_features & NETIF_F_GRO); 990 } 991 992 static int veth_enable_xdp_range(struct net_device *dev, int start, int end, 993 bool napi_already_on) 994 { 995 struct veth_priv *priv = netdev_priv(dev); 996 int err, i; 997 998 for (i = start; i < end; i++) { 999 struct veth_rq *rq = &priv->rq[i]; 1000 1001 if (!napi_already_on) 1002 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT); 1003 err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id); 1004 if (err < 0) 1005 goto err_rxq_reg; 1006 1007 err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq, 1008 MEM_TYPE_PAGE_SHARED, 1009 NULL); 1010 if (err < 0) 1011 goto err_reg_mem; 1012 1013 /* Save original mem info as it can be overwritten */ 1014 rq->xdp_mem = rq->xdp_rxq.mem; 1015 } 1016 return 0; 1017 1018 err_reg_mem: 1019 xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq); 1020 err_rxq_reg: 1021 for (i--; i >= start; i--) { 1022 struct veth_rq *rq = &priv->rq[i]; 1023 1024 xdp_rxq_info_unreg(&rq->xdp_rxq); 1025 if (!napi_already_on) 1026 netif_napi_del(&rq->xdp_napi); 1027 } 1028 1029 return err; 1030 } 1031 1032 static void veth_disable_xdp_range(struct net_device *dev, int start, int end, 1033 bool delete_napi) 1034 { 1035 struct veth_priv *priv = netdev_priv(dev); 1036 int i; 1037 1038 for (i = start; i < end; i++) { 1039 struct veth_rq *rq = &priv->rq[i]; 1040 1041 rq->xdp_rxq.mem = rq->xdp_mem; 1042 xdp_rxq_info_unreg(&rq->xdp_rxq); 1043 1044 if (delete_napi) 1045 netif_napi_del(&rq->xdp_napi); 1046 } 1047 } 1048 1049 static int veth_enable_xdp(struct net_device *dev) 1050 { 1051 bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP); 1052 struct veth_priv *priv = netdev_priv(dev); 1053 int err, i; 1054 1055 if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) { 1056 err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on); 1057 if (err) 1058 return err; 1059 1060 if (!napi_already_on) { 1061 err = __veth_napi_enable(dev); 1062 if (err) { 1063 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true); 1064 return err; 1065 } 1066 1067 if (!veth_gro_requested(dev)) { 1068 /* user-space did not require GRO, but adding XDP 1069 * is supposed to get GRO working 1070 */ 1071 dev->features |= NETIF_F_GRO; 1072 netdev_features_change(dev); 1073 } 1074 } 1075 } 1076 1077 for (i = 0; i < dev->real_num_rx_queues; i++) { 1078 rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog); 1079 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi); 1080 } 1081 1082 return 0; 1083 } 1084 1085 static void veth_disable_xdp(struct net_device *dev) 1086 { 1087 struct veth_priv *priv = netdev_priv(dev); 1088 int i; 1089 1090 for (i = 0; i < dev->real_num_rx_queues; i++) 1091 rcu_assign_pointer(priv->rq[i].xdp_prog, NULL); 1092 1093 if (!netif_running(dev) || !veth_gro_requested(dev)) { 1094 veth_napi_del(dev); 1095 1096 /* if user-space did not require GRO, since adding XDP 1097 * enabled it, clear it now 1098 */ 1099 if (!veth_gro_requested(dev) && netif_running(dev)) { 1100 dev->features &= ~NETIF_F_GRO; 1101 netdev_features_change(dev); 1102 } 1103 } 1104 1105 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false); 1106 } 1107 1108 static int veth_napi_enable_range(struct net_device *dev, int start, int end) 1109 { 1110 struct veth_priv *priv = netdev_priv(dev); 1111 int err, i; 1112 1113 for (i = start; i < end; i++) { 1114 struct veth_rq *rq = &priv->rq[i]; 1115 1116 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT); 1117 } 1118 1119 err = __veth_napi_enable_range(dev, start, end); 1120 if (err) { 1121 for (i = start; i < end; i++) { 1122 struct veth_rq *rq = &priv->rq[i]; 1123 1124 netif_napi_del(&rq->xdp_napi); 1125 } 1126 return err; 1127 } 1128 return err; 1129 } 1130 1131 static int veth_napi_enable(struct net_device *dev) 1132 { 1133 return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues); 1134 } 1135 1136 static void veth_disable_range_safe(struct net_device *dev, int start, int end) 1137 { 1138 struct veth_priv *priv = netdev_priv(dev); 1139 1140 if (start >= end) 1141 return; 1142 1143 if (priv->_xdp_prog) { 1144 veth_napi_del_range(dev, start, end); 1145 veth_disable_xdp_range(dev, start, end, false); 1146 } else if (veth_gro_requested(dev)) { 1147 veth_napi_del_range(dev, start, end); 1148 } 1149 } 1150 1151 static int veth_enable_range_safe(struct net_device *dev, int start, int end) 1152 { 1153 struct veth_priv *priv = netdev_priv(dev); 1154 int err; 1155 1156 if (start >= end) 1157 return 0; 1158 1159 if (priv->_xdp_prog) { 1160 /* these channels are freshly initialized, napi is not on there even 1161 * when GRO is requeste 1162 */ 1163 err = veth_enable_xdp_range(dev, start, end, false); 1164 if (err) 1165 return err; 1166 1167 err = __veth_napi_enable_range(dev, start, end); 1168 if (err) { 1169 /* on error always delete the newly added napis */ 1170 veth_disable_xdp_range(dev, start, end, true); 1171 return err; 1172 } 1173 } else if (veth_gro_requested(dev)) { 1174 return veth_napi_enable_range(dev, start, end); 1175 } 1176 return 0; 1177 } 1178 1179 static int veth_set_channels(struct net_device *dev, 1180 struct ethtool_channels *ch) 1181 { 1182 struct veth_priv *priv = netdev_priv(dev); 1183 unsigned int old_rx_count, new_rx_count; 1184 struct veth_priv *peer_priv; 1185 struct net_device *peer; 1186 int err; 1187 1188 /* sanity check. Upper bounds are already enforced by the caller */ 1189 if (!ch->rx_count || !ch->tx_count) 1190 return -EINVAL; 1191 1192 /* avoid braking XDP, if that is enabled */ 1193 peer = rtnl_dereference(priv->peer); 1194 peer_priv = peer ? netdev_priv(peer) : NULL; 1195 if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues) 1196 return -EINVAL; 1197 1198 if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues) 1199 return -EINVAL; 1200 1201 old_rx_count = dev->real_num_rx_queues; 1202 new_rx_count = ch->rx_count; 1203 if (netif_running(dev)) { 1204 /* turn device off */ 1205 netif_carrier_off(dev); 1206 if (peer) 1207 netif_carrier_off(peer); 1208 1209 /* try to allocate new resurces, as needed*/ 1210 err = veth_enable_range_safe(dev, old_rx_count, new_rx_count); 1211 if (err) 1212 goto out; 1213 } 1214 1215 err = netif_set_real_num_rx_queues(dev, ch->rx_count); 1216 if (err) 1217 goto revert; 1218 1219 err = netif_set_real_num_tx_queues(dev, ch->tx_count); 1220 if (err) { 1221 int err2 = netif_set_real_num_rx_queues(dev, old_rx_count); 1222 1223 /* this error condition could happen only if rx and tx change 1224 * in opposite directions (e.g. tx nr raises, rx nr decreases) 1225 * and we can't do anything to fully restore the original 1226 * status 1227 */ 1228 if (err2) 1229 pr_warn("Can't restore rx queues config %d -> %d %d", 1230 new_rx_count, old_rx_count, err2); 1231 else 1232 goto revert; 1233 } 1234 1235 out: 1236 if (netif_running(dev)) { 1237 /* note that we need to swap the arguments WRT the enable part 1238 * to identify the range we have to disable 1239 */ 1240 veth_disable_range_safe(dev, new_rx_count, old_rx_count); 1241 netif_carrier_on(dev); 1242 if (peer) 1243 netif_carrier_on(peer); 1244 } 1245 return err; 1246 1247 revert: 1248 new_rx_count = old_rx_count; 1249 old_rx_count = ch->rx_count; 1250 goto out; 1251 } 1252 1253 static int veth_open(struct net_device *dev) 1254 { 1255 struct veth_priv *priv = netdev_priv(dev); 1256 struct net_device *peer = rtnl_dereference(priv->peer); 1257 int err; 1258 1259 if (!peer) 1260 return -ENOTCONN; 1261 1262 if (priv->_xdp_prog) { 1263 err = veth_enable_xdp(dev); 1264 if (err) 1265 return err; 1266 } else if (veth_gro_requested(dev)) { 1267 err = veth_napi_enable(dev); 1268 if (err) 1269 return err; 1270 } 1271 1272 if (peer->flags & IFF_UP) { 1273 netif_carrier_on(dev); 1274 netif_carrier_on(peer); 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int veth_close(struct net_device *dev) 1281 { 1282 struct veth_priv *priv = netdev_priv(dev); 1283 struct net_device *peer = rtnl_dereference(priv->peer); 1284 1285 netif_carrier_off(dev); 1286 if (peer) 1287 netif_carrier_off(peer); 1288 1289 if (priv->_xdp_prog) 1290 veth_disable_xdp(dev); 1291 else if (veth_gro_requested(dev)) 1292 veth_napi_del(dev); 1293 1294 return 0; 1295 } 1296 1297 static int is_valid_veth_mtu(int mtu) 1298 { 1299 return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU; 1300 } 1301 1302 static int veth_alloc_queues(struct net_device *dev) 1303 { 1304 struct veth_priv *priv = netdev_priv(dev); 1305 int i; 1306 1307 priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL); 1308 if (!priv->rq) 1309 return -ENOMEM; 1310 1311 for (i = 0; i < dev->num_rx_queues; i++) { 1312 priv->rq[i].dev = dev; 1313 u64_stats_init(&priv->rq[i].stats.syncp); 1314 } 1315 1316 return 0; 1317 } 1318 1319 static void veth_free_queues(struct net_device *dev) 1320 { 1321 struct veth_priv *priv = netdev_priv(dev); 1322 1323 kfree(priv->rq); 1324 } 1325 1326 static int veth_dev_init(struct net_device *dev) 1327 { 1328 int err; 1329 1330 dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 1331 if (!dev->lstats) 1332 return -ENOMEM; 1333 1334 err = veth_alloc_queues(dev); 1335 if (err) { 1336 free_percpu(dev->lstats); 1337 return err; 1338 } 1339 1340 return 0; 1341 } 1342 1343 static void veth_dev_free(struct net_device *dev) 1344 { 1345 veth_free_queues(dev); 1346 free_percpu(dev->lstats); 1347 } 1348 1349 #ifdef CONFIG_NET_POLL_CONTROLLER 1350 static void veth_poll_controller(struct net_device *dev) 1351 { 1352 /* veth only receives frames when its peer sends one 1353 * Since it has nothing to do with disabling irqs, we are guaranteed 1354 * never to have pending data when we poll for it so 1355 * there is nothing to do here. 1356 * 1357 * We need this though so netpoll recognizes us as an interface that 1358 * supports polling, which enables bridge devices in virt setups to 1359 * still use netconsole 1360 */ 1361 } 1362 #endif /* CONFIG_NET_POLL_CONTROLLER */ 1363 1364 static int veth_get_iflink(const struct net_device *dev) 1365 { 1366 struct veth_priv *priv = netdev_priv(dev); 1367 struct net_device *peer; 1368 int iflink; 1369 1370 rcu_read_lock(); 1371 peer = rcu_dereference(priv->peer); 1372 iflink = peer ? peer->ifindex : 0; 1373 rcu_read_unlock(); 1374 1375 return iflink; 1376 } 1377 1378 static netdev_features_t veth_fix_features(struct net_device *dev, 1379 netdev_features_t features) 1380 { 1381 struct veth_priv *priv = netdev_priv(dev); 1382 struct net_device *peer; 1383 1384 peer = rtnl_dereference(priv->peer); 1385 if (peer) { 1386 struct veth_priv *peer_priv = netdev_priv(peer); 1387 1388 if (peer_priv->_xdp_prog) 1389 features &= ~NETIF_F_GSO_SOFTWARE; 1390 } 1391 if (priv->_xdp_prog) 1392 features |= NETIF_F_GRO; 1393 1394 return features; 1395 } 1396 1397 static int veth_set_features(struct net_device *dev, 1398 netdev_features_t features) 1399 { 1400 netdev_features_t changed = features ^ dev->features; 1401 struct veth_priv *priv = netdev_priv(dev); 1402 int err; 1403 1404 if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog) 1405 return 0; 1406 1407 if (features & NETIF_F_GRO) { 1408 err = veth_napi_enable(dev); 1409 if (err) 1410 return err; 1411 } else { 1412 veth_napi_del(dev); 1413 } 1414 return 0; 1415 } 1416 1417 static void veth_set_rx_headroom(struct net_device *dev, int new_hr) 1418 { 1419 struct veth_priv *peer_priv, *priv = netdev_priv(dev); 1420 struct net_device *peer; 1421 1422 if (new_hr < 0) 1423 new_hr = 0; 1424 1425 rcu_read_lock(); 1426 peer = rcu_dereference(priv->peer); 1427 if (unlikely(!peer)) 1428 goto out; 1429 1430 peer_priv = netdev_priv(peer); 1431 priv->requested_headroom = new_hr; 1432 new_hr = max(priv->requested_headroom, peer_priv->requested_headroom); 1433 dev->needed_headroom = new_hr; 1434 peer->needed_headroom = new_hr; 1435 1436 out: 1437 rcu_read_unlock(); 1438 } 1439 1440 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog, 1441 struct netlink_ext_ack *extack) 1442 { 1443 struct veth_priv *priv = netdev_priv(dev); 1444 struct bpf_prog *old_prog; 1445 struct net_device *peer; 1446 unsigned int max_mtu; 1447 int err; 1448 1449 old_prog = priv->_xdp_prog; 1450 priv->_xdp_prog = prog; 1451 peer = rtnl_dereference(priv->peer); 1452 1453 if (prog) { 1454 if (!peer) { 1455 NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached"); 1456 err = -ENOTCONN; 1457 goto err; 1458 } 1459 1460 max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM - 1461 peer->hard_header_len - 1462 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1463 if (peer->mtu > max_mtu) { 1464 NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP"); 1465 err = -ERANGE; 1466 goto err; 1467 } 1468 1469 if (dev->real_num_rx_queues < peer->real_num_tx_queues) { 1470 NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues"); 1471 err = -ENOSPC; 1472 goto err; 1473 } 1474 1475 if (dev->flags & IFF_UP) { 1476 err = veth_enable_xdp(dev); 1477 if (err) { 1478 NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed"); 1479 goto err; 1480 } 1481 } 1482 1483 if (!old_prog) { 1484 peer->hw_features &= ~NETIF_F_GSO_SOFTWARE; 1485 peer->max_mtu = max_mtu; 1486 } 1487 } 1488 1489 if (old_prog) { 1490 if (!prog) { 1491 if (dev->flags & IFF_UP) 1492 veth_disable_xdp(dev); 1493 1494 if (peer) { 1495 peer->hw_features |= NETIF_F_GSO_SOFTWARE; 1496 peer->max_mtu = ETH_MAX_MTU; 1497 } 1498 } 1499 bpf_prog_put(old_prog); 1500 } 1501 1502 if ((!!old_prog ^ !!prog) && peer) 1503 netdev_update_features(peer); 1504 1505 return 0; 1506 err: 1507 priv->_xdp_prog = old_prog; 1508 1509 return err; 1510 } 1511 1512 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1513 { 1514 switch (xdp->command) { 1515 case XDP_SETUP_PROG: 1516 return veth_xdp_set(dev, xdp->prog, xdp->extack); 1517 default: 1518 return -EINVAL; 1519 } 1520 } 1521 1522 static const struct net_device_ops veth_netdev_ops = { 1523 .ndo_init = veth_dev_init, 1524 .ndo_open = veth_open, 1525 .ndo_stop = veth_close, 1526 .ndo_start_xmit = veth_xmit, 1527 .ndo_get_stats64 = veth_get_stats64, 1528 .ndo_set_rx_mode = veth_set_multicast_list, 1529 .ndo_set_mac_address = eth_mac_addr, 1530 #ifdef CONFIG_NET_POLL_CONTROLLER 1531 .ndo_poll_controller = veth_poll_controller, 1532 #endif 1533 .ndo_get_iflink = veth_get_iflink, 1534 .ndo_fix_features = veth_fix_features, 1535 .ndo_set_features = veth_set_features, 1536 .ndo_features_check = passthru_features_check, 1537 .ndo_set_rx_headroom = veth_set_rx_headroom, 1538 .ndo_bpf = veth_xdp, 1539 .ndo_xdp_xmit = veth_ndo_xdp_xmit, 1540 .ndo_get_peer_dev = veth_peer_dev, 1541 }; 1542 1543 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \ 1544 NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \ 1545 NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \ 1546 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \ 1547 NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX ) 1548 1549 static void veth_setup(struct net_device *dev) 1550 { 1551 ether_setup(dev); 1552 1553 dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1554 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1555 dev->priv_flags |= IFF_NO_QUEUE; 1556 dev->priv_flags |= IFF_PHONY_HEADROOM; 1557 1558 dev->netdev_ops = &veth_netdev_ops; 1559 dev->ethtool_ops = &veth_ethtool_ops; 1560 dev->features |= NETIF_F_LLTX; 1561 dev->features |= VETH_FEATURES; 1562 dev->vlan_features = dev->features & 1563 ~(NETIF_F_HW_VLAN_CTAG_TX | 1564 NETIF_F_HW_VLAN_STAG_TX | 1565 NETIF_F_HW_VLAN_CTAG_RX | 1566 NETIF_F_HW_VLAN_STAG_RX); 1567 dev->needs_free_netdev = true; 1568 dev->priv_destructor = veth_dev_free; 1569 dev->max_mtu = ETH_MAX_MTU; 1570 1571 dev->hw_features = VETH_FEATURES; 1572 dev->hw_enc_features = VETH_FEATURES; 1573 dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE; 1574 } 1575 1576 /* 1577 * netlink interface 1578 */ 1579 1580 static int veth_validate(struct nlattr *tb[], struct nlattr *data[], 1581 struct netlink_ext_ack *extack) 1582 { 1583 if (tb[IFLA_ADDRESS]) { 1584 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 1585 return -EINVAL; 1586 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 1587 return -EADDRNOTAVAIL; 1588 } 1589 if (tb[IFLA_MTU]) { 1590 if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU]))) 1591 return -EINVAL; 1592 } 1593 return 0; 1594 } 1595 1596 static struct rtnl_link_ops veth_link_ops; 1597 1598 static void veth_disable_gro(struct net_device *dev) 1599 { 1600 dev->features &= ~NETIF_F_GRO; 1601 dev->wanted_features &= ~NETIF_F_GRO; 1602 netdev_update_features(dev); 1603 } 1604 1605 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[]) 1606 { 1607 int err; 1608 1609 if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) { 1610 err = netif_set_real_num_tx_queues(dev, 1); 1611 if (err) 1612 return err; 1613 } 1614 if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) { 1615 err = netif_set_real_num_rx_queues(dev, 1); 1616 if (err) 1617 return err; 1618 } 1619 return 0; 1620 } 1621 1622 static int veth_newlink(struct net *src_net, struct net_device *dev, 1623 struct nlattr *tb[], struct nlattr *data[], 1624 struct netlink_ext_ack *extack) 1625 { 1626 int err; 1627 struct net_device *peer; 1628 struct veth_priv *priv; 1629 char ifname[IFNAMSIZ]; 1630 struct nlattr *peer_tb[IFLA_MAX + 1], **tbp; 1631 unsigned char name_assign_type; 1632 struct ifinfomsg *ifmp; 1633 struct net *net; 1634 1635 /* 1636 * create and register peer first 1637 */ 1638 if (data != NULL && data[VETH_INFO_PEER] != NULL) { 1639 struct nlattr *nla_peer; 1640 1641 nla_peer = data[VETH_INFO_PEER]; 1642 ifmp = nla_data(nla_peer); 1643 err = rtnl_nla_parse_ifla(peer_tb, 1644 nla_data(nla_peer) + sizeof(struct ifinfomsg), 1645 nla_len(nla_peer) - sizeof(struct ifinfomsg), 1646 NULL); 1647 if (err < 0) 1648 return err; 1649 1650 err = veth_validate(peer_tb, NULL, extack); 1651 if (err < 0) 1652 return err; 1653 1654 tbp = peer_tb; 1655 } else { 1656 ifmp = NULL; 1657 tbp = tb; 1658 } 1659 1660 if (ifmp && tbp[IFLA_IFNAME]) { 1661 nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ); 1662 name_assign_type = NET_NAME_USER; 1663 } else { 1664 snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d"); 1665 name_assign_type = NET_NAME_ENUM; 1666 } 1667 1668 net = rtnl_link_get_net(src_net, tbp); 1669 if (IS_ERR(net)) 1670 return PTR_ERR(net); 1671 1672 peer = rtnl_create_link(net, ifname, name_assign_type, 1673 &veth_link_ops, tbp, extack); 1674 if (IS_ERR(peer)) { 1675 put_net(net); 1676 return PTR_ERR(peer); 1677 } 1678 1679 if (!ifmp || !tbp[IFLA_ADDRESS]) 1680 eth_hw_addr_random(peer); 1681 1682 if (ifmp && (dev->ifindex != 0)) 1683 peer->ifindex = ifmp->ifi_index; 1684 1685 netif_set_gso_max_size(peer, dev->gso_max_size); 1686 netif_set_gso_max_segs(peer, dev->gso_max_segs); 1687 1688 err = register_netdevice(peer); 1689 put_net(net); 1690 net = NULL; 1691 if (err < 0) 1692 goto err_register_peer; 1693 1694 /* keep GRO disabled by default to be consistent with the established 1695 * veth behavior 1696 */ 1697 veth_disable_gro(peer); 1698 netif_carrier_off(peer); 1699 1700 err = rtnl_configure_link(peer, ifmp); 1701 if (err < 0) 1702 goto err_configure_peer; 1703 1704 /* 1705 * register dev last 1706 * 1707 * note, that since we've registered new device the dev's name 1708 * should be re-allocated 1709 */ 1710 1711 if (tb[IFLA_ADDRESS] == NULL) 1712 eth_hw_addr_random(dev); 1713 1714 if (tb[IFLA_IFNAME]) 1715 nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ); 1716 else 1717 snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d"); 1718 1719 err = register_netdevice(dev); 1720 if (err < 0) 1721 goto err_register_dev; 1722 1723 netif_carrier_off(dev); 1724 1725 /* 1726 * tie the deviced together 1727 */ 1728 1729 priv = netdev_priv(dev); 1730 rcu_assign_pointer(priv->peer, peer); 1731 err = veth_init_queues(dev, tb); 1732 if (err) 1733 goto err_queues; 1734 1735 priv = netdev_priv(peer); 1736 rcu_assign_pointer(priv->peer, dev); 1737 err = veth_init_queues(peer, tb); 1738 if (err) 1739 goto err_queues; 1740 1741 veth_disable_gro(dev); 1742 return 0; 1743 1744 err_queues: 1745 unregister_netdevice(dev); 1746 err_register_dev: 1747 /* nothing to do */ 1748 err_configure_peer: 1749 unregister_netdevice(peer); 1750 return err; 1751 1752 err_register_peer: 1753 free_netdev(peer); 1754 return err; 1755 } 1756 1757 static void veth_dellink(struct net_device *dev, struct list_head *head) 1758 { 1759 struct veth_priv *priv; 1760 struct net_device *peer; 1761 1762 priv = netdev_priv(dev); 1763 peer = rtnl_dereference(priv->peer); 1764 1765 /* Note : dellink() is called from default_device_exit_batch(), 1766 * before a rcu_synchronize() point. The devices are guaranteed 1767 * not being freed before one RCU grace period. 1768 */ 1769 RCU_INIT_POINTER(priv->peer, NULL); 1770 unregister_netdevice_queue(dev, head); 1771 1772 if (peer) { 1773 priv = netdev_priv(peer); 1774 RCU_INIT_POINTER(priv->peer, NULL); 1775 unregister_netdevice_queue(peer, head); 1776 } 1777 } 1778 1779 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = { 1780 [VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) }, 1781 }; 1782 1783 static struct net *veth_get_link_net(const struct net_device *dev) 1784 { 1785 struct veth_priv *priv = netdev_priv(dev); 1786 struct net_device *peer = rtnl_dereference(priv->peer); 1787 1788 return peer ? dev_net(peer) : dev_net(dev); 1789 } 1790 1791 static unsigned int veth_get_num_queues(void) 1792 { 1793 /* enforce the same queue limit as rtnl_create_link */ 1794 int queues = num_possible_cpus(); 1795 1796 if (queues > 4096) 1797 queues = 4096; 1798 return queues; 1799 } 1800 1801 static struct rtnl_link_ops veth_link_ops = { 1802 .kind = DRV_NAME, 1803 .priv_size = sizeof(struct veth_priv), 1804 .setup = veth_setup, 1805 .validate = veth_validate, 1806 .newlink = veth_newlink, 1807 .dellink = veth_dellink, 1808 .policy = veth_policy, 1809 .maxtype = VETH_INFO_MAX, 1810 .get_link_net = veth_get_link_net, 1811 .get_num_tx_queues = veth_get_num_queues, 1812 .get_num_rx_queues = veth_get_num_queues, 1813 }; 1814 1815 /* 1816 * init/fini 1817 */ 1818 1819 static __init int veth_init(void) 1820 { 1821 return rtnl_link_register(&veth_link_ops); 1822 } 1823 1824 static __exit void veth_exit(void) 1825 { 1826 rtnl_link_unregister(&veth_link_ops); 1827 } 1828 1829 module_init(veth_init); 1830 module_exit(veth_exit); 1831 1832 MODULE_DESCRIPTION("Virtual Ethernet Tunnel"); 1833 MODULE_LICENSE("GPL v2"); 1834 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1835