xref: /openbmc/linux/drivers/net/veth.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 #define VETH_XDP_TX_BULK_SIZE	16
38 #define VETH_XDP_BATCH		16
39 
40 struct veth_stats {
41 	u64	rx_drops;
42 	/* xdp */
43 	u64	xdp_packets;
44 	u64	xdp_bytes;
45 	u64	xdp_redirect;
46 	u64	xdp_drops;
47 	u64	xdp_tx;
48 	u64	xdp_tx_err;
49 	u64	peer_tq_xdp_xmit;
50 	u64	peer_tq_xdp_xmit_err;
51 };
52 
53 struct veth_rq_stats {
54 	struct veth_stats	vs;
55 	struct u64_stats_sync	syncp;
56 };
57 
58 struct veth_rq {
59 	struct napi_struct	xdp_napi;
60 	struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
61 	struct net_device	*dev;
62 	struct bpf_prog __rcu	*xdp_prog;
63 	struct xdp_mem_info	xdp_mem;
64 	struct veth_rq_stats	stats;
65 	bool			rx_notify_masked;
66 	struct ptr_ring		xdp_ring;
67 	struct xdp_rxq_info	xdp_rxq;
68 };
69 
70 struct veth_priv {
71 	struct net_device __rcu	*peer;
72 	atomic64_t		dropped;
73 	struct bpf_prog		*_xdp_prog;
74 	struct veth_rq		*rq;
75 	unsigned int		requested_headroom;
76 };
77 
78 struct veth_xdp_tx_bq {
79 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
80 	unsigned int count;
81 };
82 
83 /*
84  * ethtool interface
85  */
86 
87 struct veth_q_stat_desc {
88 	char	desc[ETH_GSTRING_LEN];
89 	size_t	offset;
90 };
91 
92 #define VETH_RQ_STAT(m)	offsetof(struct veth_stats, m)
93 
94 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
95 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
96 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
97 	{ "drops",		VETH_RQ_STAT(rx_drops) },
98 	{ "xdp_redirect",	VETH_RQ_STAT(xdp_redirect) },
99 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
100 	{ "xdp_tx",		VETH_RQ_STAT(xdp_tx) },
101 	{ "xdp_tx_errors",	VETH_RQ_STAT(xdp_tx_err) },
102 };
103 
104 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
105 
106 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
107 	{ "xdp_xmit",		VETH_RQ_STAT(peer_tq_xdp_xmit) },
108 	{ "xdp_xmit_errors",	VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
109 };
110 
111 #define VETH_TQ_STATS_LEN	ARRAY_SIZE(veth_tq_stats_desc)
112 
113 static struct {
114 	const char string[ETH_GSTRING_LEN];
115 } ethtool_stats_keys[] = {
116 	{ "peer_ifindex" },
117 };
118 
119 static int veth_get_link_ksettings(struct net_device *dev,
120 				   struct ethtool_link_ksettings *cmd)
121 {
122 	cmd->base.speed		= SPEED_10000;
123 	cmd->base.duplex	= DUPLEX_FULL;
124 	cmd->base.port		= PORT_TP;
125 	cmd->base.autoneg	= AUTONEG_DISABLE;
126 	return 0;
127 }
128 
129 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
130 {
131 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
132 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
133 }
134 
135 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
136 {
137 	u8 *p = buf;
138 	int i, j;
139 
140 	switch(stringset) {
141 	case ETH_SS_STATS:
142 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
143 		p += sizeof(ethtool_stats_keys);
144 		for (i = 0; i < dev->real_num_rx_queues; i++)
145 			for (j = 0; j < VETH_RQ_STATS_LEN; j++)
146 				ethtool_sprintf(&p, "rx_queue_%u_%.18s",
147 						i, veth_rq_stats_desc[j].desc);
148 
149 		for (i = 0; i < dev->real_num_tx_queues; i++)
150 			for (j = 0; j < VETH_TQ_STATS_LEN; j++)
151 				ethtool_sprintf(&p, "tx_queue_%u_%.18s",
152 						i, veth_tq_stats_desc[j].desc);
153 		break;
154 	}
155 }
156 
157 static int veth_get_sset_count(struct net_device *dev, int sset)
158 {
159 	switch (sset) {
160 	case ETH_SS_STATS:
161 		return ARRAY_SIZE(ethtool_stats_keys) +
162 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
163 		       VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
164 	default:
165 		return -EOPNOTSUPP;
166 	}
167 }
168 
169 static void veth_get_ethtool_stats(struct net_device *dev,
170 		struct ethtool_stats *stats, u64 *data)
171 {
172 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
173 	struct net_device *peer = rtnl_dereference(priv->peer);
174 	int i, j, idx;
175 
176 	data[0] = peer ? peer->ifindex : 0;
177 	idx = 1;
178 	for (i = 0; i < dev->real_num_rx_queues; i++) {
179 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
180 		const void *stats_base = (void *)&rq_stats->vs;
181 		unsigned int start;
182 		size_t offset;
183 
184 		do {
185 			start = u64_stats_fetch_begin(&rq_stats->syncp);
186 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
187 				offset = veth_rq_stats_desc[j].offset;
188 				data[idx + j] = *(u64 *)(stats_base + offset);
189 			}
190 		} while (u64_stats_fetch_retry(&rq_stats->syncp, start));
191 		idx += VETH_RQ_STATS_LEN;
192 	}
193 
194 	if (!peer)
195 		return;
196 
197 	rcv_priv = netdev_priv(peer);
198 	for (i = 0; i < peer->real_num_rx_queues; i++) {
199 		const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
200 		const void *base = (void *)&rq_stats->vs;
201 		unsigned int start, tx_idx = idx;
202 		size_t offset;
203 
204 		tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
205 		do {
206 			start = u64_stats_fetch_begin(&rq_stats->syncp);
207 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
208 				offset = veth_tq_stats_desc[j].offset;
209 				data[tx_idx + j] += *(u64 *)(base + offset);
210 			}
211 		} while (u64_stats_fetch_retry(&rq_stats->syncp, start));
212 	}
213 }
214 
215 static void veth_get_channels(struct net_device *dev,
216 			      struct ethtool_channels *channels)
217 {
218 	channels->tx_count = dev->real_num_tx_queues;
219 	channels->rx_count = dev->real_num_rx_queues;
220 	channels->max_tx = dev->num_tx_queues;
221 	channels->max_rx = dev->num_rx_queues;
222 }
223 
224 static int veth_set_channels(struct net_device *dev,
225 			     struct ethtool_channels *ch);
226 
227 static const struct ethtool_ops veth_ethtool_ops = {
228 	.get_drvinfo		= veth_get_drvinfo,
229 	.get_link		= ethtool_op_get_link,
230 	.get_strings		= veth_get_strings,
231 	.get_sset_count		= veth_get_sset_count,
232 	.get_ethtool_stats	= veth_get_ethtool_stats,
233 	.get_link_ksettings	= veth_get_link_ksettings,
234 	.get_ts_info		= ethtool_op_get_ts_info,
235 	.get_channels		= veth_get_channels,
236 	.set_channels		= veth_set_channels,
237 };
238 
239 /* general routines */
240 
241 static bool veth_is_xdp_frame(void *ptr)
242 {
243 	return (unsigned long)ptr & VETH_XDP_FLAG;
244 }
245 
246 static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
247 {
248 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
249 }
250 
251 static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
252 {
253 	return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
254 }
255 
256 static void veth_ptr_free(void *ptr)
257 {
258 	if (veth_is_xdp_frame(ptr))
259 		xdp_return_frame(veth_ptr_to_xdp(ptr));
260 	else
261 		kfree_skb(ptr);
262 }
263 
264 static void __veth_xdp_flush(struct veth_rq *rq)
265 {
266 	/* Write ptr_ring before reading rx_notify_masked */
267 	smp_mb();
268 	if (!READ_ONCE(rq->rx_notify_masked) &&
269 	    napi_schedule_prep(&rq->xdp_napi)) {
270 		WRITE_ONCE(rq->rx_notify_masked, true);
271 		__napi_schedule(&rq->xdp_napi);
272 	}
273 }
274 
275 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
276 {
277 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
278 		dev_kfree_skb_any(skb);
279 		return NET_RX_DROP;
280 	}
281 
282 	return NET_RX_SUCCESS;
283 }
284 
285 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
286 			    struct veth_rq *rq, bool xdp)
287 {
288 	return __dev_forward_skb(dev, skb) ?: xdp ?
289 		veth_xdp_rx(rq, skb) :
290 		__netif_rx(skb);
291 }
292 
293 /* return true if the specified skb has chances of GRO aggregation
294  * Don't strive for accuracy, but try to avoid GRO overhead in the most
295  * common scenarios.
296  * When XDP is enabled, all traffic is considered eligible, as the xmit
297  * device has TSO off.
298  * When TSO is enabled on the xmit device, we are likely interested only
299  * in UDP aggregation, explicitly check for that if the skb is suspected
300  * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
301  * to belong to locally generated UDP traffic.
302  */
303 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
304 					 const struct net_device *rcv,
305 					 const struct sk_buff *skb)
306 {
307 	return !(dev->features & NETIF_F_ALL_TSO) ||
308 		(skb->destructor == sock_wfree &&
309 		 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
310 }
311 
312 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
313 {
314 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
315 	struct veth_rq *rq = NULL;
316 	struct net_device *rcv;
317 	int length = skb->len;
318 	bool use_napi = false;
319 	int rxq;
320 
321 	rcu_read_lock();
322 	rcv = rcu_dereference(priv->peer);
323 	if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
324 		kfree_skb(skb);
325 		goto drop;
326 	}
327 
328 	rcv_priv = netdev_priv(rcv);
329 	rxq = skb_get_queue_mapping(skb);
330 	if (rxq < rcv->real_num_rx_queues) {
331 		rq = &rcv_priv->rq[rxq];
332 
333 		/* The napi pointer is available when an XDP program is
334 		 * attached or when GRO is enabled
335 		 * Don't bother with napi/GRO if the skb can't be aggregated
336 		 */
337 		use_napi = rcu_access_pointer(rq->napi) &&
338 			   veth_skb_is_eligible_for_gro(dev, rcv, skb);
339 	}
340 
341 	skb_tx_timestamp(skb);
342 	if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
343 		if (!use_napi)
344 			dev_lstats_add(dev, length);
345 	} else {
346 drop:
347 		atomic64_inc(&priv->dropped);
348 	}
349 
350 	if (use_napi)
351 		__veth_xdp_flush(rq);
352 
353 	rcu_read_unlock();
354 
355 	return NETDEV_TX_OK;
356 }
357 
358 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
359 {
360 	struct veth_priv *priv = netdev_priv(dev);
361 
362 	dev_lstats_read(dev, packets, bytes);
363 	return atomic64_read(&priv->dropped);
364 }
365 
366 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
367 {
368 	struct veth_priv *priv = netdev_priv(dev);
369 	int i;
370 
371 	result->peer_tq_xdp_xmit_err = 0;
372 	result->xdp_packets = 0;
373 	result->xdp_tx_err = 0;
374 	result->xdp_bytes = 0;
375 	result->rx_drops = 0;
376 	for (i = 0; i < dev->num_rx_queues; i++) {
377 		u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
378 		struct veth_rq_stats *stats = &priv->rq[i].stats;
379 		unsigned int start;
380 
381 		do {
382 			start = u64_stats_fetch_begin(&stats->syncp);
383 			peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
384 			xdp_tx_err = stats->vs.xdp_tx_err;
385 			packets = stats->vs.xdp_packets;
386 			bytes = stats->vs.xdp_bytes;
387 			drops = stats->vs.rx_drops;
388 		} while (u64_stats_fetch_retry(&stats->syncp, start));
389 		result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
390 		result->xdp_tx_err += xdp_tx_err;
391 		result->xdp_packets += packets;
392 		result->xdp_bytes += bytes;
393 		result->rx_drops += drops;
394 	}
395 }
396 
397 static void veth_get_stats64(struct net_device *dev,
398 			     struct rtnl_link_stats64 *tot)
399 {
400 	struct veth_priv *priv = netdev_priv(dev);
401 	struct net_device *peer;
402 	struct veth_stats rx;
403 	u64 packets, bytes;
404 
405 	tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
406 	tot->tx_bytes = bytes;
407 	tot->tx_packets = packets;
408 
409 	veth_stats_rx(&rx, dev);
410 	tot->tx_dropped += rx.xdp_tx_err;
411 	tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
412 	tot->rx_bytes = rx.xdp_bytes;
413 	tot->rx_packets = rx.xdp_packets;
414 
415 	rcu_read_lock();
416 	peer = rcu_dereference(priv->peer);
417 	if (peer) {
418 		veth_stats_tx(peer, &packets, &bytes);
419 		tot->rx_bytes += bytes;
420 		tot->rx_packets += packets;
421 
422 		veth_stats_rx(&rx, peer);
423 		tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
424 		tot->rx_dropped += rx.xdp_tx_err;
425 		tot->tx_bytes += rx.xdp_bytes;
426 		tot->tx_packets += rx.xdp_packets;
427 	}
428 	rcu_read_unlock();
429 }
430 
431 /* fake multicast ability */
432 static void veth_set_multicast_list(struct net_device *dev)
433 {
434 }
435 
436 static int veth_select_rxq(struct net_device *dev)
437 {
438 	return smp_processor_id() % dev->real_num_rx_queues;
439 }
440 
441 static struct net_device *veth_peer_dev(struct net_device *dev)
442 {
443 	struct veth_priv *priv = netdev_priv(dev);
444 
445 	/* Callers must be under RCU read side. */
446 	return rcu_dereference(priv->peer);
447 }
448 
449 static int veth_xdp_xmit(struct net_device *dev, int n,
450 			 struct xdp_frame **frames,
451 			 u32 flags, bool ndo_xmit)
452 {
453 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
454 	int i, ret = -ENXIO, nxmit = 0;
455 	struct net_device *rcv;
456 	unsigned int max_len;
457 	struct veth_rq *rq;
458 
459 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
460 		return -EINVAL;
461 
462 	rcu_read_lock();
463 	rcv = rcu_dereference(priv->peer);
464 	if (unlikely(!rcv))
465 		goto out;
466 
467 	rcv_priv = netdev_priv(rcv);
468 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
469 	/* The napi pointer is set if NAPI is enabled, which ensures that
470 	 * xdp_ring is initialized on receive side and the peer device is up.
471 	 */
472 	if (!rcu_access_pointer(rq->napi))
473 		goto out;
474 
475 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
476 
477 	spin_lock(&rq->xdp_ring.producer_lock);
478 	for (i = 0; i < n; i++) {
479 		struct xdp_frame *frame = frames[i];
480 		void *ptr = veth_xdp_to_ptr(frame);
481 
482 		if (unlikely(xdp_get_frame_len(frame) > max_len ||
483 			     __ptr_ring_produce(&rq->xdp_ring, ptr)))
484 			break;
485 		nxmit++;
486 	}
487 	spin_unlock(&rq->xdp_ring.producer_lock);
488 
489 	if (flags & XDP_XMIT_FLUSH)
490 		__veth_xdp_flush(rq);
491 
492 	ret = nxmit;
493 	if (ndo_xmit) {
494 		u64_stats_update_begin(&rq->stats.syncp);
495 		rq->stats.vs.peer_tq_xdp_xmit += nxmit;
496 		rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
497 		u64_stats_update_end(&rq->stats.syncp);
498 	}
499 
500 out:
501 	rcu_read_unlock();
502 
503 	return ret;
504 }
505 
506 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
507 			     struct xdp_frame **frames, u32 flags)
508 {
509 	int err;
510 
511 	err = veth_xdp_xmit(dev, n, frames, flags, true);
512 	if (err < 0) {
513 		struct veth_priv *priv = netdev_priv(dev);
514 
515 		atomic64_add(n, &priv->dropped);
516 	}
517 
518 	return err;
519 }
520 
521 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
522 {
523 	int sent, i, err = 0, drops;
524 
525 	sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
526 	if (sent < 0) {
527 		err = sent;
528 		sent = 0;
529 	}
530 
531 	for (i = sent; unlikely(i < bq->count); i++)
532 		xdp_return_frame(bq->q[i]);
533 
534 	drops = bq->count - sent;
535 	trace_xdp_bulk_tx(rq->dev, sent, drops, err);
536 
537 	u64_stats_update_begin(&rq->stats.syncp);
538 	rq->stats.vs.xdp_tx += sent;
539 	rq->stats.vs.xdp_tx_err += drops;
540 	u64_stats_update_end(&rq->stats.syncp);
541 
542 	bq->count = 0;
543 }
544 
545 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
546 {
547 	struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
548 	struct net_device *rcv;
549 	struct veth_rq *rcv_rq;
550 
551 	rcu_read_lock();
552 	veth_xdp_flush_bq(rq, bq);
553 	rcv = rcu_dereference(priv->peer);
554 	if (unlikely(!rcv))
555 		goto out;
556 
557 	rcv_priv = netdev_priv(rcv);
558 	rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
559 	/* xdp_ring is initialized on receive side? */
560 	if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
561 		goto out;
562 
563 	__veth_xdp_flush(rcv_rq);
564 out:
565 	rcu_read_unlock();
566 }
567 
568 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
569 		       struct veth_xdp_tx_bq *bq)
570 {
571 	struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
572 
573 	if (unlikely(!frame))
574 		return -EOVERFLOW;
575 
576 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
577 		veth_xdp_flush_bq(rq, bq);
578 
579 	bq->q[bq->count++] = frame;
580 
581 	return 0;
582 }
583 
584 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
585 					  struct xdp_frame *frame,
586 					  struct veth_xdp_tx_bq *bq,
587 					  struct veth_stats *stats)
588 {
589 	struct xdp_frame orig_frame;
590 	struct bpf_prog *xdp_prog;
591 
592 	rcu_read_lock();
593 	xdp_prog = rcu_dereference(rq->xdp_prog);
594 	if (likely(xdp_prog)) {
595 		struct xdp_buff xdp;
596 		u32 act;
597 
598 		xdp_convert_frame_to_buff(frame, &xdp);
599 		xdp.rxq = &rq->xdp_rxq;
600 
601 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
602 
603 		switch (act) {
604 		case XDP_PASS:
605 			if (xdp_update_frame_from_buff(&xdp, frame))
606 				goto err_xdp;
607 			break;
608 		case XDP_TX:
609 			orig_frame = *frame;
610 			xdp.rxq->mem = frame->mem;
611 			if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
612 				trace_xdp_exception(rq->dev, xdp_prog, act);
613 				frame = &orig_frame;
614 				stats->rx_drops++;
615 				goto err_xdp;
616 			}
617 			stats->xdp_tx++;
618 			rcu_read_unlock();
619 			goto xdp_xmit;
620 		case XDP_REDIRECT:
621 			orig_frame = *frame;
622 			xdp.rxq->mem = frame->mem;
623 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
624 				frame = &orig_frame;
625 				stats->rx_drops++;
626 				goto err_xdp;
627 			}
628 			stats->xdp_redirect++;
629 			rcu_read_unlock();
630 			goto xdp_xmit;
631 		default:
632 			bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
633 			fallthrough;
634 		case XDP_ABORTED:
635 			trace_xdp_exception(rq->dev, xdp_prog, act);
636 			fallthrough;
637 		case XDP_DROP:
638 			stats->xdp_drops++;
639 			goto err_xdp;
640 		}
641 	}
642 	rcu_read_unlock();
643 
644 	return frame;
645 err_xdp:
646 	rcu_read_unlock();
647 	xdp_return_frame(frame);
648 xdp_xmit:
649 	return NULL;
650 }
651 
652 /* frames array contains VETH_XDP_BATCH at most */
653 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
654 				  int n_xdpf, struct veth_xdp_tx_bq *bq,
655 				  struct veth_stats *stats)
656 {
657 	void *skbs[VETH_XDP_BATCH];
658 	int i;
659 
660 	if (xdp_alloc_skb_bulk(skbs, n_xdpf,
661 			       GFP_ATOMIC | __GFP_ZERO) < 0) {
662 		for (i = 0; i < n_xdpf; i++)
663 			xdp_return_frame(frames[i]);
664 		stats->rx_drops += n_xdpf;
665 
666 		return;
667 	}
668 
669 	for (i = 0; i < n_xdpf; i++) {
670 		struct sk_buff *skb = skbs[i];
671 
672 		skb = __xdp_build_skb_from_frame(frames[i], skb,
673 						 rq->dev);
674 		if (!skb) {
675 			xdp_return_frame(frames[i]);
676 			stats->rx_drops++;
677 			continue;
678 		}
679 		napi_gro_receive(&rq->xdp_napi, skb);
680 	}
681 }
682 
683 static void veth_xdp_get(struct xdp_buff *xdp)
684 {
685 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
686 	int i;
687 
688 	get_page(virt_to_page(xdp->data));
689 	if (likely(!xdp_buff_has_frags(xdp)))
690 		return;
691 
692 	for (i = 0; i < sinfo->nr_frags; i++)
693 		__skb_frag_ref(&sinfo->frags[i]);
694 }
695 
696 static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq,
697 					struct xdp_buff *xdp,
698 					struct sk_buff **pskb)
699 {
700 	struct sk_buff *skb = *pskb;
701 	u32 frame_sz;
702 
703 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
704 	    skb_shinfo(skb)->nr_frags) {
705 		u32 size, len, max_head_size, off;
706 		struct sk_buff *nskb;
707 		struct page *page;
708 		int i, head_off;
709 
710 		/* We need a private copy of the skb and data buffers since
711 		 * the ebpf program can modify it. We segment the original skb
712 		 * into order-0 pages without linearize it.
713 		 *
714 		 * Make sure we have enough space for linear and paged area
715 		 */
716 		max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE -
717 						  VETH_XDP_HEADROOM);
718 		if (skb->len > PAGE_SIZE * MAX_SKB_FRAGS + max_head_size)
719 			goto drop;
720 
721 		/* Allocate skb head */
722 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
723 		if (!page)
724 			goto drop;
725 
726 		nskb = build_skb(page_address(page), PAGE_SIZE);
727 		if (!nskb) {
728 			put_page(page);
729 			goto drop;
730 		}
731 
732 		skb_reserve(nskb, VETH_XDP_HEADROOM);
733 		size = min_t(u32, skb->len, max_head_size);
734 		if (skb_copy_bits(skb, 0, nskb->data, size)) {
735 			consume_skb(nskb);
736 			goto drop;
737 		}
738 		skb_put(nskb, size);
739 
740 		skb_copy_header(nskb, skb);
741 		head_off = skb_headroom(nskb) - skb_headroom(skb);
742 		skb_headers_offset_update(nskb, head_off);
743 
744 		/* Allocate paged area of new skb */
745 		off = size;
746 		len = skb->len - off;
747 
748 		for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
749 			page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
750 			if (!page) {
751 				consume_skb(nskb);
752 				goto drop;
753 			}
754 
755 			size = min_t(u32, len, PAGE_SIZE);
756 			skb_add_rx_frag(nskb, i, page, 0, size, PAGE_SIZE);
757 			if (skb_copy_bits(skb, off, page_address(page),
758 					  size)) {
759 				consume_skb(nskb);
760 				goto drop;
761 			}
762 
763 			len -= size;
764 			off += size;
765 		}
766 
767 		consume_skb(skb);
768 		skb = nskb;
769 	} else if (skb_headroom(skb) < XDP_PACKET_HEADROOM &&
770 		   pskb_expand_head(skb, VETH_XDP_HEADROOM, 0, GFP_ATOMIC)) {
771 		goto drop;
772 	}
773 
774 	/* SKB "head" area always have tailroom for skb_shared_info */
775 	frame_sz = skb_end_pointer(skb) - skb->head;
776 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
777 	xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq);
778 	xdp_prepare_buff(xdp, skb->head, skb_headroom(skb),
779 			 skb_headlen(skb), true);
780 
781 	if (skb_is_nonlinear(skb)) {
782 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
783 		xdp_buff_set_frags_flag(xdp);
784 	} else {
785 		xdp_buff_clear_frags_flag(xdp);
786 	}
787 	*pskb = skb;
788 
789 	return 0;
790 drop:
791 	consume_skb(skb);
792 	*pskb = NULL;
793 
794 	return -ENOMEM;
795 }
796 
797 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
798 					struct sk_buff *skb,
799 					struct veth_xdp_tx_bq *bq,
800 					struct veth_stats *stats)
801 {
802 	void *orig_data, *orig_data_end;
803 	struct bpf_prog *xdp_prog;
804 	struct xdp_buff xdp;
805 	u32 act, metalen;
806 	int off;
807 
808 	skb_prepare_for_gro(skb);
809 
810 	rcu_read_lock();
811 	xdp_prog = rcu_dereference(rq->xdp_prog);
812 	if (unlikely(!xdp_prog)) {
813 		rcu_read_unlock();
814 		goto out;
815 	}
816 
817 	__skb_push(skb, skb->data - skb_mac_header(skb));
818 	if (veth_convert_skb_to_xdp_buff(rq, &xdp, &skb))
819 		goto drop;
820 
821 	orig_data = xdp.data;
822 	orig_data_end = xdp.data_end;
823 
824 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
825 
826 	switch (act) {
827 	case XDP_PASS:
828 		break;
829 	case XDP_TX:
830 		veth_xdp_get(&xdp);
831 		consume_skb(skb);
832 		xdp.rxq->mem = rq->xdp_mem;
833 		if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
834 			trace_xdp_exception(rq->dev, xdp_prog, act);
835 			stats->rx_drops++;
836 			goto err_xdp;
837 		}
838 		stats->xdp_tx++;
839 		rcu_read_unlock();
840 		goto xdp_xmit;
841 	case XDP_REDIRECT:
842 		veth_xdp_get(&xdp);
843 		consume_skb(skb);
844 		xdp.rxq->mem = rq->xdp_mem;
845 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
846 			stats->rx_drops++;
847 			goto err_xdp;
848 		}
849 		stats->xdp_redirect++;
850 		rcu_read_unlock();
851 		goto xdp_xmit;
852 	default:
853 		bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
854 		fallthrough;
855 	case XDP_ABORTED:
856 		trace_xdp_exception(rq->dev, xdp_prog, act);
857 		fallthrough;
858 	case XDP_DROP:
859 		stats->xdp_drops++;
860 		goto xdp_drop;
861 	}
862 	rcu_read_unlock();
863 
864 	/* check if bpf_xdp_adjust_head was used */
865 	off = orig_data - xdp.data;
866 	if (off > 0)
867 		__skb_push(skb, off);
868 	else if (off < 0)
869 		__skb_pull(skb, -off);
870 
871 	skb_reset_mac_header(skb);
872 
873 	/* check if bpf_xdp_adjust_tail was used */
874 	off = xdp.data_end - orig_data_end;
875 	if (off != 0)
876 		__skb_put(skb, off); /* positive on grow, negative on shrink */
877 
878 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
879 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
880 	 */
881 	if (xdp_buff_has_frags(&xdp))
882 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
883 	else
884 		skb->data_len = 0;
885 
886 	skb->protocol = eth_type_trans(skb, rq->dev);
887 
888 	metalen = xdp.data - xdp.data_meta;
889 	if (metalen)
890 		skb_metadata_set(skb, metalen);
891 out:
892 	return skb;
893 drop:
894 	stats->rx_drops++;
895 xdp_drop:
896 	rcu_read_unlock();
897 	kfree_skb(skb);
898 	return NULL;
899 err_xdp:
900 	rcu_read_unlock();
901 	xdp_return_buff(&xdp);
902 xdp_xmit:
903 	return NULL;
904 }
905 
906 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
907 			struct veth_xdp_tx_bq *bq,
908 			struct veth_stats *stats)
909 {
910 	int i, done = 0, n_xdpf = 0;
911 	void *xdpf[VETH_XDP_BATCH];
912 
913 	for (i = 0; i < budget; i++) {
914 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
915 
916 		if (!ptr)
917 			break;
918 
919 		if (veth_is_xdp_frame(ptr)) {
920 			/* ndo_xdp_xmit */
921 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
922 
923 			stats->xdp_bytes += xdp_get_frame_len(frame);
924 			frame = veth_xdp_rcv_one(rq, frame, bq, stats);
925 			if (frame) {
926 				/* XDP_PASS */
927 				xdpf[n_xdpf++] = frame;
928 				if (n_xdpf == VETH_XDP_BATCH) {
929 					veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
930 							      bq, stats);
931 					n_xdpf = 0;
932 				}
933 			}
934 		} else {
935 			/* ndo_start_xmit */
936 			struct sk_buff *skb = ptr;
937 
938 			stats->xdp_bytes += skb->len;
939 			skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
940 			if (skb) {
941 				if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
942 					netif_receive_skb(skb);
943 				else
944 					napi_gro_receive(&rq->xdp_napi, skb);
945 			}
946 		}
947 		done++;
948 	}
949 
950 	if (n_xdpf)
951 		veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
952 
953 	u64_stats_update_begin(&rq->stats.syncp);
954 	rq->stats.vs.xdp_redirect += stats->xdp_redirect;
955 	rq->stats.vs.xdp_bytes += stats->xdp_bytes;
956 	rq->stats.vs.xdp_drops += stats->xdp_drops;
957 	rq->stats.vs.rx_drops += stats->rx_drops;
958 	rq->stats.vs.xdp_packets += done;
959 	u64_stats_update_end(&rq->stats.syncp);
960 
961 	return done;
962 }
963 
964 static int veth_poll(struct napi_struct *napi, int budget)
965 {
966 	struct veth_rq *rq =
967 		container_of(napi, struct veth_rq, xdp_napi);
968 	struct veth_stats stats = {};
969 	struct veth_xdp_tx_bq bq;
970 	int done;
971 
972 	bq.count = 0;
973 
974 	xdp_set_return_frame_no_direct();
975 	done = veth_xdp_rcv(rq, budget, &bq, &stats);
976 
977 	if (done < budget && napi_complete_done(napi, done)) {
978 		/* Write rx_notify_masked before reading ptr_ring */
979 		smp_store_mb(rq->rx_notify_masked, false);
980 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
981 			if (napi_schedule_prep(&rq->xdp_napi)) {
982 				WRITE_ONCE(rq->rx_notify_masked, true);
983 				__napi_schedule(&rq->xdp_napi);
984 			}
985 		}
986 	}
987 
988 	if (stats.xdp_tx > 0)
989 		veth_xdp_flush(rq, &bq);
990 	if (stats.xdp_redirect > 0)
991 		xdp_do_flush();
992 	xdp_clear_return_frame_no_direct();
993 
994 	return done;
995 }
996 
997 static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
998 {
999 	struct veth_priv *priv = netdev_priv(dev);
1000 	int err, i;
1001 
1002 	for (i = start; i < end; i++) {
1003 		struct veth_rq *rq = &priv->rq[i];
1004 
1005 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
1006 		if (err)
1007 			goto err_xdp_ring;
1008 	}
1009 
1010 	for (i = start; i < end; i++) {
1011 		struct veth_rq *rq = &priv->rq[i];
1012 
1013 		napi_enable(&rq->xdp_napi);
1014 		rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1015 	}
1016 
1017 	return 0;
1018 
1019 err_xdp_ring:
1020 	for (i--; i >= start; i--)
1021 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
1022 
1023 	return err;
1024 }
1025 
1026 static int __veth_napi_enable(struct net_device *dev)
1027 {
1028 	return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1029 }
1030 
1031 static void veth_napi_del_range(struct net_device *dev, int start, int end)
1032 {
1033 	struct veth_priv *priv = netdev_priv(dev);
1034 	int i;
1035 
1036 	for (i = start; i < end; i++) {
1037 		struct veth_rq *rq = &priv->rq[i];
1038 
1039 		rcu_assign_pointer(priv->rq[i].napi, NULL);
1040 		napi_disable(&rq->xdp_napi);
1041 		__netif_napi_del(&rq->xdp_napi);
1042 	}
1043 	synchronize_net();
1044 
1045 	for (i = start; i < end; i++) {
1046 		struct veth_rq *rq = &priv->rq[i];
1047 
1048 		rq->rx_notify_masked = false;
1049 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
1050 	}
1051 }
1052 
1053 static void veth_napi_del(struct net_device *dev)
1054 {
1055 	veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
1056 }
1057 
1058 static bool veth_gro_requested(const struct net_device *dev)
1059 {
1060 	return !!(dev->wanted_features & NETIF_F_GRO);
1061 }
1062 
1063 static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
1064 				 bool napi_already_on)
1065 {
1066 	struct veth_priv *priv = netdev_priv(dev);
1067 	int err, i;
1068 
1069 	for (i = start; i < end; i++) {
1070 		struct veth_rq *rq = &priv->rq[i];
1071 
1072 		if (!napi_already_on)
1073 			netif_napi_add(dev, &rq->xdp_napi, veth_poll);
1074 		err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
1075 		if (err < 0)
1076 			goto err_rxq_reg;
1077 
1078 		err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
1079 						 MEM_TYPE_PAGE_SHARED,
1080 						 NULL);
1081 		if (err < 0)
1082 			goto err_reg_mem;
1083 
1084 		/* Save original mem info as it can be overwritten */
1085 		rq->xdp_mem = rq->xdp_rxq.mem;
1086 	}
1087 	return 0;
1088 
1089 err_reg_mem:
1090 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
1091 err_rxq_reg:
1092 	for (i--; i >= start; i--) {
1093 		struct veth_rq *rq = &priv->rq[i];
1094 
1095 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1096 		if (!napi_already_on)
1097 			netif_napi_del(&rq->xdp_napi);
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
1104 				   bool delete_napi)
1105 {
1106 	struct veth_priv *priv = netdev_priv(dev);
1107 	int i;
1108 
1109 	for (i = start; i < end; i++) {
1110 		struct veth_rq *rq = &priv->rq[i];
1111 
1112 		rq->xdp_rxq.mem = rq->xdp_mem;
1113 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1114 
1115 		if (delete_napi)
1116 			netif_napi_del(&rq->xdp_napi);
1117 	}
1118 }
1119 
1120 static int veth_enable_xdp(struct net_device *dev)
1121 {
1122 	struct veth_priv *priv = netdev_priv(dev);
1123 	bool napi_already_on;
1124 	struct veth_rq *rq;
1125 	int err, i;
1126 
1127 	rq = &priv->rq[0];
1128 	napi_already_on = (dev->flags & IFF_UP) && rcu_access_pointer(rq->napi);
1129 
1130 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
1131 		err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
1132 		if (err)
1133 			return err;
1134 
1135 		if (!napi_already_on) {
1136 			err = __veth_napi_enable(dev);
1137 			if (err) {
1138 				veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
1139 				return err;
1140 			}
1141 
1142 			if (!veth_gro_requested(dev)) {
1143 				/* user-space did not require GRO, but adding XDP
1144 				 * is supposed to get GRO working
1145 				 */
1146 				dev->features |= NETIF_F_GRO;
1147 				netdev_features_change(dev);
1148 			}
1149 		}
1150 	}
1151 
1152 	for (i = 0; i < dev->real_num_rx_queues; i++) {
1153 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
1154 		rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static void veth_disable_xdp(struct net_device *dev)
1161 {
1162 	struct veth_priv *priv = netdev_priv(dev);
1163 	int i;
1164 
1165 	for (i = 0; i < dev->real_num_rx_queues; i++)
1166 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
1167 
1168 	if (!netif_running(dev) || !veth_gro_requested(dev)) {
1169 		veth_napi_del(dev);
1170 
1171 		/* if user-space did not require GRO, since adding XDP
1172 		 * enabled it, clear it now
1173 		 */
1174 		if (!veth_gro_requested(dev) && netif_running(dev)) {
1175 			dev->features &= ~NETIF_F_GRO;
1176 			netdev_features_change(dev);
1177 		}
1178 	}
1179 
1180 	veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
1181 }
1182 
1183 static int veth_napi_enable_range(struct net_device *dev, int start, int end)
1184 {
1185 	struct veth_priv *priv = netdev_priv(dev);
1186 	int err, i;
1187 
1188 	for (i = start; i < end; i++) {
1189 		struct veth_rq *rq = &priv->rq[i];
1190 
1191 		netif_napi_add(dev, &rq->xdp_napi, veth_poll);
1192 	}
1193 
1194 	err = __veth_napi_enable_range(dev, start, end);
1195 	if (err) {
1196 		for (i = start; i < end; i++) {
1197 			struct veth_rq *rq = &priv->rq[i];
1198 
1199 			netif_napi_del(&rq->xdp_napi);
1200 		}
1201 		return err;
1202 	}
1203 	return err;
1204 }
1205 
1206 static int veth_napi_enable(struct net_device *dev)
1207 {
1208 	return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1209 }
1210 
1211 static void veth_disable_range_safe(struct net_device *dev, int start, int end)
1212 {
1213 	struct veth_priv *priv = netdev_priv(dev);
1214 
1215 	if (start >= end)
1216 		return;
1217 
1218 	if (priv->_xdp_prog) {
1219 		veth_napi_del_range(dev, start, end);
1220 		veth_disable_xdp_range(dev, start, end, false);
1221 	} else if (veth_gro_requested(dev)) {
1222 		veth_napi_del_range(dev, start, end);
1223 	}
1224 }
1225 
1226 static int veth_enable_range_safe(struct net_device *dev, int start, int end)
1227 {
1228 	struct veth_priv *priv = netdev_priv(dev);
1229 	int err;
1230 
1231 	if (start >= end)
1232 		return 0;
1233 
1234 	if (priv->_xdp_prog) {
1235 		/* these channels are freshly initialized, napi is not on there even
1236 		 * when GRO is requeste
1237 		 */
1238 		err = veth_enable_xdp_range(dev, start, end, false);
1239 		if (err)
1240 			return err;
1241 
1242 		err = __veth_napi_enable_range(dev, start, end);
1243 		if (err) {
1244 			/* on error always delete the newly added napis */
1245 			veth_disable_xdp_range(dev, start, end, true);
1246 			return err;
1247 		}
1248 	} else if (veth_gro_requested(dev)) {
1249 		return veth_napi_enable_range(dev, start, end);
1250 	}
1251 	return 0;
1252 }
1253 
1254 static int veth_set_channels(struct net_device *dev,
1255 			     struct ethtool_channels *ch)
1256 {
1257 	struct veth_priv *priv = netdev_priv(dev);
1258 	unsigned int old_rx_count, new_rx_count;
1259 	struct veth_priv *peer_priv;
1260 	struct net_device *peer;
1261 	int err;
1262 
1263 	/* sanity check. Upper bounds are already enforced by the caller */
1264 	if (!ch->rx_count || !ch->tx_count)
1265 		return -EINVAL;
1266 
1267 	/* avoid braking XDP, if that is enabled */
1268 	peer = rtnl_dereference(priv->peer);
1269 	peer_priv = peer ? netdev_priv(peer) : NULL;
1270 	if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
1271 		return -EINVAL;
1272 
1273 	if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
1274 		return -EINVAL;
1275 
1276 	old_rx_count = dev->real_num_rx_queues;
1277 	new_rx_count = ch->rx_count;
1278 	if (netif_running(dev)) {
1279 		/* turn device off */
1280 		netif_carrier_off(dev);
1281 		if (peer)
1282 			netif_carrier_off(peer);
1283 
1284 		/* try to allocate new resurces, as needed*/
1285 		err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
1286 		if (err)
1287 			goto out;
1288 	}
1289 
1290 	err = netif_set_real_num_rx_queues(dev, ch->rx_count);
1291 	if (err)
1292 		goto revert;
1293 
1294 	err = netif_set_real_num_tx_queues(dev, ch->tx_count);
1295 	if (err) {
1296 		int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
1297 
1298 		/* this error condition could happen only if rx and tx change
1299 		 * in opposite directions (e.g. tx nr raises, rx nr decreases)
1300 		 * and we can't do anything to fully restore the original
1301 		 * status
1302 		 */
1303 		if (err2)
1304 			pr_warn("Can't restore rx queues config %d -> %d %d",
1305 				new_rx_count, old_rx_count, err2);
1306 		else
1307 			goto revert;
1308 	}
1309 
1310 out:
1311 	if (netif_running(dev)) {
1312 		/* note that we need to swap the arguments WRT the enable part
1313 		 * to identify the range we have to disable
1314 		 */
1315 		veth_disable_range_safe(dev, new_rx_count, old_rx_count);
1316 		netif_carrier_on(dev);
1317 		if (peer)
1318 			netif_carrier_on(peer);
1319 	}
1320 	return err;
1321 
1322 revert:
1323 	new_rx_count = old_rx_count;
1324 	old_rx_count = ch->rx_count;
1325 	goto out;
1326 }
1327 
1328 static int veth_open(struct net_device *dev)
1329 {
1330 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1331 	struct net_device *peer = rtnl_dereference(priv->peer);
1332 	struct veth_rq *peer_rq;
1333 	int err;
1334 
1335 	if (!peer)
1336 		return -ENOTCONN;
1337 
1338 	peer_priv = netdev_priv(peer);
1339 	peer_rq = &peer_priv->rq[0];
1340 
1341 	if (priv->_xdp_prog) {
1342 		err = veth_enable_xdp(dev);
1343 		if (err)
1344 			return err;
1345 		/* refer to the logic in veth_xdp_set() */
1346 		if (!rtnl_dereference(peer_rq->napi)) {
1347 			err = veth_napi_enable(peer);
1348 			if (err)
1349 				return err;
1350 		}
1351 	} else if (veth_gro_requested(dev) || peer_priv->_xdp_prog) {
1352 		err = veth_napi_enable(dev);
1353 		if (err)
1354 			return err;
1355 	}
1356 
1357 	if (peer->flags & IFF_UP) {
1358 		netif_carrier_on(dev);
1359 		netif_carrier_on(peer);
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 static int veth_close(struct net_device *dev)
1366 {
1367 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1368 	struct net_device *peer = rtnl_dereference(priv->peer);
1369 	struct veth_rq *peer_rq;
1370 
1371 	netif_carrier_off(dev);
1372 	if (peer) {
1373 		peer_priv = netdev_priv(peer);
1374 		peer_rq = &peer_priv->rq[0];
1375 	}
1376 
1377 	if (priv->_xdp_prog) {
1378 		veth_disable_xdp(dev);
1379 		/* refer to the logic in veth_xdp_set */
1380 		if (peer && rtnl_dereference(peer_rq->napi)) {
1381 			if (!veth_gro_requested(peer) && !peer_priv->_xdp_prog)
1382 				veth_napi_del(peer);
1383 		}
1384 	} else if (veth_gro_requested(dev) || (peer && peer_priv->_xdp_prog)) {
1385 		veth_napi_del(dev);
1386 	}
1387 
1388 	if (peer)
1389 		netif_carrier_off(peer);
1390 
1391 	return 0;
1392 }
1393 
1394 static int is_valid_veth_mtu(int mtu)
1395 {
1396 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1397 }
1398 
1399 static int veth_alloc_queues(struct net_device *dev)
1400 {
1401 	struct veth_priv *priv = netdev_priv(dev);
1402 	int i;
1403 
1404 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT);
1405 	if (!priv->rq)
1406 		return -ENOMEM;
1407 
1408 	for (i = 0; i < dev->num_rx_queues; i++) {
1409 		priv->rq[i].dev = dev;
1410 		u64_stats_init(&priv->rq[i].stats.syncp);
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static void veth_free_queues(struct net_device *dev)
1417 {
1418 	struct veth_priv *priv = netdev_priv(dev);
1419 
1420 	kfree(priv->rq);
1421 }
1422 
1423 static int veth_dev_init(struct net_device *dev)
1424 {
1425 	int err;
1426 
1427 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1428 	if (!dev->lstats)
1429 		return -ENOMEM;
1430 
1431 	err = veth_alloc_queues(dev);
1432 	if (err) {
1433 		free_percpu(dev->lstats);
1434 		return err;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static void veth_dev_free(struct net_device *dev)
1441 {
1442 	veth_free_queues(dev);
1443 	free_percpu(dev->lstats);
1444 }
1445 
1446 #ifdef CONFIG_NET_POLL_CONTROLLER
1447 static void veth_poll_controller(struct net_device *dev)
1448 {
1449 	/* veth only receives frames when its peer sends one
1450 	 * Since it has nothing to do with disabling irqs, we are guaranteed
1451 	 * never to have pending data when we poll for it so
1452 	 * there is nothing to do here.
1453 	 *
1454 	 * We need this though so netpoll recognizes us as an interface that
1455 	 * supports polling, which enables bridge devices in virt setups to
1456 	 * still use netconsole
1457 	 */
1458 }
1459 #endif	/* CONFIG_NET_POLL_CONTROLLER */
1460 
1461 static int veth_get_iflink(const struct net_device *dev)
1462 {
1463 	struct veth_priv *priv = netdev_priv(dev);
1464 	struct net_device *peer;
1465 	int iflink;
1466 
1467 	rcu_read_lock();
1468 	peer = rcu_dereference(priv->peer);
1469 	iflink = peer ? peer->ifindex : 0;
1470 	rcu_read_unlock();
1471 
1472 	return iflink;
1473 }
1474 
1475 static netdev_features_t veth_fix_features(struct net_device *dev,
1476 					   netdev_features_t features)
1477 {
1478 	struct veth_priv *priv = netdev_priv(dev);
1479 	struct net_device *peer;
1480 
1481 	peer = rtnl_dereference(priv->peer);
1482 	if (peer) {
1483 		struct veth_priv *peer_priv = netdev_priv(peer);
1484 
1485 		if (peer_priv->_xdp_prog)
1486 			features &= ~NETIF_F_GSO_SOFTWARE;
1487 	}
1488 	if (priv->_xdp_prog)
1489 		features |= NETIF_F_GRO;
1490 
1491 	return features;
1492 }
1493 
1494 static int veth_set_features(struct net_device *dev,
1495 			     netdev_features_t features)
1496 {
1497 	netdev_features_t changed = features ^ dev->features;
1498 	struct veth_priv *priv = netdev_priv(dev);
1499 	struct veth_rq *rq = &priv->rq[0];
1500 	int err;
1501 
1502 	if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
1503 		return 0;
1504 
1505 	if (features & NETIF_F_GRO) {
1506 		if (!rtnl_dereference(rq->napi)) {
1507 			err = veth_napi_enable(dev);
1508 			if (err)
1509 				return err;
1510 		}
1511 	} else {
1512 		if (rtnl_dereference(rq->napi))
1513 			veth_napi_del(dev);
1514 	}
1515 	return 0;
1516 }
1517 
1518 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1519 {
1520 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1521 	struct net_device *peer;
1522 
1523 	if (new_hr < 0)
1524 		new_hr = 0;
1525 
1526 	rcu_read_lock();
1527 	peer = rcu_dereference(priv->peer);
1528 	if (unlikely(!peer))
1529 		goto out;
1530 
1531 	peer_priv = netdev_priv(peer);
1532 	priv->requested_headroom = new_hr;
1533 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1534 	dev->needed_headroom = new_hr;
1535 	peer->needed_headroom = new_hr;
1536 
1537 out:
1538 	rcu_read_unlock();
1539 }
1540 
1541 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1542 			struct netlink_ext_ack *extack)
1543 {
1544 	struct veth_priv *priv = netdev_priv(dev);
1545 	struct veth_priv *peer_priv;
1546 	struct bpf_prog *old_prog;
1547 	struct veth_rq *peer_rq;
1548 	struct net_device *peer;
1549 	bool napi_already_off;
1550 	unsigned int max_mtu;
1551 	bool noreq_napi;
1552 	int err;
1553 
1554 	old_prog = priv->_xdp_prog;
1555 	priv->_xdp_prog = prog;
1556 	peer = rtnl_dereference(priv->peer);
1557 	peer_priv = netdev_priv(peer);
1558 
1559 	if (prog) {
1560 		if (!peer) {
1561 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1562 			err = -ENOTCONN;
1563 			goto err;
1564 		}
1565 
1566 		max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) -
1567 			  peer->hard_header_len;
1568 		/* Allow increasing the max_mtu if the program supports
1569 		 * XDP fragments.
1570 		 */
1571 		if (prog->aux->xdp_has_frags)
1572 			max_mtu += PAGE_SIZE * MAX_SKB_FRAGS;
1573 
1574 		if (peer->mtu > max_mtu) {
1575 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1576 			err = -ERANGE;
1577 			goto err;
1578 		}
1579 
1580 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1581 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1582 			err = -ENOSPC;
1583 			goto err;
1584 		}
1585 
1586 		if (dev->flags & IFF_UP) {
1587 			err = veth_enable_xdp(dev);
1588 			if (err) {
1589 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1590 				goto err;
1591 			}
1592 		}
1593 
1594 		if (peer && (peer->flags & IFF_UP)) {
1595 			peer_rq = &peer_priv->rq[0];
1596 
1597 			/* If the peer hasn't enabled GRO and loaded xdp,
1598 			 * then we enable napi automatically if its napi
1599 			 * is not ready.
1600 			 */
1601 			napi_already_off = !rtnl_dereference(peer_rq->napi);
1602 			if (napi_already_off) {
1603 				err = veth_napi_enable(peer);
1604 				if (err) {
1605 					NL_SET_ERR_MSG_MOD(extack,
1606 							   "Failed to automatically enable napi of peer");
1607 					goto err;
1608 				}
1609 			}
1610 		}
1611 
1612 		if (!old_prog) {
1613 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1614 			peer->max_mtu = max_mtu;
1615 		}
1616 	}
1617 
1618 	if (old_prog) {
1619 		if (!prog) {
1620 			if (dev->flags & IFF_UP)
1621 				veth_disable_xdp(dev);
1622 
1623 			if (peer) {
1624 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1625 				peer->max_mtu = ETH_MAX_MTU;
1626 				peer_rq = &peer_priv->rq[0];
1627 
1628 				/* If the peer doesn't has its xdp and enabled
1629 				 * GRO, then we disable napi if its napi is ready;
1630 				 */
1631 				if (rtnl_dereference(peer_rq->napi)) {
1632 					noreq_napi = !veth_gro_requested(peer) &&
1633 						     !peer_priv->_xdp_prog;
1634 					if (noreq_napi && (peer->flags & IFF_UP))
1635 						veth_napi_del(peer);
1636 				}
1637 			}
1638 		}
1639 		bpf_prog_put(old_prog);
1640 	}
1641 
1642 	if ((!!old_prog ^ !!prog) && peer)
1643 		netdev_update_features(peer);
1644 
1645 	return 0;
1646 err:
1647 	priv->_xdp_prog = old_prog;
1648 
1649 	return err;
1650 }
1651 
1652 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1653 {
1654 	switch (xdp->command) {
1655 	case XDP_SETUP_PROG:
1656 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1657 	default:
1658 		return -EINVAL;
1659 	}
1660 }
1661 
1662 static const struct net_device_ops veth_netdev_ops = {
1663 	.ndo_init            = veth_dev_init,
1664 	.ndo_open            = veth_open,
1665 	.ndo_stop            = veth_close,
1666 	.ndo_start_xmit      = veth_xmit,
1667 	.ndo_get_stats64     = veth_get_stats64,
1668 	.ndo_set_rx_mode     = veth_set_multicast_list,
1669 	.ndo_set_mac_address = eth_mac_addr,
1670 #ifdef CONFIG_NET_POLL_CONTROLLER
1671 	.ndo_poll_controller	= veth_poll_controller,
1672 #endif
1673 	.ndo_get_iflink		= veth_get_iflink,
1674 	.ndo_fix_features	= veth_fix_features,
1675 	.ndo_set_features	= veth_set_features,
1676 	.ndo_features_check	= passthru_features_check,
1677 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1678 	.ndo_bpf		= veth_xdp,
1679 	.ndo_xdp_xmit		= veth_ndo_xdp_xmit,
1680 	.ndo_get_peer_dev	= veth_peer_dev,
1681 };
1682 
1683 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1684 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1685 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1686 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1687 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1688 
1689 static void veth_setup(struct net_device *dev)
1690 {
1691 	ether_setup(dev);
1692 
1693 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1694 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1695 	dev->priv_flags |= IFF_NO_QUEUE;
1696 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1697 
1698 	dev->netdev_ops = &veth_netdev_ops;
1699 	dev->ethtool_ops = &veth_ethtool_ops;
1700 	dev->features |= NETIF_F_LLTX;
1701 	dev->features |= VETH_FEATURES;
1702 	dev->vlan_features = dev->features &
1703 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1704 			       NETIF_F_HW_VLAN_STAG_TX |
1705 			       NETIF_F_HW_VLAN_CTAG_RX |
1706 			       NETIF_F_HW_VLAN_STAG_RX);
1707 	dev->needs_free_netdev = true;
1708 	dev->priv_destructor = veth_dev_free;
1709 	dev->max_mtu = ETH_MAX_MTU;
1710 
1711 	dev->hw_features = VETH_FEATURES;
1712 	dev->hw_enc_features = VETH_FEATURES;
1713 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1714 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
1715 }
1716 
1717 /*
1718  * netlink interface
1719  */
1720 
1721 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1722 			 struct netlink_ext_ack *extack)
1723 {
1724 	if (tb[IFLA_ADDRESS]) {
1725 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1726 			return -EINVAL;
1727 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1728 			return -EADDRNOTAVAIL;
1729 	}
1730 	if (tb[IFLA_MTU]) {
1731 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1732 			return -EINVAL;
1733 	}
1734 	return 0;
1735 }
1736 
1737 static struct rtnl_link_ops veth_link_ops;
1738 
1739 static void veth_disable_gro(struct net_device *dev)
1740 {
1741 	dev->features &= ~NETIF_F_GRO;
1742 	dev->wanted_features &= ~NETIF_F_GRO;
1743 	netdev_update_features(dev);
1744 }
1745 
1746 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
1747 {
1748 	int err;
1749 
1750 	if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
1751 		err = netif_set_real_num_tx_queues(dev, 1);
1752 		if (err)
1753 			return err;
1754 	}
1755 	if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
1756 		err = netif_set_real_num_rx_queues(dev, 1);
1757 		if (err)
1758 			return err;
1759 	}
1760 	return 0;
1761 }
1762 
1763 static int veth_newlink(struct net *src_net, struct net_device *dev,
1764 			struct nlattr *tb[], struct nlattr *data[],
1765 			struct netlink_ext_ack *extack)
1766 {
1767 	int err;
1768 	struct net_device *peer;
1769 	struct veth_priv *priv;
1770 	char ifname[IFNAMSIZ];
1771 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1772 	unsigned char name_assign_type;
1773 	struct ifinfomsg *ifmp;
1774 	struct net *net;
1775 
1776 	/*
1777 	 * create and register peer first
1778 	 */
1779 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1780 		struct nlattr *nla_peer;
1781 
1782 		nla_peer = data[VETH_INFO_PEER];
1783 		ifmp = nla_data(nla_peer);
1784 		err = rtnl_nla_parse_ifla(peer_tb,
1785 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1786 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1787 					  NULL);
1788 		if (err < 0)
1789 			return err;
1790 
1791 		err = veth_validate(peer_tb, NULL, extack);
1792 		if (err < 0)
1793 			return err;
1794 
1795 		tbp = peer_tb;
1796 	} else {
1797 		ifmp = NULL;
1798 		tbp = tb;
1799 	}
1800 
1801 	if (ifmp && tbp[IFLA_IFNAME]) {
1802 		nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1803 		name_assign_type = NET_NAME_USER;
1804 	} else {
1805 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1806 		name_assign_type = NET_NAME_ENUM;
1807 	}
1808 
1809 	net = rtnl_link_get_net(src_net, tbp);
1810 	if (IS_ERR(net))
1811 		return PTR_ERR(net);
1812 
1813 	peer = rtnl_create_link(net, ifname, name_assign_type,
1814 				&veth_link_ops, tbp, extack);
1815 	if (IS_ERR(peer)) {
1816 		put_net(net);
1817 		return PTR_ERR(peer);
1818 	}
1819 
1820 	if (!ifmp || !tbp[IFLA_ADDRESS])
1821 		eth_hw_addr_random(peer);
1822 
1823 	if (ifmp && (dev->ifindex != 0))
1824 		peer->ifindex = ifmp->ifi_index;
1825 
1826 	netif_inherit_tso_max(peer, dev);
1827 
1828 	err = register_netdevice(peer);
1829 	put_net(net);
1830 	net = NULL;
1831 	if (err < 0)
1832 		goto err_register_peer;
1833 
1834 	/* keep GRO disabled by default to be consistent with the established
1835 	 * veth behavior
1836 	 */
1837 	veth_disable_gro(peer);
1838 	netif_carrier_off(peer);
1839 
1840 	err = rtnl_configure_link(peer, ifmp, 0, NULL);
1841 	if (err < 0)
1842 		goto err_configure_peer;
1843 
1844 	/*
1845 	 * register dev last
1846 	 *
1847 	 * note, that since we've registered new device the dev's name
1848 	 * should be re-allocated
1849 	 */
1850 
1851 	if (tb[IFLA_ADDRESS] == NULL)
1852 		eth_hw_addr_random(dev);
1853 
1854 	if (tb[IFLA_IFNAME])
1855 		nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1856 	else
1857 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1858 
1859 	err = register_netdevice(dev);
1860 	if (err < 0)
1861 		goto err_register_dev;
1862 
1863 	netif_carrier_off(dev);
1864 
1865 	/*
1866 	 * tie the deviced together
1867 	 */
1868 
1869 	priv = netdev_priv(dev);
1870 	rcu_assign_pointer(priv->peer, peer);
1871 	err = veth_init_queues(dev, tb);
1872 	if (err)
1873 		goto err_queues;
1874 
1875 	priv = netdev_priv(peer);
1876 	rcu_assign_pointer(priv->peer, dev);
1877 	err = veth_init_queues(peer, tb);
1878 	if (err)
1879 		goto err_queues;
1880 
1881 	veth_disable_gro(dev);
1882 	return 0;
1883 
1884 err_queues:
1885 	unregister_netdevice(dev);
1886 err_register_dev:
1887 	/* nothing to do */
1888 err_configure_peer:
1889 	unregister_netdevice(peer);
1890 	return err;
1891 
1892 err_register_peer:
1893 	free_netdev(peer);
1894 	return err;
1895 }
1896 
1897 static void veth_dellink(struct net_device *dev, struct list_head *head)
1898 {
1899 	struct veth_priv *priv;
1900 	struct net_device *peer;
1901 
1902 	priv = netdev_priv(dev);
1903 	peer = rtnl_dereference(priv->peer);
1904 
1905 	/* Note : dellink() is called from default_device_exit_batch(),
1906 	 * before a rcu_synchronize() point. The devices are guaranteed
1907 	 * not being freed before one RCU grace period.
1908 	 */
1909 	RCU_INIT_POINTER(priv->peer, NULL);
1910 	unregister_netdevice_queue(dev, head);
1911 
1912 	if (peer) {
1913 		priv = netdev_priv(peer);
1914 		RCU_INIT_POINTER(priv->peer, NULL);
1915 		unregister_netdevice_queue(peer, head);
1916 	}
1917 }
1918 
1919 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1920 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1921 };
1922 
1923 static struct net *veth_get_link_net(const struct net_device *dev)
1924 {
1925 	struct veth_priv *priv = netdev_priv(dev);
1926 	struct net_device *peer = rtnl_dereference(priv->peer);
1927 
1928 	return peer ? dev_net(peer) : dev_net(dev);
1929 }
1930 
1931 static unsigned int veth_get_num_queues(void)
1932 {
1933 	/* enforce the same queue limit as rtnl_create_link */
1934 	int queues = num_possible_cpus();
1935 
1936 	if (queues > 4096)
1937 		queues = 4096;
1938 	return queues;
1939 }
1940 
1941 static struct rtnl_link_ops veth_link_ops = {
1942 	.kind		= DRV_NAME,
1943 	.priv_size	= sizeof(struct veth_priv),
1944 	.setup		= veth_setup,
1945 	.validate	= veth_validate,
1946 	.newlink	= veth_newlink,
1947 	.dellink	= veth_dellink,
1948 	.policy		= veth_policy,
1949 	.maxtype	= VETH_INFO_MAX,
1950 	.get_link_net	= veth_get_link_net,
1951 	.get_num_tx_queues	= veth_get_num_queues,
1952 	.get_num_rx_queues	= veth_get_num_queues,
1953 };
1954 
1955 /*
1956  * init/fini
1957  */
1958 
1959 static __init int veth_init(void)
1960 {
1961 	return rtnl_link_register(&veth_link_ops);
1962 }
1963 
1964 static __exit void veth_exit(void)
1965 {
1966 	rtnl_link_unregister(&veth_link_ops);
1967 }
1968 
1969 module_init(veth_init);
1970 module_exit(veth_exit);
1971 
1972 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1973 MODULE_LICENSE("GPL v2");
1974 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1975