xref: /openbmc/linux/drivers/net/veth.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 #define VETH_XDP_TX_BULK_SIZE	16
38 #define VETH_XDP_BATCH		16
39 
40 struct veth_stats {
41 	u64	rx_drops;
42 	/* xdp */
43 	u64	xdp_packets;
44 	u64	xdp_bytes;
45 	u64	xdp_redirect;
46 	u64	xdp_drops;
47 	u64	xdp_tx;
48 	u64	xdp_tx_err;
49 	u64	peer_tq_xdp_xmit;
50 	u64	peer_tq_xdp_xmit_err;
51 };
52 
53 struct veth_rq_stats {
54 	struct veth_stats	vs;
55 	struct u64_stats_sync	syncp;
56 };
57 
58 struct veth_rq {
59 	struct napi_struct	xdp_napi;
60 	struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
61 	struct net_device	*dev;
62 	struct bpf_prog __rcu	*xdp_prog;
63 	struct xdp_mem_info	xdp_mem;
64 	struct veth_rq_stats	stats;
65 	bool			rx_notify_masked;
66 	struct ptr_ring		xdp_ring;
67 	struct xdp_rxq_info	xdp_rxq;
68 };
69 
70 struct veth_priv {
71 	struct net_device __rcu	*peer;
72 	atomic64_t		dropped;
73 	struct bpf_prog		*_xdp_prog;
74 	struct veth_rq		*rq;
75 	unsigned int		requested_headroom;
76 };
77 
78 struct veth_xdp_tx_bq {
79 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
80 	unsigned int count;
81 };
82 
83 /*
84  * ethtool interface
85  */
86 
87 struct veth_q_stat_desc {
88 	char	desc[ETH_GSTRING_LEN];
89 	size_t	offset;
90 };
91 
92 #define VETH_RQ_STAT(m)	offsetof(struct veth_stats, m)
93 
94 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
95 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
96 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
97 	{ "drops",		VETH_RQ_STAT(rx_drops) },
98 	{ "xdp_redirect",	VETH_RQ_STAT(xdp_redirect) },
99 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
100 	{ "xdp_tx",		VETH_RQ_STAT(xdp_tx) },
101 	{ "xdp_tx_errors",	VETH_RQ_STAT(xdp_tx_err) },
102 };
103 
104 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
105 
106 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
107 	{ "xdp_xmit",		VETH_RQ_STAT(peer_tq_xdp_xmit) },
108 	{ "xdp_xmit_errors",	VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
109 };
110 
111 #define VETH_TQ_STATS_LEN	ARRAY_SIZE(veth_tq_stats_desc)
112 
113 static struct {
114 	const char string[ETH_GSTRING_LEN];
115 } ethtool_stats_keys[] = {
116 	{ "peer_ifindex" },
117 };
118 
119 static int veth_get_link_ksettings(struct net_device *dev,
120 				   struct ethtool_link_ksettings *cmd)
121 {
122 	cmd->base.speed		= SPEED_10000;
123 	cmd->base.duplex	= DUPLEX_FULL;
124 	cmd->base.port		= PORT_TP;
125 	cmd->base.autoneg	= AUTONEG_DISABLE;
126 	return 0;
127 }
128 
129 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
130 {
131 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
132 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
133 }
134 
135 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
136 {
137 	u8 *p = buf;
138 	int i, j;
139 
140 	switch(stringset) {
141 	case ETH_SS_STATS:
142 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
143 		p += sizeof(ethtool_stats_keys);
144 		for (i = 0; i < dev->real_num_rx_queues; i++)
145 			for (j = 0; j < VETH_RQ_STATS_LEN; j++)
146 				ethtool_sprintf(&p, "rx_queue_%u_%.18s",
147 						i, veth_rq_stats_desc[j].desc);
148 
149 		for (i = 0; i < dev->real_num_tx_queues; i++)
150 			for (j = 0; j < VETH_TQ_STATS_LEN; j++)
151 				ethtool_sprintf(&p, "tx_queue_%u_%.18s",
152 						i, veth_tq_stats_desc[j].desc);
153 		break;
154 	}
155 }
156 
157 static int veth_get_sset_count(struct net_device *dev, int sset)
158 {
159 	switch (sset) {
160 	case ETH_SS_STATS:
161 		return ARRAY_SIZE(ethtool_stats_keys) +
162 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
163 		       VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
164 	default:
165 		return -EOPNOTSUPP;
166 	}
167 }
168 
169 static void veth_get_ethtool_stats(struct net_device *dev,
170 		struct ethtool_stats *stats, u64 *data)
171 {
172 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
173 	struct net_device *peer = rtnl_dereference(priv->peer);
174 	int i, j, idx;
175 
176 	data[0] = peer ? peer->ifindex : 0;
177 	idx = 1;
178 	for (i = 0; i < dev->real_num_rx_queues; i++) {
179 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
180 		const void *stats_base = (void *)&rq_stats->vs;
181 		unsigned int start;
182 		size_t offset;
183 
184 		do {
185 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
186 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
187 				offset = veth_rq_stats_desc[j].offset;
188 				data[idx + j] = *(u64 *)(stats_base + offset);
189 			}
190 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
191 		idx += VETH_RQ_STATS_LEN;
192 	}
193 
194 	if (!peer)
195 		return;
196 
197 	rcv_priv = netdev_priv(peer);
198 	for (i = 0; i < peer->real_num_rx_queues; i++) {
199 		const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
200 		const void *base = (void *)&rq_stats->vs;
201 		unsigned int start, tx_idx = idx;
202 		size_t offset;
203 
204 		tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
205 		do {
206 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
207 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
208 				offset = veth_tq_stats_desc[j].offset;
209 				data[tx_idx + j] += *(u64 *)(base + offset);
210 			}
211 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
212 	}
213 }
214 
215 static void veth_get_channels(struct net_device *dev,
216 			      struct ethtool_channels *channels)
217 {
218 	channels->tx_count = dev->real_num_tx_queues;
219 	channels->rx_count = dev->real_num_rx_queues;
220 	channels->max_tx = dev->num_tx_queues;
221 	channels->max_rx = dev->num_rx_queues;
222 }
223 
224 static int veth_set_channels(struct net_device *dev,
225 			     struct ethtool_channels *ch);
226 
227 static const struct ethtool_ops veth_ethtool_ops = {
228 	.get_drvinfo		= veth_get_drvinfo,
229 	.get_link		= ethtool_op_get_link,
230 	.get_strings		= veth_get_strings,
231 	.get_sset_count		= veth_get_sset_count,
232 	.get_ethtool_stats	= veth_get_ethtool_stats,
233 	.get_link_ksettings	= veth_get_link_ksettings,
234 	.get_ts_info		= ethtool_op_get_ts_info,
235 	.get_channels		= veth_get_channels,
236 	.set_channels		= veth_set_channels,
237 };
238 
239 /* general routines */
240 
241 static bool veth_is_xdp_frame(void *ptr)
242 {
243 	return (unsigned long)ptr & VETH_XDP_FLAG;
244 }
245 
246 static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
247 {
248 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
249 }
250 
251 static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
252 {
253 	return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
254 }
255 
256 static void veth_ptr_free(void *ptr)
257 {
258 	if (veth_is_xdp_frame(ptr))
259 		xdp_return_frame(veth_ptr_to_xdp(ptr));
260 	else
261 		kfree_skb(ptr);
262 }
263 
264 static void __veth_xdp_flush(struct veth_rq *rq)
265 {
266 	/* Write ptr_ring before reading rx_notify_masked */
267 	smp_mb();
268 	if (!READ_ONCE(rq->rx_notify_masked) &&
269 	    napi_schedule_prep(&rq->xdp_napi)) {
270 		WRITE_ONCE(rq->rx_notify_masked, true);
271 		__napi_schedule(&rq->xdp_napi);
272 	}
273 }
274 
275 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
276 {
277 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
278 		dev_kfree_skb_any(skb);
279 		return NET_RX_DROP;
280 	}
281 
282 	return NET_RX_SUCCESS;
283 }
284 
285 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
286 			    struct veth_rq *rq, bool xdp)
287 {
288 	return __dev_forward_skb(dev, skb) ?: xdp ?
289 		veth_xdp_rx(rq, skb) :
290 		__netif_rx(skb);
291 }
292 
293 /* return true if the specified skb has chances of GRO aggregation
294  * Don't strive for accuracy, but try to avoid GRO overhead in the most
295  * common scenarios.
296  * When XDP is enabled, all traffic is considered eligible, as the xmit
297  * device has TSO off.
298  * When TSO is enabled on the xmit device, we are likely interested only
299  * in UDP aggregation, explicitly check for that if the skb is suspected
300  * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
301  * to belong to locally generated UDP traffic.
302  */
303 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
304 					 const struct net_device *rcv,
305 					 const struct sk_buff *skb)
306 {
307 	return !(dev->features & NETIF_F_ALL_TSO) ||
308 		(skb->destructor == sock_wfree &&
309 		 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
310 }
311 
312 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
313 {
314 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
315 	struct netdev_queue *queue = NULL;
316 	struct veth_rq *rq = NULL;
317 	struct net_device *rcv;
318 	int length = skb->len;
319 	bool use_napi = false;
320 	int rxq;
321 
322 	rcu_read_lock();
323 	rcv = rcu_dereference(priv->peer);
324 	if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
325 		kfree_skb(skb);
326 		goto drop;
327 	}
328 
329 	rcv_priv = netdev_priv(rcv);
330 	rxq = skb_get_queue_mapping(skb);
331 	if (rxq < rcv->real_num_rx_queues) {
332 		rq = &rcv_priv->rq[rxq];
333 		queue = netdev_get_tx_queue(dev, rxq);
334 
335 		/* The napi pointer is available when an XDP program is
336 		 * attached or when GRO is enabled
337 		 * Don't bother with napi/GRO if the skb can't be aggregated
338 		 */
339 		use_napi = rcu_access_pointer(rq->napi) &&
340 			   veth_skb_is_eligible_for_gro(dev, rcv, skb);
341 	}
342 
343 	skb_tx_timestamp(skb);
344 	if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
345 		if (queue)
346 			txq_trans_cond_update(queue);
347 		if (!use_napi)
348 			dev_lstats_add(dev, length);
349 	} else {
350 drop:
351 		atomic64_inc(&priv->dropped);
352 	}
353 
354 	if (use_napi)
355 		__veth_xdp_flush(rq);
356 
357 	rcu_read_unlock();
358 
359 	return NETDEV_TX_OK;
360 }
361 
362 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
363 {
364 	struct veth_priv *priv = netdev_priv(dev);
365 
366 	dev_lstats_read(dev, packets, bytes);
367 	return atomic64_read(&priv->dropped);
368 }
369 
370 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
371 {
372 	struct veth_priv *priv = netdev_priv(dev);
373 	int i;
374 
375 	result->peer_tq_xdp_xmit_err = 0;
376 	result->xdp_packets = 0;
377 	result->xdp_tx_err = 0;
378 	result->xdp_bytes = 0;
379 	result->rx_drops = 0;
380 	for (i = 0; i < dev->num_rx_queues; i++) {
381 		u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
382 		struct veth_rq_stats *stats = &priv->rq[i].stats;
383 		unsigned int start;
384 
385 		do {
386 			start = u64_stats_fetch_begin_irq(&stats->syncp);
387 			peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
388 			xdp_tx_err = stats->vs.xdp_tx_err;
389 			packets = stats->vs.xdp_packets;
390 			bytes = stats->vs.xdp_bytes;
391 			drops = stats->vs.rx_drops;
392 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
393 		result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
394 		result->xdp_tx_err += xdp_tx_err;
395 		result->xdp_packets += packets;
396 		result->xdp_bytes += bytes;
397 		result->rx_drops += drops;
398 	}
399 }
400 
401 static void veth_get_stats64(struct net_device *dev,
402 			     struct rtnl_link_stats64 *tot)
403 {
404 	struct veth_priv *priv = netdev_priv(dev);
405 	struct net_device *peer;
406 	struct veth_stats rx;
407 	u64 packets, bytes;
408 
409 	tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
410 	tot->tx_bytes = bytes;
411 	tot->tx_packets = packets;
412 
413 	veth_stats_rx(&rx, dev);
414 	tot->tx_dropped += rx.xdp_tx_err;
415 	tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
416 	tot->rx_bytes = rx.xdp_bytes;
417 	tot->rx_packets = rx.xdp_packets;
418 
419 	rcu_read_lock();
420 	peer = rcu_dereference(priv->peer);
421 	if (peer) {
422 		veth_stats_tx(peer, &packets, &bytes);
423 		tot->rx_bytes += bytes;
424 		tot->rx_packets += packets;
425 
426 		veth_stats_rx(&rx, peer);
427 		tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
428 		tot->rx_dropped += rx.xdp_tx_err;
429 		tot->tx_bytes += rx.xdp_bytes;
430 		tot->tx_packets += rx.xdp_packets;
431 	}
432 	rcu_read_unlock();
433 }
434 
435 /* fake multicast ability */
436 static void veth_set_multicast_list(struct net_device *dev)
437 {
438 }
439 
440 static int veth_select_rxq(struct net_device *dev)
441 {
442 	return smp_processor_id() % dev->real_num_rx_queues;
443 }
444 
445 static struct net_device *veth_peer_dev(struct net_device *dev)
446 {
447 	struct veth_priv *priv = netdev_priv(dev);
448 
449 	/* Callers must be under RCU read side. */
450 	return rcu_dereference(priv->peer);
451 }
452 
453 static int veth_xdp_xmit(struct net_device *dev, int n,
454 			 struct xdp_frame **frames,
455 			 u32 flags, bool ndo_xmit)
456 {
457 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
458 	int i, ret = -ENXIO, nxmit = 0;
459 	struct net_device *rcv;
460 	unsigned int max_len;
461 	struct veth_rq *rq;
462 
463 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
464 		return -EINVAL;
465 
466 	rcu_read_lock();
467 	rcv = rcu_dereference(priv->peer);
468 	if (unlikely(!rcv))
469 		goto out;
470 
471 	rcv_priv = netdev_priv(rcv);
472 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
473 	/* The napi pointer is set if NAPI is enabled, which ensures that
474 	 * xdp_ring is initialized on receive side and the peer device is up.
475 	 */
476 	if (!rcu_access_pointer(rq->napi))
477 		goto out;
478 
479 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
480 
481 	spin_lock(&rq->xdp_ring.producer_lock);
482 	for (i = 0; i < n; i++) {
483 		struct xdp_frame *frame = frames[i];
484 		void *ptr = veth_xdp_to_ptr(frame);
485 
486 		if (unlikely(xdp_get_frame_len(frame) > max_len ||
487 			     __ptr_ring_produce(&rq->xdp_ring, ptr)))
488 			break;
489 		nxmit++;
490 	}
491 	spin_unlock(&rq->xdp_ring.producer_lock);
492 
493 	if (flags & XDP_XMIT_FLUSH)
494 		__veth_xdp_flush(rq);
495 
496 	ret = nxmit;
497 	if (ndo_xmit) {
498 		u64_stats_update_begin(&rq->stats.syncp);
499 		rq->stats.vs.peer_tq_xdp_xmit += nxmit;
500 		rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
501 		u64_stats_update_end(&rq->stats.syncp);
502 	}
503 
504 out:
505 	rcu_read_unlock();
506 
507 	return ret;
508 }
509 
510 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
511 			     struct xdp_frame **frames, u32 flags)
512 {
513 	int err;
514 
515 	err = veth_xdp_xmit(dev, n, frames, flags, true);
516 	if (err < 0) {
517 		struct veth_priv *priv = netdev_priv(dev);
518 
519 		atomic64_add(n, &priv->dropped);
520 	}
521 
522 	return err;
523 }
524 
525 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
526 {
527 	int sent, i, err = 0, drops;
528 
529 	sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
530 	if (sent < 0) {
531 		err = sent;
532 		sent = 0;
533 	}
534 
535 	for (i = sent; unlikely(i < bq->count); i++)
536 		xdp_return_frame(bq->q[i]);
537 
538 	drops = bq->count - sent;
539 	trace_xdp_bulk_tx(rq->dev, sent, drops, err);
540 
541 	u64_stats_update_begin(&rq->stats.syncp);
542 	rq->stats.vs.xdp_tx += sent;
543 	rq->stats.vs.xdp_tx_err += drops;
544 	u64_stats_update_end(&rq->stats.syncp);
545 
546 	bq->count = 0;
547 }
548 
549 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
550 {
551 	struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
552 	struct net_device *rcv;
553 	struct veth_rq *rcv_rq;
554 
555 	rcu_read_lock();
556 	veth_xdp_flush_bq(rq, bq);
557 	rcv = rcu_dereference(priv->peer);
558 	if (unlikely(!rcv))
559 		goto out;
560 
561 	rcv_priv = netdev_priv(rcv);
562 	rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
563 	/* xdp_ring is initialized on receive side? */
564 	if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
565 		goto out;
566 
567 	__veth_xdp_flush(rcv_rq);
568 out:
569 	rcu_read_unlock();
570 }
571 
572 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
573 		       struct veth_xdp_tx_bq *bq)
574 {
575 	struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
576 
577 	if (unlikely(!frame))
578 		return -EOVERFLOW;
579 
580 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
581 		veth_xdp_flush_bq(rq, bq);
582 
583 	bq->q[bq->count++] = frame;
584 
585 	return 0;
586 }
587 
588 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
589 					  struct xdp_frame *frame,
590 					  struct veth_xdp_tx_bq *bq,
591 					  struct veth_stats *stats)
592 {
593 	struct xdp_frame orig_frame;
594 	struct bpf_prog *xdp_prog;
595 
596 	rcu_read_lock();
597 	xdp_prog = rcu_dereference(rq->xdp_prog);
598 	if (likely(xdp_prog)) {
599 		struct xdp_buff xdp;
600 		u32 act;
601 
602 		xdp_convert_frame_to_buff(frame, &xdp);
603 		xdp.rxq = &rq->xdp_rxq;
604 
605 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
606 
607 		switch (act) {
608 		case XDP_PASS:
609 			if (xdp_update_frame_from_buff(&xdp, frame))
610 				goto err_xdp;
611 			break;
612 		case XDP_TX:
613 			orig_frame = *frame;
614 			xdp.rxq->mem = frame->mem;
615 			if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
616 				trace_xdp_exception(rq->dev, xdp_prog, act);
617 				frame = &orig_frame;
618 				stats->rx_drops++;
619 				goto err_xdp;
620 			}
621 			stats->xdp_tx++;
622 			rcu_read_unlock();
623 			goto xdp_xmit;
624 		case XDP_REDIRECT:
625 			orig_frame = *frame;
626 			xdp.rxq->mem = frame->mem;
627 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
628 				frame = &orig_frame;
629 				stats->rx_drops++;
630 				goto err_xdp;
631 			}
632 			stats->xdp_redirect++;
633 			rcu_read_unlock();
634 			goto xdp_xmit;
635 		default:
636 			bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
637 			fallthrough;
638 		case XDP_ABORTED:
639 			trace_xdp_exception(rq->dev, xdp_prog, act);
640 			fallthrough;
641 		case XDP_DROP:
642 			stats->xdp_drops++;
643 			goto err_xdp;
644 		}
645 	}
646 	rcu_read_unlock();
647 
648 	return frame;
649 err_xdp:
650 	rcu_read_unlock();
651 	xdp_return_frame(frame);
652 xdp_xmit:
653 	return NULL;
654 }
655 
656 /* frames array contains VETH_XDP_BATCH at most */
657 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
658 				  int n_xdpf, struct veth_xdp_tx_bq *bq,
659 				  struct veth_stats *stats)
660 {
661 	void *skbs[VETH_XDP_BATCH];
662 	int i;
663 
664 	if (xdp_alloc_skb_bulk(skbs, n_xdpf,
665 			       GFP_ATOMIC | __GFP_ZERO) < 0) {
666 		for (i = 0; i < n_xdpf; i++)
667 			xdp_return_frame(frames[i]);
668 		stats->rx_drops += n_xdpf;
669 
670 		return;
671 	}
672 
673 	for (i = 0; i < n_xdpf; i++) {
674 		struct sk_buff *skb = skbs[i];
675 
676 		skb = __xdp_build_skb_from_frame(frames[i], skb,
677 						 rq->dev);
678 		if (!skb) {
679 			xdp_return_frame(frames[i]);
680 			stats->rx_drops++;
681 			continue;
682 		}
683 		napi_gro_receive(&rq->xdp_napi, skb);
684 	}
685 }
686 
687 static void veth_xdp_get(struct xdp_buff *xdp)
688 {
689 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
690 	int i;
691 
692 	get_page(virt_to_page(xdp->data));
693 	if (likely(!xdp_buff_has_frags(xdp)))
694 		return;
695 
696 	for (i = 0; i < sinfo->nr_frags; i++)
697 		__skb_frag_ref(&sinfo->frags[i]);
698 }
699 
700 static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq,
701 					struct xdp_buff *xdp,
702 					struct sk_buff **pskb)
703 {
704 	struct sk_buff *skb = *pskb;
705 	u32 frame_sz;
706 
707 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
708 	    skb_shinfo(skb)->nr_frags) {
709 		u32 size, len, max_head_size, off;
710 		struct sk_buff *nskb;
711 		struct page *page;
712 		int i, head_off;
713 
714 		/* We need a private copy of the skb and data buffers since
715 		 * the ebpf program can modify it. We segment the original skb
716 		 * into order-0 pages without linearize it.
717 		 *
718 		 * Make sure we have enough space for linear and paged area
719 		 */
720 		max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE -
721 						  VETH_XDP_HEADROOM);
722 		if (skb->len > PAGE_SIZE * MAX_SKB_FRAGS + max_head_size)
723 			goto drop;
724 
725 		/* Allocate skb head */
726 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
727 		if (!page)
728 			goto drop;
729 
730 		nskb = build_skb(page_address(page), PAGE_SIZE);
731 		if (!nskb) {
732 			put_page(page);
733 			goto drop;
734 		}
735 
736 		skb_reserve(nskb, VETH_XDP_HEADROOM);
737 		size = min_t(u32, skb->len, max_head_size);
738 		if (skb_copy_bits(skb, 0, nskb->data, size)) {
739 			consume_skb(nskb);
740 			goto drop;
741 		}
742 		skb_put(nskb, size);
743 
744 		skb_copy_header(nskb, skb);
745 		head_off = skb_headroom(nskb) - skb_headroom(skb);
746 		skb_headers_offset_update(nskb, head_off);
747 
748 		/* Allocate paged area of new skb */
749 		off = size;
750 		len = skb->len - off;
751 
752 		for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
753 			page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
754 			if (!page) {
755 				consume_skb(nskb);
756 				goto drop;
757 			}
758 
759 			size = min_t(u32, len, PAGE_SIZE);
760 			skb_add_rx_frag(nskb, i, page, 0, size, PAGE_SIZE);
761 			if (skb_copy_bits(skb, off, page_address(page),
762 					  size)) {
763 				consume_skb(nskb);
764 				goto drop;
765 			}
766 
767 			len -= size;
768 			off += size;
769 		}
770 
771 		consume_skb(skb);
772 		skb = nskb;
773 	} else if (skb_headroom(skb) < XDP_PACKET_HEADROOM &&
774 		   pskb_expand_head(skb, VETH_XDP_HEADROOM, 0, GFP_ATOMIC)) {
775 		goto drop;
776 	}
777 
778 	/* SKB "head" area always have tailroom for skb_shared_info */
779 	frame_sz = skb_end_pointer(skb) - skb->head;
780 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
781 	xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq);
782 	xdp_prepare_buff(xdp, skb->head, skb_headroom(skb),
783 			 skb_headlen(skb), true);
784 
785 	if (skb_is_nonlinear(skb)) {
786 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
787 		xdp_buff_set_frags_flag(xdp);
788 	} else {
789 		xdp_buff_clear_frags_flag(xdp);
790 	}
791 	*pskb = skb;
792 
793 	return 0;
794 drop:
795 	consume_skb(skb);
796 	*pskb = NULL;
797 
798 	return -ENOMEM;
799 }
800 
801 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
802 					struct sk_buff *skb,
803 					struct veth_xdp_tx_bq *bq,
804 					struct veth_stats *stats)
805 {
806 	void *orig_data, *orig_data_end;
807 	struct bpf_prog *xdp_prog;
808 	struct xdp_buff xdp;
809 	u32 act, metalen;
810 	int off;
811 
812 	skb_prepare_for_gro(skb);
813 
814 	rcu_read_lock();
815 	xdp_prog = rcu_dereference(rq->xdp_prog);
816 	if (unlikely(!xdp_prog)) {
817 		rcu_read_unlock();
818 		goto out;
819 	}
820 
821 	__skb_push(skb, skb->data - skb_mac_header(skb));
822 	if (veth_convert_skb_to_xdp_buff(rq, &xdp, &skb))
823 		goto drop;
824 
825 	orig_data = xdp.data;
826 	orig_data_end = xdp.data_end;
827 
828 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
829 
830 	switch (act) {
831 	case XDP_PASS:
832 		break;
833 	case XDP_TX:
834 		veth_xdp_get(&xdp);
835 		consume_skb(skb);
836 		xdp.rxq->mem = rq->xdp_mem;
837 		if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
838 			trace_xdp_exception(rq->dev, xdp_prog, act);
839 			stats->rx_drops++;
840 			goto err_xdp;
841 		}
842 		stats->xdp_tx++;
843 		rcu_read_unlock();
844 		goto xdp_xmit;
845 	case XDP_REDIRECT:
846 		veth_xdp_get(&xdp);
847 		consume_skb(skb);
848 		xdp.rxq->mem = rq->xdp_mem;
849 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
850 			stats->rx_drops++;
851 			goto err_xdp;
852 		}
853 		stats->xdp_redirect++;
854 		rcu_read_unlock();
855 		goto xdp_xmit;
856 	default:
857 		bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
858 		fallthrough;
859 	case XDP_ABORTED:
860 		trace_xdp_exception(rq->dev, xdp_prog, act);
861 		fallthrough;
862 	case XDP_DROP:
863 		stats->xdp_drops++;
864 		goto xdp_drop;
865 	}
866 	rcu_read_unlock();
867 
868 	/* check if bpf_xdp_adjust_head was used */
869 	off = orig_data - xdp.data;
870 	if (off > 0)
871 		__skb_push(skb, off);
872 	else if (off < 0)
873 		__skb_pull(skb, -off);
874 
875 	skb_reset_mac_header(skb);
876 
877 	/* check if bpf_xdp_adjust_tail was used */
878 	off = xdp.data_end - orig_data_end;
879 	if (off != 0)
880 		__skb_put(skb, off); /* positive on grow, negative on shrink */
881 
882 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
883 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
884 	 */
885 	if (xdp_buff_has_frags(&xdp))
886 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
887 	else
888 		skb->data_len = 0;
889 
890 	skb->protocol = eth_type_trans(skb, rq->dev);
891 
892 	metalen = xdp.data - xdp.data_meta;
893 	if (metalen)
894 		skb_metadata_set(skb, metalen);
895 out:
896 	return skb;
897 drop:
898 	stats->rx_drops++;
899 xdp_drop:
900 	rcu_read_unlock();
901 	kfree_skb(skb);
902 	return NULL;
903 err_xdp:
904 	rcu_read_unlock();
905 	xdp_return_buff(&xdp);
906 xdp_xmit:
907 	return NULL;
908 }
909 
910 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
911 			struct veth_xdp_tx_bq *bq,
912 			struct veth_stats *stats)
913 {
914 	int i, done = 0, n_xdpf = 0;
915 	void *xdpf[VETH_XDP_BATCH];
916 
917 	for (i = 0; i < budget; i++) {
918 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
919 
920 		if (!ptr)
921 			break;
922 
923 		if (veth_is_xdp_frame(ptr)) {
924 			/* ndo_xdp_xmit */
925 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
926 
927 			stats->xdp_bytes += xdp_get_frame_len(frame);
928 			frame = veth_xdp_rcv_one(rq, frame, bq, stats);
929 			if (frame) {
930 				/* XDP_PASS */
931 				xdpf[n_xdpf++] = frame;
932 				if (n_xdpf == VETH_XDP_BATCH) {
933 					veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
934 							      bq, stats);
935 					n_xdpf = 0;
936 				}
937 			}
938 		} else {
939 			/* ndo_start_xmit */
940 			struct sk_buff *skb = ptr;
941 
942 			stats->xdp_bytes += skb->len;
943 			skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
944 			if (skb) {
945 				if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
946 					netif_receive_skb(skb);
947 				else
948 					napi_gro_receive(&rq->xdp_napi, skb);
949 			}
950 		}
951 		done++;
952 	}
953 
954 	if (n_xdpf)
955 		veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
956 
957 	u64_stats_update_begin(&rq->stats.syncp);
958 	rq->stats.vs.xdp_redirect += stats->xdp_redirect;
959 	rq->stats.vs.xdp_bytes += stats->xdp_bytes;
960 	rq->stats.vs.xdp_drops += stats->xdp_drops;
961 	rq->stats.vs.rx_drops += stats->rx_drops;
962 	rq->stats.vs.xdp_packets += done;
963 	u64_stats_update_end(&rq->stats.syncp);
964 
965 	return done;
966 }
967 
968 static int veth_poll(struct napi_struct *napi, int budget)
969 {
970 	struct veth_rq *rq =
971 		container_of(napi, struct veth_rq, xdp_napi);
972 	struct veth_stats stats = {};
973 	struct veth_xdp_tx_bq bq;
974 	int done;
975 
976 	bq.count = 0;
977 
978 	xdp_set_return_frame_no_direct();
979 	done = veth_xdp_rcv(rq, budget, &bq, &stats);
980 
981 	if (done < budget && napi_complete_done(napi, done)) {
982 		/* Write rx_notify_masked before reading ptr_ring */
983 		smp_store_mb(rq->rx_notify_masked, false);
984 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
985 			if (napi_schedule_prep(&rq->xdp_napi)) {
986 				WRITE_ONCE(rq->rx_notify_masked, true);
987 				__napi_schedule(&rq->xdp_napi);
988 			}
989 		}
990 	}
991 
992 	if (stats.xdp_tx > 0)
993 		veth_xdp_flush(rq, &bq);
994 	if (stats.xdp_redirect > 0)
995 		xdp_do_flush();
996 	xdp_clear_return_frame_no_direct();
997 
998 	return done;
999 }
1000 
1001 static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
1002 {
1003 	struct veth_priv *priv = netdev_priv(dev);
1004 	int err, i;
1005 
1006 	for (i = start; i < end; i++) {
1007 		struct veth_rq *rq = &priv->rq[i];
1008 
1009 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
1010 		if (err)
1011 			goto err_xdp_ring;
1012 	}
1013 
1014 	for (i = start; i < end; i++) {
1015 		struct veth_rq *rq = &priv->rq[i];
1016 
1017 		napi_enable(&rq->xdp_napi);
1018 		rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1019 	}
1020 
1021 	return 0;
1022 
1023 err_xdp_ring:
1024 	for (i--; i >= start; i--)
1025 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
1026 
1027 	return err;
1028 }
1029 
1030 static int __veth_napi_enable(struct net_device *dev)
1031 {
1032 	return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1033 }
1034 
1035 static void veth_napi_del_range(struct net_device *dev, int start, int end)
1036 {
1037 	struct veth_priv *priv = netdev_priv(dev);
1038 	int i;
1039 
1040 	for (i = start; i < end; i++) {
1041 		struct veth_rq *rq = &priv->rq[i];
1042 
1043 		rcu_assign_pointer(priv->rq[i].napi, NULL);
1044 		napi_disable(&rq->xdp_napi);
1045 		__netif_napi_del(&rq->xdp_napi);
1046 	}
1047 	synchronize_net();
1048 
1049 	for (i = start; i < end; i++) {
1050 		struct veth_rq *rq = &priv->rq[i];
1051 
1052 		rq->rx_notify_masked = false;
1053 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
1054 	}
1055 }
1056 
1057 static void veth_napi_del(struct net_device *dev)
1058 {
1059 	veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
1060 }
1061 
1062 static bool veth_gro_requested(const struct net_device *dev)
1063 {
1064 	return !!(dev->wanted_features & NETIF_F_GRO);
1065 }
1066 
1067 static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
1068 				 bool napi_already_on)
1069 {
1070 	struct veth_priv *priv = netdev_priv(dev);
1071 	int err, i;
1072 
1073 	for (i = start; i < end; i++) {
1074 		struct veth_rq *rq = &priv->rq[i];
1075 
1076 		if (!napi_already_on)
1077 			netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
1078 		err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
1079 		if (err < 0)
1080 			goto err_rxq_reg;
1081 
1082 		err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
1083 						 MEM_TYPE_PAGE_SHARED,
1084 						 NULL);
1085 		if (err < 0)
1086 			goto err_reg_mem;
1087 
1088 		/* Save original mem info as it can be overwritten */
1089 		rq->xdp_mem = rq->xdp_rxq.mem;
1090 	}
1091 	return 0;
1092 
1093 err_reg_mem:
1094 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
1095 err_rxq_reg:
1096 	for (i--; i >= start; i--) {
1097 		struct veth_rq *rq = &priv->rq[i];
1098 
1099 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1100 		if (!napi_already_on)
1101 			netif_napi_del(&rq->xdp_napi);
1102 	}
1103 
1104 	return err;
1105 }
1106 
1107 static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
1108 				   bool delete_napi)
1109 {
1110 	struct veth_priv *priv = netdev_priv(dev);
1111 	int i;
1112 
1113 	for (i = start; i < end; i++) {
1114 		struct veth_rq *rq = &priv->rq[i];
1115 
1116 		rq->xdp_rxq.mem = rq->xdp_mem;
1117 		xdp_rxq_info_unreg(&rq->xdp_rxq);
1118 
1119 		if (delete_napi)
1120 			netif_napi_del(&rq->xdp_napi);
1121 	}
1122 }
1123 
1124 static int veth_enable_xdp(struct net_device *dev)
1125 {
1126 	bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP);
1127 	struct veth_priv *priv = netdev_priv(dev);
1128 	int err, i;
1129 
1130 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
1131 		err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
1132 		if (err)
1133 			return err;
1134 
1135 		if (!napi_already_on) {
1136 			err = __veth_napi_enable(dev);
1137 			if (err) {
1138 				veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
1139 				return err;
1140 			}
1141 
1142 			if (!veth_gro_requested(dev)) {
1143 				/* user-space did not require GRO, but adding XDP
1144 				 * is supposed to get GRO working
1145 				 */
1146 				dev->features |= NETIF_F_GRO;
1147 				netdev_features_change(dev);
1148 			}
1149 		}
1150 	}
1151 
1152 	for (i = 0; i < dev->real_num_rx_queues; i++) {
1153 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
1154 		rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static void veth_disable_xdp(struct net_device *dev)
1161 {
1162 	struct veth_priv *priv = netdev_priv(dev);
1163 	int i;
1164 
1165 	for (i = 0; i < dev->real_num_rx_queues; i++)
1166 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
1167 
1168 	if (!netif_running(dev) || !veth_gro_requested(dev)) {
1169 		veth_napi_del(dev);
1170 
1171 		/* if user-space did not require GRO, since adding XDP
1172 		 * enabled it, clear it now
1173 		 */
1174 		if (!veth_gro_requested(dev) && netif_running(dev)) {
1175 			dev->features &= ~NETIF_F_GRO;
1176 			netdev_features_change(dev);
1177 		}
1178 	}
1179 
1180 	veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
1181 }
1182 
1183 static int veth_napi_enable_range(struct net_device *dev, int start, int end)
1184 {
1185 	struct veth_priv *priv = netdev_priv(dev);
1186 	int err, i;
1187 
1188 	for (i = start; i < end; i++) {
1189 		struct veth_rq *rq = &priv->rq[i];
1190 
1191 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
1192 	}
1193 
1194 	err = __veth_napi_enable_range(dev, start, end);
1195 	if (err) {
1196 		for (i = start; i < end; i++) {
1197 			struct veth_rq *rq = &priv->rq[i];
1198 
1199 			netif_napi_del(&rq->xdp_napi);
1200 		}
1201 		return err;
1202 	}
1203 	return err;
1204 }
1205 
1206 static int veth_napi_enable(struct net_device *dev)
1207 {
1208 	return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
1209 }
1210 
1211 static void veth_disable_range_safe(struct net_device *dev, int start, int end)
1212 {
1213 	struct veth_priv *priv = netdev_priv(dev);
1214 
1215 	if (start >= end)
1216 		return;
1217 
1218 	if (priv->_xdp_prog) {
1219 		veth_napi_del_range(dev, start, end);
1220 		veth_disable_xdp_range(dev, start, end, false);
1221 	} else if (veth_gro_requested(dev)) {
1222 		veth_napi_del_range(dev, start, end);
1223 	}
1224 }
1225 
1226 static int veth_enable_range_safe(struct net_device *dev, int start, int end)
1227 {
1228 	struct veth_priv *priv = netdev_priv(dev);
1229 	int err;
1230 
1231 	if (start >= end)
1232 		return 0;
1233 
1234 	if (priv->_xdp_prog) {
1235 		/* these channels are freshly initialized, napi is not on there even
1236 		 * when GRO is requeste
1237 		 */
1238 		err = veth_enable_xdp_range(dev, start, end, false);
1239 		if (err)
1240 			return err;
1241 
1242 		err = __veth_napi_enable_range(dev, start, end);
1243 		if (err) {
1244 			/* on error always delete the newly added napis */
1245 			veth_disable_xdp_range(dev, start, end, true);
1246 			return err;
1247 		}
1248 	} else if (veth_gro_requested(dev)) {
1249 		return veth_napi_enable_range(dev, start, end);
1250 	}
1251 	return 0;
1252 }
1253 
1254 static int veth_set_channels(struct net_device *dev,
1255 			     struct ethtool_channels *ch)
1256 {
1257 	struct veth_priv *priv = netdev_priv(dev);
1258 	unsigned int old_rx_count, new_rx_count;
1259 	struct veth_priv *peer_priv;
1260 	struct net_device *peer;
1261 	int err;
1262 
1263 	/* sanity check. Upper bounds are already enforced by the caller */
1264 	if (!ch->rx_count || !ch->tx_count)
1265 		return -EINVAL;
1266 
1267 	/* avoid braking XDP, if that is enabled */
1268 	peer = rtnl_dereference(priv->peer);
1269 	peer_priv = peer ? netdev_priv(peer) : NULL;
1270 	if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
1271 		return -EINVAL;
1272 
1273 	if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
1274 		return -EINVAL;
1275 
1276 	old_rx_count = dev->real_num_rx_queues;
1277 	new_rx_count = ch->rx_count;
1278 	if (netif_running(dev)) {
1279 		/* turn device off */
1280 		netif_carrier_off(dev);
1281 		if (peer)
1282 			netif_carrier_off(peer);
1283 
1284 		/* try to allocate new resurces, as needed*/
1285 		err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
1286 		if (err)
1287 			goto out;
1288 	}
1289 
1290 	err = netif_set_real_num_rx_queues(dev, ch->rx_count);
1291 	if (err)
1292 		goto revert;
1293 
1294 	err = netif_set_real_num_tx_queues(dev, ch->tx_count);
1295 	if (err) {
1296 		int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
1297 
1298 		/* this error condition could happen only if rx and tx change
1299 		 * in opposite directions (e.g. tx nr raises, rx nr decreases)
1300 		 * and we can't do anything to fully restore the original
1301 		 * status
1302 		 */
1303 		if (err2)
1304 			pr_warn("Can't restore rx queues config %d -> %d %d",
1305 				new_rx_count, old_rx_count, err2);
1306 		else
1307 			goto revert;
1308 	}
1309 
1310 out:
1311 	if (netif_running(dev)) {
1312 		/* note that we need to swap the arguments WRT the enable part
1313 		 * to identify the range we have to disable
1314 		 */
1315 		veth_disable_range_safe(dev, new_rx_count, old_rx_count);
1316 		netif_carrier_on(dev);
1317 		if (peer)
1318 			netif_carrier_on(peer);
1319 	}
1320 	return err;
1321 
1322 revert:
1323 	new_rx_count = old_rx_count;
1324 	old_rx_count = ch->rx_count;
1325 	goto out;
1326 }
1327 
1328 static int veth_open(struct net_device *dev)
1329 {
1330 	struct veth_priv *priv = netdev_priv(dev);
1331 	struct net_device *peer = rtnl_dereference(priv->peer);
1332 	int err;
1333 
1334 	if (!peer)
1335 		return -ENOTCONN;
1336 
1337 	if (priv->_xdp_prog) {
1338 		err = veth_enable_xdp(dev);
1339 		if (err)
1340 			return err;
1341 	} else if (veth_gro_requested(dev)) {
1342 		err = veth_napi_enable(dev);
1343 		if (err)
1344 			return err;
1345 	}
1346 
1347 	if (peer->flags & IFF_UP) {
1348 		netif_carrier_on(dev);
1349 		netif_carrier_on(peer);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int veth_close(struct net_device *dev)
1356 {
1357 	struct veth_priv *priv = netdev_priv(dev);
1358 	struct net_device *peer = rtnl_dereference(priv->peer);
1359 
1360 	netif_carrier_off(dev);
1361 	if (peer)
1362 		netif_carrier_off(peer);
1363 
1364 	if (priv->_xdp_prog)
1365 		veth_disable_xdp(dev);
1366 	else if (veth_gro_requested(dev))
1367 		veth_napi_del(dev);
1368 
1369 	return 0;
1370 }
1371 
1372 static int is_valid_veth_mtu(int mtu)
1373 {
1374 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1375 }
1376 
1377 static int veth_alloc_queues(struct net_device *dev)
1378 {
1379 	struct veth_priv *priv = netdev_priv(dev);
1380 	int i;
1381 
1382 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT);
1383 	if (!priv->rq)
1384 		return -ENOMEM;
1385 
1386 	for (i = 0; i < dev->num_rx_queues; i++) {
1387 		priv->rq[i].dev = dev;
1388 		u64_stats_init(&priv->rq[i].stats.syncp);
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static void veth_free_queues(struct net_device *dev)
1395 {
1396 	struct veth_priv *priv = netdev_priv(dev);
1397 
1398 	kfree(priv->rq);
1399 }
1400 
1401 static int veth_dev_init(struct net_device *dev)
1402 {
1403 	int err;
1404 
1405 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1406 	if (!dev->lstats)
1407 		return -ENOMEM;
1408 
1409 	err = veth_alloc_queues(dev);
1410 	if (err) {
1411 		free_percpu(dev->lstats);
1412 		return err;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static void veth_dev_free(struct net_device *dev)
1419 {
1420 	veth_free_queues(dev);
1421 	free_percpu(dev->lstats);
1422 }
1423 
1424 #ifdef CONFIG_NET_POLL_CONTROLLER
1425 static void veth_poll_controller(struct net_device *dev)
1426 {
1427 	/* veth only receives frames when its peer sends one
1428 	 * Since it has nothing to do with disabling irqs, we are guaranteed
1429 	 * never to have pending data when we poll for it so
1430 	 * there is nothing to do here.
1431 	 *
1432 	 * We need this though so netpoll recognizes us as an interface that
1433 	 * supports polling, which enables bridge devices in virt setups to
1434 	 * still use netconsole
1435 	 */
1436 }
1437 #endif	/* CONFIG_NET_POLL_CONTROLLER */
1438 
1439 static int veth_get_iflink(const struct net_device *dev)
1440 {
1441 	struct veth_priv *priv = netdev_priv(dev);
1442 	struct net_device *peer;
1443 	int iflink;
1444 
1445 	rcu_read_lock();
1446 	peer = rcu_dereference(priv->peer);
1447 	iflink = peer ? peer->ifindex : 0;
1448 	rcu_read_unlock();
1449 
1450 	return iflink;
1451 }
1452 
1453 static netdev_features_t veth_fix_features(struct net_device *dev,
1454 					   netdev_features_t features)
1455 {
1456 	struct veth_priv *priv = netdev_priv(dev);
1457 	struct net_device *peer;
1458 
1459 	peer = rtnl_dereference(priv->peer);
1460 	if (peer) {
1461 		struct veth_priv *peer_priv = netdev_priv(peer);
1462 
1463 		if (peer_priv->_xdp_prog)
1464 			features &= ~NETIF_F_GSO_SOFTWARE;
1465 	}
1466 	if (priv->_xdp_prog)
1467 		features |= NETIF_F_GRO;
1468 
1469 	return features;
1470 }
1471 
1472 static int veth_set_features(struct net_device *dev,
1473 			     netdev_features_t features)
1474 {
1475 	netdev_features_t changed = features ^ dev->features;
1476 	struct veth_priv *priv = netdev_priv(dev);
1477 	int err;
1478 
1479 	if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
1480 		return 0;
1481 
1482 	if (features & NETIF_F_GRO) {
1483 		err = veth_napi_enable(dev);
1484 		if (err)
1485 			return err;
1486 	} else {
1487 		veth_napi_del(dev);
1488 	}
1489 	return 0;
1490 }
1491 
1492 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1493 {
1494 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1495 	struct net_device *peer;
1496 
1497 	if (new_hr < 0)
1498 		new_hr = 0;
1499 
1500 	rcu_read_lock();
1501 	peer = rcu_dereference(priv->peer);
1502 	if (unlikely(!peer))
1503 		goto out;
1504 
1505 	peer_priv = netdev_priv(peer);
1506 	priv->requested_headroom = new_hr;
1507 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1508 	dev->needed_headroom = new_hr;
1509 	peer->needed_headroom = new_hr;
1510 
1511 out:
1512 	rcu_read_unlock();
1513 }
1514 
1515 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1516 			struct netlink_ext_ack *extack)
1517 {
1518 	struct veth_priv *priv = netdev_priv(dev);
1519 	struct bpf_prog *old_prog;
1520 	struct net_device *peer;
1521 	unsigned int max_mtu;
1522 	int err;
1523 
1524 	old_prog = priv->_xdp_prog;
1525 	priv->_xdp_prog = prog;
1526 	peer = rtnl_dereference(priv->peer);
1527 
1528 	if (prog) {
1529 		if (!peer) {
1530 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1531 			err = -ENOTCONN;
1532 			goto err;
1533 		}
1534 
1535 		max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) -
1536 			  peer->hard_header_len;
1537 		/* Allow increasing the max_mtu if the program supports
1538 		 * XDP fragments.
1539 		 */
1540 		if (prog->aux->xdp_has_frags)
1541 			max_mtu += PAGE_SIZE * MAX_SKB_FRAGS;
1542 
1543 		if (peer->mtu > max_mtu) {
1544 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1545 			err = -ERANGE;
1546 			goto err;
1547 		}
1548 
1549 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1550 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1551 			err = -ENOSPC;
1552 			goto err;
1553 		}
1554 
1555 		if (dev->flags & IFF_UP) {
1556 			err = veth_enable_xdp(dev);
1557 			if (err) {
1558 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1559 				goto err;
1560 			}
1561 		}
1562 
1563 		if (!old_prog) {
1564 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1565 			peer->max_mtu = max_mtu;
1566 		}
1567 	}
1568 
1569 	if (old_prog) {
1570 		if (!prog) {
1571 			if (dev->flags & IFF_UP)
1572 				veth_disable_xdp(dev);
1573 
1574 			if (peer) {
1575 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1576 				peer->max_mtu = ETH_MAX_MTU;
1577 			}
1578 		}
1579 		bpf_prog_put(old_prog);
1580 	}
1581 
1582 	if ((!!old_prog ^ !!prog) && peer)
1583 		netdev_update_features(peer);
1584 
1585 	return 0;
1586 err:
1587 	priv->_xdp_prog = old_prog;
1588 
1589 	return err;
1590 }
1591 
1592 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1593 {
1594 	switch (xdp->command) {
1595 	case XDP_SETUP_PROG:
1596 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1597 	default:
1598 		return -EINVAL;
1599 	}
1600 }
1601 
1602 static const struct net_device_ops veth_netdev_ops = {
1603 	.ndo_init            = veth_dev_init,
1604 	.ndo_open            = veth_open,
1605 	.ndo_stop            = veth_close,
1606 	.ndo_start_xmit      = veth_xmit,
1607 	.ndo_get_stats64     = veth_get_stats64,
1608 	.ndo_set_rx_mode     = veth_set_multicast_list,
1609 	.ndo_set_mac_address = eth_mac_addr,
1610 #ifdef CONFIG_NET_POLL_CONTROLLER
1611 	.ndo_poll_controller	= veth_poll_controller,
1612 #endif
1613 	.ndo_get_iflink		= veth_get_iflink,
1614 	.ndo_fix_features	= veth_fix_features,
1615 	.ndo_set_features	= veth_set_features,
1616 	.ndo_features_check	= passthru_features_check,
1617 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1618 	.ndo_bpf		= veth_xdp,
1619 	.ndo_xdp_xmit		= veth_ndo_xdp_xmit,
1620 	.ndo_get_peer_dev	= veth_peer_dev,
1621 };
1622 
1623 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1624 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1625 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1626 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1627 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1628 
1629 static void veth_setup(struct net_device *dev)
1630 {
1631 	ether_setup(dev);
1632 
1633 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1634 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1635 	dev->priv_flags |= IFF_NO_QUEUE;
1636 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1637 
1638 	dev->netdev_ops = &veth_netdev_ops;
1639 	dev->ethtool_ops = &veth_ethtool_ops;
1640 	dev->features |= NETIF_F_LLTX;
1641 	dev->features |= VETH_FEATURES;
1642 	dev->vlan_features = dev->features &
1643 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1644 			       NETIF_F_HW_VLAN_STAG_TX |
1645 			       NETIF_F_HW_VLAN_CTAG_RX |
1646 			       NETIF_F_HW_VLAN_STAG_RX);
1647 	dev->needs_free_netdev = true;
1648 	dev->priv_destructor = veth_dev_free;
1649 	dev->max_mtu = ETH_MAX_MTU;
1650 
1651 	dev->hw_features = VETH_FEATURES;
1652 	dev->hw_enc_features = VETH_FEATURES;
1653 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1654 	netif_set_tso_max_size(dev, GSO_MAX_SIZE);
1655 }
1656 
1657 /*
1658  * netlink interface
1659  */
1660 
1661 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1662 			 struct netlink_ext_ack *extack)
1663 {
1664 	if (tb[IFLA_ADDRESS]) {
1665 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1666 			return -EINVAL;
1667 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1668 			return -EADDRNOTAVAIL;
1669 	}
1670 	if (tb[IFLA_MTU]) {
1671 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1672 			return -EINVAL;
1673 	}
1674 	return 0;
1675 }
1676 
1677 static struct rtnl_link_ops veth_link_ops;
1678 
1679 static void veth_disable_gro(struct net_device *dev)
1680 {
1681 	dev->features &= ~NETIF_F_GRO;
1682 	dev->wanted_features &= ~NETIF_F_GRO;
1683 	netdev_update_features(dev);
1684 }
1685 
1686 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
1687 {
1688 	int err;
1689 
1690 	if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
1691 		err = netif_set_real_num_tx_queues(dev, 1);
1692 		if (err)
1693 			return err;
1694 	}
1695 	if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
1696 		err = netif_set_real_num_rx_queues(dev, 1);
1697 		if (err)
1698 			return err;
1699 	}
1700 	return 0;
1701 }
1702 
1703 static int veth_newlink(struct net *src_net, struct net_device *dev,
1704 			struct nlattr *tb[], struct nlattr *data[],
1705 			struct netlink_ext_ack *extack)
1706 {
1707 	int err;
1708 	struct net_device *peer;
1709 	struct veth_priv *priv;
1710 	char ifname[IFNAMSIZ];
1711 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1712 	unsigned char name_assign_type;
1713 	struct ifinfomsg *ifmp;
1714 	struct net *net;
1715 
1716 	/*
1717 	 * create and register peer first
1718 	 */
1719 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1720 		struct nlattr *nla_peer;
1721 
1722 		nla_peer = data[VETH_INFO_PEER];
1723 		ifmp = nla_data(nla_peer);
1724 		err = rtnl_nla_parse_ifla(peer_tb,
1725 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1726 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1727 					  NULL);
1728 		if (err < 0)
1729 			return err;
1730 
1731 		err = veth_validate(peer_tb, NULL, extack);
1732 		if (err < 0)
1733 			return err;
1734 
1735 		tbp = peer_tb;
1736 	} else {
1737 		ifmp = NULL;
1738 		tbp = tb;
1739 	}
1740 
1741 	if (ifmp && tbp[IFLA_IFNAME]) {
1742 		nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1743 		name_assign_type = NET_NAME_USER;
1744 	} else {
1745 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1746 		name_assign_type = NET_NAME_ENUM;
1747 	}
1748 
1749 	net = rtnl_link_get_net(src_net, tbp);
1750 	if (IS_ERR(net))
1751 		return PTR_ERR(net);
1752 
1753 	peer = rtnl_create_link(net, ifname, name_assign_type,
1754 				&veth_link_ops, tbp, extack);
1755 	if (IS_ERR(peer)) {
1756 		put_net(net);
1757 		return PTR_ERR(peer);
1758 	}
1759 
1760 	if (!ifmp || !tbp[IFLA_ADDRESS])
1761 		eth_hw_addr_random(peer);
1762 
1763 	if (ifmp && (dev->ifindex != 0))
1764 		peer->ifindex = ifmp->ifi_index;
1765 
1766 	netif_inherit_tso_max(peer, dev);
1767 
1768 	err = register_netdevice(peer);
1769 	put_net(net);
1770 	net = NULL;
1771 	if (err < 0)
1772 		goto err_register_peer;
1773 
1774 	/* keep GRO disabled by default to be consistent with the established
1775 	 * veth behavior
1776 	 */
1777 	veth_disable_gro(peer);
1778 	netif_carrier_off(peer);
1779 
1780 	err = rtnl_configure_link(peer, ifmp);
1781 	if (err < 0)
1782 		goto err_configure_peer;
1783 
1784 	/*
1785 	 * register dev last
1786 	 *
1787 	 * note, that since we've registered new device the dev's name
1788 	 * should be re-allocated
1789 	 */
1790 
1791 	if (tb[IFLA_ADDRESS] == NULL)
1792 		eth_hw_addr_random(dev);
1793 
1794 	if (tb[IFLA_IFNAME])
1795 		nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1796 	else
1797 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1798 
1799 	err = register_netdevice(dev);
1800 	if (err < 0)
1801 		goto err_register_dev;
1802 
1803 	netif_carrier_off(dev);
1804 
1805 	/*
1806 	 * tie the deviced together
1807 	 */
1808 
1809 	priv = netdev_priv(dev);
1810 	rcu_assign_pointer(priv->peer, peer);
1811 	err = veth_init_queues(dev, tb);
1812 	if (err)
1813 		goto err_queues;
1814 
1815 	priv = netdev_priv(peer);
1816 	rcu_assign_pointer(priv->peer, dev);
1817 	err = veth_init_queues(peer, tb);
1818 	if (err)
1819 		goto err_queues;
1820 
1821 	veth_disable_gro(dev);
1822 	return 0;
1823 
1824 err_queues:
1825 	unregister_netdevice(dev);
1826 err_register_dev:
1827 	/* nothing to do */
1828 err_configure_peer:
1829 	unregister_netdevice(peer);
1830 	return err;
1831 
1832 err_register_peer:
1833 	free_netdev(peer);
1834 	return err;
1835 }
1836 
1837 static void veth_dellink(struct net_device *dev, struct list_head *head)
1838 {
1839 	struct veth_priv *priv;
1840 	struct net_device *peer;
1841 
1842 	priv = netdev_priv(dev);
1843 	peer = rtnl_dereference(priv->peer);
1844 
1845 	/* Note : dellink() is called from default_device_exit_batch(),
1846 	 * before a rcu_synchronize() point. The devices are guaranteed
1847 	 * not being freed before one RCU grace period.
1848 	 */
1849 	RCU_INIT_POINTER(priv->peer, NULL);
1850 	unregister_netdevice_queue(dev, head);
1851 
1852 	if (peer) {
1853 		priv = netdev_priv(peer);
1854 		RCU_INIT_POINTER(priv->peer, NULL);
1855 		unregister_netdevice_queue(peer, head);
1856 	}
1857 }
1858 
1859 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1860 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1861 };
1862 
1863 static struct net *veth_get_link_net(const struct net_device *dev)
1864 {
1865 	struct veth_priv *priv = netdev_priv(dev);
1866 	struct net_device *peer = rtnl_dereference(priv->peer);
1867 
1868 	return peer ? dev_net(peer) : dev_net(dev);
1869 }
1870 
1871 static unsigned int veth_get_num_queues(void)
1872 {
1873 	/* enforce the same queue limit as rtnl_create_link */
1874 	int queues = num_possible_cpus();
1875 
1876 	if (queues > 4096)
1877 		queues = 4096;
1878 	return queues;
1879 }
1880 
1881 static struct rtnl_link_ops veth_link_ops = {
1882 	.kind		= DRV_NAME,
1883 	.priv_size	= sizeof(struct veth_priv),
1884 	.setup		= veth_setup,
1885 	.validate	= veth_validate,
1886 	.newlink	= veth_newlink,
1887 	.dellink	= veth_dellink,
1888 	.policy		= veth_policy,
1889 	.maxtype	= VETH_INFO_MAX,
1890 	.get_link_net	= veth_get_link_net,
1891 	.get_num_tx_queues	= veth_get_num_queues,
1892 	.get_num_rx_queues	= veth_get_num_queues,
1893 };
1894 
1895 /*
1896  * init/fini
1897  */
1898 
1899 static __init int veth_init(void)
1900 {
1901 	return rtnl_link_register(&veth_link_ops);
1902 }
1903 
1904 static __exit void veth_exit(void)
1905 {
1906 	rtnl_link_unregister(&veth_link_ops);
1907 }
1908 
1909 module_init(veth_init);
1910 module_exit(veth_exit);
1911 
1912 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1913 MODULE_LICENSE("GPL v2");
1914 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1915