1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/net/veth.c 4 * 5 * Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc 6 * 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com> 9 * 10 */ 11 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ethtool.h> 15 #include <linux/etherdevice.h> 16 #include <linux/u64_stats_sync.h> 17 18 #include <net/rtnetlink.h> 19 #include <net/dst.h> 20 #include <net/xfrm.h> 21 #include <net/xdp.h> 22 #include <linux/veth.h> 23 #include <linux/module.h> 24 #include <linux/bpf.h> 25 #include <linux/filter.h> 26 #include <linux/ptr_ring.h> 27 #include <linux/bpf_trace.h> 28 #include <linux/net_tstamp.h> 29 30 #define DRV_NAME "veth" 31 #define DRV_VERSION "1.0" 32 33 #define VETH_XDP_FLAG BIT(0) 34 #define VETH_RING_SIZE 256 35 #define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN) 36 37 #define VETH_XDP_TX_BULK_SIZE 16 38 #define VETH_XDP_BATCH 16 39 40 struct veth_stats { 41 u64 rx_drops; 42 /* xdp */ 43 u64 xdp_packets; 44 u64 xdp_bytes; 45 u64 xdp_redirect; 46 u64 xdp_drops; 47 u64 xdp_tx; 48 u64 xdp_tx_err; 49 u64 peer_tq_xdp_xmit; 50 u64 peer_tq_xdp_xmit_err; 51 }; 52 53 struct veth_rq_stats { 54 struct veth_stats vs; 55 struct u64_stats_sync syncp; 56 }; 57 58 struct veth_rq { 59 struct napi_struct xdp_napi; 60 struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */ 61 struct net_device *dev; 62 struct bpf_prog __rcu *xdp_prog; 63 struct xdp_mem_info xdp_mem; 64 struct veth_rq_stats stats; 65 bool rx_notify_masked; 66 struct ptr_ring xdp_ring; 67 struct xdp_rxq_info xdp_rxq; 68 }; 69 70 struct veth_priv { 71 struct net_device __rcu *peer; 72 atomic64_t dropped; 73 struct bpf_prog *_xdp_prog; 74 struct veth_rq *rq; 75 unsigned int requested_headroom; 76 }; 77 78 struct veth_xdp_tx_bq { 79 struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE]; 80 unsigned int count; 81 }; 82 83 /* 84 * ethtool interface 85 */ 86 87 struct veth_q_stat_desc { 88 char desc[ETH_GSTRING_LEN]; 89 size_t offset; 90 }; 91 92 #define VETH_RQ_STAT(m) offsetof(struct veth_stats, m) 93 94 static const struct veth_q_stat_desc veth_rq_stats_desc[] = { 95 { "xdp_packets", VETH_RQ_STAT(xdp_packets) }, 96 { "xdp_bytes", VETH_RQ_STAT(xdp_bytes) }, 97 { "drops", VETH_RQ_STAT(rx_drops) }, 98 { "xdp_redirect", VETH_RQ_STAT(xdp_redirect) }, 99 { "xdp_drops", VETH_RQ_STAT(xdp_drops) }, 100 { "xdp_tx", VETH_RQ_STAT(xdp_tx) }, 101 { "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) }, 102 }; 103 104 #define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc) 105 106 static const struct veth_q_stat_desc veth_tq_stats_desc[] = { 107 { "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) }, 108 { "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) }, 109 }; 110 111 #define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc) 112 113 static struct { 114 const char string[ETH_GSTRING_LEN]; 115 } ethtool_stats_keys[] = { 116 { "peer_ifindex" }, 117 }; 118 119 static int veth_get_link_ksettings(struct net_device *dev, 120 struct ethtool_link_ksettings *cmd) 121 { 122 cmd->base.speed = SPEED_10000; 123 cmd->base.duplex = DUPLEX_FULL; 124 cmd->base.port = PORT_TP; 125 cmd->base.autoneg = AUTONEG_DISABLE; 126 return 0; 127 } 128 129 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 130 { 131 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 132 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 133 } 134 135 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 136 { 137 char *p = (char *)buf; 138 int i, j; 139 140 switch(stringset) { 141 case ETH_SS_STATS: 142 memcpy(p, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 143 p += sizeof(ethtool_stats_keys); 144 for (i = 0; i < dev->real_num_rx_queues; i++) { 145 for (j = 0; j < VETH_RQ_STATS_LEN; j++) { 146 snprintf(p, ETH_GSTRING_LEN, 147 "rx_queue_%u_%.18s", 148 i, veth_rq_stats_desc[j].desc); 149 p += ETH_GSTRING_LEN; 150 } 151 } 152 for (i = 0; i < dev->real_num_tx_queues; i++) { 153 for (j = 0; j < VETH_TQ_STATS_LEN; j++) { 154 snprintf(p, ETH_GSTRING_LEN, 155 "tx_queue_%u_%.18s", 156 i, veth_tq_stats_desc[j].desc); 157 p += ETH_GSTRING_LEN; 158 } 159 } 160 break; 161 } 162 } 163 164 static int veth_get_sset_count(struct net_device *dev, int sset) 165 { 166 switch (sset) { 167 case ETH_SS_STATS: 168 return ARRAY_SIZE(ethtool_stats_keys) + 169 VETH_RQ_STATS_LEN * dev->real_num_rx_queues + 170 VETH_TQ_STATS_LEN * dev->real_num_tx_queues; 171 default: 172 return -EOPNOTSUPP; 173 } 174 } 175 176 static void veth_get_ethtool_stats(struct net_device *dev, 177 struct ethtool_stats *stats, u64 *data) 178 { 179 struct veth_priv *rcv_priv, *priv = netdev_priv(dev); 180 struct net_device *peer = rtnl_dereference(priv->peer); 181 int i, j, idx; 182 183 data[0] = peer ? peer->ifindex : 0; 184 idx = 1; 185 for (i = 0; i < dev->real_num_rx_queues; i++) { 186 const struct veth_rq_stats *rq_stats = &priv->rq[i].stats; 187 const void *stats_base = (void *)&rq_stats->vs; 188 unsigned int start; 189 size_t offset; 190 191 do { 192 start = u64_stats_fetch_begin_irq(&rq_stats->syncp); 193 for (j = 0; j < VETH_RQ_STATS_LEN; j++) { 194 offset = veth_rq_stats_desc[j].offset; 195 data[idx + j] = *(u64 *)(stats_base + offset); 196 } 197 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start)); 198 idx += VETH_RQ_STATS_LEN; 199 } 200 201 if (!peer) 202 return; 203 204 rcv_priv = netdev_priv(peer); 205 for (i = 0; i < peer->real_num_rx_queues; i++) { 206 const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats; 207 const void *base = (void *)&rq_stats->vs; 208 unsigned int start, tx_idx = idx; 209 size_t offset; 210 211 tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN; 212 do { 213 start = u64_stats_fetch_begin_irq(&rq_stats->syncp); 214 for (j = 0; j < VETH_TQ_STATS_LEN; j++) { 215 offset = veth_tq_stats_desc[j].offset; 216 data[tx_idx + j] += *(u64 *)(base + offset); 217 } 218 } while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start)); 219 } 220 } 221 222 static void veth_get_channels(struct net_device *dev, 223 struct ethtool_channels *channels) 224 { 225 channels->tx_count = dev->real_num_tx_queues; 226 channels->rx_count = dev->real_num_rx_queues; 227 channels->max_tx = dev->num_tx_queues; 228 channels->max_rx = dev->num_rx_queues; 229 } 230 231 static int veth_set_channels(struct net_device *dev, 232 struct ethtool_channels *ch); 233 234 static const struct ethtool_ops veth_ethtool_ops = { 235 .get_drvinfo = veth_get_drvinfo, 236 .get_link = ethtool_op_get_link, 237 .get_strings = veth_get_strings, 238 .get_sset_count = veth_get_sset_count, 239 .get_ethtool_stats = veth_get_ethtool_stats, 240 .get_link_ksettings = veth_get_link_ksettings, 241 .get_ts_info = ethtool_op_get_ts_info, 242 .get_channels = veth_get_channels, 243 .set_channels = veth_set_channels, 244 }; 245 246 /* general routines */ 247 248 static bool veth_is_xdp_frame(void *ptr) 249 { 250 return (unsigned long)ptr & VETH_XDP_FLAG; 251 } 252 253 static struct xdp_frame *veth_ptr_to_xdp(void *ptr) 254 { 255 return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG); 256 } 257 258 static void *veth_xdp_to_ptr(struct xdp_frame *xdp) 259 { 260 return (void *)((unsigned long)xdp | VETH_XDP_FLAG); 261 } 262 263 static void veth_ptr_free(void *ptr) 264 { 265 if (veth_is_xdp_frame(ptr)) 266 xdp_return_frame(veth_ptr_to_xdp(ptr)); 267 else 268 kfree_skb(ptr); 269 } 270 271 static void __veth_xdp_flush(struct veth_rq *rq) 272 { 273 /* Write ptr_ring before reading rx_notify_masked */ 274 smp_mb(); 275 if (!rq->rx_notify_masked) { 276 rq->rx_notify_masked = true; 277 napi_schedule(&rq->xdp_napi); 278 } 279 } 280 281 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb) 282 { 283 if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) { 284 dev_kfree_skb_any(skb); 285 return NET_RX_DROP; 286 } 287 288 return NET_RX_SUCCESS; 289 } 290 291 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb, 292 struct veth_rq *rq, bool xdp) 293 { 294 return __dev_forward_skb(dev, skb) ?: xdp ? 295 veth_xdp_rx(rq, skb) : 296 netif_rx(skb); 297 } 298 299 /* return true if the specified skb has chances of GRO aggregation 300 * Don't strive for accuracy, but try to avoid GRO overhead in the most 301 * common scenarios. 302 * When XDP is enabled, all traffic is considered eligible, as the xmit 303 * device has TSO off. 304 * When TSO is enabled on the xmit device, we are likely interested only 305 * in UDP aggregation, explicitly check for that if the skb is suspected 306 * - the sock_wfree destructor is used by UDP, ICMP and XDP sockets - 307 * to belong to locally generated UDP traffic. 308 */ 309 static bool veth_skb_is_eligible_for_gro(const struct net_device *dev, 310 const struct net_device *rcv, 311 const struct sk_buff *skb) 312 { 313 return !(dev->features & NETIF_F_ALL_TSO) || 314 (skb->destructor == sock_wfree && 315 rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD)); 316 } 317 318 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev) 319 { 320 struct veth_priv *rcv_priv, *priv = netdev_priv(dev); 321 struct veth_rq *rq = NULL; 322 struct net_device *rcv; 323 int length = skb->len; 324 bool use_napi = false; 325 int rxq; 326 327 rcu_read_lock(); 328 rcv = rcu_dereference(priv->peer); 329 if (unlikely(!rcv)) { 330 kfree_skb(skb); 331 goto drop; 332 } 333 334 rcv_priv = netdev_priv(rcv); 335 rxq = skb_get_queue_mapping(skb); 336 if (rxq < rcv->real_num_rx_queues) { 337 rq = &rcv_priv->rq[rxq]; 338 339 /* The napi pointer is available when an XDP program is 340 * attached or when GRO is enabled 341 * Don't bother with napi/GRO if the skb can't be aggregated 342 */ 343 use_napi = rcu_access_pointer(rq->napi) && 344 veth_skb_is_eligible_for_gro(dev, rcv, skb); 345 skb_record_rx_queue(skb, rxq); 346 } 347 348 skb_tx_timestamp(skb); 349 if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) { 350 if (!use_napi) 351 dev_lstats_add(dev, length); 352 } else { 353 drop: 354 atomic64_inc(&priv->dropped); 355 } 356 357 if (use_napi) 358 __veth_xdp_flush(rq); 359 360 rcu_read_unlock(); 361 362 return NETDEV_TX_OK; 363 } 364 365 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes) 366 { 367 struct veth_priv *priv = netdev_priv(dev); 368 369 dev_lstats_read(dev, packets, bytes); 370 return atomic64_read(&priv->dropped); 371 } 372 373 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev) 374 { 375 struct veth_priv *priv = netdev_priv(dev); 376 int i; 377 378 result->peer_tq_xdp_xmit_err = 0; 379 result->xdp_packets = 0; 380 result->xdp_tx_err = 0; 381 result->xdp_bytes = 0; 382 result->rx_drops = 0; 383 for (i = 0; i < dev->num_rx_queues; i++) { 384 u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err; 385 struct veth_rq_stats *stats = &priv->rq[i].stats; 386 unsigned int start; 387 388 do { 389 start = u64_stats_fetch_begin_irq(&stats->syncp); 390 peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err; 391 xdp_tx_err = stats->vs.xdp_tx_err; 392 packets = stats->vs.xdp_packets; 393 bytes = stats->vs.xdp_bytes; 394 drops = stats->vs.rx_drops; 395 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 396 result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err; 397 result->xdp_tx_err += xdp_tx_err; 398 result->xdp_packets += packets; 399 result->xdp_bytes += bytes; 400 result->rx_drops += drops; 401 } 402 } 403 404 static void veth_get_stats64(struct net_device *dev, 405 struct rtnl_link_stats64 *tot) 406 { 407 struct veth_priv *priv = netdev_priv(dev); 408 struct net_device *peer; 409 struct veth_stats rx; 410 u64 packets, bytes; 411 412 tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes); 413 tot->tx_bytes = bytes; 414 tot->tx_packets = packets; 415 416 veth_stats_rx(&rx, dev); 417 tot->tx_dropped += rx.xdp_tx_err; 418 tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err; 419 tot->rx_bytes = rx.xdp_bytes; 420 tot->rx_packets = rx.xdp_packets; 421 422 rcu_read_lock(); 423 peer = rcu_dereference(priv->peer); 424 if (peer) { 425 veth_stats_tx(peer, &packets, &bytes); 426 tot->rx_bytes += bytes; 427 tot->rx_packets += packets; 428 429 veth_stats_rx(&rx, peer); 430 tot->tx_dropped += rx.peer_tq_xdp_xmit_err; 431 tot->rx_dropped += rx.xdp_tx_err; 432 tot->tx_bytes += rx.xdp_bytes; 433 tot->tx_packets += rx.xdp_packets; 434 } 435 rcu_read_unlock(); 436 } 437 438 /* fake multicast ability */ 439 static void veth_set_multicast_list(struct net_device *dev) 440 { 441 } 442 443 static struct sk_buff *veth_build_skb(void *head, int headroom, int len, 444 int buflen) 445 { 446 struct sk_buff *skb; 447 448 skb = build_skb(head, buflen); 449 if (!skb) 450 return NULL; 451 452 skb_reserve(skb, headroom); 453 skb_put(skb, len); 454 455 return skb; 456 } 457 458 static int veth_select_rxq(struct net_device *dev) 459 { 460 return smp_processor_id() % dev->real_num_rx_queues; 461 } 462 463 static struct net_device *veth_peer_dev(struct net_device *dev) 464 { 465 struct veth_priv *priv = netdev_priv(dev); 466 467 /* Callers must be under RCU read side. */ 468 return rcu_dereference(priv->peer); 469 } 470 471 static int veth_xdp_xmit(struct net_device *dev, int n, 472 struct xdp_frame **frames, 473 u32 flags, bool ndo_xmit) 474 { 475 struct veth_priv *rcv_priv, *priv = netdev_priv(dev); 476 int i, ret = -ENXIO, nxmit = 0; 477 struct net_device *rcv; 478 unsigned int max_len; 479 struct veth_rq *rq; 480 481 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 482 return -EINVAL; 483 484 rcu_read_lock(); 485 rcv = rcu_dereference(priv->peer); 486 if (unlikely(!rcv)) 487 goto out; 488 489 rcv_priv = netdev_priv(rcv); 490 rq = &rcv_priv->rq[veth_select_rxq(rcv)]; 491 /* The napi pointer is set if NAPI is enabled, which ensures that 492 * xdp_ring is initialized on receive side and the peer device is up. 493 */ 494 if (!rcu_access_pointer(rq->napi)) 495 goto out; 496 497 max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN; 498 499 spin_lock(&rq->xdp_ring.producer_lock); 500 for (i = 0; i < n; i++) { 501 struct xdp_frame *frame = frames[i]; 502 void *ptr = veth_xdp_to_ptr(frame); 503 504 if (unlikely(frame->len > max_len || 505 __ptr_ring_produce(&rq->xdp_ring, ptr))) 506 break; 507 nxmit++; 508 } 509 spin_unlock(&rq->xdp_ring.producer_lock); 510 511 if (flags & XDP_XMIT_FLUSH) 512 __veth_xdp_flush(rq); 513 514 ret = nxmit; 515 if (ndo_xmit) { 516 u64_stats_update_begin(&rq->stats.syncp); 517 rq->stats.vs.peer_tq_xdp_xmit += nxmit; 518 rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit; 519 u64_stats_update_end(&rq->stats.syncp); 520 } 521 522 out: 523 rcu_read_unlock(); 524 525 return ret; 526 } 527 528 static int veth_ndo_xdp_xmit(struct net_device *dev, int n, 529 struct xdp_frame **frames, u32 flags) 530 { 531 int err; 532 533 err = veth_xdp_xmit(dev, n, frames, flags, true); 534 if (err < 0) { 535 struct veth_priv *priv = netdev_priv(dev); 536 537 atomic64_add(n, &priv->dropped); 538 } 539 540 return err; 541 } 542 543 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq) 544 { 545 int sent, i, err = 0, drops; 546 547 sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false); 548 if (sent < 0) { 549 err = sent; 550 sent = 0; 551 } 552 553 for (i = sent; unlikely(i < bq->count); i++) 554 xdp_return_frame(bq->q[i]); 555 556 drops = bq->count - sent; 557 trace_xdp_bulk_tx(rq->dev, sent, drops, err); 558 559 u64_stats_update_begin(&rq->stats.syncp); 560 rq->stats.vs.xdp_tx += sent; 561 rq->stats.vs.xdp_tx_err += drops; 562 u64_stats_update_end(&rq->stats.syncp); 563 564 bq->count = 0; 565 } 566 567 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq) 568 { 569 struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev); 570 struct net_device *rcv; 571 struct veth_rq *rcv_rq; 572 573 rcu_read_lock(); 574 veth_xdp_flush_bq(rq, bq); 575 rcv = rcu_dereference(priv->peer); 576 if (unlikely(!rcv)) 577 goto out; 578 579 rcv_priv = netdev_priv(rcv); 580 rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)]; 581 /* xdp_ring is initialized on receive side? */ 582 if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog))) 583 goto out; 584 585 __veth_xdp_flush(rcv_rq); 586 out: 587 rcu_read_unlock(); 588 } 589 590 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp, 591 struct veth_xdp_tx_bq *bq) 592 { 593 struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp); 594 595 if (unlikely(!frame)) 596 return -EOVERFLOW; 597 598 if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE)) 599 veth_xdp_flush_bq(rq, bq); 600 601 bq->q[bq->count++] = frame; 602 603 return 0; 604 } 605 606 static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq, 607 struct xdp_frame *frame, 608 struct veth_xdp_tx_bq *bq, 609 struct veth_stats *stats) 610 { 611 struct xdp_frame orig_frame; 612 struct bpf_prog *xdp_prog; 613 614 rcu_read_lock(); 615 xdp_prog = rcu_dereference(rq->xdp_prog); 616 if (likely(xdp_prog)) { 617 struct xdp_buff xdp; 618 u32 act; 619 620 xdp_convert_frame_to_buff(frame, &xdp); 621 xdp.rxq = &rq->xdp_rxq; 622 623 act = bpf_prog_run_xdp(xdp_prog, &xdp); 624 625 switch (act) { 626 case XDP_PASS: 627 if (xdp_update_frame_from_buff(&xdp, frame)) 628 goto err_xdp; 629 break; 630 case XDP_TX: 631 orig_frame = *frame; 632 xdp.rxq->mem = frame->mem; 633 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) { 634 trace_xdp_exception(rq->dev, xdp_prog, act); 635 frame = &orig_frame; 636 stats->rx_drops++; 637 goto err_xdp; 638 } 639 stats->xdp_tx++; 640 rcu_read_unlock(); 641 goto xdp_xmit; 642 case XDP_REDIRECT: 643 orig_frame = *frame; 644 xdp.rxq->mem = frame->mem; 645 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) { 646 frame = &orig_frame; 647 stats->rx_drops++; 648 goto err_xdp; 649 } 650 stats->xdp_redirect++; 651 rcu_read_unlock(); 652 goto xdp_xmit; 653 default: 654 bpf_warn_invalid_xdp_action(act); 655 fallthrough; 656 case XDP_ABORTED: 657 trace_xdp_exception(rq->dev, xdp_prog, act); 658 fallthrough; 659 case XDP_DROP: 660 stats->xdp_drops++; 661 goto err_xdp; 662 } 663 } 664 rcu_read_unlock(); 665 666 return frame; 667 err_xdp: 668 rcu_read_unlock(); 669 xdp_return_frame(frame); 670 xdp_xmit: 671 return NULL; 672 } 673 674 /* frames array contains VETH_XDP_BATCH at most */ 675 static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames, 676 int n_xdpf, struct veth_xdp_tx_bq *bq, 677 struct veth_stats *stats) 678 { 679 void *skbs[VETH_XDP_BATCH]; 680 int i; 681 682 if (xdp_alloc_skb_bulk(skbs, n_xdpf, 683 GFP_ATOMIC | __GFP_ZERO) < 0) { 684 for (i = 0; i < n_xdpf; i++) 685 xdp_return_frame(frames[i]); 686 stats->rx_drops += n_xdpf; 687 688 return; 689 } 690 691 for (i = 0; i < n_xdpf; i++) { 692 struct sk_buff *skb = skbs[i]; 693 694 skb = __xdp_build_skb_from_frame(frames[i], skb, 695 rq->dev); 696 if (!skb) { 697 xdp_return_frame(frames[i]); 698 stats->rx_drops++; 699 continue; 700 } 701 napi_gro_receive(&rq->xdp_napi, skb); 702 } 703 } 704 705 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, 706 struct sk_buff *skb, 707 struct veth_xdp_tx_bq *bq, 708 struct veth_stats *stats) 709 { 710 u32 pktlen, headroom, act, metalen, frame_sz; 711 void *orig_data, *orig_data_end; 712 struct bpf_prog *xdp_prog; 713 int mac_len, delta, off; 714 struct xdp_buff xdp; 715 716 skb_prepare_for_gro(skb); 717 718 rcu_read_lock(); 719 xdp_prog = rcu_dereference(rq->xdp_prog); 720 if (unlikely(!xdp_prog)) { 721 rcu_read_unlock(); 722 goto out; 723 } 724 725 mac_len = skb->data - skb_mac_header(skb); 726 pktlen = skb->len + mac_len; 727 headroom = skb_headroom(skb) - mac_len; 728 729 if (skb_shared(skb) || skb_head_is_locked(skb) || 730 skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) { 731 struct sk_buff *nskb; 732 int size, head_off; 733 void *head, *start; 734 struct page *page; 735 736 size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) + 737 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 738 if (size > PAGE_SIZE) 739 goto drop; 740 741 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN); 742 if (!page) 743 goto drop; 744 745 head = page_address(page); 746 start = head + VETH_XDP_HEADROOM; 747 if (skb_copy_bits(skb, -mac_len, start, pktlen)) { 748 page_frag_free(head); 749 goto drop; 750 } 751 752 nskb = veth_build_skb(head, VETH_XDP_HEADROOM + mac_len, 753 skb->len, PAGE_SIZE); 754 if (!nskb) { 755 page_frag_free(head); 756 goto drop; 757 } 758 759 skb_copy_header(nskb, skb); 760 head_off = skb_headroom(nskb) - skb_headroom(skb); 761 skb_headers_offset_update(nskb, head_off); 762 consume_skb(skb); 763 skb = nskb; 764 } 765 766 /* SKB "head" area always have tailroom for skb_shared_info */ 767 frame_sz = skb_end_pointer(skb) - skb->head; 768 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 769 xdp_init_buff(&xdp, frame_sz, &rq->xdp_rxq); 770 xdp_prepare_buff(&xdp, skb->head, skb->mac_header, pktlen, true); 771 772 orig_data = xdp.data; 773 orig_data_end = xdp.data_end; 774 775 act = bpf_prog_run_xdp(xdp_prog, &xdp); 776 777 switch (act) { 778 case XDP_PASS: 779 break; 780 case XDP_TX: 781 get_page(virt_to_page(xdp.data)); 782 consume_skb(skb); 783 xdp.rxq->mem = rq->xdp_mem; 784 if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) { 785 trace_xdp_exception(rq->dev, xdp_prog, act); 786 stats->rx_drops++; 787 goto err_xdp; 788 } 789 stats->xdp_tx++; 790 rcu_read_unlock(); 791 goto xdp_xmit; 792 case XDP_REDIRECT: 793 get_page(virt_to_page(xdp.data)); 794 consume_skb(skb); 795 xdp.rxq->mem = rq->xdp_mem; 796 if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) { 797 stats->rx_drops++; 798 goto err_xdp; 799 } 800 stats->xdp_redirect++; 801 rcu_read_unlock(); 802 goto xdp_xmit; 803 default: 804 bpf_warn_invalid_xdp_action(act); 805 fallthrough; 806 case XDP_ABORTED: 807 trace_xdp_exception(rq->dev, xdp_prog, act); 808 fallthrough; 809 case XDP_DROP: 810 stats->xdp_drops++; 811 goto xdp_drop; 812 } 813 rcu_read_unlock(); 814 815 /* check if bpf_xdp_adjust_head was used */ 816 delta = orig_data - xdp.data; 817 off = mac_len + delta; 818 if (off > 0) 819 __skb_push(skb, off); 820 else if (off < 0) 821 __skb_pull(skb, -off); 822 skb->mac_header -= delta; 823 824 /* check if bpf_xdp_adjust_tail was used */ 825 off = xdp.data_end - orig_data_end; 826 if (off != 0) 827 __skb_put(skb, off); /* positive on grow, negative on shrink */ 828 skb->protocol = eth_type_trans(skb, rq->dev); 829 830 metalen = xdp.data - xdp.data_meta; 831 if (metalen) 832 skb_metadata_set(skb, metalen); 833 out: 834 return skb; 835 drop: 836 stats->rx_drops++; 837 xdp_drop: 838 rcu_read_unlock(); 839 kfree_skb(skb); 840 return NULL; 841 err_xdp: 842 rcu_read_unlock(); 843 page_frag_free(xdp.data); 844 xdp_xmit: 845 return NULL; 846 } 847 848 static int veth_xdp_rcv(struct veth_rq *rq, int budget, 849 struct veth_xdp_tx_bq *bq, 850 struct veth_stats *stats) 851 { 852 int i, done = 0, n_xdpf = 0; 853 void *xdpf[VETH_XDP_BATCH]; 854 855 for (i = 0; i < budget; i++) { 856 void *ptr = __ptr_ring_consume(&rq->xdp_ring); 857 858 if (!ptr) 859 break; 860 861 if (veth_is_xdp_frame(ptr)) { 862 /* ndo_xdp_xmit */ 863 struct xdp_frame *frame = veth_ptr_to_xdp(ptr); 864 865 stats->xdp_bytes += frame->len; 866 frame = veth_xdp_rcv_one(rq, frame, bq, stats); 867 if (frame) { 868 /* XDP_PASS */ 869 xdpf[n_xdpf++] = frame; 870 if (n_xdpf == VETH_XDP_BATCH) { 871 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, 872 bq, stats); 873 n_xdpf = 0; 874 } 875 } 876 } else { 877 /* ndo_start_xmit */ 878 struct sk_buff *skb = ptr; 879 880 stats->xdp_bytes += skb->len; 881 skb = veth_xdp_rcv_skb(rq, skb, bq, stats); 882 if (skb) 883 napi_gro_receive(&rq->xdp_napi, skb); 884 } 885 done++; 886 } 887 888 if (n_xdpf) 889 veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats); 890 891 u64_stats_update_begin(&rq->stats.syncp); 892 rq->stats.vs.xdp_redirect += stats->xdp_redirect; 893 rq->stats.vs.xdp_bytes += stats->xdp_bytes; 894 rq->stats.vs.xdp_drops += stats->xdp_drops; 895 rq->stats.vs.rx_drops += stats->rx_drops; 896 rq->stats.vs.xdp_packets += done; 897 u64_stats_update_end(&rq->stats.syncp); 898 899 return done; 900 } 901 902 static int veth_poll(struct napi_struct *napi, int budget) 903 { 904 struct veth_rq *rq = 905 container_of(napi, struct veth_rq, xdp_napi); 906 struct veth_stats stats = {}; 907 struct veth_xdp_tx_bq bq; 908 int done; 909 910 bq.count = 0; 911 912 xdp_set_return_frame_no_direct(); 913 done = veth_xdp_rcv(rq, budget, &bq, &stats); 914 915 if (done < budget && napi_complete_done(napi, done)) { 916 /* Write rx_notify_masked before reading ptr_ring */ 917 smp_store_mb(rq->rx_notify_masked, false); 918 if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) { 919 rq->rx_notify_masked = true; 920 napi_schedule(&rq->xdp_napi); 921 } 922 } 923 924 if (stats.xdp_tx > 0) 925 veth_xdp_flush(rq, &bq); 926 if (stats.xdp_redirect > 0) 927 xdp_do_flush(); 928 xdp_clear_return_frame_no_direct(); 929 930 return done; 931 } 932 933 static int __veth_napi_enable_range(struct net_device *dev, int start, int end) 934 { 935 struct veth_priv *priv = netdev_priv(dev); 936 int err, i; 937 938 for (i = start; i < end; i++) { 939 struct veth_rq *rq = &priv->rq[i]; 940 941 err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL); 942 if (err) 943 goto err_xdp_ring; 944 } 945 946 for (i = start; i < end; i++) { 947 struct veth_rq *rq = &priv->rq[i]; 948 949 napi_enable(&rq->xdp_napi); 950 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi); 951 } 952 953 return 0; 954 955 err_xdp_ring: 956 for (i--; i >= start; i--) 957 ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free); 958 959 return err; 960 } 961 962 static int __veth_napi_enable(struct net_device *dev) 963 { 964 return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues); 965 } 966 967 static void veth_napi_del_range(struct net_device *dev, int start, int end) 968 { 969 struct veth_priv *priv = netdev_priv(dev); 970 int i; 971 972 for (i = start; i < end; i++) { 973 struct veth_rq *rq = &priv->rq[i]; 974 975 rcu_assign_pointer(priv->rq[i].napi, NULL); 976 napi_disable(&rq->xdp_napi); 977 __netif_napi_del(&rq->xdp_napi); 978 } 979 synchronize_net(); 980 981 for (i = start; i < end; i++) { 982 struct veth_rq *rq = &priv->rq[i]; 983 984 rq->rx_notify_masked = false; 985 ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free); 986 } 987 } 988 989 static void veth_napi_del(struct net_device *dev) 990 { 991 veth_napi_del_range(dev, 0, dev->real_num_rx_queues); 992 } 993 994 static bool veth_gro_requested(const struct net_device *dev) 995 { 996 return !!(dev->wanted_features & NETIF_F_GRO); 997 } 998 999 static int veth_enable_xdp_range(struct net_device *dev, int start, int end, 1000 bool napi_already_on) 1001 { 1002 struct veth_priv *priv = netdev_priv(dev); 1003 int err, i; 1004 1005 for (i = start; i < end; i++) { 1006 struct veth_rq *rq = &priv->rq[i]; 1007 1008 if (!napi_already_on) 1009 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT); 1010 err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id); 1011 if (err < 0) 1012 goto err_rxq_reg; 1013 1014 err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq, 1015 MEM_TYPE_PAGE_SHARED, 1016 NULL); 1017 if (err < 0) 1018 goto err_reg_mem; 1019 1020 /* Save original mem info as it can be overwritten */ 1021 rq->xdp_mem = rq->xdp_rxq.mem; 1022 } 1023 return 0; 1024 1025 err_reg_mem: 1026 xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq); 1027 err_rxq_reg: 1028 for (i--; i >= start; i--) { 1029 struct veth_rq *rq = &priv->rq[i]; 1030 1031 xdp_rxq_info_unreg(&rq->xdp_rxq); 1032 if (!napi_already_on) 1033 netif_napi_del(&rq->xdp_napi); 1034 } 1035 1036 return err; 1037 } 1038 1039 static void veth_disable_xdp_range(struct net_device *dev, int start, int end, 1040 bool delete_napi) 1041 { 1042 struct veth_priv *priv = netdev_priv(dev); 1043 int i; 1044 1045 for (i = start; i < end; i++) { 1046 struct veth_rq *rq = &priv->rq[i]; 1047 1048 rq->xdp_rxq.mem = rq->xdp_mem; 1049 xdp_rxq_info_unreg(&rq->xdp_rxq); 1050 1051 if (delete_napi) 1052 netif_napi_del(&rq->xdp_napi); 1053 } 1054 } 1055 1056 static int veth_enable_xdp(struct net_device *dev) 1057 { 1058 bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP); 1059 struct veth_priv *priv = netdev_priv(dev); 1060 int err, i; 1061 1062 if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) { 1063 err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on); 1064 if (err) 1065 return err; 1066 1067 if (!napi_already_on) { 1068 err = __veth_napi_enable(dev); 1069 if (err) { 1070 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true); 1071 return err; 1072 } 1073 1074 if (!veth_gro_requested(dev)) { 1075 /* user-space did not require GRO, but adding XDP 1076 * is supposed to get GRO working 1077 */ 1078 dev->features |= NETIF_F_GRO; 1079 netdev_features_change(dev); 1080 } 1081 } 1082 } 1083 1084 for (i = 0; i < dev->real_num_rx_queues; i++) { 1085 rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog); 1086 rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi); 1087 } 1088 1089 return 0; 1090 } 1091 1092 static void veth_disable_xdp(struct net_device *dev) 1093 { 1094 struct veth_priv *priv = netdev_priv(dev); 1095 int i; 1096 1097 for (i = 0; i < dev->real_num_rx_queues; i++) 1098 rcu_assign_pointer(priv->rq[i].xdp_prog, NULL); 1099 1100 if (!netif_running(dev) || !veth_gro_requested(dev)) { 1101 veth_napi_del(dev); 1102 1103 /* if user-space did not require GRO, since adding XDP 1104 * enabled it, clear it now 1105 */ 1106 if (!veth_gro_requested(dev) && netif_running(dev)) { 1107 dev->features &= ~NETIF_F_GRO; 1108 netdev_features_change(dev); 1109 } 1110 } 1111 1112 veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false); 1113 } 1114 1115 static int veth_napi_enable_range(struct net_device *dev, int start, int end) 1116 { 1117 struct veth_priv *priv = netdev_priv(dev); 1118 int err, i; 1119 1120 for (i = start; i < end; i++) { 1121 struct veth_rq *rq = &priv->rq[i]; 1122 1123 netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT); 1124 } 1125 1126 err = __veth_napi_enable_range(dev, start, end); 1127 if (err) { 1128 for (i = start; i < end; i++) { 1129 struct veth_rq *rq = &priv->rq[i]; 1130 1131 netif_napi_del(&rq->xdp_napi); 1132 } 1133 return err; 1134 } 1135 return err; 1136 } 1137 1138 static int veth_napi_enable(struct net_device *dev) 1139 { 1140 return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues); 1141 } 1142 1143 static void veth_disable_range_safe(struct net_device *dev, int start, int end) 1144 { 1145 struct veth_priv *priv = netdev_priv(dev); 1146 1147 if (start >= end) 1148 return; 1149 1150 if (priv->_xdp_prog) { 1151 veth_napi_del_range(dev, start, end); 1152 veth_disable_xdp_range(dev, start, end, false); 1153 } else if (veth_gro_requested(dev)) { 1154 veth_napi_del_range(dev, start, end); 1155 } 1156 } 1157 1158 static int veth_enable_range_safe(struct net_device *dev, int start, int end) 1159 { 1160 struct veth_priv *priv = netdev_priv(dev); 1161 int err; 1162 1163 if (start >= end) 1164 return 0; 1165 1166 if (priv->_xdp_prog) { 1167 /* these channels are freshly initialized, napi is not on there even 1168 * when GRO is requeste 1169 */ 1170 err = veth_enable_xdp_range(dev, start, end, false); 1171 if (err) 1172 return err; 1173 1174 err = __veth_napi_enable_range(dev, start, end); 1175 if (err) { 1176 /* on error always delete the newly added napis */ 1177 veth_disable_xdp_range(dev, start, end, true); 1178 return err; 1179 } 1180 } else if (veth_gro_requested(dev)) { 1181 return veth_napi_enable_range(dev, start, end); 1182 } 1183 return 0; 1184 } 1185 1186 static int veth_set_channels(struct net_device *dev, 1187 struct ethtool_channels *ch) 1188 { 1189 struct veth_priv *priv = netdev_priv(dev); 1190 unsigned int old_rx_count, new_rx_count; 1191 struct veth_priv *peer_priv; 1192 struct net_device *peer; 1193 int err; 1194 1195 /* sanity check. Upper bounds are already enforced by the caller */ 1196 if (!ch->rx_count || !ch->tx_count) 1197 return -EINVAL; 1198 1199 /* avoid braking XDP, if that is enabled */ 1200 peer = rtnl_dereference(priv->peer); 1201 peer_priv = peer ? netdev_priv(peer) : NULL; 1202 if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues) 1203 return -EINVAL; 1204 1205 if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues) 1206 return -EINVAL; 1207 1208 old_rx_count = dev->real_num_rx_queues; 1209 new_rx_count = ch->rx_count; 1210 if (netif_running(dev)) { 1211 /* turn device off */ 1212 netif_carrier_off(dev); 1213 if (peer) 1214 netif_carrier_off(peer); 1215 1216 /* try to allocate new resurces, as needed*/ 1217 err = veth_enable_range_safe(dev, old_rx_count, new_rx_count); 1218 if (err) 1219 goto out; 1220 } 1221 1222 err = netif_set_real_num_rx_queues(dev, ch->rx_count); 1223 if (err) 1224 goto revert; 1225 1226 err = netif_set_real_num_tx_queues(dev, ch->tx_count); 1227 if (err) { 1228 int err2 = netif_set_real_num_rx_queues(dev, old_rx_count); 1229 1230 /* this error condition could happen only if rx and tx change 1231 * in opposite directions (e.g. tx nr raises, rx nr decreases) 1232 * and we can't do anything to fully restore the original 1233 * status 1234 */ 1235 if (err2) 1236 pr_warn("Can't restore rx queues config %d -> %d %d", 1237 new_rx_count, old_rx_count, err2); 1238 else 1239 goto revert; 1240 } 1241 1242 out: 1243 if (netif_running(dev)) { 1244 /* note that we need to swap the arguments WRT the enable part 1245 * to identify the range we have to disable 1246 */ 1247 veth_disable_range_safe(dev, new_rx_count, old_rx_count); 1248 netif_carrier_on(dev); 1249 if (peer) 1250 netif_carrier_on(peer); 1251 } 1252 return err; 1253 1254 revert: 1255 new_rx_count = old_rx_count; 1256 old_rx_count = ch->rx_count; 1257 goto out; 1258 } 1259 1260 static int veth_open(struct net_device *dev) 1261 { 1262 struct veth_priv *priv = netdev_priv(dev); 1263 struct net_device *peer = rtnl_dereference(priv->peer); 1264 int err; 1265 1266 if (!peer) 1267 return -ENOTCONN; 1268 1269 if (priv->_xdp_prog) { 1270 err = veth_enable_xdp(dev); 1271 if (err) 1272 return err; 1273 } else if (veth_gro_requested(dev)) { 1274 err = veth_napi_enable(dev); 1275 if (err) 1276 return err; 1277 } 1278 1279 if (peer->flags & IFF_UP) { 1280 netif_carrier_on(dev); 1281 netif_carrier_on(peer); 1282 } 1283 1284 return 0; 1285 } 1286 1287 static int veth_close(struct net_device *dev) 1288 { 1289 struct veth_priv *priv = netdev_priv(dev); 1290 struct net_device *peer = rtnl_dereference(priv->peer); 1291 1292 netif_carrier_off(dev); 1293 if (peer) 1294 netif_carrier_off(peer); 1295 1296 if (priv->_xdp_prog) 1297 veth_disable_xdp(dev); 1298 else if (veth_gro_requested(dev)) 1299 veth_napi_del(dev); 1300 1301 return 0; 1302 } 1303 1304 static int is_valid_veth_mtu(int mtu) 1305 { 1306 return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU; 1307 } 1308 1309 static int veth_alloc_queues(struct net_device *dev) 1310 { 1311 struct veth_priv *priv = netdev_priv(dev); 1312 int i; 1313 1314 priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL); 1315 if (!priv->rq) 1316 return -ENOMEM; 1317 1318 for (i = 0; i < dev->num_rx_queues; i++) { 1319 priv->rq[i].dev = dev; 1320 u64_stats_init(&priv->rq[i].stats.syncp); 1321 } 1322 1323 return 0; 1324 } 1325 1326 static void veth_free_queues(struct net_device *dev) 1327 { 1328 struct veth_priv *priv = netdev_priv(dev); 1329 1330 kfree(priv->rq); 1331 } 1332 1333 static int veth_dev_init(struct net_device *dev) 1334 { 1335 int err; 1336 1337 dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 1338 if (!dev->lstats) 1339 return -ENOMEM; 1340 1341 err = veth_alloc_queues(dev); 1342 if (err) { 1343 free_percpu(dev->lstats); 1344 return err; 1345 } 1346 1347 return 0; 1348 } 1349 1350 static void veth_dev_free(struct net_device *dev) 1351 { 1352 veth_free_queues(dev); 1353 free_percpu(dev->lstats); 1354 } 1355 1356 #ifdef CONFIG_NET_POLL_CONTROLLER 1357 static void veth_poll_controller(struct net_device *dev) 1358 { 1359 /* veth only receives frames when its peer sends one 1360 * Since it has nothing to do with disabling irqs, we are guaranteed 1361 * never to have pending data when we poll for it so 1362 * there is nothing to do here. 1363 * 1364 * We need this though so netpoll recognizes us as an interface that 1365 * supports polling, which enables bridge devices in virt setups to 1366 * still use netconsole 1367 */ 1368 } 1369 #endif /* CONFIG_NET_POLL_CONTROLLER */ 1370 1371 static int veth_get_iflink(const struct net_device *dev) 1372 { 1373 struct veth_priv *priv = netdev_priv(dev); 1374 struct net_device *peer; 1375 int iflink; 1376 1377 rcu_read_lock(); 1378 peer = rcu_dereference(priv->peer); 1379 iflink = peer ? peer->ifindex : 0; 1380 rcu_read_unlock(); 1381 1382 return iflink; 1383 } 1384 1385 static netdev_features_t veth_fix_features(struct net_device *dev, 1386 netdev_features_t features) 1387 { 1388 struct veth_priv *priv = netdev_priv(dev); 1389 struct net_device *peer; 1390 1391 peer = rtnl_dereference(priv->peer); 1392 if (peer) { 1393 struct veth_priv *peer_priv = netdev_priv(peer); 1394 1395 if (peer_priv->_xdp_prog) 1396 features &= ~NETIF_F_GSO_SOFTWARE; 1397 } 1398 if (priv->_xdp_prog) 1399 features |= NETIF_F_GRO; 1400 1401 return features; 1402 } 1403 1404 static int veth_set_features(struct net_device *dev, 1405 netdev_features_t features) 1406 { 1407 netdev_features_t changed = features ^ dev->features; 1408 struct veth_priv *priv = netdev_priv(dev); 1409 int err; 1410 1411 if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog) 1412 return 0; 1413 1414 if (features & NETIF_F_GRO) { 1415 err = veth_napi_enable(dev); 1416 if (err) 1417 return err; 1418 } else { 1419 veth_napi_del(dev); 1420 } 1421 return 0; 1422 } 1423 1424 static void veth_set_rx_headroom(struct net_device *dev, int new_hr) 1425 { 1426 struct veth_priv *peer_priv, *priv = netdev_priv(dev); 1427 struct net_device *peer; 1428 1429 if (new_hr < 0) 1430 new_hr = 0; 1431 1432 rcu_read_lock(); 1433 peer = rcu_dereference(priv->peer); 1434 if (unlikely(!peer)) 1435 goto out; 1436 1437 peer_priv = netdev_priv(peer); 1438 priv->requested_headroom = new_hr; 1439 new_hr = max(priv->requested_headroom, peer_priv->requested_headroom); 1440 dev->needed_headroom = new_hr; 1441 peer->needed_headroom = new_hr; 1442 1443 out: 1444 rcu_read_unlock(); 1445 } 1446 1447 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog, 1448 struct netlink_ext_ack *extack) 1449 { 1450 struct veth_priv *priv = netdev_priv(dev); 1451 struct bpf_prog *old_prog; 1452 struct net_device *peer; 1453 unsigned int max_mtu; 1454 int err; 1455 1456 old_prog = priv->_xdp_prog; 1457 priv->_xdp_prog = prog; 1458 peer = rtnl_dereference(priv->peer); 1459 1460 if (prog) { 1461 if (!peer) { 1462 NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached"); 1463 err = -ENOTCONN; 1464 goto err; 1465 } 1466 1467 max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM - 1468 peer->hard_header_len - 1469 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1470 if (peer->mtu > max_mtu) { 1471 NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP"); 1472 err = -ERANGE; 1473 goto err; 1474 } 1475 1476 if (dev->real_num_rx_queues < peer->real_num_tx_queues) { 1477 NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues"); 1478 err = -ENOSPC; 1479 goto err; 1480 } 1481 1482 if (dev->flags & IFF_UP) { 1483 err = veth_enable_xdp(dev); 1484 if (err) { 1485 NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed"); 1486 goto err; 1487 } 1488 } 1489 1490 if (!old_prog) { 1491 peer->hw_features &= ~NETIF_F_GSO_SOFTWARE; 1492 peer->max_mtu = max_mtu; 1493 } 1494 } 1495 1496 if (old_prog) { 1497 if (!prog) { 1498 if (dev->flags & IFF_UP) 1499 veth_disable_xdp(dev); 1500 1501 if (peer) { 1502 peer->hw_features |= NETIF_F_GSO_SOFTWARE; 1503 peer->max_mtu = ETH_MAX_MTU; 1504 } 1505 } 1506 bpf_prog_put(old_prog); 1507 } 1508 1509 if ((!!old_prog ^ !!prog) && peer) 1510 netdev_update_features(peer); 1511 1512 return 0; 1513 err: 1514 priv->_xdp_prog = old_prog; 1515 1516 return err; 1517 } 1518 1519 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1520 { 1521 switch (xdp->command) { 1522 case XDP_SETUP_PROG: 1523 return veth_xdp_set(dev, xdp->prog, xdp->extack); 1524 default: 1525 return -EINVAL; 1526 } 1527 } 1528 1529 static const struct net_device_ops veth_netdev_ops = { 1530 .ndo_init = veth_dev_init, 1531 .ndo_open = veth_open, 1532 .ndo_stop = veth_close, 1533 .ndo_start_xmit = veth_xmit, 1534 .ndo_get_stats64 = veth_get_stats64, 1535 .ndo_set_rx_mode = veth_set_multicast_list, 1536 .ndo_set_mac_address = eth_mac_addr, 1537 #ifdef CONFIG_NET_POLL_CONTROLLER 1538 .ndo_poll_controller = veth_poll_controller, 1539 #endif 1540 .ndo_get_iflink = veth_get_iflink, 1541 .ndo_fix_features = veth_fix_features, 1542 .ndo_set_features = veth_set_features, 1543 .ndo_features_check = passthru_features_check, 1544 .ndo_set_rx_headroom = veth_set_rx_headroom, 1545 .ndo_bpf = veth_xdp, 1546 .ndo_xdp_xmit = veth_ndo_xdp_xmit, 1547 .ndo_get_peer_dev = veth_peer_dev, 1548 }; 1549 1550 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \ 1551 NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \ 1552 NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \ 1553 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \ 1554 NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX ) 1555 1556 static void veth_setup(struct net_device *dev) 1557 { 1558 ether_setup(dev); 1559 1560 dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1561 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1562 dev->priv_flags |= IFF_NO_QUEUE; 1563 dev->priv_flags |= IFF_PHONY_HEADROOM; 1564 1565 dev->netdev_ops = &veth_netdev_ops; 1566 dev->ethtool_ops = &veth_ethtool_ops; 1567 dev->features |= NETIF_F_LLTX; 1568 dev->features |= VETH_FEATURES; 1569 dev->vlan_features = dev->features & 1570 ~(NETIF_F_HW_VLAN_CTAG_TX | 1571 NETIF_F_HW_VLAN_STAG_TX | 1572 NETIF_F_HW_VLAN_CTAG_RX | 1573 NETIF_F_HW_VLAN_STAG_RX); 1574 dev->needs_free_netdev = true; 1575 dev->priv_destructor = veth_dev_free; 1576 dev->max_mtu = ETH_MAX_MTU; 1577 1578 dev->hw_features = VETH_FEATURES; 1579 dev->hw_enc_features = VETH_FEATURES; 1580 dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE; 1581 } 1582 1583 /* 1584 * netlink interface 1585 */ 1586 1587 static int veth_validate(struct nlattr *tb[], struct nlattr *data[], 1588 struct netlink_ext_ack *extack) 1589 { 1590 if (tb[IFLA_ADDRESS]) { 1591 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 1592 return -EINVAL; 1593 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 1594 return -EADDRNOTAVAIL; 1595 } 1596 if (tb[IFLA_MTU]) { 1597 if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU]))) 1598 return -EINVAL; 1599 } 1600 return 0; 1601 } 1602 1603 static struct rtnl_link_ops veth_link_ops; 1604 1605 static void veth_disable_gro(struct net_device *dev) 1606 { 1607 dev->features &= ~NETIF_F_GRO; 1608 dev->wanted_features &= ~NETIF_F_GRO; 1609 netdev_update_features(dev); 1610 } 1611 1612 static int veth_init_queues(struct net_device *dev, struct nlattr *tb[]) 1613 { 1614 int err; 1615 1616 if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) { 1617 err = netif_set_real_num_tx_queues(dev, 1); 1618 if (err) 1619 return err; 1620 } 1621 if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) { 1622 err = netif_set_real_num_rx_queues(dev, 1); 1623 if (err) 1624 return err; 1625 } 1626 return 0; 1627 } 1628 1629 static int veth_newlink(struct net *src_net, struct net_device *dev, 1630 struct nlattr *tb[], struct nlattr *data[], 1631 struct netlink_ext_ack *extack) 1632 { 1633 int err; 1634 struct net_device *peer; 1635 struct veth_priv *priv; 1636 char ifname[IFNAMSIZ]; 1637 struct nlattr *peer_tb[IFLA_MAX + 1], **tbp; 1638 unsigned char name_assign_type; 1639 struct ifinfomsg *ifmp; 1640 struct net *net; 1641 1642 /* 1643 * create and register peer first 1644 */ 1645 if (data != NULL && data[VETH_INFO_PEER] != NULL) { 1646 struct nlattr *nla_peer; 1647 1648 nla_peer = data[VETH_INFO_PEER]; 1649 ifmp = nla_data(nla_peer); 1650 err = rtnl_nla_parse_ifla(peer_tb, 1651 nla_data(nla_peer) + sizeof(struct ifinfomsg), 1652 nla_len(nla_peer) - sizeof(struct ifinfomsg), 1653 NULL); 1654 if (err < 0) 1655 return err; 1656 1657 err = veth_validate(peer_tb, NULL, extack); 1658 if (err < 0) 1659 return err; 1660 1661 tbp = peer_tb; 1662 } else { 1663 ifmp = NULL; 1664 tbp = tb; 1665 } 1666 1667 if (ifmp && tbp[IFLA_IFNAME]) { 1668 nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ); 1669 name_assign_type = NET_NAME_USER; 1670 } else { 1671 snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d"); 1672 name_assign_type = NET_NAME_ENUM; 1673 } 1674 1675 net = rtnl_link_get_net(src_net, tbp); 1676 if (IS_ERR(net)) 1677 return PTR_ERR(net); 1678 1679 peer = rtnl_create_link(net, ifname, name_assign_type, 1680 &veth_link_ops, tbp, extack); 1681 if (IS_ERR(peer)) { 1682 put_net(net); 1683 return PTR_ERR(peer); 1684 } 1685 1686 if (!ifmp || !tbp[IFLA_ADDRESS]) 1687 eth_hw_addr_random(peer); 1688 1689 if (ifmp && (dev->ifindex != 0)) 1690 peer->ifindex = ifmp->ifi_index; 1691 1692 peer->gso_max_size = dev->gso_max_size; 1693 peer->gso_max_segs = dev->gso_max_segs; 1694 1695 err = register_netdevice(peer); 1696 put_net(net); 1697 net = NULL; 1698 if (err < 0) 1699 goto err_register_peer; 1700 1701 /* keep GRO disabled by default to be consistent with the established 1702 * veth behavior 1703 */ 1704 veth_disable_gro(peer); 1705 netif_carrier_off(peer); 1706 1707 err = rtnl_configure_link(peer, ifmp); 1708 if (err < 0) 1709 goto err_configure_peer; 1710 1711 /* 1712 * register dev last 1713 * 1714 * note, that since we've registered new device the dev's name 1715 * should be re-allocated 1716 */ 1717 1718 if (tb[IFLA_ADDRESS] == NULL) 1719 eth_hw_addr_random(dev); 1720 1721 if (tb[IFLA_IFNAME]) 1722 nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ); 1723 else 1724 snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d"); 1725 1726 err = register_netdevice(dev); 1727 if (err < 0) 1728 goto err_register_dev; 1729 1730 netif_carrier_off(dev); 1731 1732 /* 1733 * tie the deviced together 1734 */ 1735 1736 priv = netdev_priv(dev); 1737 rcu_assign_pointer(priv->peer, peer); 1738 err = veth_init_queues(dev, tb); 1739 if (err) 1740 goto err_queues; 1741 1742 priv = netdev_priv(peer); 1743 rcu_assign_pointer(priv->peer, dev); 1744 err = veth_init_queues(peer, tb); 1745 if (err) 1746 goto err_queues; 1747 1748 veth_disable_gro(dev); 1749 return 0; 1750 1751 err_queues: 1752 unregister_netdevice(dev); 1753 err_register_dev: 1754 /* nothing to do */ 1755 err_configure_peer: 1756 unregister_netdevice(peer); 1757 return err; 1758 1759 err_register_peer: 1760 free_netdev(peer); 1761 return err; 1762 } 1763 1764 static void veth_dellink(struct net_device *dev, struct list_head *head) 1765 { 1766 struct veth_priv *priv; 1767 struct net_device *peer; 1768 1769 priv = netdev_priv(dev); 1770 peer = rtnl_dereference(priv->peer); 1771 1772 /* Note : dellink() is called from default_device_exit_batch(), 1773 * before a rcu_synchronize() point. The devices are guaranteed 1774 * not being freed before one RCU grace period. 1775 */ 1776 RCU_INIT_POINTER(priv->peer, NULL); 1777 unregister_netdevice_queue(dev, head); 1778 1779 if (peer) { 1780 priv = netdev_priv(peer); 1781 RCU_INIT_POINTER(priv->peer, NULL); 1782 unregister_netdevice_queue(peer, head); 1783 } 1784 } 1785 1786 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = { 1787 [VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) }, 1788 }; 1789 1790 static struct net *veth_get_link_net(const struct net_device *dev) 1791 { 1792 struct veth_priv *priv = netdev_priv(dev); 1793 struct net_device *peer = rtnl_dereference(priv->peer); 1794 1795 return peer ? dev_net(peer) : dev_net(dev); 1796 } 1797 1798 static unsigned int veth_get_num_queues(void) 1799 { 1800 /* enforce the same queue limit as rtnl_create_link */ 1801 int queues = num_possible_cpus(); 1802 1803 if (queues > 4096) 1804 queues = 4096; 1805 return queues; 1806 } 1807 1808 static struct rtnl_link_ops veth_link_ops = { 1809 .kind = DRV_NAME, 1810 .priv_size = sizeof(struct veth_priv), 1811 .setup = veth_setup, 1812 .validate = veth_validate, 1813 .newlink = veth_newlink, 1814 .dellink = veth_dellink, 1815 .policy = veth_policy, 1816 .maxtype = VETH_INFO_MAX, 1817 .get_link_net = veth_get_link_net, 1818 .get_num_tx_queues = veth_get_num_queues, 1819 .get_num_rx_queues = veth_get_num_queues, 1820 }; 1821 1822 /* 1823 * init/fini 1824 */ 1825 1826 static __init int veth_init(void) 1827 { 1828 return rtnl_link_register(&veth_link_ops); 1829 } 1830 1831 static __exit void veth_exit(void) 1832 { 1833 rtnl_link_unregister(&veth_link_ops); 1834 } 1835 1836 module_init(veth_init); 1837 module_exit(veth_exit); 1838 1839 MODULE_DESCRIPTION("Virtual Ethernet Tunnel"); 1840 MODULE_LICENSE("GPL v2"); 1841 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 1842