xref: /openbmc/linux/drivers/net/veth.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/net/veth.c
4  *
5  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
6  *
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
9  *
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ethtool.h>
15 #include <linux/etherdevice.h>
16 #include <linux/u64_stats_sync.h>
17 
18 #include <net/rtnetlink.h>
19 #include <net/dst.h>
20 #include <net/xfrm.h>
21 #include <net/xdp.h>
22 #include <linux/veth.h>
23 #include <linux/module.h>
24 #include <linux/bpf.h>
25 #include <linux/filter.h>
26 #include <linux/ptr_ring.h>
27 #include <linux/bpf_trace.h>
28 #include <linux/net_tstamp.h>
29 
30 #define DRV_NAME	"veth"
31 #define DRV_VERSION	"1.0"
32 
33 #define VETH_XDP_FLAG		BIT(0)
34 #define VETH_RING_SIZE		256
35 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
36 
37 #define VETH_XDP_TX_BULK_SIZE	16
38 
39 struct veth_stats {
40 	u64	rx_drops;
41 	/* xdp */
42 	u64	xdp_packets;
43 	u64	xdp_bytes;
44 	u64	xdp_redirect;
45 	u64	xdp_drops;
46 	u64	xdp_tx;
47 	u64	xdp_tx_err;
48 	u64	peer_tq_xdp_xmit;
49 	u64	peer_tq_xdp_xmit_err;
50 };
51 
52 struct veth_rq_stats {
53 	struct veth_stats	vs;
54 	struct u64_stats_sync	syncp;
55 };
56 
57 struct veth_rq {
58 	struct napi_struct	xdp_napi;
59 	struct net_device	*dev;
60 	struct bpf_prog __rcu	*xdp_prog;
61 	struct xdp_mem_info	xdp_mem;
62 	struct veth_rq_stats	stats;
63 	bool			rx_notify_masked;
64 	struct ptr_ring		xdp_ring;
65 	struct xdp_rxq_info	xdp_rxq;
66 };
67 
68 struct veth_priv {
69 	struct net_device __rcu	*peer;
70 	atomic64_t		dropped;
71 	struct bpf_prog		*_xdp_prog;
72 	struct veth_rq		*rq;
73 	unsigned int		requested_headroom;
74 };
75 
76 struct veth_xdp_tx_bq {
77 	struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
78 	unsigned int count;
79 };
80 
81 /*
82  * ethtool interface
83  */
84 
85 struct veth_q_stat_desc {
86 	char	desc[ETH_GSTRING_LEN];
87 	size_t	offset;
88 };
89 
90 #define VETH_RQ_STAT(m)	offsetof(struct veth_stats, m)
91 
92 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
93 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
94 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
95 	{ "drops",		VETH_RQ_STAT(rx_drops) },
96 	{ "xdp_redirect",	VETH_RQ_STAT(xdp_redirect) },
97 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
98 	{ "xdp_tx",		VETH_RQ_STAT(xdp_tx) },
99 	{ "xdp_tx_errors",	VETH_RQ_STAT(xdp_tx_err) },
100 };
101 
102 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
103 
104 static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
105 	{ "xdp_xmit",		VETH_RQ_STAT(peer_tq_xdp_xmit) },
106 	{ "xdp_xmit_errors",	VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
107 };
108 
109 #define VETH_TQ_STATS_LEN	ARRAY_SIZE(veth_tq_stats_desc)
110 
111 static struct {
112 	const char string[ETH_GSTRING_LEN];
113 } ethtool_stats_keys[] = {
114 	{ "peer_ifindex" },
115 };
116 
117 static int veth_get_link_ksettings(struct net_device *dev,
118 				   struct ethtool_link_ksettings *cmd)
119 {
120 	cmd->base.speed		= SPEED_10000;
121 	cmd->base.duplex	= DUPLEX_FULL;
122 	cmd->base.port		= PORT_TP;
123 	cmd->base.autoneg	= AUTONEG_DISABLE;
124 	return 0;
125 }
126 
127 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
128 {
129 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
130 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
131 }
132 
133 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
134 {
135 	char *p = (char *)buf;
136 	int i, j;
137 
138 	switch(stringset) {
139 	case ETH_SS_STATS:
140 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
141 		p += sizeof(ethtool_stats_keys);
142 		for (i = 0; i < dev->real_num_rx_queues; i++) {
143 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
144 				snprintf(p, ETH_GSTRING_LEN,
145 					 "rx_queue_%u_%.18s",
146 					 i, veth_rq_stats_desc[j].desc);
147 				p += ETH_GSTRING_LEN;
148 			}
149 		}
150 		for (i = 0; i < dev->real_num_tx_queues; i++) {
151 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
152 				snprintf(p, ETH_GSTRING_LEN,
153 					 "tx_queue_%u_%.18s",
154 					 i, veth_tq_stats_desc[j].desc);
155 				p += ETH_GSTRING_LEN;
156 			}
157 		}
158 		break;
159 	}
160 }
161 
162 static int veth_get_sset_count(struct net_device *dev, int sset)
163 {
164 	switch (sset) {
165 	case ETH_SS_STATS:
166 		return ARRAY_SIZE(ethtool_stats_keys) +
167 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
168 		       VETH_TQ_STATS_LEN * dev->real_num_tx_queues;
169 	default:
170 		return -EOPNOTSUPP;
171 	}
172 }
173 
174 static void veth_get_ethtool_stats(struct net_device *dev,
175 		struct ethtool_stats *stats, u64 *data)
176 {
177 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
178 	struct net_device *peer = rtnl_dereference(priv->peer);
179 	int i, j, idx;
180 
181 	data[0] = peer ? peer->ifindex : 0;
182 	idx = 1;
183 	for (i = 0; i < dev->real_num_rx_queues; i++) {
184 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
185 		const void *stats_base = (void *)&rq_stats->vs;
186 		unsigned int start;
187 		size_t offset;
188 
189 		do {
190 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
191 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
192 				offset = veth_rq_stats_desc[j].offset;
193 				data[idx + j] = *(u64 *)(stats_base + offset);
194 			}
195 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
196 		idx += VETH_RQ_STATS_LEN;
197 	}
198 
199 	if (!peer)
200 		return;
201 
202 	rcv_priv = netdev_priv(peer);
203 	for (i = 0; i < peer->real_num_rx_queues; i++) {
204 		const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
205 		const void *base = (void *)&rq_stats->vs;
206 		unsigned int start, tx_idx = idx;
207 		size_t offset;
208 
209 		tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
210 		do {
211 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
212 			for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
213 				offset = veth_tq_stats_desc[j].offset;
214 				data[tx_idx + j] += *(u64 *)(base + offset);
215 			}
216 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
217 	}
218 }
219 
220 static const struct ethtool_ops veth_ethtool_ops = {
221 	.get_drvinfo		= veth_get_drvinfo,
222 	.get_link		= ethtool_op_get_link,
223 	.get_strings		= veth_get_strings,
224 	.get_sset_count		= veth_get_sset_count,
225 	.get_ethtool_stats	= veth_get_ethtool_stats,
226 	.get_link_ksettings	= veth_get_link_ksettings,
227 	.get_ts_info		= ethtool_op_get_ts_info,
228 };
229 
230 /* general routines */
231 
232 static bool veth_is_xdp_frame(void *ptr)
233 {
234 	return (unsigned long)ptr & VETH_XDP_FLAG;
235 }
236 
237 static void *veth_ptr_to_xdp(void *ptr)
238 {
239 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
240 }
241 
242 static void *veth_xdp_to_ptr(void *ptr)
243 {
244 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
245 }
246 
247 static void veth_ptr_free(void *ptr)
248 {
249 	if (veth_is_xdp_frame(ptr))
250 		xdp_return_frame(veth_ptr_to_xdp(ptr));
251 	else
252 		kfree_skb(ptr);
253 }
254 
255 static void __veth_xdp_flush(struct veth_rq *rq)
256 {
257 	/* Write ptr_ring before reading rx_notify_masked */
258 	smp_mb();
259 	if (!rq->rx_notify_masked) {
260 		rq->rx_notify_masked = true;
261 		napi_schedule(&rq->xdp_napi);
262 	}
263 }
264 
265 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
266 {
267 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
268 		dev_kfree_skb_any(skb);
269 		return NET_RX_DROP;
270 	}
271 
272 	return NET_RX_SUCCESS;
273 }
274 
275 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
276 			    struct veth_rq *rq, bool xdp)
277 {
278 	return __dev_forward_skb(dev, skb) ?: xdp ?
279 		veth_xdp_rx(rq, skb) :
280 		netif_rx(skb);
281 }
282 
283 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
284 {
285 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
286 	struct veth_rq *rq = NULL;
287 	struct net_device *rcv;
288 	int length = skb->len;
289 	bool rcv_xdp = false;
290 	int rxq;
291 
292 	rcu_read_lock();
293 	rcv = rcu_dereference(priv->peer);
294 	if (unlikely(!rcv)) {
295 		kfree_skb(skb);
296 		goto drop;
297 	}
298 
299 	rcv_priv = netdev_priv(rcv);
300 	rxq = skb_get_queue_mapping(skb);
301 	if (rxq < rcv->real_num_rx_queues) {
302 		rq = &rcv_priv->rq[rxq];
303 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
304 		if (rcv_xdp)
305 			skb_record_rx_queue(skb, rxq);
306 	}
307 
308 	skb_tx_timestamp(skb);
309 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
310 		if (!rcv_xdp)
311 			dev_lstats_add(dev, length);
312 	} else {
313 drop:
314 		atomic64_inc(&priv->dropped);
315 	}
316 
317 	if (rcv_xdp)
318 		__veth_xdp_flush(rq);
319 
320 	rcu_read_unlock();
321 
322 	return NETDEV_TX_OK;
323 }
324 
325 static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
326 {
327 	struct veth_priv *priv = netdev_priv(dev);
328 
329 	dev_lstats_read(dev, packets, bytes);
330 	return atomic64_read(&priv->dropped);
331 }
332 
333 static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
334 {
335 	struct veth_priv *priv = netdev_priv(dev);
336 	int i;
337 
338 	result->peer_tq_xdp_xmit_err = 0;
339 	result->xdp_packets = 0;
340 	result->xdp_tx_err = 0;
341 	result->xdp_bytes = 0;
342 	result->rx_drops = 0;
343 	for (i = 0; i < dev->num_rx_queues; i++) {
344 		u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
345 		struct veth_rq_stats *stats = &priv->rq[i].stats;
346 		unsigned int start;
347 
348 		do {
349 			start = u64_stats_fetch_begin_irq(&stats->syncp);
350 			peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
351 			xdp_tx_err = stats->vs.xdp_tx_err;
352 			packets = stats->vs.xdp_packets;
353 			bytes = stats->vs.xdp_bytes;
354 			drops = stats->vs.rx_drops;
355 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
356 		result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
357 		result->xdp_tx_err += xdp_tx_err;
358 		result->xdp_packets += packets;
359 		result->xdp_bytes += bytes;
360 		result->rx_drops += drops;
361 	}
362 }
363 
364 static void veth_get_stats64(struct net_device *dev,
365 			     struct rtnl_link_stats64 *tot)
366 {
367 	struct veth_priv *priv = netdev_priv(dev);
368 	struct net_device *peer;
369 	struct veth_stats rx;
370 	u64 packets, bytes;
371 
372 	tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
373 	tot->tx_bytes = bytes;
374 	tot->tx_packets = packets;
375 
376 	veth_stats_rx(&rx, dev);
377 	tot->tx_dropped += rx.xdp_tx_err;
378 	tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
379 	tot->rx_bytes = rx.xdp_bytes;
380 	tot->rx_packets = rx.xdp_packets;
381 
382 	rcu_read_lock();
383 	peer = rcu_dereference(priv->peer);
384 	if (peer) {
385 		veth_stats_tx(peer, &packets, &bytes);
386 		tot->rx_bytes += bytes;
387 		tot->rx_packets += packets;
388 
389 		veth_stats_rx(&rx, peer);
390 		tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
391 		tot->rx_dropped += rx.xdp_tx_err;
392 		tot->tx_bytes += rx.xdp_bytes;
393 		tot->tx_packets += rx.xdp_packets;
394 	}
395 	rcu_read_unlock();
396 }
397 
398 /* fake multicast ability */
399 static void veth_set_multicast_list(struct net_device *dev)
400 {
401 }
402 
403 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
404 				      int buflen)
405 {
406 	struct sk_buff *skb;
407 
408 	skb = build_skb(head, buflen);
409 	if (!skb)
410 		return NULL;
411 
412 	skb_reserve(skb, headroom);
413 	skb_put(skb, len);
414 
415 	return skb;
416 }
417 
418 static int veth_select_rxq(struct net_device *dev)
419 {
420 	return smp_processor_id() % dev->real_num_rx_queues;
421 }
422 
423 static int veth_xdp_xmit(struct net_device *dev, int n,
424 			 struct xdp_frame **frames,
425 			 u32 flags, bool ndo_xmit)
426 {
427 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
428 	int i, ret = -ENXIO, drops = 0;
429 	struct net_device *rcv;
430 	unsigned int max_len;
431 	struct veth_rq *rq;
432 
433 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
434 		return -EINVAL;
435 
436 	rcu_read_lock();
437 	rcv = rcu_dereference(priv->peer);
438 	if (unlikely(!rcv))
439 		goto out;
440 
441 	rcv_priv = netdev_priv(rcv);
442 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
443 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
444 	 * side. This means an XDP program is loaded on the peer and the peer
445 	 * device is up.
446 	 */
447 	if (!rcu_access_pointer(rq->xdp_prog))
448 		goto out;
449 
450 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
451 
452 	spin_lock(&rq->xdp_ring.producer_lock);
453 	for (i = 0; i < n; i++) {
454 		struct xdp_frame *frame = frames[i];
455 		void *ptr = veth_xdp_to_ptr(frame);
456 
457 		if (unlikely(frame->len > max_len ||
458 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
459 			xdp_return_frame_rx_napi(frame);
460 			drops++;
461 		}
462 	}
463 	spin_unlock(&rq->xdp_ring.producer_lock);
464 
465 	if (flags & XDP_XMIT_FLUSH)
466 		__veth_xdp_flush(rq);
467 
468 	ret = n - drops;
469 	if (ndo_xmit) {
470 		u64_stats_update_begin(&rq->stats.syncp);
471 		rq->stats.vs.peer_tq_xdp_xmit += n - drops;
472 		rq->stats.vs.peer_tq_xdp_xmit_err += drops;
473 		u64_stats_update_end(&rq->stats.syncp);
474 	}
475 
476 out:
477 	rcu_read_unlock();
478 
479 	return ret;
480 }
481 
482 static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
483 			     struct xdp_frame **frames, u32 flags)
484 {
485 	int err;
486 
487 	err = veth_xdp_xmit(dev, n, frames, flags, true);
488 	if (err < 0) {
489 		struct veth_priv *priv = netdev_priv(dev);
490 
491 		atomic64_add(n, &priv->dropped);
492 	}
493 
494 	return err;
495 }
496 
497 static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
498 {
499 	int sent, i, err = 0;
500 
501 	sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
502 	if (sent < 0) {
503 		err = sent;
504 		sent = 0;
505 		for (i = 0; i < bq->count; i++)
506 			xdp_return_frame(bq->q[i]);
507 	}
508 	trace_xdp_bulk_tx(rq->dev, sent, bq->count - sent, err);
509 
510 	u64_stats_update_begin(&rq->stats.syncp);
511 	rq->stats.vs.xdp_tx += sent;
512 	rq->stats.vs.xdp_tx_err += bq->count - sent;
513 	u64_stats_update_end(&rq->stats.syncp);
514 
515 	bq->count = 0;
516 }
517 
518 static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
519 {
520 	struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
521 	struct net_device *rcv;
522 	struct veth_rq *rcv_rq;
523 
524 	rcu_read_lock();
525 	veth_xdp_flush_bq(rq, bq);
526 	rcv = rcu_dereference(priv->peer);
527 	if (unlikely(!rcv))
528 		goto out;
529 
530 	rcv_priv = netdev_priv(rcv);
531 	rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
532 	/* xdp_ring is initialized on receive side? */
533 	if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
534 		goto out;
535 
536 	__veth_xdp_flush(rcv_rq);
537 out:
538 	rcu_read_unlock();
539 }
540 
541 static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
542 		       struct veth_xdp_tx_bq *bq)
543 {
544 	struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
545 
546 	if (unlikely(!frame))
547 		return -EOVERFLOW;
548 
549 	if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
550 		veth_xdp_flush_bq(rq, bq);
551 
552 	bq->q[bq->count++] = frame;
553 
554 	return 0;
555 }
556 
557 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
558 					struct xdp_frame *frame,
559 					struct veth_xdp_tx_bq *bq,
560 					struct veth_stats *stats)
561 {
562 	void *hard_start = frame->data - frame->headroom;
563 	int len = frame->len, delta = 0;
564 	struct xdp_frame orig_frame;
565 	struct bpf_prog *xdp_prog;
566 	unsigned int headroom;
567 	struct sk_buff *skb;
568 
569 	/* bpf_xdp_adjust_head() assures BPF cannot access xdp_frame area */
570 	hard_start -= sizeof(struct xdp_frame);
571 
572 	rcu_read_lock();
573 	xdp_prog = rcu_dereference(rq->xdp_prog);
574 	if (likely(xdp_prog)) {
575 		struct xdp_buff xdp;
576 		u32 act;
577 
578 		xdp_convert_frame_to_buff(frame, &xdp);
579 		xdp.rxq = &rq->xdp_rxq;
580 
581 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
582 
583 		switch (act) {
584 		case XDP_PASS:
585 			delta = frame->data - xdp.data;
586 			len = xdp.data_end - xdp.data;
587 			break;
588 		case XDP_TX:
589 			orig_frame = *frame;
590 			xdp.rxq->mem = frame->mem;
591 			if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
592 				trace_xdp_exception(rq->dev, xdp_prog, act);
593 				frame = &orig_frame;
594 				stats->rx_drops++;
595 				goto err_xdp;
596 			}
597 			stats->xdp_tx++;
598 			rcu_read_unlock();
599 			goto xdp_xmit;
600 		case XDP_REDIRECT:
601 			orig_frame = *frame;
602 			xdp.rxq->mem = frame->mem;
603 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
604 				frame = &orig_frame;
605 				stats->rx_drops++;
606 				goto err_xdp;
607 			}
608 			stats->xdp_redirect++;
609 			rcu_read_unlock();
610 			goto xdp_xmit;
611 		default:
612 			bpf_warn_invalid_xdp_action(act);
613 			/* fall through */
614 		case XDP_ABORTED:
615 			trace_xdp_exception(rq->dev, xdp_prog, act);
616 			/* fall through */
617 		case XDP_DROP:
618 			stats->xdp_drops++;
619 			goto err_xdp;
620 		}
621 	}
622 	rcu_read_unlock();
623 
624 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
625 	skb = veth_build_skb(hard_start, headroom, len, frame->frame_sz);
626 	if (!skb) {
627 		xdp_return_frame(frame);
628 		stats->rx_drops++;
629 		goto err;
630 	}
631 
632 	xdp_release_frame(frame);
633 	xdp_scrub_frame(frame);
634 	skb->protocol = eth_type_trans(skb, rq->dev);
635 err:
636 	return skb;
637 err_xdp:
638 	rcu_read_unlock();
639 	xdp_return_frame(frame);
640 xdp_xmit:
641 	return NULL;
642 }
643 
644 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
645 					struct sk_buff *skb,
646 					struct veth_xdp_tx_bq *bq,
647 					struct veth_stats *stats)
648 {
649 	u32 pktlen, headroom, act, metalen;
650 	void *orig_data, *orig_data_end;
651 	struct bpf_prog *xdp_prog;
652 	int mac_len, delta, off;
653 	struct xdp_buff xdp;
654 
655 	skb_orphan(skb);
656 
657 	rcu_read_lock();
658 	xdp_prog = rcu_dereference(rq->xdp_prog);
659 	if (unlikely(!xdp_prog)) {
660 		rcu_read_unlock();
661 		goto out;
662 	}
663 
664 	mac_len = skb->data - skb_mac_header(skb);
665 	pktlen = skb->len + mac_len;
666 	headroom = skb_headroom(skb) - mac_len;
667 
668 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
669 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
670 		struct sk_buff *nskb;
671 		int size, head_off;
672 		void *head, *start;
673 		struct page *page;
674 
675 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
676 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
677 		if (size > PAGE_SIZE)
678 			goto drop;
679 
680 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
681 		if (!page)
682 			goto drop;
683 
684 		head = page_address(page);
685 		start = head + VETH_XDP_HEADROOM;
686 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
687 			page_frag_free(head);
688 			goto drop;
689 		}
690 
691 		nskb = veth_build_skb(head, VETH_XDP_HEADROOM + mac_len,
692 				      skb->len, PAGE_SIZE);
693 		if (!nskb) {
694 			page_frag_free(head);
695 			goto drop;
696 		}
697 
698 		skb_copy_header(nskb, skb);
699 		head_off = skb_headroom(nskb) - skb_headroom(skb);
700 		skb_headers_offset_update(nskb, head_off);
701 		consume_skb(skb);
702 		skb = nskb;
703 	}
704 
705 	xdp.data_hard_start = skb->head;
706 	xdp.data = skb_mac_header(skb);
707 	xdp.data_end = xdp.data + pktlen;
708 	xdp.data_meta = xdp.data;
709 	xdp.rxq = &rq->xdp_rxq;
710 
711 	/* SKB "head" area always have tailroom for skb_shared_info */
712 	xdp.frame_sz = (void *)skb_end_pointer(skb) - xdp.data_hard_start;
713 	xdp.frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
714 
715 	orig_data = xdp.data;
716 	orig_data_end = xdp.data_end;
717 
718 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
719 
720 	switch (act) {
721 	case XDP_PASS:
722 		break;
723 	case XDP_TX:
724 		get_page(virt_to_page(xdp.data));
725 		consume_skb(skb);
726 		xdp.rxq->mem = rq->xdp_mem;
727 		if (unlikely(veth_xdp_tx(rq, &xdp, bq) < 0)) {
728 			trace_xdp_exception(rq->dev, xdp_prog, act);
729 			stats->rx_drops++;
730 			goto err_xdp;
731 		}
732 		stats->xdp_tx++;
733 		rcu_read_unlock();
734 		goto xdp_xmit;
735 	case XDP_REDIRECT:
736 		get_page(virt_to_page(xdp.data));
737 		consume_skb(skb);
738 		xdp.rxq->mem = rq->xdp_mem;
739 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
740 			stats->rx_drops++;
741 			goto err_xdp;
742 		}
743 		stats->xdp_redirect++;
744 		rcu_read_unlock();
745 		goto xdp_xmit;
746 	default:
747 		bpf_warn_invalid_xdp_action(act);
748 		/* fall through */
749 	case XDP_ABORTED:
750 		trace_xdp_exception(rq->dev, xdp_prog, act);
751 		/* fall through */
752 	case XDP_DROP:
753 		stats->xdp_drops++;
754 		goto xdp_drop;
755 	}
756 	rcu_read_unlock();
757 
758 	/* check if bpf_xdp_adjust_head was used */
759 	delta = orig_data - xdp.data;
760 	off = mac_len + delta;
761 	if (off > 0)
762 		__skb_push(skb, off);
763 	else if (off < 0)
764 		__skb_pull(skb, -off);
765 	skb->mac_header -= delta;
766 
767 	/* check if bpf_xdp_adjust_tail was used */
768 	off = xdp.data_end - orig_data_end;
769 	if (off != 0)
770 		__skb_put(skb, off); /* positive on grow, negative on shrink */
771 	skb->protocol = eth_type_trans(skb, rq->dev);
772 
773 	metalen = xdp.data - xdp.data_meta;
774 	if (metalen)
775 		skb_metadata_set(skb, metalen);
776 out:
777 	return skb;
778 drop:
779 	stats->rx_drops++;
780 xdp_drop:
781 	rcu_read_unlock();
782 	kfree_skb(skb);
783 	return NULL;
784 err_xdp:
785 	rcu_read_unlock();
786 	page_frag_free(xdp.data);
787 xdp_xmit:
788 	return NULL;
789 }
790 
791 static int veth_xdp_rcv(struct veth_rq *rq, int budget,
792 			struct veth_xdp_tx_bq *bq,
793 			struct veth_stats *stats)
794 {
795 	int i, done = 0;
796 
797 	for (i = 0; i < budget; i++) {
798 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
799 		struct sk_buff *skb;
800 
801 		if (!ptr)
802 			break;
803 
804 		if (veth_is_xdp_frame(ptr)) {
805 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
806 
807 			stats->xdp_bytes += frame->len;
808 			skb = veth_xdp_rcv_one(rq, frame, bq, stats);
809 		} else {
810 			skb = ptr;
811 			stats->xdp_bytes += skb->len;
812 			skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
813 		}
814 
815 		if (skb)
816 			napi_gro_receive(&rq->xdp_napi, skb);
817 
818 		done++;
819 	}
820 
821 	u64_stats_update_begin(&rq->stats.syncp);
822 	rq->stats.vs.xdp_redirect += stats->xdp_redirect;
823 	rq->stats.vs.xdp_bytes += stats->xdp_bytes;
824 	rq->stats.vs.xdp_drops += stats->xdp_drops;
825 	rq->stats.vs.rx_drops += stats->rx_drops;
826 	rq->stats.vs.xdp_packets += done;
827 	u64_stats_update_end(&rq->stats.syncp);
828 
829 	return done;
830 }
831 
832 static int veth_poll(struct napi_struct *napi, int budget)
833 {
834 	struct veth_rq *rq =
835 		container_of(napi, struct veth_rq, xdp_napi);
836 	struct veth_stats stats = {};
837 	struct veth_xdp_tx_bq bq;
838 	int done;
839 
840 	bq.count = 0;
841 
842 	xdp_set_return_frame_no_direct();
843 	done = veth_xdp_rcv(rq, budget, &bq, &stats);
844 
845 	if (done < budget && napi_complete_done(napi, done)) {
846 		/* Write rx_notify_masked before reading ptr_ring */
847 		smp_store_mb(rq->rx_notify_masked, false);
848 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
849 			rq->rx_notify_masked = true;
850 			napi_schedule(&rq->xdp_napi);
851 		}
852 	}
853 
854 	if (stats.xdp_tx > 0)
855 		veth_xdp_flush(rq, &bq);
856 	if (stats.xdp_redirect > 0)
857 		xdp_do_flush();
858 	xdp_clear_return_frame_no_direct();
859 
860 	return done;
861 }
862 
863 static int veth_napi_add(struct net_device *dev)
864 {
865 	struct veth_priv *priv = netdev_priv(dev);
866 	int err, i;
867 
868 	for (i = 0; i < dev->real_num_rx_queues; i++) {
869 		struct veth_rq *rq = &priv->rq[i];
870 
871 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
872 		if (err)
873 			goto err_xdp_ring;
874 	}
875 
876 	for (i = 0; i < dev->real_num_rx_queues; i++) {
877 		struct veth_rq *rq = &priv->rq[i];
878 
879 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
880 		napi_enable(&rq->xdp_napi);
881 	}
882 
883 	return 0;
884 err_xdp_ring:
885 	for (i--; i >= 0; i--)
886 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
887 
888 	return err;
889 }
890 
891 static void veth_napi_del(struct net_device *dev)
892 {
893 	struct veth_priv *priv = netdev_priv(dev);
894 	int i;
895 
896 	for (i = 0; i < dev->real_num_rx_queues; i++) {
897 		struct veth_rq *rq = &priv->rq[i];
898 
899 		napi_disable(&rq->xdp_napi);
900 		napi_hash_del(&rq->xdp_napi);
901 	}
902 	synchronize_net();
903 
904 	for (i = 0; i < dev->real_num_rx_queues; i++) {
905 		struct veth_rq *rq = &priv->rq[i];
906 
907 		netif_napi_del(&rq->xdp_napi);
908 		rq->rx_notify_masked = false;
909 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
910 	}
911 }
912 
913 static int veth_enable_xdp(struct net_device *dev)
914 {
915 	struct veth_priv *priv = netdev_priv(dev);
916 	int err, i;
917 
918 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
919 		for (i = 0; i < dev->real_num_rx_queues; i++) {
920 			struct veth_rq *rq = &priv->rq[i];
921 
922 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
923 			if (err < 0)
924 				goto err_rxq_reg;
925 
926 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
927 							 MEM_TYPE_PAGE_SHARED,
928 							 NULL);
929 			if (err < 0)
930 				goto err_reg_mem;
931 
932 			/* Save original mem info as it can be overwritten */
933 			rq->xdp_mem = rq->xdp_rxq.mem;
934 		}
935 
936 		err = veth_napi_add(dev);
937 		if (err)
938 			goto err_rxq_reg;
939 	}
940 
941 	for (i = 0; i < dev->real_num_rx_queues; i++)
942 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
943 
944 	return 0;
945 err_reg_mem:
946 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
947 err_rxq_reg:
948 	for (i--; i >= 0; i--)
949 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
950 
951 	return err;
952 }
953 
954 static void veth_disable_xdp(struct net_device *dev)
955 {
956 	struct veth_priv *priv = netdev_priv(dev);
957 	int i;
958 
959 	for (i = 0; i < dev->real_num_rx_queues; i++)
960 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
961 	veth_napi_del(dev);
962 	for (i = 0; i < dev->real_num_rx_queues; i++) {
963 		struct veth_rq *rq = &priv->rq[i];
964 
965 		rq->xdp_rxq.mem = rq->xdp_mem;
966 		xdp_rxq_info_unreg(&rq->xdp_rxq);
967 	}
968 }
969 
970 static int veth_open(struct net_device *dev)
971 {
972 	struct veth_priv *priv = netdev_priv(dev);
973 	struct net_device *peer = rtnl_dereference(priv->peer);
974 	int err;
975 
976 	if (!peer)
977 		return -ENOTCONN;
978 
979 	if (priv->_xdp_prog) {
980 		err = veth_enable_xdp(dev);
981 		if (err)
982 			return err;
983 	}
984 
985 	if (peer->flags & IFF_UP) {
986 		netif_carrier_on(dev);
987 		netif_carrier_on(peer);
988 	}
989 
990 	return 0;
991 }
992 
993 static int veth_close(struct net_device *dev)
994 {
995 	struct veth_priv *priv = netdev_priv(dev);
996 	struct net_device *peer = rtnl_dereference(priv->peer);
997 
998 	netif_carrier_off(dev);
999 	if (peer)
1000 		netif_carrier_off(peer);
1001 
1002 	if (priv->_xdp_prog)
1003 		veth_disable_xdp(dev);
1004 
1005 	return 0;
1006 }
1007 
1008 static int is_valid_veth_mtu(int mtu)
1009 {
1010 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
1011 }
1012 
1013 static int veth_alloc_queues(struct net_device *dev)
1014 {
1015 	struct veth_priv *priv = netdev_priv(dev);
1016 	int i;
1017 
1018 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
1019 	if (!priv->rq)
1020 		return -ENOMEM;
1021 
1022 	for (i = 0; i < dev->num_rx_queues; i++) {
1023 		priv->rq[i].dev = dev;
1024 		u64_stats_init(&priv->rq[i].stats.syncp);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static void veth_free_queues(struct net_device *dev)
1031 {
1032 	struct veth_priv *priv = netdev_priv(dev);
1033 
1034 	kfree(priv->rq);
1035 }
1036 
1037 static int veth_dev_init(struct net_device *dev)
1038 {
1039 	int err;
1040 
1041 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
1042 	if (!dev->lstats)
1043 		return -ENOMEM;
1044 
1045 	err = veth_alloc_queues(dev);
1046 	if (err) {
1047 		free_percpu(dev->lstats);
1048 		return err;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 static void veth_dev_free(struct net_device *dev)
1055 {
1056 	veth_free_queues(dev);
1057 	free_percpu(dev->lstats);
1058 }
1059 
1060 #ifdef CONFIG_NET_POLL_CONTROLLER
1061 static void veth_poll_controller(struct net_device *dev)
1062 {
1063 	/* veth only receives frames when its peer sends one
1064 	 * Since it has nothing to do with disabling irqs, we are guaranteed
1065 	 * never to have pending data when we poll for it so
1066 	 * there is nothing to do here.
1067 	 *
1068 	 * We need this though so netpoll recognizes us as an interface that
1069 	 * supports polling, which enables bridge devices in virt setups to
1070 	 * still use netconsole
1071 	 */
1072 }
1073 #endif	/* CONFIG_NET_POLL_CONTROLLER */
1074 
1075 static int veth_get_iflink(const struct net_device *dev)
1076 {
1077 	struct veth_priv *priv = netdev_priv(dev);
1078 	struct net_device *peer;
1079 	int iflink;
1080 
1081 	rcu_read_lock();
1082 	peer = rcu_dereference(priv->peer);
1083 	iflink = peer ? peer->ifindex : 0;
1084 	rcu_read_unlock();
1085 
1086 	return iflink;
1087 }
1088 
1089 static netdev_features_t veth_fix_features(struct net_device *dev,
1090 					   netdev_features_t features)
1091 {
1092 	struct veth_priv *priv = netdev_priv(dev);
1093 	struct net_device *peer;
1094 
1095 	peer = rtnl_dereference(priv->peer);
1096 	if (peer) {
1097 		struct veth_priv *peer_priv = netdev_priv(peer);
1098 
1099 		if (peer_priv->_xdp_prog)
1100 			features &= ~NETIF_F_GSO_SOFTWARE;
1101 	}
1102 
1103 	return features;
1104 }
1105 
1106 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1107 {
1108 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1109 	struct net_device *peer;
1110 
1111 	if (new_hr < 0)
1112 		new_hr = 0;
1113 
1114 	rcu_read_lock();
1115 	peer = rcu_dereference(priv->peer);
1116 	if (unlikely(!peer))
1117 		goto out;
1118 
1119 	peer_priv = netdev_priv(peer);
1120 	priv->requested_headroom = new_hr;
1121 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1122 	dev->needed_headroom = new_hr;
1123 	peer->needed_headroom = new_hr;
1124 
1125 out:
1126 	rcu_read_unlock();
1127 }
1128 
1129 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1130 			struct netlink_ext_ack *extack)
1131 {
1132 	struct veth_priv *priv = netdev_priv(dev);
1133 	struct bpf_prog *old_prog;
1134 	struct net_device *peer;
1135 	unsigned int max_mtu;
1136 	int err;
1137 
1138 	old_prog = priv->_xdp_prog;
1139 	priv->_xdp_prog = prog;
1140 	peer = rtnl_dereference(priv->peer);
1141 
1142 	if (prog) {
1143 		if (!peer) {
1144 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1145 			err = -ENOTCONN;
1146 			goto err;
1147 		}
1148 
1149 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1150 			  peer->hard_header_len -
1151 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1152 		if (peer->mtu > max_mtu) {
1153 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1154 			err = -ERANGE;
1155 			goto err;
1156 		}
1157 
1158 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1159 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1160 			err = -ENOSPC;
1161 			goto err;
1162 		}
1163 
1164 		if (dev->flags & IFF_UP) {
1165 			err = veth_enable_xdp(dev);
1166 			if (err) {
1167 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1168 				goto err;
1169 			}
1170 		}
1171 
1172 		if (!old_prog) {
1173 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1174 			peer->max_mtu = max_mtu;
1175 		}
1176 	}
1177 
1178 	if (old_prog) {
1179 		if (!prog) {
1180 			if (dev->flags & IFF_UP)
1181 				veth_disable_xdp(dev);
1182 
1183 			if (peer) {
1184 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1185 				peer->max_mtu = ETH_MAX_MTU;
1186 			}
1187 		}
1188 		bpf_prog_put(old_prog);
1189 	}
1190 
1191 	if ((!!old_prog ^ !!prog) && peer)
1192 		netdev_update_features(peer);
1193 
1194 	return 0;
1195 err:
1196 	priv->_xdp_prog = old_prog;
1197 
1198 	return err;
1199 }
1200 
1201 static u32 veth_xdp_query(struct net_device *dev)
1202 {
1203 	struct veth_priv *priv = netdev_priv(dev);
1204 	const struct bpf_prog *xdp_prog;
1205 
1206 	xdp_prog = priv->_xdp_prog;
1207 	if (xdp_prog)
1208 		return xdp_prog->aux->id;
1209 
1210 	return 0;
1211 }
1212 
1213 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1214 {
1215 	switch (xdp->command) {
1216 	case XDP_SETUP_PROG:
1217 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1218 	case XDP_QUERY_PROG:
1219 		xdp->prog_id = veth_xdp_query(dev);
1220 		return 0;
1221 	default:
1222 		return -EINVAL;
1223 	}
1224 }
1225 
1226 static const struct net_device_ops veth_netdev_ops = {
1227 	.ndo_init            = veth_dev_init,
1228 	.ndo_open            = veth_open,
1229 	.ndo_stop            = veth_close,
1230 	.ndo_start_xmit      = veth_xmit,
1231 	.ndo_get_stats64     = veth_get_stats64,
1232 	.ndo_set_rx_mode     = veth_set_multicast_list,
1233 	.ndo_set_mac_address = eth_mac_addr,
1234 #ifdef CONFIG_NET_POLL_CONTROLLER
1235 	.ndo_poll_controller	= veth_poll_controller,
1236 #endif
1237 	.ndo_get_iflink		= veth_get_iflink,
1238 	.ndo_fix_features	= veth_fix_features,
1239 	.ndo_features_check	= passthru_features_check,
1240 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1241 	.ndo_bpf		= veth_xdp,
1242 	.ndo_xdp_xmit		= veth_ndo_xdp_xmit,
1243 };
1244 
1245 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1246 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1247 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1248 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1249 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1250 
1251 static void veth_setup(struct net_device *dev)
1252 {
1253 	ether_setup(dev);
1254 
1255 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1256 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1257 	dev->priv_flags |= IFF_NO_QUEUE;
1258 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1259 
1260 	dev->netdev_ops = &veth_netdev_ops;
1261 	dev->ethtool_ops = &veth_ethtool_ops;
1262 	dev->features |= NETIF_F_LLTX;
1263 	dev->features |= VETH_FEATURES;
1264 	dev->vlan_features = dev->features &
1265 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1266 			       NETIF_F_HW_VLAN_STAG_TX |
1267 			       NETIF_F_HW_VLAN_CTAG_RX |
1268 			       NETIF_F_HW_VLAN_STAG_RX);
1269 	dev->needs_free_netdev = true;
1270 	dev->priv_destructor = veth_dev_free;
1271 	dev->max_mtu = ETH_MAX_MTU;
1272 
1273 	dev->hw_features = VETH_FEATURES;
1274 	dev->hw_enc_features = VETH_FEATURES;
1275 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1276 }
1277 
1278 /*
1279  * netlink interface
1280  */
1281 
1282 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1283 			 struct netlink_ext_ack *extack)
1284 {
1285 	if (tb[IFLA_ADDRESS]) {
1286 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1287 			return -EINVAL;
1288 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1289 			return -EADDRNOTAVAIL;
1290 	}
1291 	if (tb[IFLA_MTU]) {
1292 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1293 			return -EINVAL;
1294 	}
1295 	return 0;
1296 }
1297 
1298 static struct rtnl_link_ops veth_link_ops;
1299 
1300 static int veth_newlink(struct net *src_net, struct net_device *dev,
1301 			struct nlattr *tb[], struct nlattr *data[],
1302 			struct netlink_ext_ack *extack)
1303 {
1304 	int err;
1305 	struct net_device *peer;
1306 	struct veth_priv *priv;
1307 	char ifname[IFNAMSIZ];
1308 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1309 	unsigned char name_assign_type;
1310 	struct ifinfomsg *ifmp;
1311 	struct net *net;
1312 
1313 	/*
1314 	 * create and register peer first
1315 	 */
1316 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1317 		struct nlattr *nla_peer;
1318 
1319 		nla_peer = data[VETH_INFO_PEER];
1320 		ifmp = nla_data(nla_peer);
1321 		err = rtnl_nla_parse_ifla(peer_tb,
1322 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1323 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1324 					  NULL);
1325 		if (err < 0)
1326 			return err;
1327 
1328 		err = veth_validate(peer_tb, NULL, extack);
1329 		if (err < 0)
1330 			return err;
1331 
1332 		tbp = peer_tb;
1333 	} else {
1334 		ifmp = NULL;
1335 		tbp = tb;
1336 	}
1337 
1338 	if (ifmp && tbp[IFLA_IFNAME]) {
1339 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1340 		name_assign_type = NET_NAME_USER;
1341 	} else {
1342 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1343 		name_assign_type = NET_NAME_ENUM;
1344 	}
1345 
1346 	net = rtnl_link_get_net(src_net, tbp);
1347 	if (IS_ERR(net))
1348 		return PTR_ERR(net);
1349 
1350 	peer = rtnl_create_link(net, ifname, name_assign_type,
1351 				&veth_link_ops, tbp, extack);
1352 	if (IS_ERR(peer)) {
1353 		put_net(net);
1354 		return PTR_ERR(peer);
1355 	}
1356 
1357 	if (!ifmp || !tbp[IFLA_ADDRESS])
1358 		eth_hw_addr_random(peer);
1359 
1360 	if (ifmp && (dev->ifindex != 0))
1361 		peer->ifindex = ifmp->ifi_index;
1362 
1363 	peer->gso_max_size = dev->gso_max_size;
1364 	peer->gso_max_segs = dev->gso_max_segs;
1365 
1366 	err = register_netdevice(peer);
1367 	put_net(net);
1368 	net = NULL;
1369 	if (err < 0)
1370 		goto err_register_peer;
1371 
1372 	netif_carrier_off(peer);
1373 
1374 	err = rtnl_configure_link(peer, ifmp);
1375 	if (err < 0)
1376 		goto err_configure_peer;
1377 
1378 	/*
1379 	 * register dev last
1380 	 *
1381 	 * note, that since we've registered new device the dev's name
1382 	 * should be re-allocated
1383 	 */
1384 
1385 	if (tb[IFLA_ADDRESS] == NULL)
1386 		eth_hw_addr_random(dev);
1387 
1388 	if (tb[IFLA_IFNAME])
1389 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1390 	else
1391 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1392 
1393 	err = register_netdevice(dev);
1394 	if (err < 0)
1395 		goto err_register_dev;
1396 
1397 	netif_carrier_off(dev);
1398 
1399 	/*
1400 	 * tie the deviced together
1401 	 */
1402 
1403 	priv = netdev_priv(dev);
1404 	rcu_assign_pointer(priv->peer, peer);
1405 
1406 	priv = netdev_priv(peer);
1407 	rcu_assign_pointer(priv->peer, dev);
1408 
1409 	return 0;
1410 
1411 err_register_dev:
1412 	/* nothing to do */
1413 err_configure_peer:
1414 	unregister_netdevice(peer);
1415 	return err;
1416 
1417 err_register_peer:
1418 	free_netdev(peer);
1419 	return err;
1420 }
1421 
1422 static void veth_dellink(struct net_device *dev, struct list_head *head)
1423 {
1424 	struct veth_priv *priv;
1425 	struct net_device *peer;
1426 
1427 	priv = netdev_priv(dev);
1428 	peer = rtnl_dereference(priv->peer);
1429 
1430 	/* Note : dellink() is called from default_device_exit_batch(),
1431 	 * before a rcu_synchronize() point. The devices are guaranteed
1432 	 * not being freed before one RCU grace period.
1433 	 */
1434 	RCU_INIT_POINTER(priv->peer, NULL);
1435 	unregister_netdevice_queue(dev, head);
1436 
1437 	if (peer) {
1438 		priv = netdev_priv(peer);
1439 		RCU_INIT_POINTER(priv->peer, NULL);
1440 		unregister_netdevice_queue(peer, head);
1441 	}
1442 }
1443 
1444 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1445 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1446 };
1447 
1448 static struct net *veth_get_link_net(const struct net_device *dev)
1449 {
1450 	struct veth_priv *priv = netdev_priv(dev);
1451 	struct net_device *peer = rtnl_dereference(priv->peer);
1452 
1453 	return peer ? dev_net(peer) : dev_net(dev);
1454 }
1455 
1456 static struct rtnl_link_ops veth_link_ops = {
1457 	.kind		= DRV_NAME,
1458 	.priv_size	= sizeof(struct veth_priv),
1459 	.setup		= veth_setup,
1460 	.validate	= veth_validate,
1461 	.newlink	= veth_newlink,
1462 	.dellink	= veth_dellink,
1463 	.policy		= veth_policy,
1464 	.maxtype	= VETH_INFO_MAX,
1465 	.get_link_net	= veth_get_link_net,
1466 };
1467 
1468 /*
1469  * init/fini
1470  */
1471 
1472 static __init int veth_init(void)
1473 {
1474 	return rtnl_link_register(&veth_link_ops);
1475 }
1476 
1477 static __exit void veth_exit(void)
1478 {
1479 	rtnl_link_unregister(&veth_link_ops);
1480 }
1481 
1482 module_init(veth_init);
1483 module_exit(veth_exit);
1484 
1485 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1486 MODULE_LICENSE("GPL v2");
1487 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1488