xref: /openbmc/linux/drivers/net/veth.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *  drivers/net/veth.c
3  *
4  *  Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
5  *
6  * Author: Pavel Emelianov <xemul@openvz.org>
7  * Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
8  *
9  */
10 
11 #include <linux/netdevice.h>
12 #include <linux/slab.h>
13 #include <linux/ethtool.h>
14 #include <linux/etherdevice.h>
15 #include <linux/u64_stats_sync.h>
16 
17 #include <net/rtnetlink.h>
18 #include <net/dst.h>
19 #include <net/xfrm.h>
20 #include <net/xdp.h>
21 #include <linux/veth.h>
22 #include <linux/module.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <linux/bpf_trace.h>
27 #include <linux/net_tstamp.h>
28 
29 #define DRV_NAME	"veth"
30 #define DRV_VERSION	"1.0"
31 
32 #define VETH_XDP_FLAG		BIT(0)
33 #define VETH_RING_SIZE		256
34 #define VETH_XDP_HEADROOM	(XDP_PACKET_HEADROOM + NET_IP_ALIGN)
35 
36 /* Separating two types of XDP xmit */
37 #define VETH_XDP_TX		BIT(0)
38 #define VETH_XDP_REDIR		BIT(1)
39 
40 struct veth_rq_stats {
41 	u64			xdp_packets;
42 	u64			xdp_bytes;
43 	u64			xdp_drops;
44 	struct u64_stats_sync	syncp;
45 };
46 
47 struct veth_rq {
48 	struct napi_struct	xdp_napi;
49 	struct net_device	*dev;
50 	struct bpf_prog __rcu	*xdp_prog;
51 	struct xdp_mem_info	xdp_mem;
52 	struct veth_rq_stats	stats;
53 	bool			rx_notify_masked;
54 	struct ptr_ring		xdp_ring;
55 	struct xdp_rxq_info	xdp_rxq;
56 };
57 
58 struct veth_priv {
59 	struct net_device __rcu	*peer;
60 	atomic64_t		dropped;
61 	struct bpf_prog		*_xdp_prog;
62 	struct veth_rq		*rq;
63 	unsigned int		requested_headroom;
64 };
65 
66 /*
67  * ethtool interface
68  */
69 
70 struct veth_q_stat_desc {
71 	char	desc[ETH_GSTRING_LEN];
72 	size_t	offset;
73 };
74 
75 #define VETH_RQ_STAT(m)	offsetof(struct veth_rq_stats, m)
76 
77 static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
78 	{ "xdp_packets",	VETH_RQ_STAT(xdp_packets) },
79 	{ "xdp_bytes",		VETH_RQ_STAT(xdp_bytes) },
80 	{ "xdp_drops",		VETH_RQ_STAT(xdp_drops) },
81 };
82 
83 #define VETH_RQ_STATS_LEN	ARRAY_SIZE(veth_rq_stats_desc)
84 
85 static struct {
86 	const char string[ETH_GSTRING_LEN];
87 } ethtool_stats_keys[] = {
88 	{ "peer_ifindex" },
89 };
90 
91 static int veth_get_link_ksettings(struct net_device *dev,
92 				   struct ethtool_link_ksettings *cmd)
93 {
94 	cmd->base.speed		= SPEED_10000;
95 	cmd->base.duplex	= DUPLEX_FULL;
96 	cmd->base.port		= PORT_TP;
97 	cmd->base.autoneg	= AUTONEG_DISABLE;
98 	return 0;
99 }
100 
101 static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
102 {
103 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
104 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
105 }
106 
107 static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
108 {
109 	char *p = (char *)buf;
110 	int i, j;
111 
112 	switch(stringset) {
113 	case ETH_SS_STATS:
114 		memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
115 		p += sizeof(ethtool_stats_keys);
116 		for (i = 0; i < dev->real_num_rx_queues; i++) {
117 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
118 				snprintf(p, ETH_GSTRING_LEN,
119 					 "rx_queue_%u_%.11s",
120 					 i, veth_rq_stats_desc[j].desc);
121 				p += ETH_GSTRING_LEN;
122 			}
123 		}
124 		break;
125 	}
126 }
127 
128 static int veth_get_sset_count(struct net_device *dev, int sset)
129 {
130 	switch (sset) {
131 	case ETH_SS_STATS:
132 		return ARRAY_SIZE(ethtool_stats_keys) +
133 		       VETH_RQ_STATS_LEN * dev->real_num_rx_queues;
134 	default:
135 		return -EOPNOTSUPP;
136 	}
137 }
138 
139 static void veth_get_ethtool_stats(struct net_device *dev,
140 		struct ethtool_stats *stats, u64 *data)
141 {
142 	struct veth_priv *priv = netdev_priv(dev);
143 	struct net_device *peer = rtnl_dereference(priv->peer);
144 	int i, j, idx;
145 
146 	data[0] = peer ? peer->ifindex : 0;
147 	idx = 1;
148 	for (i = 0; i < dev->real_num_rx_queues; i++) {
149 		const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
150 		const void *stats_base = (void *)rq_stats;
151 		unsigned int start;
152 		size_t offset;
153 
154 		do {
155 			start = u64_stats_fetch_begin_irq(&rq_stats->syncp);
156 			for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
157 				offset = veth_rq_stats_desc[j].offset;
158 				data[idx + j] = *(u64 *)(stats_base + offset);
159 			}
160 		} while (u64_stats_fetch_retry_irq(&rq_stats->syncp, start));
161 		idx += VETH_RQ_STATS_LEN;
162 	}
163 }
164 
165 static int veth_get_ts_info(struct net_device *dev,
166 			    struct ethtool_ts_info *info)
167 {
168 	info->so_timestamping =
169 		SOF_TIMESTAMPING_TX_SOFTWARE |
170 		SOF_TIMESTAMPING_RX_SOFTWARE |
171 		SOF_TIMESTAMPING_SOFTWARE;
172 	info->phc_index = -1;
173 
174 	return 0;
175 }
176 
177 static const struct ethtool_ops veth_ethtool_ops = {
178 	.get_drvinfo		= veth_get_drvinfo,
179 	.get_link		= ethtool_op_get_link,
180 	.get_strings		= veth_get_strings,
181 	.get_sset_count		= veth_get_sset_count,
182 	.get_ethtool_stats	= veth_get_ethtool_stats,
183 	.get_link_ksettings	= veth_get_link_ksettings,
184 	.get_ts_info		= veth_get_ts_info,
185 };
186 
187 /* general routines */
188 
189 static bool veth_is_xdp_frame(void *ptr)
190 {
191 	return (unsigned long)ptr & VETH_XDP_FLAG;
192 }
193 
194 static void *veth_ptr_to_xdp(void *ptr)
195 {
196 	return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
197 }
198 
199 static void *veth_xdp_to_ptr(void *ptr)
200 {
201 	return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
202 }
203 
204 static void veth_ptr_free(void *ptr)
205 {
206 	if (veth_is_xdp_frame(ptr))
207 		xdp_return_frame(veth_ptr_to_xdp(ptr));
208 	else
209 		kfree_skb(ptr);
210 }
211 
212 static void __veth_xdp_flush(struct veth_rq *rq)
213 {
214 	/* Write ptr_ring before reading rx_notify_masked */
215 	smp_mb();
216 	if (!rq->rx_notify_masked) {
217 		rq->rx_notify_masked = true;
218 		napi_schedule(&rq->xdp_napi);
219 	}
220 }
221 
222 static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
223 {
224 	if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
225 		dev_kfree_skb_any(skb);
226 		return NET_RX_DROP;
227 	}
228 
229 	return NET_RX_SUCCESS;
230 }
231 
232 static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
233 			    struct veth_rq *rq, bool xdp)
234 {
235 	return __dev_forward_skb(dev, skb) ?: xdp ?
236 		veth_xdp_rx(rq, skb) :
237 		netif_rx(skb);
238 }
239 
240 static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
241 {
242 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
243 	struct veth_rq *rq = NULL;
244 	struct net_device *rcv;
245 	int length = skb->len;
246 	bool rcv_xdp = false;
247 	int rxq;
248 
249 	rcu_read_lock();
250 	rcv = rcu_dereference(priv->peer);
251 	if (unlikely(!rcv)) {
252 		kfree_skb(skb);
253 		goto drop;
254 	}
255 
256 	rcv_priv = netdev_priv(rcv);
257 	rxq = skb_get_queue_mapping(skb);
258 	if (rxq < rcv->real_num_rx_queues) {
259 		rq = &rcv_priv->rq[rxq];
260 		rcv_xdp = rcu_access_pointer(rq->xdp_prog);
261 		if (rcv_xdp)
262 			skb_record_rx_queue(skb, rxq);
263 	}
264 
265 	skb_tx_timestamp(skb);
266 	if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
267 		if (!rcv_xdp) {
268 			struct pcpu_lstats *stats = this_cpu_ptr(dev->lstats);
269 
270 			u64_stats_update_begin(&stats->syncp);
271 			stats->bytes += length;
272 			stats->packets++;
273 			u64_stats_update_end(&stats->syncp);
274 		}
275 	} else {
276 drop:
277 		atomic64_inc(&priv->dropped);
278 	}
279 
280 	if (rcv_xdp)
281 		__veth_xdp_flush(rq);
282 
283 	rcu_read_unlock();
284 
285 	return NETDEV_TX_OK;
286 }
287 
288 static u64 veth_stats_tx(struct pcpu_lstats *result, struct net_device *dev)
289 {
290 	struct veth_priv *priv = netdev_priv(dev);
291 	int cpu;
292 
293 	result->packets = 0;
294 	result->bytes = 0;
295 	for_each_possible_cpu(cpu) {
296 		struct pcpu_lstats *stats = per_cpu_ptr(dev->lstats, cpu);
297 		u64 packets, bytes;
298 		unsigned int start;
299 
300 		do {
301 			start = u64_stats_fetch_begin_irq(&stats->syncp);
302 			packets = stats->packets;
303 			bytes = stats->bytes;
304 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
305 		result->packets += packets;
306 		result->bytes += bytes;
307 	}
308 	return atomic64_read(&priv->dropped);
309 }
310 
311 static void veth_stats_rx(struct veth_rq_stats *result, struct net_device *dev)
312 {
313 	struct veth_priv *priv = netdev_priv(dev);
314 	int i;
315 
316 	result->xdp_packets = 0;
317 	result->xdp_bytes = 0;
318 	result->xdp_drops = 0;
319 	for (i = 0; i < dev->num_rx_queues; i++) {
320 		struct veth_rq_stats *stats = &priv->rq[i].stats;
321 		u64 packets, bytes, drops;
322 		unsigned int start;
323 
324 		do {
325 			start = u64_stats_fetch_begin_irq(&stats->syncp);
326 			packets = stats->xdp_packets;
327 			bytes = stats->xdp_bytes;
328 			drops = stats->xdp_drops;
329 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
330 		result->xdp_packets += packets;
331 		result->xdp_bytes += bytes;
332 		result->xdp_drops += drops;
333 	}
334 }
335 
336 static void veth_get_stats64(struct net_device *dev,
337 			     struct rtnl_link_stats64 *tot)
338 {
339 	struct veth_priv *priv = netdev_priv(dev);
340 	struct net_device *peer;
341 	struct veth_rq_stats rx;
342 	struct pcpu_lstats tx;
343 
344 	tot->tx_dropped = veth_stats_tx(&tx, dev);
345 	tot->tx_bytes = tx.bytes;
346 	tot->tx_packets = tx.packets;
347 
348 	veth_stats_rx(&rx, dev);
349 	tot->rx_dropped = rx.xdp_drops;
350 	tot->rx_bytes = rx.xdp_bytes;
351 	tot->rx_packets = rx.xdp_packets;
352 
353 	rcu_read_lock();
354 	peer = rcu_dereference(priv->peer);
355 	if (peer) {
356 		tot->rx_dropped += veth_stats_tx(&tx, peer);
357 		tot->rx_bytes += tx.bytes;
358 		tot->rx_packets += tx.packets;
359 
360 		veth_stats_rx(&rx, peer);
361 		tot->tx_bytes += rx.xdp_bytes;
362 		tot->tx_packets += rx.xdp_packets;
363 	}
364 	rcu_read_unlock();
365 }
366 
367 /* fake multicast ability */
368 static void veth_set_multicast_list(struct net_device *dev)
369 {
370 }
371 
372 static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
373 				      int buflen)
374 {
375 	struct sk_buff *skb;
376 
377 	if (!buflen) {
378 		buflen = SKB_DATA_ALIGN(headroom + len) +
379 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
380 	}
381 	skb = build_skb(head, buflen);
382 	if (!skb)
383 		return NULL;
384 
385 	skb_reserve(skb, headroom);
386 	skb_put(skb, len);
387 
388 	return skb;
389 }
390 
391 static int veth_select_rxq(struct net_device *dev)
392 {
393 	return smp_processor_id() % dev->real_num_rx_queues;
394 }
395 
396 static int veth_xdp_xmit(struct net_device *dev, int n,
397 			 struct xdp_frame **frames, u32 flags)
398 {
399 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
400 	struct net_device *rcv;
401 	int i, ret, drops = n;
402 	unsigned int max_len;
403 	struct veth_rq *rq;
404 
405 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) {
406 		ret = -EINVAL;
407 		goto drop;
408 	}
409 
410 	rcv = rcu_dereference(priv->peer);
411 	if (unlikely(!rcv)) {
412 		ret = -ENXIO;
413 		goto drop;
414 	}
415 
416 	rcv_priv = netdev_priv(rcv);
417 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
418 	/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
419 	 * side. This means an XDP program is loaded on the peer and the peer
420 	 * device is up.
421 	 */
422 	if (!rcu_access_pointer(rq->xdp_prog)) {
423 		ret = -ENXIO;
424 		goto drop;
425 	}
426 
427 	drops = 0;
428 	max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
429 
430 	spin_lock(&rq->xdp_ring.producer_lock);
431 	for (i = 0; i < n; i++) {
432 		struct xdp_frame *frame = frames[i];
433 		void *ptr = veth_xdp_to_ptr(frame);
434 
435 		if (unlikely(frame->len > max_len ||
436 			     __ptr_ring_produce(&rq->xdp_ring, ptr))) {
437 			xdp_return_frame_rx_napi(frame);
438 			drops++;
439 		}
440 	}
441 	spin_unlock(&rq->xdp_ring.producer_lock);
442 
443 	if (flags & XDP_XMIT_FLUSH)
444 		__veth_xdp_flush(rq);
445 
446 	if (likely(!drops))
447 		return n;
448 
449 	ret = n - drops;
450 drop:
451 	atomic64_add(drops, &priv->dropped);
452 
453 	return ret;
454 }
455 
456 static void veth_xdp_flush(struct net_device *dev)
457 {
458 	struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
459 	struct net_device *rcv;
460 	struct veth_rq *rq;
461 
462 	rcu_read_lock();
463 	rcv = rcu_dereference(priv->peer);
464 	if (unlikely(!rcv))
465 		goto out;
466 
467 	rcv_priv = netdev_priv(rcv);
468 	rq = &rcv_priv->rq[veth_select_rxq(rcv)];
469 	/* xdp_ring is initialized on receive side? */
470 	if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
471 		goto out;
472 
473 	__veth_xdp_flush(rq);
474 out:
475 	rcu_read_unlock();
476 }
477 
478 static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp)
479 {
480 	struct xdp_frame *frame = convert_to_xdp_frame(xdp);
481 
482 	if (unlikely(!frame))
483 		return -EOVERFLOW;
484 
485 	return veth_xdp_xmit(dev, 1, &frame, 0);
486 }
487 
488 static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
489 					struct xdp_frame *frame,
490 					unsigned int *xdp_xmit)
491 {
492 	void *hard_start = frame->data - frame->headroom;
493 	void *head = hard_start - sizeof(struct xdp_frame);
494 	int len = frame->len, delta = 0;
495 	struct xdp_frame orig_frame;
496 	struct bpf_prog *xdp_prog;
497 	unsigned int headroom;
498 	struct sk_buff *skb;
499 
500 	rcu_read_lock();
501 	xdp_prog = rcu_dereference(rq->xdp_prog);
502 	if (likely(xdp_prog)) {
503 		struct xdp_buff xdp;
504 		u32 act;
505 
506 		xdp.data_hard_start = hard_start;
507 		xdp.data = frame->data;
508 		xdp.data_end = frame->data + frame->len;
509 		xdp.data_meta = frame->data - frame->metasize;
510 		xdp.rxq = &rq->xdp_rxq;
511 
512 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
513 
514 		switch (act) {
515 		case XDP_PASS:
516 			delta = frame->data - xdp.data;
517 			len = xdp.data_end - xdp.data;
518 			break;
519 		case XDP_TX:
520 			orig_frame = *frame;
521 			xdp.data_hard_start = head;
522 			xdp.rxq->mem = frame->mem;
523 			if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
524 				trace_xdp_exception(rq->dev, xdp_prog, act);
525 				frame = &orig_frame;
526 				goto err_xdp;
527 			}
528 			*xdp_xmit |= VETH_XDP_TX;
529 			rcu_read_unlock();
530 			goto xdp_xmit;
531 		case XDP_REDIRECT:
532 			orig_frame = *frame;
533 			xdp.data_hard_start = head;
534 			xdp.rxq->mem = frame->mem;
535 			if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
536 				frame = &orig_frame;
537 				goto err_xdp;
538 			}
539 			*xdp_xmit |= VETH_XDP_REDIR;
540 			rcu_read_unlock();
541 			goto xdp_xmit;
542 		default:
543 			bpf_warn_invalid_xdp_action(act);
544 			/* fall through */
545 		case XDP_ABORTED:
546 			trace_xdp_exception(rq->dev, xdp_prog, act);
547 			/* fall through */
548 		case XDP_DROP:
549 			goto err_xdp;
550 		}
551 	}
552 	rcu_read_unlock();
553 
554 	headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
555 	skb = veth_build_skb(head, headroom, len, 0);
556 	if (!skb) {
557 		xdp_return_frame(frame);
558 		goto err;
559 	}
560 
561 	xdp_scrub_frame(frame);
562 	skb->protocol = eth_type_trans(skb, rq->dev);
563 err:
564 	return skb;
565 err_xdp:
566 	rcu_read_unlock();
567 	xdp_return_frame(frame);
568 xdp_xmit:
569 	return NULL;
570 }
571 
572 static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
573 					unsigned int *xdp_xmit)
574 {
575 	u32 pktlen, headroom, act, metalen;
576 	void *orig_data, *orig_data_end;
577 	struct bpf_prog *xdp_prog;
578 	int mac_len, delta, off;
579 	struct xdp_buff xdp;
580 
581 	skb_orphan(skb);
582 
583 	rcu_read_lock();
584 	xdp_prog = rcu_dereference(rq->xdp_prog);
585 	if (unlikely(!xdp_prog)) {
586 		rcu_read_unlock();
587 		goto out;
588 	}
589 
590 	mac_len = skb->data - skb_mac_header(skb);
591 	pktlen = skb->len + mac_len;
592 	headroom = skb_headroom(skb) - mac_len;
593 
594 	if (skb_shared(skb) || skb_head_is_locked(skb) ||
595 	    skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
596 		struct sk_buff *nskb;
597 		int size, head_off;
598 		void *head, *start;
599 		struct page *page;
600 
601 		size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
602 		       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
603 		if (size > PAGE_SIZE)
604 			goto drop;
605 
606 		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
607 		if (!page)
608 			goto drop;
609 
610 		head = page_address(page);
611 		start = head + VETH_XDP_HEADROOM;
612 		if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
613 			page_frag_free(head);
614 			goto drop;
615 		}
616 
617 		nskb = veth_build_skb(head,
618 				      VETH_XDP_HEADROOM + mac_len, skb->len,
619 				      PAGE_SIZE);
620 		if (!nskb) {
621 			page_frag_free(head);
622 			goto drop;
623 		}
624 
625 		skb_copy_header(nskb, skb);
626 		head_off = skb_headroom(nskb) - skb_headroom(skb);
627 		skb_headers_offset_update(nskb, head_off);
628 		consume_skb(skb);
629 		skb = nskb;
630 	}
631 
632 	xdp.data_hard_start = skb->head;
633 	xdp.data = skb_mac_header(skb);
634 	xdp.data_end = xdp.data + pktlen;
635 	xdp.data_meta = xdp.data;
636 	xdp.rxq = &rq->xdp_rxq;
637 	orig_data = xdp.data;
638 	orig_data_end = xdp.data_end;
639 
640 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
641 
642 	switch (act) {
643 	case XDP_PASS:
644 		break;
645 	case XDP_TX:
646 		get_page(virt_to_page(xdp.data));
647 		consume_skb(skb);
648 		xdp.rxq->mem = rq->xdp_mem;
649 		if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
650 			trace_xdp_exception(rq->dev, xdp_prog, act);
651 			goto err_xdp;
652 		}
653 		*xdp_xmit |= VETH_XDP_TX;
654 		rcu_read_unlock();
655 		goto xdp_xmit;
656 	case XDP_REDIRECT:
657 		get_page(virt_to_page(xdp.data));
658 		consume_skb(skb);
659 		xdp.rxq->mem = rq->xdp_mem;
660 		if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
661 			goto err_xdp;
662 		*xdp_xmit |= VETH_XDP_REDIR;
663 		rcu_read_unlock();
664 		goto xdp_xmit;
665 	default:
666 		bpf_warn_invalid_xdp_action(act);
667 		/* fall through */
668 	case XDP_ABORTED:
669 		trace_xdp_exception(rq->dev, xdp_prog, act);
670 		/* fall through */
671 	case XDP_DROP:
672 		goto drop;
673 	}
674 	rcu_read_unlock();
675 
676 	delta = orig_data - xdp.data;
677 	off = mac_len + delta;
678 	if (off > 0)
679 		__skb_push(skb, off);
680 	else if (off < 0)
681 		__skb_pull(skb, -off);
682 	skb->mac_header -= delta;
683 	off = xdp.data_end - orig_data_end;
684 	if (off != 0)
685 		__skb_put(skb, off);
686 	skb->protocol = eth_type_trans(skb, rq->dev);
687 
688 	metalen = xdp.data - xdp.data_meta;
689 	if (metalen)
690 		skb_metadata_set(skb, metalen);
691 out:
692 	return skb;
693 drop:
694 	rcu_read_unlock();
695 	kfree_skb(skb);
696 	return NULL;
697 err_xdp:
698 	rcu_read_unlock();
699 	page_frag_free(xdp.data);
700 xdp_xmit:
701 	return NULL;
702 }
703 
704 static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit)
705 {
706 	int i, done = 0, drops = 0, bytes = 0;
707 
708 	for (i = 0; i < budget; i++) {
709 		void *ptr = __ptr_ring_consume(&rq->xdp_ring);
710 		unsigned int xdp_xmit_one = 0;
711 		struct sk_buff *skb;
712 
713 		if (!ptr)
714 			break;
715 
716 		if (veth_is_xdp_frame(ptr)) {
717 			struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
718 
719 			bytes += frame->len;
720 			skb = veth_xdp_rcv_one(rq, frame, &xdp_xmit_one);
721 		} else {
722 			skb = ptr;
723 			bytes += skb->len;
724 			skb = veth_xdp_rcv_skb(rq, skb, &xdp_xmit_one);
725 		}
726 		*xdp_xmit |= xdp_xmit_one;
727 
728 		if (skb)
729 			napi_gro_receive(&rq->xdp_napi, skb);
730 		else if (!xdp_xmit_one)
731 			drops++;
732 
733 		done++;
734 	}
735 
736 	u64_stats_update_begin(&rq->stats.syncp);
737 	rq->stats.xdp_packets += done;
738 	rq->stats.xdp_bytes += bytes;
739 	rq->stats.xdp_drops += drops;
740 	u64_stats_update_end(&rq->stats.syncp);
741 
742 	return done;
743 }
744 
745 static int veth_poll(struct napi_struct *napi, int budget)
746 {
747 	struct veth_rq *rq =
748 		container_of(napi, struct veth_rq, xdp_napi);
749 	unsigned int xdp_xmit = 0;
750 	int done;
751 
752 	xdp_set_return_frame_no_direct();
753 	done = veth_xdp_rcv(rq, budget, &xdp_xmit);
754 
755 	if (done < budget && napi_complete_done(napi, done)) {
756 		/* Write rx_notify_masked before reading ptr_ring */
757 		smp_store_mb(rq->rx_notify_masked, false);
758 		if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
759 			rq->rx_notify_masked = true;
760 			napi_schedule(&rq->xdp_napi);
761 		}
762 	}
763 
764 	if (xdp_xmit & VETH_XDP_TX)
765 		veth_xdp_flush(rq->dev);
766 	if (xdp_xmit & VETH_XDP_REDIR)
767 		xdp_do_flush_map();
768 	xdp_clear_return_frame_no_direct();
769 
770 	return done;
771 }
772 
773 static int veth_napi_add(struct net_device *dev)
774 {
775 	struct veth_priv *priv = netdev_priv(dev);
776 	int err, i;
777 
778 	for (i = 0; i < dev->real_num_rx_queues; i++) {
779 		struct veth_rq *rq = &priv->rq[i];
780 
781 		err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
782 		if (err)
783 			goto err_xdp_ring;
784 	}
785 
786 	for (i = 0; i < dev->real_num_rx_queues; i++) {
787 		struct veth_rq *rq = &priv->rq[i];
788 
789 		netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
790 		napi_enable(&rq->xdp_napi);
791 	}
792 
793 	return 0;
794 err_xdp_ring:
795 	for (i--; i >= 0; i--)
796 		ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
797 
798 	return err;
799 }
800 
801 static void veth_napi_del(struct net_device *dev)
802 {
803 	struct veth_priv *priv = netdev_priv(dev);
804 	int i;
805 
806 	for (i = 0; i < dev->real_num_rx_queues; i++) {
807 		struct veth_rq *rq = &priv->rq[i];
808 
809 		napi_disable(&rq->xdp_napi);
810 		napi_hash_del(&rq->xdp_napi);
811 	}
812 	synchronize_net();
813 
814 	for (i = 0; i < dev->real_num_rx_queues; i++) {
815 		struct veth_rq *rq = &priv->rq[i];
816 
817 		netif_napi_del(&rq->xdp_napi);
818 		rq->rx_notify_masked = false;
819 		ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
820 	}
821 }
822 
823 static int veth_enable_xdp(struct net_device *dev)
824 {
825 	struct veth_priv *priv = netdev_priv(dev);
826 	int err, i;
827 
828 	if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
829 		for (i = 0; i < dev->real_num_rx_queues; i++) {
830 			struct veth_rq *rq = &priv->rq[i];
831 
832 			err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
833 			if (err < 0)
834 				goto err_rxq_reg;
835 
836 			err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
837 							 MEM_TYPE_PAGE_SHARED,
838 							 NULL);
839 			if (err < 0)
840 				goto err_reg_mem;
841 
842 			/* Save original mem info as it can be overwritten */
843 			rq->xdp_mem = rq->xdp_rxq.mem;
844 		}
845 
846 		err = veth_napi_add(dev);
847 		if (err)
848 			goto err_rxq_reg;
849 	}
850 
851 	for (i = 0; i < dev->real_num_rx_queues; i++)
852 		rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
853 
854 	return 0;
855 err_reg_mem:
856 	xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
857 err_rxq_reg:
858 	for (i--; i >= 0; i--)
859 		xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
860 
861 	return err;
862 }
863 
864 static void veth_disable_xdp(struct net_device *dev)
865 {
866 	struct veth_priv *priv = netdev_priv(dev);
867 	int i;
868 
869 	for (i = 0; i < dev->real_num_rx_queues; i++)
870 		rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
871 	veth_napi_del(dev);
872 	for (i = 0; i < dev->real_num_rx_queues; i++) {
873 		struct veth_rq *rq = &priv->rq[i];
874 
875 		rq->xdp_rxq.mem = rq->xdp_mem;
876 		xdp_rxq_info_unreg(&rq->xdp_rxq);
877 	}
878 }
879 
880 static int veth_open(struct net_device *dev)
881 {
882 	struct veth_priv *priv = netdev_priv(dev);
883 	struct net_device *peer = rtnl_dereference(priv->peer);
884 	int err;
885 
886 	if (!peer)
887 		return -ENOTCONN;
888 
889 	if (priv->_xdp_prog) {
890 		err = veth_enable_xdp(dev);
891 		if (err)
892 			return err;
893 	}
894 
895 	if (peer->flags & IFF_UP) {
896 		netif_carrier_on(dev);
897 		netif_carrier_on(peer);
898 	}
899 
900 	return 0;
901 }
902 
903 static int veth_close(struct net_device *dev)
904 {
905 	struct veth_priv *priv = netdev_priv(dev);
906 	struct net_device *peer = rtnl_dereference(priv->peer);
907 
908 	netif_carrier_off(dev);
909 	if (peer)
910 		netif_carrier_off(peer);
911 
912 	if (priv->_xdp_prog)
913 		veth_disable_xdp(dev);
914 
915 	return 0;
916 }
917 
918 static int is_valid_veth_mtu(int mtu)
919 {
920 	return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
921 }
922 
923 static int veth_alloc_queues(struct net_device *dev)
924 {
925 	struct veth_priv *priv = netdev_priv(dev);
926 	int i;
927 
928 	priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
929 	if (!priv->rq)
930 		return -ENOMEM;
931 
932 	for (i = 0; i < dev->num_rx_queues; i++) {
933 		priv->rq[i].dev = dev;
934 		u64_stats_init(&priv->rq[i].stats.syncp);
935 	}
936 
937 	return 0;
938 }
939 
940 static void veth_free_queues(struct net_device *dev)
941 {
942 	struct veth_priv *priv = netdev_priv(dev);
943 
944 	kfree(priv->rq);
945 }
946 
947 static int veth_dev_init(struct net_device *dev)
948 {
949 	int err;
950 
951 	dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
952 	if (!dev->lstats)
953 		return -ENOMEM;
954 
955 	err = veth_alloc_queues(dev);
956 	if (err) {
957 		free_percpu(dev->lstats);
958 		return err;
959 	}
960 
961 	return 0;
962 }
963 
964 static void veth_dev_free(struct net_device *dev)
965 {
966 	veth_free_queues(dev);
967 	free_percpu(dev->lstats);
968 }
969 
970 #ifdef CONFIG_NET_POLL_CONTROLLER
971 static void veth_poll_controller(struct net_device *dev)
972 {
973 	/* veth only receives frames when its peer sends one
974 	 * Since it has nothing to do with disabling irqs, we are guaranteed
975 	 * never to have pending data when we poll for it so
976 	 * there is nothing to do here.
977 	 *
978 	 * We need this though so netpoll recognizes us as an interface that
979 	 * supports polling, which enables bridge devices in virt setups to
980 	 * still use netconsole
981 	 */
982 }
983 #endif	/* CONFIG_NET_POLL_CONTROLLER */
984 
985 static int veth_get_iflink(const struct net_device *dev)
986 {
987 	struct veth_priv *priv = netdev_priv(dev);
988 	struct net_device *peer;
989 	int iflink;
990 
991 	rcu_read_lock();
992 	peer = rcu_dereference(priv->peer);
993 	iflink = peer ? peer->ifindex : 0;
994 	rcu_read_unlock();
995 
996 	return iflink;
997 }
998 
999 static netdev_features_t veth_fix_features(struct net_device *dev,
1000 					   netdev_features_t features)
1001 {
1002 	struct veth_priv *priv = netdev_priv(dev);
1003 	struct net_device *peer;
1004 
1005 	peer = rtnl_dereference(priv->peer);
1006 	if (peer) {
1007 		struct veth_priv *peer_priv = netdev_priv(peer);
1008 
1009 		if (peer_priv->_xdp_prog)
1010 			features &= ~NETIF_F_GSO_SOFTWARE;
1011 	}
1012 
1013 	return features;
1014 }
1015 
1016 static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
1017 {
1018 	struct veth_priv *peer_priv, *priv = netdev_priv(dev);
1019 	struct net_device *peer;
1020 
1021 	if (new_hr < 0)
1022 		new_hr = 0;
1023 
1024 	rcu_read_lock();
1025 	peer = rcu_dereference(priv->peer);
1026 	if (unlikely(!peer))
1027 		goto out;
1028 
1029 	peer_priv = netdev_priv(peer);
1030 	priv->requested_headroom = new_hr;
1031 	new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
1032 	dev->needed_headroom = new_hr;
1033 	peer->needed_headroom = new_hr;
1034 
1035 out:
1036 	rcu_read_unlock();
1037 }
1038 
1039 static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
1040 			struct netlink_ext_ack *extack)
1041 {
1042 	struct veth_priv *priv = netdev_priv(dev);
1043 	struct bpf_prog *old_prog;
1044 	struct net_device *peer;
1045 	unsigned int max_mtu;
1046 	int err;
1047 
1048 	old_prog = priv->_xdp_prog;
1049 	priv->_xdp_prog = prog;
1050 	peer = rtnl_dereference(priv->peer);
1051 
1052 	if (prog) {
1053 		if (!peer) {
1054 			NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
1055 			err = -ENOTCONN;
1056 			goto err;
1057 		}
1058 
1059 		max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
1060 			  peer->hard_header_len -
1061 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1062 		if (peer->mtu > max_mtu) {
1063 			NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
1064 			err = -ERANGE;
1065 			goto err;
1066 		}
1067 
1068 		if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
1069 			NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
1070 			err = -ENOSPC;
1071 			goto err;
1072 		}
1073 
1074 		if (dev->flags & IFF_UP) {
1075 			err = veth_enable_xdp(dev);
1076 			if (err) {
1077 				NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
1078 				goto err;
1079 			}
1080 		}
1081 
1082 		if (!old_prog) {
1083 			peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
1084 			peer->max_mtu = max_mtu;
1085 		}
1086 	}
1087 
1088 	if (old_prog) {
1089 		if (!prog) {
1090 			if (dev->flags & IFF_UP)
1091 				veth_disable_xdp(dev);
1092 
1093 			if (peer) {
1094 				peer->hw_features |= NETIF_F_GSO_SOFTWARE;
1095 				peer->max_mtu = ETH_MAX_MTU;
1096 			}
1097 		}
1098 		bpf_prog_put(old_prog);
1099 	}
1100 
1101 	if ((!!old_prog ^ !!prog) && peer)
1102 		netdev_update_features(peer);
1103 
1104 	return 0;
1105 err:
1106 	priv->_xdp_prog = old_prog;
1107 
1108 	return err;
1109 }
1110 
1111 static u32 veth_xdp_query(struct net_device *dev)
1112 {
1113 	struct veth_priv *priv = netdev_priv(dev);
1114 	const struct bpf_prog *xdp_prog;
1115 
1116 	xdp_prog = priv->_xdp_prog;
1117 	if (xdp_prog)
1118 		return xdp_prog->aux->id;
1119 
1120 	return 0;
1121 }
1122 
1123 static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1124 {
1125 	switch (xdp->command) {
1126 	case XDP_SETUP_PROG:
1127 		return veth_xdp_set(dev, xdp->prog, xdp->extack);
1128 	case XDP_QUERY_PROG:
1129 		xdp->prog_id = veth_xdp_query(dev);
1130 		return 0;
1131 	default:
1132 		return -EINVAL;
1133 	}
1134 }
1135 
1136 static const struct net_device_ops veth_netdev_ops = {
1137 	.ndo_init            = veth_dev_init,
1138 	.ndo_open            = veth_open,
1139 	.ndo_stop            = veth_close,
1140 	.ndo_start_xmit      = veth_xmit,
1141 	.ndo_get_stats64     = veth_get_stats64,
1142 	.ndo_set_rx_mode     = veth_set_multicast_list,
1143 	.ndo_set_mac_address = eth_mac_addr,
1144 #ifdef CONFIG_NET_POLL_CONTROLLER
1145 	.ndo_poll_controller	= veth_poll_controller,
1146 #endif
1147 	.ndo_get_iflink		= veth_get_iflink,
1148 	.ndo_fix_features	= veth_fix_features,
1149 	.ndo_features_check	= passthru_features_check,
1150 	.ndo_set_rx_headroom	= veth_set_rx_headroom,
1151 	.ndo_bpf		= veth_xdp,
1152 	.ndo_xdp_xmit		= veth_xdp_xmit,
1153 };
1154 
1155 #define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
1156 		       NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
1157 		       NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
1158 		       NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
1159 		       NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
1160 
1161 static void veth_setup(struct net_device *dev)
1162 {
1163 	ether_setup(dev);
1164 
1165 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1166 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1167 	dev->priv_flags |= IFF_NO_QUEUE;
1168 	dev->priv_flags |= IFF_PHONY_HEADROOM;
1169 
1170 	dev->netdev_ops = &veth_netdev_ops;
1171 	dev->ethtool_ops = &veth_ethtool_ops;
1172 	dev->features |= NETIF_F_LLTX;
1173 	dev->features |= VETH_FEATURES;
1174 	dev->vlan_features = dev->features &
1175 			     ~(NETIF_F_HW_VLAN_CTAG_TX |
1176 			       NETIF_F_HW_VLAN_STAG_TX |
1177 			       NETIF_F_HW_VLAN_CTAG_RX |
1178 			       NETIF_F_HW_VLAN_STAG_RX);
1179 	dev->needs_free_netdev = true;
1180 	dev->priv_destructor = veth_dev_free;
1181 	dev->max_mtu = ETH_MAX_MTU;
1182 
1183 	dev->hw_features = VETH_FEATURES;
1184 	dev->hw_enc_features = VETH_FEATURES;
1185 	dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
1186 }
1187 
1188 /*
1189  * netlink interface
1190  */
1191 
1192 static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
1193 			 struct netlink_ext_ack *extack)
1194 {
1195 	if (tb[IFLA_ADDRESS]) {
1196 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1197 			return -EINVAL;
1198 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1199 			return -EADDRNOTAVAIL;
1200 	}
1201 	if (tb[IFLA_MTU]) {
1202 		if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
1203 			return -EINVAL;
1204 	}
1205 	return 0;
1206 }
1207 
1208 static struct rtnl_link_ops veth_link_ops;
1209 
1210 static int veth_newlink(struct net *src_net, struct net_device *dev,
1211 			struct nlattr *tb[], struct nlattr *data[],
1212 			struct netlink_ext_ack *extack)
1213 {
1214 	int err;
1215 	struct net_device *peer;
1216 	struct veth_priv *priv;
1217 	char ifname[IFNAMSIZ];
1218 	struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
1219 	unsigned char name_assign_type;
1220 	struct ifinfomsg *ifmp;
1221 	struct net *net;
1222 
1223 	/*
1224 	 * create and register peer first
1225 	 */
1226 	if (data != NULL && data[VETH_INFO_PEER] != NULL) {
1227 		struct nlattr *nla_peer;
1228 
1229 		nla_peer = data[VETH_INFO_PEER];
1230 		ifmp = nla_data(nla_peer);
1231 		err = rtnl_nla_parse_ifla(peer_tb,
1232 					  nla_data(nla_peer) + sizeof(struct ifinfomsg),
1233 					  nla_len(nla_peer) - sizeof(struct ifinfomsg),
1234 					  NULL);
1235 		if (err < 0)
1236 			return err;
1237 
1238 		err = veth_validate(peer_tb, NULL, extack);
1239 		if (err < 0)
1240 			return err;
1241 
1242 		tbp = peer_tb;
1243 	} else {
1244 		ifmp = NULL;
1245 		tbp = tb;
1246 	}
1247 
1248 	if (ifmp && tbp[IFLA_IFNAME]) {
1249 		nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
1250 		name_assign_type = NET_NAME_USER;
1251 	} else {
1252 		snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
1253 		name_assign_type = NET_NAME_ENUM;
1254 	}
1255 
1256 	net = rtnl_link_get_net(src_net, tbp);
1257 	if (IS_ERR(net))
1258 		return PTR_ERR(net);
1259 
1260 	peer = rtnl_create_link(net, ifname, name_assign_type,
1261 				&veth_link_ops, tbp, extack);
1262 	if (IS_ERR(peer)) {
1263 		put_net(net);
1264 		return PTR_ERR(peer);
1265 	}
1266 
1267 	if (!ifmp || !tbp[IFLA_ADDRESS])
1268 		eth_hw_addr_random(peer);
1269 
1270 	if (ifmp && (dev->ifindex != 0))
1271 		peer->ifindex = ifmp->ifi_index;
1272 
1273 	peer->gso_max_size = dev->gso_max_size;
1274 	peer->gso_max_segs = dev->gso_max_segs;
1275 
1276 	err = register_netdevice(peer);
1277 	put_net(net);
1278 	net = NULL;
1279 	if (err < 0)
1280 		goto err_register_peer;
1281 
1282 	netif_carrier_off(peer);
1283 
1284 	err = rtnl_configure_link(peer, ifmp);
1285 	if (err < 0)
1286 		goto err_configure_peer;
1287 
1288 	/*
1289 	 * register dev last
1290 	 *
1291 	 * note, that since we've registered new device the dev's name
1292 	 * should be re-allocated
1293 	 */
1294 
1295 	if (tb[IFLA_ADDRESS] == NULL)
1296 		eth_hw_addr_random(dev);
1297 
1298 	if (tb[IFLA_IFNAME])
1299 		nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
1300 	else
1301 		snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
1302 
1303 	err = register_netdevice(dev);
1304 	if (err < 0)
1305 		goto err_register_dev;
1306 
1307 	netif_carrier_off(dev);
1308 
1309 	/*
1310 	 * tie the deviced together
1311 	 */
1312 
1313 	priv = netdev_priv(dev);
1314 	rcu_assign_pointer(priv->peer, peer);
1315 
1316 	priv = netdev_priv(peer);
1317 	rcu_assign_pointer(priv->peer, dev);
1318 
1319 	return 0;
1320 
1321 err_register_dev:
1322 	/* nothing to do */
1323 err_configure_peer:
1324 	unregister_netdevice(peer);
1325 	return err;
1326 
1327 err_register_peer:
1328 	free_netdev(peer);
1329 	return err;
1330 }
1331 
1332 static void veth_dellink(struct net_device *dev, struct list_head *head)
1333 {
1334 	struct veth_priv *priv;
1335 	struct net_device *peer;
1336 
1337 	priv = netdev_priv(dev);
1338 	peer = rtnl_dereference(priv->peer);
1339 
1340 	/* Note : dellink() is called from default_device_exit_batch(),
1341 	 * before a rcu_synchronize() point. The devices are guaranteed
1342 	 * not being freed before one RCU grace period.
1343 	 */
1344 	RCU_INIT_POINTER(priv->peer, NULL);
1345 	unregister_netdevice_queue(dev, head);
1346 
1347 	if (peer) {
1348 		priv = netdev_priv(peer);
1349 		RCU_INIT_POINTER(priv->peer, NULL);
1350 		unregister_netdevice_queue(peer, head);
1351 	}
1352 }
1353 
1354 static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
1355 	[VETH_INFO_PEER]	= { .len = sizeof(struct ifinfomsg) },
1356 };
1357 
1358 static struct net *veth_get_link_net(const struct net_device *dev)
1359 {
1360 	struct veth_priv *priv = netdev_priv(dev);
1361 	struct net_device *peer = rtnl_dereference(priv->peer);
1362 
1363 	return peer ? dev_net(peer) : dev_net(dev);
1364 }
1365 
1366 static struct rtnl_link_ops veth_link_ops = {
1367 	.kind		= DRV_NAME,
1368 	.priv_size	= sizeof(struct veth_priv),
1369 	.setup		= veth_setup,
1370 	.validate	= veth_validate,
1371 	.newlink	= veth_newlink,
1372 	.dellink	= veth_dellink,
1373 	.policy		= veth_policy,
1374 	.maxtype	= VETH_INFO_MAX,
1375 	.get_link_net	= veth_get_link_net,
1376 };
1377 
1378 /*
1379  * init/fini
1380  */
1381 
1382 static __init int veth_init(void)
1383 {
1384 	return rtnl_link_register(&veth_link_ops);
1385 }
1386 
1387 static __exit void veth_exit(void)
1388 {
1389 	rtnl_link_unregister(&veth_link_ops);
1390 }
1391 
1392 module_init(veth_init);
1393 module_exit(veth_exit);
1394 
1395 MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
1396 MODULE_LICENSE("GPL v2");
1397 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1398