xref: /openbmc/linux/drivers/net/usb/sr9800.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /* CoreChip-sz SR9800 one chip USB 2.0 Ethernet Devices
2  *
3  * Author : Liu Junliang <liujunliang_ljl@163.com>
4  *
5  * Based on asix_common.c, asix_devices.c
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.*
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kmod.h>
14 #include <linux/init.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/workqueue.h>
19 #include <linux/mii.h>
20 #include <linux/usb.h>
21 #include <linux/crc32.h>
22 #include <linux/usb/usbnet.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 
26 #include "sr9800.h"
27 
28 static int sr_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
29 			    u16 size, void *data)
30 {
31 	int err;
32 
33 	err = usbnet_read_cmd(dev, cmd, SR_REQ_RD_REG, value, index,
34 			      data, size);
35 	if ((err != size) && (err >= 0))
36 		err = -EINVAL;
37 
38 	return err;
39 }
40 
41 static int sr_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
42 			     u16 size, void *data)
43 {
44 	int err;
45 
46 	err = usbnet_write_cmd(dev, cmd, SR_REQ_WR_REG, value, index,
47 			      data, size);
48 	if ((err != size) && (err >= 0))
49 		err = -EINVAL;
50 
51 	return err;
52 }
53 
54 static void
55 sr_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index,
56 		   u16 size, void *data)
57 {
58 	usbnet_write_cmd_async(dev, cmd, SR_REQ_WR_REG, value, index, data,
59 			       size);
60 }
61 
62 static int sr_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
63 {
64 	int offset = 0;
65 
66 	/* This check is no longer done by usbnet */
67 	if (skb->len < dev->net->hard_header_len)
68 		return 0;
69 
70 	while (offset + sizeof(u32) < skb->len) {
71 		struct sk_buff *sr_skb;
72 		u16 size;
73 		u32 header = get_unaligned_le32(skb->data + offset);
74 
75 		offset += sizeof(u32);
76 		/* get the packet length */
77 		size = (u16) (header & 0x7ff);
78 		if (size != ((~header >> 16) & 0x07ff)) {
79 			netdev_err(dev->net, "%s : Bad Header Length\n",
80 				   __func__);
81 			return 0;
82 		}
83 
84 		if ((size > dev->net->mtu + ETH_HLEN + VLAN_HLEN) ||
85 		    (size + offset > skb->len)) {
86 			netdev_err(dev->net, "%s : Bad RX Length %d\n",
87 				   __func__, size);
88 			return 0;
89 		}
90 		sr_skb = netdev_alloc_skb_ip_align(dev->net, size);
91 		if (!sr_skb)
92 			return 0;
93 
94 		skb_put(sr_skb, size);
95 		memcpy(sr_skb->data, skb->data + offset, size);
96 		usbnet_skb_return(dev, sr_skb);
97 
98 		offset += (size + 1) & 0xfffe;
99 	}
100 
101 	if (skb->len != offset) {
102 		netdev_err(dev->net, "%s : Bad SKB Length %d\n", __func__,
103 			   skb->len);
104 		return 0;
105 	}
106 
107 	return 1;
108 }
109 
110 static struct sk_buff *sr_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
111 					gfp_t flags)
112 {
113 	int headroom = skb_headroom(skb);
114 	int tailroom = skb_tailroom(skb);
115 	u32 padbytes = 0xffff0000;
116 	u32 packet_len;
117 	int padlen;
118 
119 	padlen = ((skb->len + 4) % (dev->maxpacket - 1)) ? 0 : 4;
120 
121 	if ((!skb_cloned(skb)) && ((headroom + tailroom) >= (4 + padlen))) {
122 		if ((headroom < 4) || (tailroom < padlen)) {
123 			skb->data = memmove(skb->head + 4, skb->data,
124 					    skb->len);
125 			skb_set_tail_pointer(skb, skb->len);
126 		}
127 	} else {
128 		struct sk_buff *skb2;
129 		skb2 = skb_copy_expand(skb, 4, padlen, flags);
130 		dev_kfree_skb_any(skb);
131 		skb = skb2;
132 		if (!skb)
133 			return NULL;
134 	}
135 
136 	skb_push(skb, 4);
137 	packet_len = (((skb->len - 4) ^ 0x0000ffff) << 16) + (skb->len - 4);
138 	cpu_to_le32s(&packet_len);
139 	skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len));
140 
141 	if (padlen) {
142 		cpu_to_le32s(&padbytes);
143 		memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes));
144 		skb_put(skb, sizeof(padbytes));
145 	}
146 
147 	usbnet_set_skb_tx_stats(skb, 1, 0);
148 	return skb;
149 }
150 
151 static void sr_status(struct usbnet *dev, struct urb *urb)
152 {
153 	struct sr9800_int_data *event;
154 	int link;
155 
156 	if (urb->actual_length < 8)
157 		return;
158 
159 	event = urb->transfer_buffer;
160 	link = event->link & 0x01;
161 	if (netif_carrier_ok(dev->net) != link) {
162 		usbnet_link_change(dev, link, 1);
163 		netdev_dbg(dev->net, "Link Status is: %d\n", link);
164 	}
165 
166 	return;
167 }
168 
169 static inline int sr_set_sw_mii(struct usbnet *dev)
170 {
171 	int ret;
172 
173 	ret = sr_write_cmd(dev, SR_CMD_SET_SW_MII, 0x0000, 0, 0, NULL);
174 	if (ret < 0)
175 		netdev_err(dev->net, "Failed to enable software MII access\n");
176 	return ret;
177 }
178 
179 static inline int sr_set_hw_mii(struct usbnet *dev)
180 {
181 	int ret;
182 
183 	ret = sr_write_cmd(dev, SR_CMD_SET_HW_MII, 0x0000, 0, 0, NULL);
184 	if (ret < 0)
185 		netdev_err(dev->net, "Failed to enable hardware MII access\n");
186 	return ret;
187 }
188 
189 static inline int sr_get_phy_addr(struct usbnet *dev)
190 {
191 	u8 buf[2];
192 	int ret;
193 
194 	ret = sr_read_cmd(dev, SR_CMD_READ_PHY_ID, 0, 0, 2, buf);
195 	if (ret < 0) {
196 		netdev_err(dev->net, "%s : Error reading PHYID register:%02x\n",
197 			   __func__, ret);
198 		goto out;
199 	}
200 	netdev_dbg(dev->net, "%s : returning 0x%04x\n", __func__,
201 		   *((__le16 *)buf));
202 
203 	ret = buf[1];
204 
205 out:
206 	return ret;
207 }
208 
209 static int sr_sw_reset(struct usbnet *dev, u8 flags)
210 {
211 	int ret;
212 
213 	ret = sr_write_cmd(dev, SR_CMD_SW_RESET, flags, 0, 0, NULL);
214 	if (ret < 0)
215 		netdev_err(dev->net, "Failed to send software reset:%02x\n",
216 			   ret);
217 
218 	return ret;
219 }
220 
221 static u16 sr_read_rx_ctl(struct usbnet *dev)
222 {
223 	__le16 v;
224 	int ret;
225 
226 	ret = sr_read_cmd(dev, SR_CMD_READ_RX_CTL, 0, 0, 2, &v);
227 	if (ret < 0) {
228 		netdev_err(dev->net, "Error reading RX_CTL register:%02x\n",
229 			   ret);
230 		goto out;
231 	}
232 
233 	ret = le16_to_cpu(v);
234 out:
235 	return ret;
236 }
237 
238 static int sr_write_rx_ctl(struct usbnet *dev, u16 mode)
239 {
240 	int ret;
241 
242 	netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode);
243 	ret = sr_write_cmd(dev, SR_CMD_WRITE_RX_CTL, mode, 0, 0, NULL);
244 	if (ret < 0)
245 		netdev_err(dev->net,
246 			   "Failed to write RX_CTL mode to 0x%04x:%02x\n",
247 			   mode, ret);
248 
249 	return ret;
250 }
251 
252 static u16 sr_read_medium_status(struct usbnet *dev)
253 {
254 	__le16 v;
255 	int ret;
256 
257 	ret = sr_read_cmd(dev, SR_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v);
258 	if (ret < 0) {
259 		netdev_err(dev->net,
260 			   "Error reading Medium Status register:%02x\n", ret);
261 		return ret;	/* TODO: callers not checking for error ret */
262 	}
263 
264 	return le16_to_cpu(v);
265 }
266 
267 static int sr_write_medium_mode(struct usbnet *dev, u16 mode)
268 {
269 	int ret;
270 
271 	netdev_dbg(dev->net, "%s : mode = 0x%04x\n", __func__, mode);
272 	ret = sr_write_cmd(dev, SR_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL);
273 	if (ret < 0)
274 		netdev_err(dev->net,
275 			   "Failed to write Medium Mode mode to 0x%04x:%02x\n",
276 			   mode, ret);
277 	return ret;
278 }
279 
280 static int sr_write_gpio(struct usbnet *dev, u16 value, int sleep)
281 {
282 	int ret;
283 
284 	netdev_dbg(dev->net, "%s : value = 0x%04x\n", __func__, value);
285 	ret = sr_write_cmd(dev, SR_CMD_WRITE_GPIOS, value, 0, 0, NULL);
286 	if (ret < 0)
287 		netdev_err(dev->net, "Failed to write GPIO value 0x%04x:%02x\n",
288 			   value, ret);
289 	if (sleep)
290 		msleep(sleep);
291 
292 	return ret;
293 }
294 
295 /* SR9800 have a 16-bit RX_CTL value */
296 static void sr_set_multicast(struct net_device *net)
297 {
298 	struct usbnet *dev = netdev_priv(net);
299 	struct sr_data *data = (struct sr_data *)&dev->data;
300 	u16 rx_ctl = SR_DEFAULT_RX_CTL;
301 
302 	if (net->flags & IFF_PROMISC) {
303 		rx_ctl |= SR_RX_CTL_PRO;
304 	} else if (net->flags & IFF_ALLMULTI ||
305 		   netdev_mc_count(net) > SR_MAX_MCAST) {
306 		rx_ctl |= SR_RX_CTL_AMALL;
307 	} else if (netdev_mc_empty(net)) {
308 		/* just broadcast and directed */
309 	} else {
310 		/* We use the 20 byte dev->data
311 		 * for our 8 byte filter buffer
312 		 * to avoid allocating memory that
313 		 * is tricky to free later
314 		 */
315 		struct netdev_hw_addr *ha;
316 		u32 crc_bits;
317 
318 		memset(data->multi_filter, 0, SR_MCAST_FILTER_SIZE);
319 
320 		/* Build the multicast hash filter. */
321 		netdev_for_each_mc_addr(ha, net) {
322 			crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26;
323 			data->multi_filter[crc_bits >> 3] |=
324 			    1 << (crc_bits & 7);
325 		}
326 
327 		sr_write_cmd_async(dev, SR_CMD_WRITE_MULTI_FILTER, 0, 0,
328 				   SR_MCAST_FILTER_SIZE, data->multi_filter);
329 
330 		rx_ctl |= SR_RX_CTL_AM;
331 	}
332 
333 	sr_write_cmd_async(dev, SR_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL);
334 }
335 
336 static int sr_mdio_read(struct net_device *net, int phy_id, int loc)
337 {
338 	struct usbnet *dev = netdev_priv(net);
339 	__le16 res;
340 
341 	mutex_lock(&dev->phy_mutex);
342 	sr_set_sw_mii(dev);
343 	sr_read_cmd(dev, SR_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, &res);
344 	sr_set_hw_mii(dev);
345 	mutex_unlock(&dev->phy_mutex);
346 
347 	netdev_dbg(dev->net,
348 		   "%s : phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", __func__,
349 		   phy_id, loc, le16_to_cpu(res));
350 
351 	return le16_to_cpu(res);
352 }
353 
354 static void
355 sr_mdio_write(struct net_device *net, int phy_id, int loc, int val)
356 {
357 	struct usbnet *dev = netdev_priv(net);
358 	__le16 res = cpu_to_le16(val);
359 
360 	netdev_dbg(dev->net,
361 		   "%s : phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", __func__,
362 		   phy_id, loc, val);
363 	mutex_lock(&dev->phy_mutex);
364 	sr_set_sw_mii(dev);
365 	sr_write_cmd(dev, SR_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res);
366 	sr_set_hw_mii(dev);
367 	mutex_unlock(&dev->phy_mutex);
368 }
369 
370 /* Get the PHY Identifier from the PHYSID1 & PHYSID2 MII registers */
371 static u32 sr_get_phyid(struct usbnet *dev)
372 {
373 	int phy_reg;
374 	u32 phy_id;
375 	int i;
376 
377 	/* Poll for the rare case the FW or phy isn't ready yet.  */
378 	for (i = 0; i < 100; i++) {
379 		phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID1);
380 		if (phy_reg != 0 && phy_reg != 0xFFFF)
381 			break;
382 		mdelay(1);
383 	}
384 
385 	if (phy_reg <= 0 || phy_reg == 0xFFFF)
386 		return 0;
387 
388 	phy_id = (phy_reg & 0xffff) << 16;
389 
390 	phy_reg = sr_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID2);
391 	if (phy_reg < 0)
392 		return 0;
393 
394 	phy_id |= (phy_reg & 0xffff);
395 
396 	return phy_id;
397 }
398 
399 static void
400 sr_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
401 {
402 	struct usbnet *dev = netdev_priv(net);
403 	u8 opt;
404 
405 	if (sr_read_cmd(dev, SR_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) {
406 		wolinfo->supported = 0;
407 		wolinfo->wolopts = 0;
408 		return;
409 	}
410 	wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
411 	wolinfo->wolopts = 0;
412 	if (opt & SR_MONITOR_LINK)
413 		wolinfo->wolopts |= WAKE_PHY;
414 	if (opt & SR_MONITOR_MAGIC)
415 		wolinfo->wolopts |= WAKE_MAGIC;
416 }
417 
418 static int
419 sr_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
420 {
421 	struct usbnet *dev = netdev_priv(net);
422 	u8 opt = 0;
423 
424 	if (wolinfo->wolopts & WAKE_PHY)
425 		opt |= SR_MONITOR_LINK;
426 	if (wolinfo->wolopts & WAKE_MAGIC)
427 		opt |= SR_MONITOR_MAGIC;
428 
429 	if (sr_write_cmd(dev, SR_CMD_WRITE_MONITOR_MODE,
430 			 opt, 0, 0, NULL) < 0)
431 		return -EINVAL;
432 
433 	return 0;
434 }
435 
436 static int sr_get_eeprom_len(struct net_device *net)
437 {
438 	struct usbnet *dev = netdev_priv(net);
439 	struct sr_data *data = (struct sr_data *)&dev->data;
440 
441 	return data->eeprom_len;
442 }
443 
444 static int sr_get_eeprom(struct net_device *net,
445 			      struct ethtool_eeprom *eeprom, u8 *data)
446 {
447 	struct usbnet *dev = netdev_priv(net);
448 	__le16 *ebuf = (__le16 *)data;
449 	int ret;
450 	int i;
451 
452 	/* Crude hack to ensure that we don't overwrite memory
453 	 * if an odd length is supplied
454 	 */
455 	if (eeprom->len % 2)
456 		return -EINVAL;
457 
458 	eeprom->magic = SR_EEPROM_MAGIC;
459 
460 	/* sr9800 returns 2 bytes from eeprom on read */
461 	for (i = 0; i < eeprom->len / 2; i++) {
462 		ret = sr_read_cmd(dev, SR_CMD_READ_EEPROM, eeprom->offset + i,
463 				  0, 2, &ebuf[i]);
464 		if (ret < 0)
465 			return -EINVAL;
466 	}
467 	return 0;
468 }
469 
470 static void sr_get_drvinfo(struct net_device *net,
471 				 struct ethtool_drvinfo *info)
472 {
473 	struct usbnet *dev = netdev_priv(net);
474 	struct sr_data *data = (struct sr_data *)&dev->data;
475 
476 	/* Inherit standard device info */
477 	usbnet_get_drvinfo(net, info);
478 	strncpy(info->driver, DRIVER_NAME, sizeof(info->driver));
479 	strncpy(info->version, DRIVER_VERSION, sizeof(info->version));
480 	info->eedump_len = data->eeprom_len;
481 }
482 
483 static u32 sr_get_link(struct net_device *net)
484 {
485 	struct usbnet *dev = netdev_priv(net);
486 
487 	return mii_link_ok(&dev->mii);
488 }
489 
490 static int sr_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
491 {
492 	struct usbnet *dev = netdev_priv(net);
493 
494 	return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
495 }
496 
497 static int sr_set_mac_address(struct net_device *net, void *p)
498 {
499 	struct usbnet *dev = netdev_priv(net);
500 	struct sr_data *data = (struct sr_data *)&dev->data;
501 	struct sockaddr *addr = p;
502 
503 	if (netif_running(net))
504 		return -EBUSY;
505 	if (!is_valid_ether_addr(addr->sa_data))
506 		return -EADDRNOTAVAIL;
507 
508 	memcpy(net->dev_addr, addr->sa_data, ETH_ALEN);
509 
510 	/* We use the 20 byte dev->data
511 	 * for our 6 byte mac buffer
512 	 * to avoid allocating memory that
513 	 * is tricky to free later
514 	 */
515 	memcpy(data->mac_addr, addr->sa_data, ETH_ALEN);
516 	sr_write_cmd_async(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN,
517 			   data->mac_addr);
518 
519 	return 0;
520 }
521 
522 static const struct ethtool_ops sr9800_ethtool_ops = {
523 	.get_drvinfo	= sr_get_drvinfo,
524 	.get_link	= sr_get_link,
525 	.get_msglevel	= usbnet_get_msglevel,
526 	.set_msglevel	= usbnet_set_msglevel,
527 	.get_wol	= sr_get_wol,
528 	.set_wol	= sr_set_wol,
529 	.get_eeprom_len	= sr_get_eeprom_len,
530 	.get_eeprom	= sr_get_eeprom,
531 	.get_settings	= usbnet_get_settings,
532 	.set_settings	= usbnet_set_settings,
533 	.nway_reset	= usbnet_nway_reset,
534 };
535 
536 static int sr9800_link_reset(struct usbnet *dev)
537 {
538 	struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
539 	u16 mode;
540 
541 	mii_check_media(&dev->mii, 1, 1);
542 	mii_ethtool_gset(&dev->mii, &ecmd);
543 	mode = SR9800_MEDIUM_DEFAULT;
544 
545 	if (ethtool_cmd_speed(&ecmd) != SPEED_100)
546 		mode &= ~SR_MEDIUM_PS;
547 
548 	if (ecmd.duplex != DUPLEX_FULL)
549 		mode &= ~SR_MEDIUM_FD;
550 
551 	netdev_dbg(dev->net, "%s : speed: %u duplex: %d mode: 0x%04x\n",
552 		   __func__, ethtool_cmd_speed(&ecmd), ecmd.duplex, mode);
553 
554 	sr_write_medium_mode(dev, mode);
555 
556 	return 0;
557 }
558 
559 
560 static int sr9800_set_default_mode(struct usbnet *dev)
561 {
562 	u16 rx_ctl;
563 	int ret;
564 
565 	sr_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
566 	sr_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
567 		      ADVERTISE_ALL | ADVERTISE_CSMA);
568 	mii_nway_restart(&dev->mii);
569 
570 	ret = sr_write_medium_mode(dev, SR9800_MEDIUM_DEFAULT);
571 	if (ret < 0)
572 		goto out;
573 
574 	ret = sr_write_cmd(dev, SR_CMD_WRITE_IPG012,
575 				SR9800_IPG0_DEFAULT | SR9800_IPG1_DEFAULT,
576 				SR9800_IPG2_DEFAULT, 0, NULL);
577 	if (ret < 0) {
578 		netdev_dbg(dev->net, "Write IPG,IPG1,IPG2 failed: %d\n", ret);
579 		goto out;
580 	}
581 
582 	/* Set RX_CTL to default values with 2k buffer, and enable cactus */
583 	ret = sr_write_rx_ctl(dev, SR_DEFAULT_RX_CTL);
584 	if (ret < 0)
585 		goto out;
586 
587 	rx_ctl = sr_read_rx_ctl(dev);
588 	netdev_dbg(dev->net, "RX_CTL is 0x%04x after all initializations\n",
589 		   rx_ctl);
590 
591 	rx_ctl = sr_read_medium_status(dev);
592 	netdev_dbg(dev->net, "Medium Status:0x%04x after all initializations\n",
593 		   rx_ctl);
594 
595 	return 0;
596 out:
597 	return ret;
598 }
599 
600 static int sr9800_reset(struct usbnet *dev)
601 {
602 	struct sr_data *data = (struct sr_data *)&dev->data;
603 	int ret, embd_phy;
604 	u16 rx_ctl;
605 
606 	ret = sr_write_gpio(dev,
607 			SR_GPIO_RSE | SR_GPIO_GPO_2 | SR_GPIO_GPO2EN, 5);
608 	if (ret < 0)
609 		goto out;
610 
611 	embd_phy = ((sr_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0);
612 
613 	ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL);
614 	if (ret < 0) {
615 		netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret);
616 		goto out;
617 	}
618 
619 	ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_PRL);
620 	if (ret < 0)
621 		goto out;
622 
623 	msleep(150);
624 
625 	ret = sr_sw_reset(dev, SR_SWRESET_CLEAR);
626 	if (ret < 0)
627 		goto out;
628 
629 	msleep(150);
630 
631 	if (embd_phy) {
632 		ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
633 		if (ret < 0)
634 			goto out;
635 	} else {
636 		ret = sr_sw_reset(dev, SR_SWRESET_PRTE);
637 		if (ret < 0)
638 			goto out;
639 	}
640 
641 	msleep(150);
642 	rx_ctl = sr_read_rx_ctl(dev);
643 	netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl);
644 	ret = sr_write_rx_ctl(dev, 0x0000);
645 	if (ret < 0)
646 		goto out;
647 
648 	rx_ctl = sr_read_rx_ctl(dev);
649 	netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);
650 
651 	ret = sr_sw_reset(dev, SR_SWRESET_PRL);
652 	if (ret < 0)
653 		goto out;
654 
655 	msleep(150);
656 
657 	ret = sr_sw_reset(dev, SR_SWRESET_IPRL | SR_SWRESET_PRL);
658 	if (ret < 0)
659 		goto out;
660 
661 	msleep(150);
662 
663 	ret = sr9800_set_default_mode(dev);
664 	if (ret < 0)
665 		goto out;
666 
667 	/* Rewrite MAC address */
668 	memcpy(data->mac_addr, dev->net->dev_addr, ETH_ALEN);
669 	ret = sr_write_cmd(dev, SR_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN,
670 							data->mac_addr);
671 	if (ret < 0)
672 		goto out;
673 
674 	return 0;
675 
676 out:
677 	return ret;
678 }
679 
680 static const struct net_device_ops sr9800_netdev_ops = {
681 	.ndo_open		= usbnet_open,
682 	.ndo_stop		= usbnet_stop,
683 	.ndo_start_xmit		= usbnet_start_xmit,
684 	.ndo_tx_timeout		= usbnet_tx_timeout,
685 	.ndo_change_mtu		= usbnet_change_mtu,
686 	.ndo_set_mac_address	= sr_set_mac_address,
687 	.ndo_validate_addr	= eth_validate_addr,
688 	.ndo_do_ioctl		= sr_ioctl,
689 	.ndo_set_rx_mode        = sr_set_multicast,
690 };
691 
692 static int sr9800_phy_powerup(struct usbnet *dev)
693 {
694 	int ret;
695 
696 	/* set the embedded Ethernet PHY in power-down state */
697 	ret = sr_sw_reset(dev, SR_SWRESET_IPPD | SR_SWRESET_IPRL);
698 	if (ret < 0) {
699 		netdev_err(dev->net, "Failed to power down PHY : %d\n", ret);
700 		return ret;
701 	}
702 	msleep(20);
703 
704 	/* set the embedded Ethernet PHY in power-up state */
705 	ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
706 	if (ret < 0) {
707 		netdev_err(dev->net, "Failed to reset PHY: %d\n", ret);
708 		return ret;
709 	}
710 	msleep(600);
711 
712 	/* set the embedded Ethernet PHY in reset state */
713 	ret = sr_sw_reset(dev, SR_SWRESET_CLEAR);
714 	if (ret < 0) {
715 		netdev_err(dev->net, "Failed to power up PHY: %d\n", ret);
716 		return ret;
717 	}
718 	msleep(20);
719 
720 	/* set the embedded Ethernet PHY in power-up state */
721 	ret = sr_sw_reset(dev, SR_SWRESET_IPRL);
722 	if (ret < 0) {
723 		netdev_err(dev->net, "Failed to reset PHY: %d\n", ret);
724 		return ret;
725 	}
726 
727 	return 0;
728 }
729 
730 static int sr9800_bind(struct usbnet *dev, struct usb_interface *intf)
731 {
732 	struct sr_data *data = (struct sr_data *)&dev->data;
733 	u16 led01_mux, led23_mux;
734 	int ret, embd_phy;
735 	u32 phyid;
736 	u16 rx_ctl;
737 
738 	data->eeprom_len = SR9800_EEPROM_LEN;
739 
740 	usbnet_get_endpoints(dev, intf);
741 
742 	/* LED Setting Rule :
743 	 * AABB:CCDD
744 	 * AA : MFA0(LED0)
745 	 * BB : MFA1(LED1)
746 	 * CC : MFA2(LED2), Reserved for SR9800
747 	 * DD : MFA3(LED3), Reserved for SR9800
748 	 */
749 	led01_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_LINK;
750 	led23_mux = (SR_LED_MUX_LINK_ACTIVE << 8) | SR_LED_MUX_TX_ACTIVE;
751 	ret = sr_write_cmd(dev, SR_CMD_LED_MUX, led01_mux, led23_mux, 0, NULL);
752 	if (ret < 0) {
753 			netdev_err(dev->net, "set LINK LED failed : %d\n", ret);
754 			goto out;
755 	}
756 
757 	/* Get the MAC address */
758 	ret = sr_read_cmd(dev, SR_CMD_READ_NODE_ID, 0, 0, ETH_ALEN,
759 			  dev->net->dev_addr);
760 	if (ret < 0) {
761 		netdev_dbg(dev->net, "Failed to read MAC address: %d\n", ret);
762 		return ret;
763 	}
764 	netdev_dbg(dev->net, "mac addr : %pM\n", dev->net->dev_addr);
765 
766 	/* Initialize MII structure */
767 	dev->mii.dev = dev->net;
768 	dev->mii.mdio_read = sr_mdio_read;
769 	dev->mii.mdio_write = sr_mdio_write;
770 	dev->mii.phy_id_mask = 0x1f;
771 	dev->mii.reg_num_mask = 0x1f;
772 	dev->mii.phy_id = sr_get_phy_addr(dev);
773 
774 	dev->net->netdev_ops = &sr9800_netdev_ops;
775 	dev->net->ethtool_ops = &sr9800_ethtool_ops;
776 
777 	embd_phy = ((dev->mii.phy_id & 0x1f) == 0x10 ? 1 : 0);
778 	/* Reset the PHY to normal operation mode */
779 	ret = sr_write_cmd(dev, SR_CMD_SW_PHY_SELECT, embd_phy, 0, 0, NULL);
780 	if (ret < 0) {
781 		netdev_dbg(dev->net, "Select PHY #1 failed: %d\n", ret);
782 		return ret;
783 	}
784 
785 	/* Init PHY routine */
786 	ret = sr9800_phy_powerup(dev);
787 	if (ret < 0)
788 		goto out;
789 
790 	rx_ctl = sr_read_rx_ctl(dev);
791 	netdev_dbg(dev->net, "RX_CTL is 0x%04x after software reset\n", rx_ctl);
792 	ret = sr_write_rx_ctl(dev, 0x0000);
793 	if (ret < 0)
794 		goto out;
795 
796 	rx_ctl = sr_read_rx_ctl(dev);
797 	netdev_dbg(dev->net, "RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);
798 
799 	/* Read PHYID register *AFTER* the PHY was reset properly */
800 	phyid = sr_get_phyid(dev);
801 	netdev_dbg(dev->net, "PHYID=0x%08x\n", phyid);
802 
803 	/* medium mode setting */
804 	ret = sr9800_set_default_mode(dev);
805 	if (ret < 0)
806 		goto out;
807 
808 	if (dev->udev->speed == USB_SPEED_HIGH) {
809 		ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE,
810 			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].byte_cnt,
811 			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].threshold,
812 			0, NULL);
813 		if (ret < 0) {
814 			netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret);
815 			goto out;
816 		}
817 		dev->rx_urb_size =
818 			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_4K].size;
819 	} else {
820 		ret = sr_write_cmd(dev, SR_CMD_BULKIN_SIZE,
821 			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].byte_cnt,
822 			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].threshold,
823 			0, NULL);
824 		if (ret < 0) {
825 			netdev_err(dev->net, "Reset RX_CTL failed: %d\n", ret);
826 			goto out;
827 		}
828 		dev->rx_urb_size =
829 			SR9800_BULKIN_SIZE[SR9800_MAX_BULKIN_2K].size;
830 	}
831 	netdev_dbg(dev->net, "%s : setting rx_urb_size with : %zu\n", __func__,
832 		   dev->rx_urb_size);
833 	return 0;
834 
835 out:
836 	return ret;
837 }
838 
839 static const struct driver_info sr9800_driver_info = {
840 	.description	= "CoreChip SR9800 USB 2.0 Ethernet",
841 	.bind		= sr9800_bind,
842 	.status		= sr_status,
843 	.link_reset	= sr9800_link_reset,
844 	.reset		= sr9800_reset,
845 	.flags		= DRIVER_FLAG,
846 	.rx_fixup	= sr_rx_fixup,
847 	.tx_fixup	= sr_tx_fixup,
848 };
849 
850 static const struct usb_device_id	products[] = {
851 	{
852 		USB_DEVICE(0x0fe6, 0x9800),	/* SR9800 Device  */
853 		.driver_info = (unsigned long) &sr9800_driver_info,
854 	},
855 	{},		/* END */
856 };
857 
858 MODULE_DEVICE_TABLE(usb, products);
859 
860 static struct usb_driver sr_driver = {
861 	.name		= DRIVER_NAME,
862 	.id_table	= products,
863 	.probe		= usbnet_probe,
864 	.suspend	= usbnet_suspend,
865 	.resume		= usbnet_resume,
866 	.disconnect	= usbnet_disconnect,
867 	.supports_autosuspend = 1,
868 };
869 
870 module_usb_driver(sr_driver);
871 
872 MODULE_AUTHOR("Liu Junliang <liujunliang_ljl@163.com");
873 MODULE_VERSION(DRIVER_VERSION);
874 MODULE_DESCRIPTION("SR9800 USB 2.0 USB2NET Dev : http://www.corechip-sz.com");
875 MODULE_LICENSE("GPL");
876