1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ASIX AX88179/178A USB 3.0/2.0 to Gigabit Ethernet Devices 4 * 5 * Copyright (C) 2011-2013 ASIX 6 */ 7 8 #include <linux/module.h> 9 #include <linux/etherdevice.h> 10 #include <linux/mii.h> 11 #include <linux/usb.h> 12 #include <linux/crc32.h> 13 #include <linux/usb/usbnet.h> 14 #include <uapi/linux/mdio.h> 15 #include <linux/mdio.h> 16 17 #define AX88179_PHY_ID 0x03 18 #define AX_EEPROM_LEN 0x100 19 #define AX88179_EEPROM_MAGIC 0x17900b95 20 #define AX_MCAST_FLTSIZE 8 21 #define AX_MAX_MCAST 64 22 #define AX_INT_PPLS_LINK ((u32)BIT(16)) 23 #define AX_RXHDR_L4_TYPE_MASK 0x1c 24 #define AX_RXHDR_L4_TYPE_UDP 4 25 #define AX_RXHDR_L4_TYPE_TCP 16 26 #define AX_RXHDR_L3CSUM_ERR 2 27 #define AX_RXHDR_L4CSUM_ERR 1 28 #define AX_RXHDR_CRC_ERR ((u32)BIT(29)) 29 #define AX_RXHDR_DROP_ERR ((u32)BIT(31)) 30 #define AX_ACCESS_MAC 0x01 31 #define AX_ACCESS_PHY 0x02 32 #define AX_ACCESS_EEPROM 0x04 33 #define AX_ACCESS_EFUS 0x05 34 #define AX_RELOAD_EEPROM_EFUSE 0x06 35 #define AX_PAUSE_WATERLVL_HIGH 0x54 36 #define AX_PAUSE_WATERLVL_LOW 0x55 37 38 #define PHYSICAL_LINK_STATUS 0x02 39 #define AX_USB_SS 0x04 40 #define AX_USB_HS 0x02 41 42 #define GENERAL_STATUS 0x03 43 /* Check AX88179 version. UA1:Bit2 = 0, UA2:Bit2 = 1 */ 44 #define AX_SECLD 0x04 45 46 #define AX_SROM_ADDR 0x07 47 #define AX_SROM_CMD 0x0a 48 #define EEP_RD 0x04 49 #define EEP_BUSY 0x10 50 51 #define AX_SROM_DATA_LOW 0x08 52 #define AX_SROM_DATA_HIGH 0x09 53 54 #define AX_RX_CTL 0x0b 55 #define AX_RX_CTL_DROPCRCERR 0x0100 56 #define AX_RX_CTL_IPE 0x0200 57 #define AX_RX_CTL_START 0x0080 58 #define AX_RX_CTL_AP 0x0020 59 #define AX_RX_CTL_AM 0x0010 60 #define AX_RX_CTL_AB 0x0008 61 #define AX_RX_CTL_AMALL 0x0002 62 #define AX_RX_CTL_PRO 0x0001 63 #define AX_RX_CTL_STOP 0x0000 64 65 #define AX_NODE_ID 0x10 66 #define AX_MULFLTARY 0x16 67 68 #define AX_MEDIUM_STATUS_MODE 0x22 69 #define AX_MEDIUM_GIGAMODE 0x01 70 #define AX_MEDIUM_FULL_DUPLEX 0x02 71 #define AX_MEDIUM_EN_125MHZ 0x08 72 #define AX_MEDIUM_RXFLOW_CTRLEN 0x10 73 #define AX_MEDIUM_TXFLOW_CTRLEN 0x20 74 #define AX_MEDIUM_RECEIVE_EN 0x100 75 #define AX_MEDIUM_PS 0x200 76 #define AX_MEDIUM_JUMBO_EN 0x8040 77 78 #define AX_MONITOR_MOD 0x24 79 #define AX_MONITOR_MODE_RWLC 0x02 80 #define AX_MONITOR_MODE_RWMP 0x04 81 #define AX_MONITOR_MODE_PMEPOL 0x20 82 #define AX_MONITOR_MODE_PMETYPE 0x40 83 84 #define AX_GPIO_CTRL 0x25 85 #define AX_GPIO_CTRL_GPIO3EN 0x80 86 #define AX_GPIO_CTRL_GPIO2EN 0x40 87 #define AX_GPIO_CTRL_GPIO1EN 0x20 88 89 #define AX_PHYPWR_RSTCTL 0x26 90 #define AX_PHYPWR_RSTCTL_BZ 0x0010 91 #define AX_PHYPWR_RSTCTL_IPRL 0x0020 92 #define AX_PHYPWR_RSTCTL_AT 0x1000 93 94 #define AX_RX_BULKIN_QCTRL 0x2e 95 #define AX_CLK_SELECT 0x33 96 #define AX_CLK_SELECT_BCS 0x01 97 #define AX_CLK_SELECT_ACS 0x02 98 #define AX_CLK_SELECT_ULR 0x08 99 100 #define AX_RXCOE_CTL 0x34 101 #define AX_RXCOE_IP 0x01 102 #define AX_RXCOE_TCP 0x02 103 #define AX_RXCOE_UDP 0x04 104 #define AX_RXCOE_TCPV6 0x20 105 #define AX_RXCOE_UDPV6 0x40 106 107 #define AX_TXCOE_CTL 0x35 108 #define AX_TXCOE_IP 0x01 109 #define AX_TXCOE_TCP 0x02 110 #define AX_TXCOE_UDP 0x04 111 #define AX_TXCOE_TCPV6 0x20 112 #define AX_TXCOE_UDPV6 0x40 113 114 #define AX_LEDCTRL 0x73 115 116 #define GMII_PHY_PHYSR 0x11 117 #define GMII_PHY_PHYSR_SMASK 0xc000 118 #define GMII_PHY_PHYSR_GIGA 0x8000 119 #define GMII_PHY_PHYSR_100 0x4000 120 #define GMII_PHY_PHYSR_FULL 0x2000 121 #define GMII_PHY_PHYSR_LINK 0x400 122 123 #define GMII_LED_ACT 0x1a 124 #define GMII_LED_ACTIVE_MASK 0xff8f 125 #define GMII_LED0_ACTIVE BIT(4) 126 #define GMII_LED1_ACTIVE BIT(5) 127 #define GMII_LED2_ACTIVE BIT(6) 128 129 #define GMII_LED_LINK 0x1c 130 #define GMII_LED_LINK_MASK 0xf888 131 #define GMII_LED0_LINK_10 BIT(0) 132 #define GMII_LED0_LINK_100 BIT(1) 133 #define GMII_LED0_LINK_1000 BIT(2) 134 #define GMII_LED1_LINK_10 BIT(4) 135 #define GMII_LED1_LINK_100 BIT(5) 136 #define GMII_LED1_LINK_1000 BIT(6) 137 #define GMII_LED2_LINK_10 BIT(8) 138 #define GMII_LED2_LINK_100 BIT(9) 139 #define GMII_LED2_LINK_1000 BIT(10) 140 #define LED0_ACTIVE BIT(0) 141 #define LED0_LINK_10 BIT(1) 142 #define LED0_LINK_100 BIT(2) 143 #define LED0_LINK_1000 BIT(3) 144 #define LED0_FD BIT(4) 145 #define LED0_USB3_MASK 0x001f 146 #define LED1_ACTIVE BIT(5) 147 #define LED1_LINK_10 BIT(6) 148 #define LED1_LINK_100 BIT(7) 149 #define LED1_LINK_1000 BIT(8) 150 #define LED1_FD BIT(9) 151 #define LED1_USB3_MASK 0x03e0 152 #define LED2_ACTIVE BIT(10) 153 #define LED2_LINK_1000 BIT(13) 154 #define LED2_LINK_100 BIT(12) 155 #define LED2_LINK_10 BIT(11) 156 #define LED2_FD BIT(14) 157 #define LED_VALID BIT(15) 158 #define LED2_USB3_MASK 0x7c00 159 160 #define GMII_PHYPAGE 0x1e 161 #define GMII_PHY_PAGE_SELECT 0x1f 162 #define GMII_PHY_PGSEL_EXT 0x0007 163 #define GMII_PHY_PGSEL_PAGE0 0x0000 164 #define GMII_PHY_PGSEL_PAGE3 0x0003 165 #define GMII_PHY_PGSEL_PAGE5 0x0005 166 167 static int ax88179_reset(struct usbnet *dev); 168 169 struct ax88179_data { 170 u8 eee_enabled; 171 u8 eee_active; 172 u16 rxctl; 173 u8 in_pm; 174 u32 wol_supported; 175 u32 wolopts; 176 }; 177 178 struct ax88179_int_data { 179 __le32 intdata1; 180 __le32 intdata2; 181 }; 182 183 static const struct { 184 unsigned char ctrl, timer_l, timer_h, size, ifg; 185 } AX88179_BULKIN_SIZE[] = { 186 {7, 0x4f, 0, 0x12, 0xff}, 187 {7, 0x20, 3, 0x16, 0xff}, 188 {7, 0xae, 7, 0x18, 0xff}, 189 {7, 0xcc, 0x4c, 0x18, 8}, 190 }; 191 192 static void ax88179_set_pm_mode(struct usbnet *dev, bool pm_mode) 193 { 194 struct ax88179_data *ax179_data = dev->driver_priv; 195 196 ax179_data->in_pm = pm_mode; 197 } 198 199 static int ax88179_in_pm(struct usbnet *dev) 200 { 201 struct ax88179_data *ax179_data = dev->driver_priv; 202 203 return ax179_data->in_pm; 204 } 205 206 static int __ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, 207 u16 size, void *data) 208 { 209 int ret; 210 int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16); 211 212 BUG_ON(!dev); 213 214 if (!ax88179_in_pm(dev)) 215 fn = usbnet_read_cmd; 216 else 217 fn = usbnet_read_cmd_nopm; 218 219 ret = fn(dev, cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 220 value, index, data, size); 221 222 if (unlikely(ret < 0)) 223 netdev_warn(dev->net, "Failed to read reg index 0x%04x: %d\n", 224 index, ret); 225 226 return ret; 227 } 228 229 static int __ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, 230 u16 size, const void *data) 231 { 232 int ret; 233 int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16); 234 235 BUG_ON(!dev); 236 237 if (!ax88179_in_pm(dev)) 238 fn = usbnet_write_cmd; 239 else 240 fn = usbnet_write_cmd_nopm; 241 242 ret = fn(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 243 value, index, data, size); 244 245 if (unlikely(ret < 0)) 246 netdev_warn(dev->net, "Failed to write reg index 0x%04x: %d\n", 247 index, ret); 248 249 return ret; 250 } 251 252 static void ax88179_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, 253 u16 index, u16 size, void *data) 254 { 255 u16 buf; 256 257 if (2 == size) { 258 buf = *((u16 *)data); 259 cpu_to_le16s(&buf); 260 usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | 261 USB_RECIP_DEVICE, value, index, &buf, 262 size); 263 } else { 264 usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | 265 USB_RECIP_DEVICE, value, index, data, 266 size); 267 } 268 } 269 270 static int ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, 271 u16 size, void *data) 272 { 273 int ret; 274 275 if (2 == size) { 276 u16 buf = 0; 277 ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf); 278 le16_to_cpus(&buf); 279 *((u16 *)data) = buf; 280 } else if (4 == size) { 281 u32 buf = 0; 282 ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf); 283 le32_to_cpus(&buf); 284 *((u32 *)data) = buf; 285 } else { 286 ret = __ax88179_read_cmd(dev, cmd, value, index, size, data); 287 } 288 289 return ret; 290 } 291 292 static int ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index, 293 u16 size, const void *data) 294 { 295 int ret; 296 297 if (2 == size) { 298 u16 buf; 299 buf = *((u16 *)data); 300 cpu_to_le16s(&buf); 301 ret = __ax88179_write_cmd(dev, cmd, value, index, 302 size, &buf); 303 } else { 304 ret = __ax88179_write_cmd(dev, cmd, value, index, 305 size, data); 306 } 307 308 return ret; 309 } 310 311 static void ax88179_status(struct usbnet *dev, struct urb *urb) 312 { 313 struct ax88179_int_data *event; 314 u32 link; 315 316 if (urb->actual_length < 8) 317 return; 318 319 event = urb->transfer_buffer; 320 le32_to_cpus((void *)&event->intdata1); 321 322 link = (((__force u32)event->intdata1) & AX_INT_PPLS_LINK) >> 16; 323 324 if (netif_carrier_ok(dev->net) != link) { 325 usbnet_link_change(dev, link, 1); 326 netdev_info(dev->net, "ax88179 - Link status is: %d\n", link); 327 } 328 } 329 330 static int ax88179_mdio_read(struct net_device *netdev, int phy_id, int loc) 331 { 332 struct usbnet *dev = netdev_priv(netdev); 333 u16 res; 334 335 ax88179_read_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, &res); 336 return res; 337 } 338 339 static void ax88179_mdio_write(struct net_device *netdev, int phy_id, int loc, 340 int val) 341 { 342 struct usbnet *dev = netdev_priv(netdev); 343 u16 res = (u16) val; 344 345 ax88179_write_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, &res); 346 } 347 348 static inline int ax88179_phy_mmd_indirect(struct usbnet *dev, u16 prtad, 349 u16 devad) 350 { 351 u16 tmp16; 352 int ret; 353 354 tmp16 = devad; 355 ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 356 MII_MMD_CTRL, 2, &tmp16); 357 358 tmp16 = prtad; 359 ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 360 MII_MMD_DATA, 2, &tmp16); 361 362 tmp16 = devad | MII_MMD_CTRL_NOINCR; 363 ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 364 MII_MMD_CTRL, 2, &tmp16); 365 366 return ret; 367 } 368 369 static int 370 ax88179_phy_read_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad) 371 { 372 int ret; 373 u16 tmp16; 374 375 ax88179_phy_mmd_indirect(dev, prtad, devad); 376 377 ret = ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 378 MII_MMD_DATA, 2, &tmp16); 379 if (ret < 0) 380 return ret; 381 382 return tmp16; 383 } 384 385 static int 386 ax88179_phy_write_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad, 387 u16 data) 388 { 389 int ret; 390 391 ax88179_phy_mmd_indirect(dev, prtad, devad); 392 393 ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 394 MII_MMD_DATA, 2, &data); 395 396 if (ret < 0) 397 return ret; 398 399 return 0; 400 } 401 402 static int ax88179_suspend(struct usb_interface *intf, pm_message_t message) 403 { 404 struct usbnet *dev = usb_get_intfdata(intf); 405 struct ax88179_data *priv = dev->driver_priv; 406 u16 tmp16; 407 u8 tmp8; 408 409 ax88179_set_pm_mode(dev, true); 410 411 usbnet_suspend(intf, message); 412 413 /* Enable WoL */ 414 if (priv->wolopts) { 415 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 416 1, 1, &tmp8); 417 if (priv->wolopts & WAKE_PHY) 418 tmp8 |= AX_MONITOR_MODE_RWLC; 419 if (priv->wolopts & WAKE_MAGIC) 420 tmp8 |= AX_MONITOR_MODE_RWMP; 421 422 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 423 1, 1, &tmp8); 424 } 425 426 /* Disable RX path */ 427 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 428 2, 2, &tmp16); 429 tmp16 &= ~AX_MEDIUM_RECEIVE_EN; 430 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 431 2, 2, &tmp16); 432 433 /* Force bulk-in zero length */ 434 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 435 2, 2, &tmp16); 436 437 tmp16 |= AX_PHYPWR_RSTCTL_BZ | AX_PHYPWR_RSTCTL_IPRL; 438 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 439 2, 2, &tmp16); 440 441 /* change clock */ 442 tmp8 = 0; 443 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); 444 445 /* Configure RX control register => stop operation */ 446 tmp16 = AX_RX_CTL_STOP; 447 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16); 448 449 ax88179_set_pm_mode(dev, false); 450 451 return 0; 452 } 453 454 /* This function is used to enable the autodetach function. */ 455 /* This function is determined by offset 0x43 of EEPROM */ 456 static int ax88179_auto_detach(struct usbnet *dev) 457 { 458 u16 tmp16; 459 u8 tmp8; 460 461 if (ax88179_read_cmd(dev, AX_ACCESS_EEPROM, 0x43, 1, 2, &tmp16) < 0) 462 return 0; 463 464 if ((tmp16 == 0xFFFF) || (!(tmp16 & 0x0100))) 465 return 0; 466 467 /* Enable Auto Detach bit */ 468 tmp8 = 0; 469 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); 470 tmp8 |= AX_CLK_SELECT_ULR; 471 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8); 472 473 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); 474 tmp16 |= AX_PHYPWR_RSTCTL_AT; 475 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); 476 477 return 0; 478 } 479 480 static int ax88179_resume(struct usb_interface *intf) 481 { 482 struct usbnet *dev = usb_get_intfdata(intf); 483 484 ax88179_set_pm_mode(dev, true); 485 486 usbnet_link_change(dev, 0, 0); 487 488 ax88179_reset(dev); 489 490 ax88179_set_pm_mode(dev, false); 491 492 return usbnet_resume(intf); 493 } 494 495 static void 496 ax88179_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) 497 { 498 struct usbnet *dev = netdev_priv(net); 499 struct ax88179_data *priv = dev->driver_priv; 500 501 wolinfo->supported = priv->wol_supported; 502 wolinfo->wolopts = priv->wolopts; 503 } 504 505 static int 506 ax88179_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) 507 { 508 struct usbnet *dev = netdev_priv(net); 509 struct ax88179_data *priv = dev->driver_priv; 510 511 if (wolinfo->wolopts & ~(priv->wol_supported)) 512 return -EINVAL; 513 514 priv->wolopts = wolinfo->wolopts; 515 516 return 0; 517 } 518 519 static int ax88179_get_eeprom_len(struct net_device *net) 520 { 521 return AX_EEPROM_LEN; 522 } 523 524 static int 525 ax88179_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, 526 u8 *data) 527 { 528 struct usbnet *dev = netdev_priv(net); 529 u16 *eeprom_buff; 530 int first_word, last_word; 531 int i, ret; 532 533 if (eeprom->len == 0) 534 return -EINVAL; 535 536 eeprom->magic = AX88179_EEPROM_MAGIC; 537 538 first_word = eeprom->offset >> 1; 539 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 540 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 541 GFP_KERNEL); 542 if (!eeprom_buff) 543 return -ENOMEM; 544 545 /* ax88179/178A returns 2 bytes from eeprom on read */ 546 for (i = first_word; i <= last_word; i++) { 547 ret = __ax88179_read_cmd(dev, AX_ACCESS_EEPROM, i, 1, 2, 548 &eeprom_buff[i - first_word]); 549 if (ret < 0) { 550 kfree(eeprom_buff); 551 return -EIO; 552 } 553 } 554 555 memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 556 kfree(eeprom_buff); 557 return 0; 558 } 559 560 static int 561 ax88179_set_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom, 562 u8 *data) 563 { 564 struct usbnet *dev = netdev_priv(net); 565 u16 *eeprom_buff; 566 int first_word; 567 int last_word; 568 int ret; 569 int i; 570 571 netdev_dbg(net, "write EEPROM len %d, offset %d, magic 0x%x\n", 572 eeprom->len, eeprom->offset, eeprom->magic); 573 574 if (eeprom->len == 0) 575 return -EINVAL; 576 577 if (eeprom->magic != AX88179_EEPROM_MAGIC) 578 return -EINVAL; 579 580 first_word = eeprom->offset >> 1; 581 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 582 583 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 584 GFP_KERNEL); 585 if (!eeprom_buff) 586 return -ENOMEM; 587 588 /* align data to 16 bit boundaries, read the missing data from 589 the EEPROM */ 590 if (eeprom->offset & 1) { 591 ret = ax88179_read_cmd(dev, AX_ACCESS_EEPROM, first_word, 1, 2, 592 &eeprom_buff[0]); 593 if (ret < 0) { 594 netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", first_word); 595 goto free; 596 } 597 } 598 599 if ((eeprom->offset + eeprom->len) & 1) { 600 ret = ax88179_read_cmd(dev, AX_ACCESS_EEPROM, last_word, 1, 2, 601 &eeprom_buff[last_word - first_word]); 602 if (ret < 0) { 603 netdev_err(net, "Failed to read EEPROM at offset 0x%02x.\n", last_word); 604 goto free; 605 } 606 } 607 608 memcpy((u8 *)eeprom_buff + (eeprom->offset & 1), data, eeprom->len); 609 610 for (i = first_word; i <= last_word; i++) { 611 netdev_dbg(net, "write to EEPROM at offset 0x%02x, data 0x%04x\n", 612 i, eeprom_buff[i - first_word]); 613 ret = ax88179_write_cmd(dev, AX_ACCESS_EEPROM, i, 1, 2, 614 &eeprom_buff[i - first_word]); 615 if (ret < 0) { 616 netdev_err(net, "Failed to write EEPROM at offset 0x%02x.\n", i); 617 goto free; 618 } 619 msleep(20); 620 } 621 622 /* reload EEPROM data */ 623 ret = ax88179_write_cmd(dev, AX_RELOAD_EEPROM_EFUSE, 0x0000, 0, 0, NULL); 624 if (ret < 0) { 625 netdev_err(net, "Failed to reload EEPROM data\n"); 626 goto free; 627 } 628 629 ret = 0; 630 free: 631 kfree(eeprom_buff); 632 return ret; 633 } 634 635 static int ax88179_get_link_ksettings(struct net_device *net, 636 struct ethtool_link_ksettings *cmd) 637 { 638 struct usbnet *dev = netdev_priv(net); 639 640 mii_ethtool_get_link_ksettings(&dev->mii, cmd); 641 642 return 0; 643 } 644 645 static int ax88179_set_link_ksettings(struct net_device *net, 646 const struct ethtool_link_ksettings *cmd) 647 { 648 struct usbnet *dev = netdev_priv(net); 649 return mii_ethtool_set_link_ksettings(&dev->mii, cmd); 650 } 651 652 static int 653 ax88179_ethtool_get_eee(struct usbnet *dev, struct ethtool_eee *data) 654 { 655 int val; 656 657 /* Get Supported EEE */ 658 val = ax88179_phy_read_mmd_indirect(dev, MDIO_PCS_EEE_ABLE, 659 MDIO_MMD_PCS); 660 if (val < 0) 661 return val; 662 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 663 664 /* Get advertisement EEE */ 665 val = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_ADV, 666 MDIO_MMD_AN); 667 if (val < 0) 668 return val; 669 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 670 671 /* Get LP advertisement EEE */ 672 val = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_LPABLE, 673 MDIO_MMD_AN); 674 if (val < 0) 675 return val; 676 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 677 678 return 0; 679 } 680 681 static int 682 ax88179_ethtool_set_eee(struct usbnet *dev, struct ethtool_eee *data) 683 { 684 u16 tmp16 = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 685 686 return ax88179_phy_write_mmd_indirect(dev, MDIO_AN_EEE_ADV, 687 MDIO_MMD_AN, tmp16); 688 } 689 690 static int ax88179_chk_eee(struct usbnet *dev) 691 { 692 struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; 693 struct ax88179_data *priv = dev->driver_priv; 694 695 mii_ethtool_gset(&dev->mii, &ecmd); 696 697 if (ecmd.duplex & DUPLEX_FULL) { 698 int eee_lp, eee_cap, eee_adv; 699 u32 lp, cap, adv, supported = 0; 700 701 eee_cap = ax88179_phy_read_mmd_indirect(dev, 702 MDIO_PCS_EEE_ABLE, 703 MDIO_MMD_PCS); 704 if (eee_cap < 0) { 705 priv->eee_active = 0; 706 return false; 707 } 708 709 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 710 if (!cap) { 711 priv->eee_active = 0; 712 return false; 713 } 714 715 eee_lp = ax88179_phy_read_mmd_indirect(dev, 716 MDIO_AN_EEE_LPABLE, 717 MDIO_MMD_AN); 718 if (eee_lp < 0) { 719 priv->eee_active = 0; 720 return false; 721 } 722 723 eee_adv = ax88179_phy_read_mmd_indirect(dev, 724 MDIO_AN_EEE_ADV, 725 MDIO_MMD_AN); 726 727 if (eee_adv < 0) { 728 priv->eee_active = 0; 729 return false; 730 } 731 732 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 733 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 734 supported = (ecmd.speed == SPEED_1000) ? 735 SUPPORTED_1000baseT_Full : 736 SUPPORTED_100baseT_Full; 737 738 if (!(lp & adv & supported)) { 739 priv->eee_active = 0; 740 return false; 741 } 742 743 priv->eee_active = 1; 744 return true; 745 } 746 747 priv->eee_active = 0; 748 return false; 749 } 750 751 static void ax88179_disable_eee(struct usbnet *dev) 752 { 753 u16 tmp16; 754 755 tmp16 = GMII_PHY_PGSEL_PAGE3; 756 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 757 GMII_PHY_PAGE_SELECT, 2, &tmp16); 758 759 tmp16 = 0x3246; 760 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 761 MII_PHYADDR, 2, &tmp16); 762 763 tmp16 = GMII_PHY_PGSEL_PAGE0; 764 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 765 GMII_PHY_PAGE_SELECT, 2, &tmp16); 766 } 767 768 static void ax88179_enable_eee(struct usbnet *dev) 769 { 770 u16 tmp16; 771 772 tmp16 = GMII_PHY_PGSEL_PAGE3; 773 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 774 GMII_PHY_PAGE_SELECT, 2, &tmp16); 775 776 tmp16 = 0x3247; 777 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 778 MII_PHYADDR, 2, &tmp16); 779 780 tmp16 = GMII_PHY_PGSEL_PAGE5; 781 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 782 GMII_PHY_PAGE_SELECT, 2, &tmp16); 783 784 tmp16 = 0x0680; 785 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 786 MII_BMSR, 2, &tmp16); 787 788 tmp16 = GMII_PHY_PGSEL_PAGE0; 789 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 790 GMII_PHY_PAGE_SELECT, 2, &tmp16); 791 } 792 793 static int ax88179_get_eee(struct net_device *net, struct ethtool_eee *edata) 794 { 795 struct usbnet *dev = netdev_priv(net); 796 struct ax88179_data *priv = dev->driver_priv; 797 798 edata->eee_enabled = priv->eee_enabled; 799 edata->eee_active = priv->eee_active; 800 801 return ax88179_ethtool_get_eee(dev, edata); 802 } 803 804 static int ax88179_set_eee(struct net_device *net, struct ethtool_eee *edata) 805 { 806 struct usbnet *dev = netdev_priv(net); 807 struct ax88179_data *priv = dev->driver_priv; 808 int ret; 809 810 priv->eee_enabled = edata->eee_enabled; 811 if (!priv->eee_enabled) { 812 ax88179_disable_eee(dev); 813 } else { 814 priv->eee_enabled = ax88179_chk_eee(dev); 815 if (!priv->eee_enabled) 816 return -EOPNOTSUPP; 817 818 ax88179_enable_eee(dev); 819 } 820 821 ret = ax88179_ethtool_set_eee(dev, edata); 822 if (ret) 823 return ret; 824 825 mii_nway_restart(&dev->mii); 826 827 usbnet_link_change(dev, 0, 0); 828 829 return ret; 830 } 831 832 static int ax88179_ioctl(struct net_device *net, struct ifreq *rq, int cmd) 833 { 834 struct usbnet *dev = netdev_priv(net); 835 return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); 836 } 837 838 static const struct ethtool_ops ax88179_ethtool_ops = { 839 .get_link = ethtool_op_get_link, 840 .get_msglevel = usbnet_get_msglevel, 841 .set_msglevel = usbnet_set_msglevel, 842 .get_wol = ax88179_get_wol, 843 .set_wol = ax88179_set_wol, 844 .get_eeprom_len = ax88179_get_eeprom_len, 845 .get_eeprom = ax88179_get_eeprom, 846 .set_eeprom = ax88179_set_eeprom, 847 .get_eee = ax88179_get_eee, 848 .set_eee = ax88179_set_eee, 849 .nway_reset = usbnet_nway_reset, 850 .get_link_ksettings = ax88179_get_link_ksettings, 851 .set_link_ksettings = ax88179_set_link_ksettings, 852 .get_ts_info = ethtool_op_get_ts_info, 853 }; 854 855 static void ax88179_set_multicast(struct net_device *net) 856 { 857 struct usbnet *dev = netdev_priv(net); 858 struct ax88179_data *data = dev->driver_priv; 859 u8 *m_filter = ((u8 *)dev->data); 860 861 data->rxctl = (AX_RX_CTL_START | AX_RX_CTL_AB | AX_RX_CTL_IPE); 862 863 if (net->flags & IFF_PROMISC) { 864 data->rxctl |= AX_RX_CTL_PRO; 865 } else if (net->flags & IFF_ALLMULTI || 866 netdev_mc_count(net) > AX_MAX_MCAST) { 867 data->rxctl |= AX_RX_CTL_AMALL; 868 } else if (netdev_mc_empty(net)) { 869 /* just broadcast and directed */ 870 } else { 871 /* We use dev->data for our 8 byte filter buffer 872 * to avoid allocating memory that is tricky to free later 873 */ 874 u32 crc_bits; 875 struct netdev_hw_addr *ha; 876 877 memset(m_filter, 0, AX_MCAST_FLTSIZE); 878 879 netdev_for_each_mc_addr(ha, net) { 880 crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26; 881 *(m_filter + (crc_bits >> 3)) |= (1 << (crc_bits & 7)); 882 } 883 884 ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_MULFLTARY, 885 AX_MCAST_FLTSIZE, AX_MCAST_FLTSIZE, 886 m_filter); 887 888 data->rxctl |= AX_RX_CTL_AM; 889 } 890 891 ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_RX_CTL, 892 2, 2, &data->rxctl); 893 } 894 895 static int 896 ax88179_set_features(struct net_device *net, netdev_features_t features) 897 { 898 u8 tmp; 899 struct usbnet *dev = netdev_priv(net); 900 netdev_features_t changed = net->features ^ features; 901 902 if (changed & NETIF_F_IP_CSUM) { 903 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); 904 tmp ^= AX_TXCOE_TCP | AX_TXCOE_UDP; 905 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); 906 } 907 908 if (changed & NETIF_F_IPV6_CSUM) { 909 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); 910 tmp ^= AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6; 911 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp); 912 } 913 914 if (changed & NETIF_F_RXCSUM) { 915 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, &tmp); 916 tmp ^= AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP | 917 AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6; 918 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, &tmp); 919 } 920 921 return 0; 922 } 923 924 static int ax88179_change_mtu(struct net_device *net, int new_mtu) 925 { 926 struct usbnet *dev = netdev_priv(net); 927 u16 tmp16; 928 929 net->mtu = new_mtu; 930 dev->hard_mtu = net->mtu + net->hard_header_len; 931 932 if (net->mtu > 1500) { 933 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 934 2, 2, &tmp16); 935 tmp16 |= AX_MEDIUM_JUMBO_EN; 936 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 937 2, 2, &tmp16); 938 } else { 939 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 940 2, 2, &tmp16); 941 tmp16 &= ~AX_MEDIUM_JUMBO_EN; 942 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 943 2, 2, &tmp16); 944 } 945 946 /* max qlen depend on hard_mtu and rx_urb_size */ 947 usbnet_update_max_qlen(dev); 948 949 return 0; 950 } 951 952 static int ax88179_set_mac_addr(struct net_device *net, void *p) 953 { 954 struct usbnet *dev = netdev_priv(net); 955 struct sockaddr *addr = p; 956 int ret; 957 958 if (netif_running(net)) 959 return -EBUSY; 960 if (!is_valid_ether_addr(addr->sa_data)) 961 return -EADDRNOTAVAIL; 962 963 eth_hw_addr_set(net, addr->sa_data); 964 965 /* Set the MAC address */ 966 ret = ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, 967 ETH_ALEN, net->dev_addr); 968 if (ret < 0) 969 return ret; 970 971 return 0; 972 } 973 974 static const struct net_device_ops ax88179_netdev_ops = { 975 .ndo_open = usbnet_open, 976 .ndo_stop = usbnet_stop, 977 .ndo_start_xmit = usbnet_start_xmit, 978 .ndo_tx_timeout = usbnet_tx_timeout, 979 .ndo_get_stats64 = dev_get_tstats64, 980 .ndo_change_mtu = ax88179_change_mtu, 981 .ndo_set_mac_address = ax88179_set_mac_addr, 982 .ndo_validate_addr = eth_validate_addr, 983 .ndo_eth_ioctl = ax88179_ioctl, 984 .ndo_set_rx_mode = ax88179_set_multicast, 985 .ndo_set_features = ax88179_set_features, 986 }; 987 988 static int ax88179_check_eeprom(struct usbnet *dev) 989 { 990 u8 i, buf, eeprom[20]; 991 u16 csum, delay = HZ / 10; 992 unsigned long jtimeout; 993 994 /* Read EEPROM content */ 995 for (i = 0; i < 6; i++) { 996 buf = i; 997 if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR, 998 1, 1, &buf) < 0) 999 return -EINVAL; 1000 1001 buf = EEP_RD; 1002 if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1003 1, 1, &buf) < 0) 1004 return -EINVAL; 1005 1006 jtimeout = jiffies + delay; 1007 do { 1008 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1009 1, 1, &buf); 1010 1011 if (time_after(jiffies, jtimeout)) 1012 return -EINVAL; 1013 1014 } while (buf & EEP_BUSY); 1015 1016 __ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW, 1017 2, 2, &eeprom[i * 2]); 1018 1019 if ((i == 0) && (eeprom[0] == 0xFF)) 1020 return -EINVAL; 1021 } 1022 1023 csum = eeprom[6] + eeprom[7] + eeprom[8] + eeprom[9]; 1024 csum = (csum >> 8) + (csum & 0xff); 1025 if ((csum + eeprom[10]) != 0xff) 1026 return -EINVAL; 1027 1028 return 0; 1029 } 1030 1031 static int ax88179_check_efuse(struct usbnet *dev, u16 *ledmode) 1032 { 1033 u8 i; 1034 u8 efuse[64]; 1035 u16 csum = 0; 1036 1037 if (ax88179_read_cmd(dev, AX_ACCESS_EFUS, 0, 64, 64, efuse) < 0) 1038 return -EINVAL; 1039 1040 if (*efuse == 0xFF) 1041 return -EINVAL; 1042 1043 for (i = 0; i < 64; i++) 1044 csum = csum + efuse[i]; 1045 1046 while (csum > 255) 1047 csum = (csum & 0x00FF) + ((csum >> 8) & 0x00FF); 1048 1049 if (csum != 0xFF) 1050 return -EINVAL; 1051 1052 *ledmode = (efuse[51] << 8) | efuse[52]; 1053 1054 return 0; 1055 } 1056 1057 static int ax88179_convert_old_led(struct usbnet *dev, u16 *ledvalue) 1058 { 1059 u16 led; 1060 1061 /* Loaded the old eFuse LED Mode */ 1062 if (ax88179_read_cmd(dev, AX_ACCESS_EEPROM, 0x3C, 1, 2, &led) < 0) 1063 return -EINVAL; 1064 1065 led >>= 8; 1066 switch (led) { 1067 case 0xFF: 1068 led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 | 1069 LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 | 1070 LED2_LINK_100 | LED2_LINK_1000 | LED_VALID; 1071 break; 1072 case 0xFE: 1073 led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 | LED_VALID; 1074 break; 1075 case 0xFD: 1076 led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 | 1077 LED2_LINK_10 | LED_VALID; 1078 break; 1079 case 0xFC: 1080 led = LED0_ACTIVE | LED1_ACTIVE | LED1_LINK_1000 | LED2_ACTIVE | 1081 LED2_LINK_100 | LED2_LINK_10 | LED_VALID; 1082 break; 1083 default: 1084 led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 | 1085 LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 | 1086 LED2_LINK_100 | LED2_LINK_1000 | LED_VALID; 1087 break; 1088 } 1089 1090 *ledvalue = led; 1091 1092 return 0; 1093 } 1094 1095 static int ax88179_led_setting(struct usbnet *dev) 1096 { 1097 u8 ledfd, value = 0; 1098 u16 tmp, ledact, ledlink, ledvalue = 0, delay = HZ / 10; 1099 unsigned long jtimeout; 1100 1101 /* Check AX88179 version. UA1 or UA2*/ 1102 ax88179_read_cmd(dev, AX_ACCESS_MAC, GENERAL_STATUS, 1, 1, &value); 1103 1104 if (!(value & AX_SECLD)) { /* UA1 */ 1105 value = AX_GPIO_CTRL_GPIO3EN | AX_GPIO_CTRL_GPIO2EN | 1106 AX_GPIO_CTRL_GPIO1EN; 1107 if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_GPIO_CTRL, 1108 1, 1, &value) < 0) 1109 return -EINVAL; 1110 } 1111 1112 /* Check EEPROM */ 1113 if (!ax88179_check_eeprom(dev)) { 1114 value = 0x42; 1115 if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR, 1116 1, 1, &value) < 0) 1117 return -EINVAL; 1118 1119 value = EEP_RD; 1120 if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1121 1, 1, &value) < 0) 1122 return -EINVAL; 1123 1124 jtimeout = jiffies + delay; 1125 do { 1126 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD, 1127 1, 1, &value); 1128 1129 if (time_after(jiffies, jtimeout)) 1130 return -EINVAL; 1131 1132 } while (value & EEP_BUSY); 1133 1134 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_HIGH, 1135 1, 1, &value); 1136 ledvalue = (value << 8); 1137 1138 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW, 1139 1, 1, &value); 1140 ledvalue |= value; 1141 1142 /* load internal ROM for defaule setting */ 1143 if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0)) 1144 ax88179_convert_old_led(dev, &ledvalue); 1145 1146 } else if (!ax88179_check_efuse(dev, &ledvalue)) { 1147 if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0)) 1148 ax88179_convert_old_led(dev, &ledvalue); 1149 } else { 1150 ax88179_convert_old_led(dev, &ledvalue); 1151 } 1152 1153 tmp = GMII_PHY_PGSEL_EXT; 1154 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1155 GMII_PHY_PAGE_SELECT, 2, &tmp); 1156 1157 tmp = 0x2c; 1158 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1159 GMII_PHYPAGE, 2, &tmp); 1160 1161 ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1162 GMII_LED_ACT, 2, &ledact); 1163 1164 ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1165 GMII_LED_LINK, 2, &ledlink); 1166 1167 ledact &= GMII_LED_ACTIVE_MASK; 1168 ledlink &= GMII_LED_LINK_MASK; 1169 1170 if (ledvalue & LED0_ACTIVE) 1171 ledact |= GMII_LED0_ACTIVE; 1172 1173 if (ledvalue & LED1_ACTIVE) 1174 ledact |= GMII_LED1_ACTIVE; 1175 1176 if (ledvalue & LED2_ACTIVE) 1177 ledact |= GMII_LED2_ACTIVE; 1178 1179 if (ledvalue & LED0_LINK_10) 1180 ledlink |= GMII_LED0_LINK_10; 1181 1182 if (ledvalue & LED1_LINK_10) 1183 ledlink |= GMII_LED1_LINK_10; 1184 1185 if (ledvalue & LED2_LINK_10) 1186 ledlink |= GMII_LED2_LINK_10; 1187 1188 if (ledvalue & LED0_LINK_100) 1189 ledlink |= GMII_LED0_LINK_100; 1190 1191 if (ledvalue & LED1_LINK_100) 1192 ledlink |= GMII_LED1_LINK_100; 1193 1194 if (ledvalue & LED2_LINK_100) 1195 ledlink |= GMII_LED2_LINK_100; 1196 1197 if (ledvalue & LED0_LINK_1000) 1198 ledlink |= GMII_LED0_LINK_1000; 1199 1200 if (ledvalue & LED1_LINK_1000) 1201 ledlink |= GMII_LED1_LINK_1000; 1202 1203 if (ledvalue & LED2_LINK_1000) 1204 ledlink |= GMII_LED2_LINK_1000; 1205 1206 tmp = ledact; 1207 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1208 GMII_LED_ACT, 2, &tmp); 1209 1210 tmp = ledlink; 1211 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1212 GMII_LED_LINK, 2, &tmp); 1213 1214 tmp = GMII_PHY_PGSEL_PAGE0; 1215 ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1216 GMII_PHY_PAGE_SELECT, 2, &tmp); 1217 1218 /* LED full duplex setting */ 1219 ledfd = 0; 1220 if (ledvalue & LED0_FD) 1221 ledfd |= 0x01; 1222 else if ((ledvalue & LED0_USB3_MASK) == 0) 1223 ledfd |= 0x02; 1224 1225 if (ledvalue & LED1_FD) 1226 ledfd |= 0x04; 1227 else if ((ledvalue & LED1_USB3_MASK) == 0) 1228 ledfd |= 0x08; 1229 1230 if (ledvalue & LED2_FD) 1231 ledfd |= 0x10; 1232 else if ((ledvalue & LED2_USB3_MASK) == 0) 1233 ledfd |= 0x20; 1234 1235 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_LEDCTRL, 1, 1, &ledfd); 1236 1237 return 0; 1238 } 1239 1240 static void ax88179_get_mac_addr(struct usbnet *dev) 1241 { 1242 u8 mac[ETH_ALEN]; 1243 1244 memset(mac, 0, sizeof(mac)); 1245 1246 /* Maybe the boot loader passed the MAC address via device tree */ 1247 if (!eth_platform_get_mac_address(&dev->udev->dev, mac)) { 1248 netif_dbg(dev, ifup, dev->net, 1249 "MAC address read from device tree"); 1250 } else { 1251 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, 1252 ETH_ALEN, mac); 1253 netif_dbg(dev, ifup, dev->net, 1254 "MAC address read from ASIX chip"); 1255 } 1256 1257 if (is_valid_ether_addr(mac)) { 1258 eth_hw_addr_set(dev->net, mac); 1259 } else { 1260 netdev_info(dev->net, "invalid MAC address, using random\n"); 1261 eth_hw_addr_random(dev->net); 1262 } 1263 1264 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, ETH_ALEN, 1265 dev->net->dev_addr); 1266 } 1267 1268 static int ax88179_bind(struct usbnet *dev, struct usb_interface *intf) 1269 { 1270 struct ax88179_data *ax179_data; 1271 1272 usbnet_get_endpoints(dev, intf); 1273 1274 ax179_data = kzalloc(sizeof(*ax179_data), GFP_KERNEL); 1275 if (!ax179_data) 1276 return -ENOMEM; 1277 1278 dev->driver_priv = ax179_data; 1279 1280 dev->net->netdev_ops = &ax88179_netdev_ops; 1281 dev->net->ethtool_ops = &ax88179_ethtool_ops; 1282 dev->net->needed_headroom = 8; 1283 dev->net->max_mtu = 4088; 1284 1285 /* Initialize MII structure */ 1286 dev->mii.dev = dev->net; 1287 dev->mii.mdio_read = ax88179_mdio_read; 1288 dev->mii.mdio_write = ax88179_mdio_write; 1289 dev->mii.phy_id_mask = 0xff; 1290 dev->mii.reg_num_mask = 0xff; 1291 dev->mii.phy_id = 0x03; 1292 dev->mii.supports_gmii = 1; 1293 1294 dev->net->features |= NETIF_F_SG | NETIF_F_IP_CSUM | 1295 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_TSO; 1296 1297 dev->net->hw_features |= dev->net->features; 1298 1299 netif_set_tso_max_size(dev->net, 16384); 1300 1301 ax88179_reset(dev); 1302 1303 return 0; 1304 } 1305 1306 static void ax88179_unbind(struct usbnet *dev, struct usb_interface *intf) 1307 { 1308 struct ax88179_data *ax179_data = dev->driver_priv; 1309 u16 tmp16; 1310 1311 /* Configure RX control register => stop operation */ 1312 tmp16 = AX_RX_CTL_STOP; 1313 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16); 1314 1315 tmp16 = 0; 1316 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp16); 1317 1318 /* Power down ethernet PHY */ 1319 tmp16 = 0; 1320 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16); 1321 1322 kfree(ax179_data); 1323 } 1324 1325 static void 1326 ax88179_rx_checksum(struct sk_buff *skb, u32 *pkt_hdr) 1327 { 1328 skb->ip_summed = CHECKSUM_NONE; 1329 1330 /* checksum error bit is set */ 1331 if ((*pkt_hdr & AX_RXHDR_L3CSUM_ERR) || 1332 (*pkt_hdr & AX_RXHDR_L4CSUM_ERR)) 1333 return; 1334 1335 /* It must be a TCP or UDP packet with a valid checksum */ 1336 if (((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_TCP) || 1337 ((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_UDP)) 1338 skb->ip_summed = CHECKSUM_UNNECESSARY; 1339 } 1340 1341 static int ax88179_rx_fixup(struct usbnet *dev, struct sk_buff *skb) 1342 { 1343 struct sk_buff *ax_skb; 1344 int pkt_cnt; 1345 u32 rx_hdr; 1346 u16 hdr_off; 1347 u32 *pkt_hdr; 1348 1349 /* At the end of the SKB, there's a header telling us how many packets 1350 * are bundled into this buffer and where we can find an array of 1351 * per-packet metadata (which contains elements encoded into u16). 1352 */ 1353 1354 /* SKB contents for current firmware: 1355 * <packet 1> <padding> 1356 * ... 1357 * <packet N> <padding> 1358 * <per-packet metadata entry 1> <dummy header> 1359 * ... 1360 * <per-packet metadata entry N> <dummy header> 1361 * <padding2> <rx_hdr> 1362 * 1363 * where: 1364 * <packet N> contains pkt_len bytes: 1365 * 2 bytes of IP alignment pseudo header 1366 * packet received 1367 * <per-packet metadata entry N> contains 4 bytes: 1368 * pkt_len and fields AX_RXHDR_* 1369 * <padding> 0-7 bytes to terminate at 1370 * 8 bytes boundary (64-bit). 1371 * <padding2> 4 bytes to make rx_hdr terminate at 1372 * 8 bytes boundary (64-bit) 1373 * <dummy-header> contains 4 bytes: 1374 * pkt_len=0 and AX_RXHDR_DROP_ERR 1375 * <rx-hdr> contains 4 bytes: 1376 * pkt_cnt and hdr_off (offset of 1377 * <per-packet metadata entry 1>) 1378 * 1379 * pkt_cnt is number of entrys in the per-packet metadata. 1380 * In current firmware there is 2 entrys per packet. 1381 * The first points to the packet and the 1382 * second is a dummy header. 1383 * This was done probably to align fields in 64-bit and 1384 * maintain compatibility with old firmware. 1385 * This code assumes that <dummy header> and <padding2> are 1386 * optional. 1387 */ 1388 1389 if (skb->len < 4) 1390 return 0; 1391 skb_trim(skb, skb->len - 4); 1392 rx_hdr = get_unaligned_le32(skb_tail_pointer(skb)); 1393 pkt_cnt = (u16)rx_hdr; 1394 hdr_off = (u16)(rx_hdr >> 16); 1395 1396 if (pkt_cnt == 0) 1397 return 0; 1398 1399 /* Make sure that the bounds of the metadata array are inside the SKB 1400 * (and in front of the counter at the end). 1401 */ 1402 if (pkt_cnt * 4 + hdr_off > skb->len) 1403 return 0; 1404 pkt_hdr = (u32 *)(skb->data + hdr_off); 1405 1406 /* Packets must not overlap the metadata array */ 1407 skb_trim(skb, hdr_off); 1408 1409 for (; pkt_cnt > 0; pkt_cnt--, pkt_hdr++) { 1410 u16 pkt_len_plus_padd; 1411 u16 pkt_len; 1412 1413 le32_to_cpus(pkt_hdr); 1414 pkt_len = (*pkt_hdr >> 16) & 0x1fff; 1415 pkt_len_plus_padd = (pkt_len + 7) & 0xfff8; 1416 1417 /* Skip dummy header used for alignment 1418 */ 1419 if (pkt_len == 0) 1420 continue; 1421 1422 if (pkt_len_plus_padd > skb->len) 1423 return 0; 1424 1425 /* Check CRC or runt packet */ 1426 if ((*pkt_hdr & (AX_RXHDR_CRC_ERR | AX_RXHDR_DROP_ERR)) || 1427 pkt_len < 2 + ETH_HLEN) { 1428 dev->net->stats.rx_errors++; 1429 skb_pull(skb, pkt_len_plus_padd); 1430 continue; 1431 } 1432 1433 /* last packet */ 1434 if (pkt_len_plus_padd == skb->len) { 1435 skb_trim(skb, pkt_len); 1436 1437 /* Skip IP alignment pseudo header */ 1438 skb_pull(skb, 2); 1439 1440 skb->truesize = SKB_TRUESIZE(pkt_len_plus_padd); 1441 ax88179_rx_checksum(skb, pkt_hdr); 1442 return 1; 1443 } 1444 1445 ax_skb = skb_clone(skb, GFP_ATOMIC); 1446 if (!ax_skb) 1447 return 0; 1448 skb_trim(ax_skb, pkt_len); 1449 1450 /* Skip IP alignment pseudo header */ 1451 skb_pull(ax_skb, 2); 1452 1453 skb->truesize = pkt_len_plus_padd + 1454 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 1455 ax88179_rx_checksum(ax_skb, pkt_hdr); 1456 usbnet_skb_return(dev, ax_skb); 1457 1458 skb_pull(skb, pkt_len_plus_padd); 1459 } 1460 1461 return 0; 1462 } 1463 1464 static struct sk_buff * 1465 ax88179_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) 1466 { 1467 u32 tx_hdr1, tx_hdr2; 1468 int frame_size = dev->maxpacket; 1469 int headroom; 1470 void *ptr; 1471 1472 tx_hdr1 = skb->len; 1473 tx_hdr2 = skb_shinfo(skb)->gso_size; /* Set TSO mss */ 1474 if (((skb->len + 8) % frame_size) == 0) 1475 tx_hdr2 |= 0x80008000; /* Enable padding */ 1476 1477 headroom = skb_headroom(skb) - 8; 1478 1479 if ((dev->net->features & NETIF_F_SG) && skb_linearize(skb)) 1480 return NULL; 1481 1482 if ((skb_header_cloned(skb) || headroom < 0) && 1483 pskb_expand_head(skb, headroom < 0 ? 8 : 0, 0, GFP_ATOMIC)) { 1484 dev_kfree_skb_any(skb); 1485 return NULL; 1486 } 1487 1488 ptr = skb_push(skb, 8); 1489 put_unaligned_le32(tx_hdr1, ptr); 1490 put_unaligned_le32(tx_hdr2, ptr + 4); 1491 1492 usbnet_set_skb_tx_stats(skb, (skb_shinfo(skb)->gso_segs ?: 1), 0); 1493 1494 return skb; 1495 } 1496 1497 static int ax88179_link_reset(struct usbnet *dev) 1498 { 1499 struct ax88179_data *ax179_data = dev->driver_priv; 1500 u8 tmp[5], link_sts; 1501 u16 mode, tmp16, delay = HZ / 10; 1502 u32 tmp32 = 0x40000000; 1503 unsigned long jtimeout; 1504 1505 jtimeout = jiffies + delay; 1506 while (tmp32 & 0x40000000) { 1507 mode = 0; 1508 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &mode); 1509 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, 1510 &ax179_data->rxctl); 1511 1512 /*link up, check the usb device control TX FIFO full or empty*/ 1513 ax88179_read_cmd(dev, 0x81, 0x8c, 0, 4, &tmp32); 1514 1515 if (time_after(jiffies, jtimeout)) 1516 return 0; 1517 } 1518 1519 mode = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN | 1520 AX_MEDIUM_RXFLOW_CTRLEN; 1521 1522 ax88179_read_cmd(dev, AX_ACCESS_MAC, PHYSICAL_LINK_STATUS, 1523 1, 1, &link_sts); 1524 1525 ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID, 1526 GMII_PHY_PHYSR, 2, &tmp16); 1527 1528 if (!(tmp16 & GMII_PHY_PHYSR_LINK)) { 1529 return 0; 1530 } else if (GMII_PHY_PHYSR_GIGA == (tmp16 & GMII_PHY_PHYSR_SMASK)) { 1531 mode |= AX_MEDIUM_GIGAMODE | AX_MEDIUM_EN_125MHZ; 1532 if (dev->net->mtu > 1500) 1533 mode |= AX_MEDIUM_JUMBO_EN; 1534 1535 if (link_sts & AX_USB_SS) 1536 memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5); 1537 else if (link_sts & AX_USB_HS) 1538 memcpy(tmp, &AX88179_BULKIN_SIZE[1], 5); 1539 else 1540 memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5); 1541 } else if (GMII_PHY_PHYSR_100 == (tmp16 & GMII_PHY_PHYSR_SMASK)) { 1542 mode |= AX_MEDIUM_PS; 1543 1544 if (link_sts & (AX_USB_SS | AX_USB_HS)) 1545 memcpy(tmp, &AX88179_BULKIN_SIZE[2], 5); 1546 else 1547 memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5); 1548 } else { 1549 memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5); 1550 } 1551 1552 /* RX bulk configuration */ 1553 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp); 1554 1555 dev->rx_urb_size = (1024 * (tmp[3] + 2)); 1556 1557 if (tmp16 & GMII_PHY_PHYSR_FULL) 1558 mode |= AX_MEDIUM_FULL_DUPLEX; 1559 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 1560 2, 2, &mode); 1561 1562 ax179_data->eee_enabled = ax88179_chk_eee(dev); 1563 1564 netif_carrier_on(dev->net); 1565 1566 return 0; 1567 } 1568 1569 static int ax88179_reset(struct usbnet *dev) 1570 { 1571 u8 buf[5]; 1572 u16 *tmp16; 1573 u8 *tmp; 1574 struct ax88179_data *ax179_data = dev->driver_priv; 1575 struct ethtool_eee eee_data; 1576 1577 tmp16 = (u16 *)buf; 1578 tmp = (u8 *)buf; 1579 1580 /* Power up ethernet PHY */ 1581 *tmp16 = 0; 1582 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16); 1583 1584 *tmp16 = AX_PHYPWR_RSTCTL_IPRL; 1585 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16); 1586 msleep(500); 1587 1588 *tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS; 1589 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp); 1590 msleep(200); 1591 1592 /* Ethernet PHY Auto Detach*/ 1593 ax88179_auto_detach(dev); 1594 1595 /* Read MAC address from DTB or asix chip */ 1596 ax88179_get_mac_addr(dev); 1597 memcpy(dev->net->perm_addr, dev->net->dev_addr, ETH_ALEN); 1598 1599 /* RX bulk configuration */ 1600 memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5); 1601 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp); 1602 1603 dev->rx_urb_size = 1024 * 20; 1604 1605 *tmp = 0x34; 1606 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp); 1607 1608 *tmp = 0x52; 1609 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH, 1610 1, 1, tmp); 1611 1612 /* Enable checksum offload */ 1613 *tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP | 1614 AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6; 1615 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp); 1616 1617 *tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP | 1618 AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6; 1619 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp); 1620 1621 /* Configure RX control register => start operation */ 1622 *tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START | 1623 AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB; 1624 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16); 1625 1626 *tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL | 1627 AX_MONITOR_MODE_RWMP; 1628 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, tmp); 1629 1630 /* Configure default medium type => giga */ 1631 *tmp16 = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN | 1632 AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX | 1633 AX_MEDIUM_GIGAMODE; 1634 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 1635 2, 2, tmp16); 1636 1637 /* Check if WoL is supported */ 1638 ax179_data->wol_supported = 0; 1639 if (ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1640 1, 1, &tmp) > 0) 1641 ax179_data->wol_supported = WAKE_MAGIC | WAKE_PHY; 1642 1643 ax88179_led_setting(dev); 1644 1645 ax179_data->eee_enabled = 0; 1646 ax179_data->eee_active = 0; 1647 1648 ax88179_disable_eee(dev); 1649 1650 ax88179_ethtool_get_eee(dev, &eee_data); 1651 eee_data.advertised = 0; 1652 ax88179_ethtool_set_eee(dev, &eee_data); 1653 1654 /* Restart autoneg */ 1655 mii_nway_restart(&dev->mii); 1656 1657 usbnet_link_change(dev, 0, 0); 1658 1659 return 0; 1660 } 1661 1662 static int ax88179_stop(struct usbnet *dev) 1663 { 1664 u16 tmp16; 1665 1666 ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 1667 2, 2, &tmp16); 1668 tmp16 &= ~AX_MEDIUM_RECEIVE_EN; 1669 ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 1670 2, 2, &tmp16); 1671 1672 return 0; 1673 } 1674 1675 static const struct driver_info ax88179_info = { 1676 .description = "ASIX AX88179 USB 3.0 Gigabit Ethernet", 1677 .bind = ax88179_bind, 1678 .unbind = ax88179_unbind, 1679 .status = ax88179_status, 1680 .link_reset = ax88179_link_reset, 1681 .reset = ax88179_reset, 1682 .stop = ax88179_stop, 1683 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1684 .rx_fixup = ax88179_rx_fixup, 1685 .tx_fixup = ax88179_tx_fixup, 1686 }; 1687 1688 static const struct driver_info ax88178a_info = { 1689 .description = "ASIX AX88178A USB 2.0 Gigabit Ethernet", 1690 .bind = ax88179_bind, 1691 .unbind = ax88179_unbind, 1692 .status = ax88179_status, 1693 .link_reset = ax88179_link_reset, 1694 .reset = ax88179_reset, 1695 .stop = ax88179_stop, 1696 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1697 .rx_fixup = ax88179_rx_fixup, 1698 .tx_fixup = ax88179_tx_fixup, 1699 }; 1700 1701 static const struct driver_info cypress_GX3_info = { 1702 .description = "Cypress GX3 SuperSpeed to Gigabit Ethernet Controller", 1703 .bind = ax88179_bind, 1704 .unbind = ax88179_unbind, 1705 .status = ax88179_status, 1706 .link_reset = ax88179_link_reset, 1707 .reset = ax88179_reset, 1708 .stop = ax88179_stop, 1709 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1710 .rx_fixup = ax88179_rx_fixup, 1711 .tx_fixup = ax88179_tx_fixup, 1712 }; 1713 1714 static const struct driver_info dlink_dub1312_info = { 1715 .description = "D-Link DUB-1312 USB 3.0 to Gigabit Ethernet Adapter", 1716 .bind = ax88179_bind, 1717 .unbind = ax88179_unbind, 1718 .status = ax88179_status, 1719 .link_reset = ax88179_link_reset, 1720 .reset = ax88179_reset, 1721 .stop = ax88179_stop, 1722 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1723 .rx_fixup = ax88179_rx_fixup, 1724 .tx_fixup = ax88179_tx_fixup, 1725 }; 1726 1727 static const struct driver_info sitecom_info = { 1728 .description = "Sitecom USB 3.0 to Gigabit Adapter", 1729 .bind = ax88179_bind, 1730 .unbind = ax88179_unbind, 1731 .status = ax88179_status, 1732 .link_reset = ax88179_link_reset, 1733 .reset = ax88179_reset, 1734 .stop = ax88179_stop, 1735 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1736 .rx_fixup = ax88179_rx_fixup, 1737 .tx_fixup = ax88179_tx_fixup, 1738 }; 1739 1740 static const struct driver_info samsung_info = { 1741 .description = "Samsung USB Ethernet Adapter", 1742 .bind = ax88179_bind, 1743 .unbind = ax88179_unbind, 1744 .status = ax88179_status, 1745 .link_reset = ax88179_link_reset, 1746 .reset = ax88179_reset, 1747 .stop = ax88179_stop, 1748 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1749 .rx_fixup = ax88179_rx_fixup, 1750 .tx_fixup = ax88179_tx_fixup, 1751 }; 1752 1753 static const struct driver_info lenovo_info = { 1754 .description = "Lenovo OneLinkDock Gigabit LAN", 1755 .bind = ax88179_bind, 1756 .unbind = ax88179_unbind, 1757 .status = ax88179_status, 1758 .link_reset = ax88179_link_reset, 1759 .reset = ax88179_reset, 1760 .stop = ax88179_stop, 1761 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1762 .rx_fixup = ax88179_rx_fixup, 1763 .tx_fixup = ax88179_tx_fixup, 1764 }; 1765 1766 static const struct driver_info belkin_info = { 1767 .description = "Belkin USB Ethernet Adapter", 1768 .bind = ax88179_bind, 1769 .unbind = ax88179_unbind, 1770 .status = ax88179_status, 1771 .link_reset = ax88179_link_reset, 1772 .reset = ax88179_reset, 1773 .stop = ax88179_stop, 1774 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1775 .rx_fixup = ax88179_rx_fixup, 1776 .tx_fixup = ax88179_tx_fixup, 1777 }; 1778 1779 static const struct driver_info toshiba_info = { 1780 .description = "Toshiba USB Ethernet Adapter", 1781 .bind = ax88179_bind, 1782 .unbind = ax88179_unbind, 1783 .status = ax88179_status, 1784 .link_reset = ax88179_link_reset, 1785 .reset = ax88179_reset, 1786 .stop = ax88179_stop, 1787 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1788 .rx_fixup = ax88179_rx_fixup, 1789 .tx_fixup = ax88179_tx_fixup, 1790 }; 1791 1792 static const struct driver_info mct_info = { 1793 .description = "MCT USB 3.0 Gigabit Ethernet Adapter", 1794 .bind = ax88179_bind, 1795 .unbind = ax88179_unbind, 1796 .status = ax88179_status, 1797 .link_reset = ax88179_link_reset, 1798 .reset = ax88179_reset, 1799 .stop = ax88179_stop, 1800 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1801 .rx_fixup = ax88179_rx_fixup, 1802 .tx_fixup = ax88179_tx_fixup, 1803 }; 1804 1805 static const struct driver_info at_umc2000_info = { 1806 .description = "AT-UMC2000 USB 3.0/USB 3.1 Gen 1 to Gigabit Ethernet Adapter", 1807 .bind = ax88179_bind, 1808 .unbind = ax88179_unbind, 1809 .status = ax88179_status, 1810 .link_reset = ax88179_link_reset, 1811 .reset = ax88179_reset, 1812 .stop = ax88179_stop, 1813 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1814 .rx_fixup = ax88179_rx_fixup, 1815 .tx_fixup = ax88179_tx_fixup, 1816 }; 1817 1818 static const struct driver_info at_umc200_info = { 1819 .description = "AT-UMC200 USB 3.0/USB 3.1 Gen 1 to Fast Ethernet Adapter", 1820 .bind = ax88179_bind, 1821 .unbind = ax88179_unbind, 1822 .status = ax88179_status, 1823 .link_reset = ax88179_link_reset, 1824 .reset = ax88179_reset, 1825 .stop = ax88179_stop, 1826 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1827 .rx_fixup = ax88179_rx_fixup, 1828 .tx_fixup = ax88179_tx_fixup, 1829 }; 1830 1831 static const struct driver_info at_umc2000sp_info = { 1832 .description = "AT-UMC2000/SP USB 3.0/USB 3.1 Gen 1 to Gigabit Ethernet Adapter", 1833 .bind = ax88179_bind, 1834 .unbind = ax88179_unbind, 1835 .status = ax88179_status, 1836 .link_reset = ax88179_link_reset, 1837 .reset = ax88179_reset, 1838 .stop = ax88179_stop, 1839 .flags = FLAG_ETHER | FLAG_FRAMING_AX, 1840 .rx_fixup = ax88179_rx_fixup, 1841 .tx_fixup = ax88179_tx_fixup, 1842 }; 1843 1844 static const struct usb_device_id products[] = { 1845 { 1846 /* ASIX AX88179 10/100/1000 */ 1847 USB_DEVICE_AND_INTERFACE_INFO(0x0b95, 0x1790, 0xff, 0xff, 0), 1848 .driver_info = (unsigned long)&ax88179_info, 1849 }, { 1850 /* ASIX AX88178A 10/100/1000 */ 1851 USB_DEVICE_AND_INTERFACE_INFO(0x0b95, 0x178a, 0xff, 0xff, 0), 1852 .driver_info = (unsigned long)&ax88178a_info, 1853 }, { 1854 /* Cypress GX3 SuperSpeed to Gigabit Ethernet Bridge Controller */ 1855 USB_DEVICE_AND_INTERFACE_INFO(0x04b4, 0x3610, 0xff, 0xff, 0), 1856 .driver_info = (unsigned long)&cypress_GX3_info, 1857 }, { 1858 /* D-Link DUB-1312 USB 3.0 to Gigabit Ethernet Adapter */ 1859 USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x4a00, 0xff, 0xff, 0), 1860 .driver_info = (unsigned long)&dlink_dub1312_info, 1861 }, { 1862 /* Sitecom USB 3.0 to Gigabit Adapter */ 1863 USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0072, 0xff, 0xff, 0), 1864 .driver_info = (unsigned long)&sitecom_info, 1865 }, { 1866 /* Samsung USB Ethernet Adapter */ 1867 USB_DEVICE_AND_INTERFACE_INFO(0x04e8, 0xa100, 0xff, 0xff, 0), 1868 .driver_info = (unsigned long)&samsung_info, 1869 }, { 1870 /* Lenovo OneLinkDock Gigabit LAN */ 1871 USB_DEVICE_AND_INTERFACE_INFO(0x17ef, 0x304b, 0xff, 0xff, 0), 1872 .driver_info = (unsigned long)&lenovo_info, 1873 }, { 1874 /* Belkin B2B128 USB 3.0 Hub + Gigabit Ethernet Adapter */ 1875 USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x0128, 0xff, 0xff, 0), 1876 .driver_info = (unsigned long)&belkin_info, 1877 }, { 1878 /* Toshiba USB 3.0 GBit Ethernet Adapter */ 1879 USB_DEVICE_AND_INTERFACE_INFO(0x0930, 0x0a13, 0xff, 0xff, 0), 1880 .driver_info = (unsigned long)&toshiba_info, 1881 }, { 1882 /* Magic Control Technology U3-A9003 USB 3.0 Gigabit Ethernet Adapter */ 1883 USB_DEVICE_AND_INTERFACE_INFO(0x0711, 0x0179, 0xff, 0xff, 0), 1884 .driver_info = (unsigned long)&mct_info, 1885 }, { 1886 /* Allied Telesis AT-UMC2000 USB 3.0/USB 3.1 Gen 1 to Gigabit Ethernet Adapter */ 1887 USB_DEVICE_AND_INTERFACE_INFO(0x07c9, 0x000e, 0xff, 0xff, 0), 1888 .driver_info = (unsigned long)&at_umc2000_info, 1889 }, { 1890 /* Allied Telesis AT-UMC200 USB 3.0/USB 3.1 Gen 1 to Fast Ethernet Adapter */ 1891 USB_DEVICE_AND_INTERFACE_INFO(0x07c9, 0x000f, 0xff, 0xff, 0), 1892 .driver_info = (unsigned long)&at_umc200_info, 1893 }, { 1894 /* Allied Telesis AT-UMC2000/SP USB 3.0/USB 3.1 Gen 1 to Gigabit Ethernet Adapter */ 1895 USB_DEVICE_AND_INTERFACE_INFO(0x07c9, 0x0010, 0xff, 0xff, 0), 1896 .driver_info = (unsigned long)&at_umc2000sp_info, 1897 }, 1898 { }, 1899 }; 1900 MODULE_DEVICE_TABLE(usb, products); 1901 1902 static struct usb_driver ax88179_178a_driver = { 1903 .name = "ax88179_178a", 1904 .id_table = products, 1905 .probe = usbnet_probe, 1906 .suspend = ax88179_suspend, 1907 .resume = ax88179_resume, 1908 .reset_resume = ax88179_resume, 1909 .disconnect = usbnet_disconnect, 1910 .supports_autosuspend = 1, 1911 .disable_hub_initiated_lpm = 1, 1912 }; 1913 1914 module_usb_driver(ax88179_178a_driver); 1915 1916 MODULE_DESCRIPTION("ASIX AX88179/178A based USB 3.0/2.0 Gigabit Ethernet Devices"); 1917 MODULE_LICENSE("GPL"); 1918