1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Networking over Thunderbolt/USB4 cables using USB4NET protocol 4 * (formerly Apple ThunderboltIP). 5 * 6 * Copyright (C) 2017, Intel Corporation 7 * Authors: Amir Levy <amir.jer.levy@intel.com> 8 * Michael Jamet <michael.jamet@intel.com> 9 * Mika Westerberg <mika.westerberg@linux.intel.com> 10 */ 11 12 #include <linux/atomic.h> 13 #include <linux/highmem.h> 14 #include <linux/if_vlan.h> 15 #include <linux/jhash.h> 16 #include <linux/module.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/sizes.h> 20 #include <linux/thunderbolt.h> 21 #include <linux/uuid.h> 22 #include <linux/workqueue.h> 23 24 #include <net/ip6_checksum.h> 25 26 #include "trace.h" 27 28 /* Protocol timeouts in ms */ 29 #define TBNET_LOGIN_DELAY 4500 30 #define TBNET_LOGIN_TIMEOUT 500 31 #define TBNET_LOGOUT_TIMEOUT 1000 32 33 #define TBNET_RING_SIZE 256 34 #define TBNET_LOGIN_RETRIES 60 35 #define TBNET_LOGOUT_RETRIES 10 36 #define TBNET_E2E BIT(0) 37 #define TBNET_MATCH_FRAGS_ID BIT(1) 38 #define TBNET_64K_FRAMES BIT(2) 39 #define TBNET_MAX_MTU SZ_64K 40 #define TBNET_FRAME_SIZE SZ_4K 41 #define TBNET_MAX_PAYLOAD_SIZE \ 42 (TBNET_FRAME_SIZE - sizeof(struct thunderbolt_ip_frame_header)) 43 /* Rx packets need to hold space for skb_shared_info */ 44 #define TBNET_RX_MAX_SIZE \ 45 (TBNET_FRAME_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 46 #define TBNET_RX_PAGE_ORDER get_order(TBNET_RX_MAX_SIZE) 47 #define TBNET_RX_PAGE_SIZE (PAGE_SIZE << TBNET_RX_PAGE_ORDER) 48 49 #define TBNET_L0_PORT_NUM(route) ((route) & GENMASK(5, 0)) 50 51 /** 52 * struct thunderbolt_ip_frame_header - Header for each Thunderbolt frame 53 * @frame_size: size of the data with the frame 54 * @frame_index: running index on the frames 55 * @frame_id: ID of the frame to match frames to specific packet 56 * @frame_count: how many frames assembles a full packet 57 * 58 * Each data frame passed to the high-speed DMA ring has this header. If 59 * the XDomain network directory announces that %TBNET_MATCH_FRAGS_ID is 60 * supported then @frame_id is filled, otherwise it stays %0. 61 */ 62 struct thunderbolt_ip_frame_header { 63 __le32 frame_size; 64 __le16 frame_index; 65 __le16 frame_id; 66 __le32 frame_count; 67 }; 68 69 enum thunderbolt_ip_frame_pdf { 70 TBIP_PDF_FRAME_START = 1, 71 TBIP_PDF_FRAME_END, 72 }; 73 74 enum thunderbolt_ip_type { 75 TBIP_LOGIN, 76 TBIP_LOGIN_RESPONSE, 77 TBIP_LOGOUT, 78 TBIP_STATUS, 79 }; 80 81 struct thunderbolt_ip_header { 82 u32 route_hi; 83 u32 route_lo; 84 u32 length_sn; 85 uuid_t uuid; 86 uuid_t initiator_uuid; 87 uuid_t target_uuid; 88 u32 type; 89 u32 command_id; 90 }; 91 92 #define TBIP_HDR_LENGTH_MASK GENMASK(5, 0) 93 #define TBIP_HDR_SN_MASK GENMASK(28, 27) 94 #define TBIP_HDR_SN_SHIFT 27 95 96 struct thunderbolt_ip_login { 97 struct thunderbolt_ip_header hdr; 98 u32 proto_version; 99 u32 transmit_path; 100 u32 reserved[4]; 101 }; 102 103 #define TBIP_LOGIN_PROTO_VERSION 1 104 105 struct thunderbolt_ip_login_response { 106 struct thunderbolt_ip_header hdr; 107 u32 status; 108 u32 receiver_mac[2]; 109 u32 receiver_mac_len; 110 u32 reserved[4]; 111 }; 112 113 struct thunderbolt_ip_logout { 114 struct thunderbolt_ip_header hdr; 115 }; 116 117 struct thunderbolt_ip_status { 118 struct thunderbolt_ip_header hdr; 119 u32 status; 120 }; 121 122 struct tbnet_stats { 123 u64 tx_packets; 124 u64 rx_packets; 125 u64 tx_bytes; 126 u64 rx_bytes; 127 u64 rx_errors; 128 u64 tx_errors; 129 u64 rx_length_errors; 130 u64 rx_over_errors; 131 u64 rx_crc_errors; 132 u64 rx_missed_errors; 133 }; 134 135 struct tbnet_frame { 136 struct net_device *dev; 137 struct page *page; 138 struct ring_frame frame; 139 }; 140 141 struct tbnet_ring { 142 struct tbnet_frame frames[TBNET_RING_SIZE]; 143 unsigned int cons; 144 unsigned int prod; 145 struct tb_ring *ring; 146 }; 147 148 /** 149 * struct tbnet - ThunderboltIP network driver private data 150 * @svc: XDomain service the driver is bound to 151 * @xd: XDomain the service belongs to 152 * @handler: ThunderboltIP configuration protocol handler 153 * @dev: Networking device 154 * @napi: NAPI structure for Rx polling 155 * @stats: Network statistics 156 * @skb: Network packet that is currently processed on Rx path 157 * @command_id: ID used for next configuration protocol packet 158 * @login_sent: ThunderboltIP login message successfully sent 159 * @login_received: ThunderboltIP login message received from the remote 160 * host 161 * @local_transmit_path: HopID we are using to send out packets 162 * @remote_transmit_path: HopID the other end is using to send packets to us 163 * @connection_lock: Lock serializing access to @login_sent, 164 * @login_received and @transmit_path. 165 * @login_retries: Number of login retries currently done 166 * @login_work: Worker to send ThunderboltIP login packets 167 * @connected_work: Worker that finalizes the ThunderboltIP connection 168 * setup and enables DMA paths for high speed data 169 * transfers 170 * @disconnect_work: Worker that handles tearing down the ThunderboltIP 171 * connection 172 * @rx_hdr: Copy of the currently processed Rx frame. Used when a 173 * network packet consists of multiple Thunderbolt frames. 174 * In host byte order. 175 * @rx_ring: Software ring holding Rx frames 176 * @frame_id: Frame ID use for next Tx packet 177 * (if %TBNET_MATCH_FRAGS_ID is supported in both ends) 178 * @tx_ring: Software ring holding Tx frames 179 */ 180 struct tbnet { 181 const struct tb_service *svc; 182 struct tb_xdomain *xd; 183 struct tb_protocol_handler handler; 184 struct net_device *dev; 185 struct napi_struct napi; 186 struct tbnet_stats stats; 187 struct sk_buff *skb; 188 atomic_t command_id; 189 bool login_sent; 190 bool login_received; 191 int local_transmit_path; 192 int remote_transmit_path; 193 struct mutex connection_lock; 194 int login_retries; 195 struct delayed_work login_work; 196 struct work_struct connected_work; 197 struct work_struct disconnect_work; 198 struct thunderbolt_ip_frame_header rx_hdr; 199 struct tbnet_ring rx_ring; 200 atomic_t frame_id; 201 struct tbnet_ring tx_ring; 202 }; 203 204 /* Network property directory UUID: c66189ca-1cce-4195-bdb8-49592e5f5a4f */ 205 static const uuid_t tbnet_dir_uuid = 206 UUID_INIT(0xc66189ca, 0x1cce, 0x4195, 207 0xbd, 0xb8, 0x49, 0x59, 0x2e, 0x5f, 0x5a, 0x4f); 208 209 /* ThunderboltIP protocol UUID: 798f589e-3616-8a47-97c6-5664a920c8dd */ 210 static const uuid_t tbnet_svc_uuid = 211 UUID_INIT(0x798f589e, 0x3616, 0x8a47, 212 0x97, 0xc6, 0x56, 0x64, 0xa9, 0x20, 0xc8, 0xdd); 213 214 static struct tb_property_dir *tbnet_dir; 215 216 static bool tbnet_e2e = true; 217 module_param_named(e2e, tbnet_e2e, bool, 0444); 218 MODULE_PARM_DESC(e2e, "USB4NET full end-to-end flow control (default: true)"); 219 220 static void tbnet_fill_header(struct thunderbolt_ip_header *hdr, u64 route, 221 u8 sequence, const uuid_t *initiator_uuid, const uuid_t *target_uuid, 222 enum thunderbolt_ip_type type, size_t size, u32 command_id) 223 { 224 u32 length_sn; 225 226 /* Length does not include route_hi/lo and length_sn fields */ 227 length_sn = (size - 3 * 4) / 4; 228 length_sn |= (sequence << TBIP_HDR_SN_SHIFT) & TBIP_HDR_SN_MASK; 229 230 hdr->route_hi = upper_32_bits(route); 231 hdr->route_lo = lower_32_bits(route); 232 hdr->length_sn = length_sn; 233 uuid_copy(&hdr->uuid, &tbnet_svc_uuid); 234 uuid_copy(&hdr->initiator_uuid, initiator_uuid); 235 uuid_copy(&hdr->target_uuid, target_uuid); 236 hdr->type = type; 237 hdr->command_id = command_id; 238 } 239 240 static int tbnet_login_response(struct tbnet *net, u64 route, u8 sequence, 241 u32 command_id) 242 { 243 struct thunderbolt_ip_login_response reply; 244 struct tb_xdomain *xd = net->xd; 245 246 memset(&reply, 0, sizeof(reply)); 247 tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid, 248 xd->remote_uuid, TBIP_LOGIN_RESPONSE, sizeof(reply), 249 command_id); 250 memcpy(reply.receiver_mac, net->dev->dev_addr, ETH_ALEN); 251 reply.receiver_mac_len = ETH_ALEN; 252 253 return tb_xdomain_response(xd, &reply, sizeof(reply), 254 TB_CFG_PKG_XDOMAIN_RESP); 255 } 256 257 static int tbnet_login_request(struct tbnet *net, u8 sequence) 258 { 259 struct thunderbolt_ip_login_response reply; 260 struct thunderbolt_ip_login request; 261 struct tb_xdomain *xd = net->xd; 262 263 memset(&request, 0, sizeof(request)); 264 tbnet_fill_header(&request.hdr, xd->route, sequence, xd->local_uuid, 265 xd->remote_uuid, TBIP_LOGIN, sizeof(request), 266 atomic_inc_return(&net->command_id)); 267 268 request.proto_version = TBIP_LOGIN_PROTO_VERSION; 269 request.transmit_path = net->local_transmit_path; 270 271 return tb_xdomain_request(xd, &request, sizeof(request), 272 TB_CFG_PKG_XDOMAIN_RESP, &reply, 273 sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP, 274 TBNET_LOGIN_TIMEOUT); 275 } 276 277 static int tbnet_logout_response(struct tbnet *net, u64 route, u8 sequence, 278 u32 command_id) 279 { 280 struct thunderbolt_ip_status reply; 281 struct tb_xdomain *xd = net->xd; 282 283 memset(&reply, 0, sizeof(reply)); 284 tbnet_fill_header(&reply.hdr, route, sequence, xd->local_uuid, 285 xd->remote_uuid, TBIP_STATUS, sizeof(reply), 286 atomic_inc_return(&net->command_id)); 287 return tb_xdomain_response(xd, &reply, sizeof(reply), 288 TB_CFG_PKG_XDOMAIN_RESP); 289 } 290 291 static int tbnet_logout_request(struct tbnet *net) 292 { 293 struct thunderbolt_ip_logout request; 294 struct thunderbolt_ip_status reply; 295 struct tb_xdomain *xd = net->xd; 296 297 memset(&request, 0, sizeof(request)); 298 tbnet_fill_header(&request.hdr, xd->route, 0, xd->local_uuid, 299 xd->remote_uuid, TBIP_LOGOUT, sizeof(request), 300 atomic_inc_return(&net->command_id)); 301 302 return tb_xdomain_request(xd, &request, sizeof(request), 303 TB_CFG_PKG_XDOMAIN_RESP, &reply, 304 sizeof(reply), TB_CFG_PKG_XDOMAIN_RESP, 305 TBNET_LOGOUT_TIMEOUT); 306 } 307 308 static void start_login(struct tbnet *net) 309 { 310 netdev_dbg(net->dev, "login started\n"); 311 312 mutex_lock(&net->connection_lock); 313 net->login_sent = false; 314 net->login_received = false; 315 mutex_unlock(&net->connection_lock); 316 317 queue_delayed_work(system_long_wq, &net->login_work, 318 msecs_to_jiffies(1000)); 319 } 320 321 static void stop_login(struct tbnet *net) 322 { 323 cancel_delayed_work_sync(&net->login_work); 324 cancel_work_sync(&net->connected_work); 325 326 netdev_dbg(net->dev, "login stopped\n"); 327 } 328 329 static inline unsigned int tbnet_frame_size(const struct tbnet_frame *tf) 330 { 331 return tf->frame.size ? : TBNET_FRAME_SIZE; 332 } 333 334 static void tbnet_free_buffers(struct tbnet_ring *ring) 335 { 336 unsigned int i; 337 338 for (i = 0; i < TBNET_RING_SIZE; i++) { 339 struct device *dma_dev = tb_ring_dma_device(ring->ring); 340 struct tbnet_frame *tf = &ring->frames[i]; 341 enum dma_data_direction dir; 342 unsigned int order; 343 size_t size; 344 345 if (!tf->page) 346 continue; 347 348 if (ring->ring->is_tx) { 349 dir = DMA_TO_DEVICE; 350 order = 0; 351 size = TBNET_FRAME_SIZE; 352 } else { 353 dir = DMA_FROM_DEVICE; 354 order = TBNET_RX_PAGE_ORDER; 355 size = TBNET_RX_PAGE_SIZE; 356 } 357 358 trace_tbnet_free_frame(i, tf->page, tf->frame.buffer_phy, dir); 359 360 if (tf->frame.buffer_phy) 361 dma_unmap_page(dma_dev, tf->frame.buffer_phy, size, 362 dir); 363 364 __free_pages(tf->page, order); 365 tf->page = NULL; 366 } 367 368 ring->cons = 0; 369 ring->prod = 0; 370 } 371 372 static void tbnet_tear_down(struct tbnet *net, bool send_logout) 373 { 374 netif_carrier_off(net->dev); 375 netif_stop_queue(net->dev); 376 377 stop_login(net); 378 379 mutex_lock(&net->connection_lock); 380 381 if (net->login_sent && net->login_received) { 382 int ret, retries = TBNET_LOGOUT_RETRIES; 383 384 while (send_logout && retries-- > 0) { 385 netdev_dbg(net->dev, "sending logout request %u\n", 386 retries); 387 ret = tbnet_logout_request(net); 388 if (ret != -ETIMEDOUT) 389 break; 390 } 391 392 tb_ring_stop(net->rx_ring.ring); 393 tb_ring_stop(net->tx_ring.ring); 394 tbnet_free_buffers(&net->rx_ring); 395 tbnet_free_buffers(&net->tx_ring); 396 397 ret = tb_xdomain_disable_paths(net->xd, 398 net->local_transmit_path, 399 net->rx_ring.ring->hop, 400 net->remote_transmit_path, 401 net->tx_ring.ring->hop); 402 if (ret) 403 netdev_warn(net->dev, "failed to disable DMA paths\n"); 404 405 tb_xdomain_release_in_hopid(net->xd, net->remote_transmit_path); 406 net->remote_transmit_path = 0; 407 } 408 409 net->login_retries = 0; 410 net->login_sent = false; 411 net->login_received = false; 412 413 netdev_dbg(net->dev, "network traffic stopped\n"); 414 415 mutex_unlock(&net->connection_lock); 416 } 417 418 static int tbnet_handle_packet(const void *buf, size_t size, void *data) 419 { 420 const struct thunderbolt_ip_login *pkg = buf; 421 struct tbnet *net = data; 422 u32 command_id; 423 int ret = 0; 424 u32 sequence; 425 u64 route; 426 427 /* Make sure the packet is for us */ 428 if (size < sizeof(struct thunderbolt_ip_header)) 429 return 0; 430 if (!uuid_equal(&pkg->hdr.initiator_uuid, net->xd->remote_uuid)) 431 return 0; 432 if (!uuid_equal(&pkg->hdr.target_uuid, net->xd->local_uuid)) 433 return 0; 434 435 route = ((u64)pkg->hdr.route_hi << 32) | pkg->hdr.route_lo; 436 route &= ~BIT_ULL(63); 437 if (route != net->xd->route) 438 return 0; 439 440 sequence = pkg->hdr.length_sn & TBIP_HDR_SN_MASK; 441 sequence >>= TBIP_HDR_SN_SHIFT; 442 command_id = pkg->hdr.command_id; 443 444 switch (pkg->hdr.type) { 445 case TBIP_LOGIN: 446 netdev_dbg(net->dev, "remote login request received\n"); 447 if (!netif_running(net->dev)) 448 break; 449 450 ret = tbnet_login_response(net, route, sequence, 451 pkg->hdr.command_id); 452 if (!ret) { 453 netdev_dbg(net->dev, "remote login response sent\n"); 454 455 mutex_lock(&net->connection_lock); 456 net->login_received = true; 457 net->remote_transmit_path = pkg->transmit_path; 458 459 /* If we reached the number of max retries or 460 * previous logout, schedule another round of 461 * login retries 462 */ 463 if (net->login_retries >= TBNET_LOGIN_RETRIES || 464 !net->login_sent) { 465 net->login_retries = 0; 466 queue_delayed_work(system_long_wq, 467 &net->login_work, 0); 468 } 469 mutex_unlock(&net->connection_lock); 470 471 queue_work(system_long_wq, &net->connected_work); 472 } 473 break; 474 475 case TBIP_LOGOUT: 476 netdev_dbg(net->dev, "remote logout request received\n"); 477 ret = tbnet_logout_response(net, route, sequence, command_id); 478 if (!ret) { 479 netdev_dbg(net->dev, "remote logout response sent\n"); 480 queue_work(system_long_wq, &net->disconnect_work); 481 } 482 break; 483 484 default: 485 return 0; 486 } 487 488 if (ret) 489 netdev_warn(net->dev, "failed to send ThunderboltIP response\n"); 490 491 return 1; 492 } 493 494 static unsigned int tbnet_available_buffers(const struct tbnet_ring *ring) 495 { 496 return ring->prod - ring->cons; 497 } 498 499 static int tbnet_alloc_rx_buffers(struct tbnet *net, unsigned int nbuffers) 500 { 501 struct tbnet_ring *ring = &net->rx_ring; 502 int ret; 503 504 while (nbuffers--) { 505 struct device *dma_dev = tb_ring_dma_device(ring->ring); 506 unsigned int index = ring->prod & (TBNET_RING_SIZE - 1); 507 struct tbnet_frame *tf = &ring->frames[index]; 508 dma_addr_t dma_addr; 509 510 if (tf->page) 511 break; 512 513 /* Allocate page (order > 0) so that it can hold maximum 514 * ThunderboltIP frame (4kB) and the additional room for 515 * SKB shared info required by build_skb(). 516 */ 517 tf->page = dev_alloc_pages(TBNET_RX_PAGE_ORDER); 518 if (!tf->page) { 519 ret = -ENOMEM; 520 goto err_free; 521 } 522 523 dma_addr = dma_map_page(dma_dev, tf->page, 0, 524 TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE); 525 if (dma_mapping_error(dma_dev, dma_addr)) { 526 ret = -ENOMEM; 527 goto err_free; 528 } 529 530 tf->frame.buffer_phy = dma_addr; 531 tf->dev = net->dev; 532 533 trace_tbnet_alloc_rx_frame(index, tf->page, dma_addr, 534 DMA_FROM_DEVICE); 535 536 tb_ring_rx(ring->ring, &tf->frame); 537 538 ring->prod++; 539 } 540 541 return 0; 542 543 err_free: 544 tbnet_free_buffers(ring); 545 return ret; 546 } 547 548 static struct tbnet_frame *tbnet_get_tx_buffer(struct tbnet *net) 549 { 550 struct tbnet_ring *ring = &net->tx_ring; 551 struct device *dma_dev = tb_ring_dma_device(ring->ring); 552 struct tbnet_frame *tf; 553 unsigned int index; 554 555 if (!tbnet_available_buffers(ring)) 556 return NULL; 557 558 index = ring->cons++ & (TBNET_RING_SIZE - 1); 559 560 tf = &ring->frames[index]; 561 tf->frame.size = 0; 562 563 dma_sync_single_for_cpu(dma_dev, tf->frame.buffer_phy, 564 tbnet_frame_size(tf), DMA_TO_DEVICE); 565 566 return tf; 567 } 568 569 static void tbnet_tx_callback(struct tb_ring *ring, struct ring_frame *frame, 570 bool canceled) 571 { 572 struct tbnet_frame *tf = container_of(frame, typeof(*tf), frame); 573 struct tbnet *net = netdev_priv(tf->dev); 574 575 /* Return buffer to the ring */ 576 net->tx_ring.prod++; 577 578 if (tbnet_available_buffers(&net->tx_ring) >= TBNET_RING_SIZE / 2) 579 netif_wake_queue(net->dev); 580 } 581 582 static int tbnet_alloc_tx_buffers(struct tbnet *net) 583 { 584 struct tbnet_ring *ring = &net->tx_ring; 585 struct device *dma_dev = tb_ring_dma_device(ring->ring); 586 unsigned int i; 587 588 for (i = 0; i < TBNET_RING_SIZE; i++) { 589 struct tbnet_frame *tf = &ring->frames[i]; 590 dma_addr_t dma_addr; 591 592 tf->page = alloc_page(GFP_KERNEL); 593 if (!tf->page) { 594 tbnet_free_buffers(ring); 595 return -ENOMEM; 596 } 597 598 dma_addr = dma_map_page(dma_dev, tf->page, 0, TBNET_FRAME_SIZE, 599 DMA_TO_DEVICE); 600 if (dma_mapping_error(dma_dev, dma_addr)) { 601 __free_page(tf->page); 602 tf->page = NULL; 603 tbnet_free_buffers(ring); 604 return -ENOMEM; 605 } 606 607 tf->dev = net->dev; 608 tf->frame.buffer_phy = dma_addr; 609 tf->frame.callback = tbnet_tx_callback; 610 tf->frame.sof = TBIP_PDF_FRAME_START; 611 tf->frame.eof = TBIP_PDF_FRAME_END; 612 613 trace_tbnet_alloc_tx_frame(i, tf->page, dma_addr, DMA_TO_DEVICE); 614 } 615 616 ring->cons = 0; 617 ring->prod = TBNET_RING_SIZE - 1; 618 619 return 0; 620 } 621 622 static void tbnet_connected_work(struct work_struct *work) 623 { 624 struct tbnet *net = container_of(work, typeof(*net), connected_work); 625 bool connected; 626 int ret; 627 628 if (netif_carrier_ok(net->dev)) 629 return; 630 631 mutex_lock(&net->connection_lock); 632 connected = net->login_sent && net->login_received; 633 mutex_unlock(&net->connection_lock); 634 635 if (!connected) 636 return; 637 638 netdev_dbg(net->dev, "login successful, enabling paths\n"); 639 640 ret = tb_xdomain_alloc_in_hopid(net->xd, net->remote_transmit_path); 641 if (ret != net->remote_transmit_path) { 642 netdev_err(net->dev, "failed to allocate Rx HopID\n"); 643 return; 644 } 645 646 /* Both logins successful so enable the rings, high-speed DMA 647 * paths and start the network device queue. 648 * 649 * Note we enable the DMA paths last to make sure we have primed 650 * the Rx ring before any incoming packets are allowed to 651 * arrive. 652 */ 653 tb_ring_start(net->tx_ring.ring); 654 tb_ring_start(net->rx_ring.ring); 655 656 ret = tbnet_alloc_rx_buffers(net, TBNET_RING_SIZE); 657 if (ret) 658 goto err_stop_rings; 659 660 ret = tbnet_alloc_tx_buffers(net); 661 if (ret) 662 goto err_free_rx_buffers; 663 664 ret = tb_xdomain_enable_paths(net->xd, net->local_transmit_path, 665 net->rx_ring.ring->hop, 666 net->remote_transmit_path, 667 net->tx_ring.ring->hop); 668 if (ret) { 669 netdev_err(net->dev, "failed to enable DMA paths\n"); 670 goto err_free_tx_buffers; 671 } 672 673 netif_carrier_on(net->dev); 674 netif_start_queue(net->dev); 675 676 netdev_dbg(net->dev, "network traffic started\n"); 677 return; 678 679 err_free_tx_buffers: 680 tbnet_free_buffers(&net->tx_ring); 681 err_free_rx_buffers: 682 tbnet_free_buffers(&net->rx_ring); 683 err_stop_rings: 684 tb_ring_stop(net->rx_ring.ring); 685 tb_ring_stop(net->tx_ring.ring); 686 tb_xdomain_release_in_hopid(net->xd, net->remote_transmit_path); 687 } 688 689 static void tbnet_login_work(struct work_struct *work) 690 { 691 struct tbnet *net = container_of(work, typeof(*net), login_work.work); 692 unsigned long delay = msecs_to_jiffies(TBNET_LOGIN_DELAY); 693 int ret; 694 695 if (netif_carrier_ok(net->dev)) 696 return; 697 698 netdev_dbg(net->dev, "sending login request, retries=%u\n", 699 net->login_retries); 700 701 ret = tbnet_login_request(net, net->login_retries % 4); 702 if (ret) { 703 netdev_dbg(net->dev, "sending login request failed, ret=%d\n", 704 ret); 705 if (net->login_retries++ < TBNET_LOGIN_RETRIES) { 706 queue_delayed_work(system_long_wq, &net->login_work, 707 delay); 708 } else { 709 netdev_info(net->dev, "ThunderboltIP login timed out\n"); 710 } 711 } else { 712 netdev_dbg(net->dev, "received login reply\n"); 713 714 net->login_retries = 0; 715 716 mutex_lock(&net->connection_lock); 717 net->login_sent = true; 718 mutex_unlock(&net->connection_lock); 719 720 queue_work(system_long_wq, &net->connected_work); 721 } 722 } 723 724 static void tbnet_disconnect_work(struct work_struct *work) 725 { 726 struct tbnet *net = container_of(work, typeof(*net), disconnect_work); 727 728 tbnet_tear_down(net, false); 729 } 730 731 static bool tbnet_check_frame(struct tbnet *net, const struct tbnet_frame *tf, 732 const struct thunderbolt_ip_frame_header *hdr) 733 { 734 u32 frame_id, frame_count, frame_size, frame_index; 735 unsigned int size; 736 737 if (tf->frame.flags & RING_DESC_CRC_ERROR) { 738 net->stats.rx_crc_errors++; 739 return false; 740 } else if (tf->frame.flags & RING_DESC_BUFFER_OVERRUN) { 741 net->stats.rx_over_errors++; 742 return false; 743 } 744 745 /* Should be greater than just header i.e. contains data */ 746 size = tbnet_frame_size(tf); 747 if (size <= sizeof(*hdr)) { 748 net->stats.rx_length_errors++; 749 return false; 750 } 751 752 frame_count = le32_to_cpu(hdr->frame_count); 753 frame_size = le32_to_cpu(hdr->frame_size); 754 frame_index = le16_to_cpu(hdr->frame_index); 755 frame_id = le16_to_cpu(hdr->frame_id); 756 757 if ((frame_size > size - sizeof(*hdr)) || !frame_size) { 758 net->stats.rx_length_errors++; 759 return false; 760 } 761 762 /* In case we're in the middle of packet, validate the frame 763 * header based on first fragment of the packet. 764 */ 765 if (net->skb && net->rx_hdr.frame_count) { 766 /* Check the frame count fits the count field */ 767 if (frame_count != le32_to_cpu(net->rx_hdr.frame_count)) { 768 net->stats.rx_length_errors++; 769 return false; 770 } 771 772 /* Check the frame identifiers are incremented correctly, 773 * and id is matching. 774 */ 775 if (frame_index != le16_to_cpu(net->rx_hdr.frame_index) + 1 || 776 frame_id != le16_to_cpu(net->rx_hdr.frame_id)) { 777 net->stats.rx_missed_errors++; 778 return false; 779 } 780 781 if (net->skb->len + frame_size > TBNET_MAX_MTU) { 782 net->stats.rx_length_errors++; 783 return false; 784 } 785 786 return true; 787 } 788 789 /* Start of packet, validate the frame header */ 790 if (frame_count == 0 || frame_count > TBNET_RING_SIZE / 4) { 791 net->stats.rx_length_errors++; 792 return false; 793 } 794 if (frame_index != 0) { 795 net->stats.rx_missed_errors++; 796 return false; 797 } 798 799 return true; 800 } 801 802 static int tbnet_poll(struct napi_struct *napi, int budget) 803 { 804 struct tbnet *net = container_of(napi, struct tbnet, napi); 805 unsigned int cleaned_count = tbnet_available_buffers(&net->rx_ring); 806 struct device *dma_dev = tb_ring_dma_device(net->rx_ring.ring); 807 unsigned int rx_packets = 0; 808 809 while (rx_packets < budget) { 810 const struct thunderbolt_ip_frame_header *hdr; 811 unsigned int hdr_size = sizeof(*hdr); 812 struct sk_buff *skb = NULL; 813 struct ring_frame *frame; 814 struct tbnet_frame *tf; 815 struct page *page; 816 bool last = true; 817 u32 frame_size; 818 819 /* Return some buffers to hardware, one at a time is too 820 * slow so allocate MAX_SKB_FRAGS buffers at the same 821 * time. 822 */ 823 if (cleaned_count >= MAX_SKB_FRAGS) { 824 tbnet_alloc_rx_buffers(net, cleaned_count); 825 cleaned_count = 0; 826 } 827 828 frame = tb_ring_poll(net->rx_ring.ring); 829 if (!frame) 830 break; 831 832 dma_unmap_page(dma_dev, frame->buffer_phy, 833 TBNET_RX_PAGE_SIZE, DMA_FROM_DEVICE); 834 835 tf = container_of(frame, typeof(*tf), frame); 836 837 page = tf->page; 838 tf->page = NULL; 839 net->rx_ring.cons++; 840 cleaned_count++; 841 842 hdr = page_address(page); 843 if (!tbnet_check_frame(net, tf, hdr)) { 844 trace_tbnet_invalid_rx_ip_frame(hdr->frame_size, 845 hdr->frame_id, hdr->frame_index, hdr->frame_count); 846 __free_pages(page, TBNET_RX_PAGE_ORDER); 847 dev_kfree_skb_any(net->skb); 848 net->skb = NULL; 849 continue; 850 } 851 852 trace_tbnet_rx_ip_frame(hdr->frame_size, hdr->frame_id, 853 hdr->frame_index, hdr->frame_count); 854 frame_size = le32_to_cpu(hdr->frame_size); 855 856 skb = net->skb; 857 if (!skb) { 858 skb = build_skb(page_address(page), 859 TBNET_RX_PAGE_SIZE); 860 if (!skb) { 861 __free_pages(page, TBNET_RX_PAGE_ORDER); 862 net->stats.rx_errors++; 863 break; 864 } 865 866 skb_reserve(skb, hdr_size); 867 skb_put(skb, frame_size); 868 869 net->skb = skb; 870 } else { 871 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 872 page, hdr_size, frame_size, 873 TBNET_RX_PAGE_SIZE - hdr_size); 874 } 875 876 net->rx_hdr.frame_size = hdr->frame_size; 877 net->rx_hdr.frame_count = hdr->frame_count; 878 net->rx_hdr.frame_index = hdr->frame_index; 879 net->rx_hdr.frame_id = hdr->frame_id; 880 last = le16_to_cpu(net->rx_hdr.frame_index) == 881 le32_to_cpu(net->rx_hdr.frame_count) - 1; 882 883 rx_packets++; 884 net->stats.rx_bytes += frame_size; 885 886 if (last) { 887 skb->protocol = eth_type_trans(skb, net->dev); 888 trace_tbnet_rx_skb(skb); 889 napi_gro_receive(&net->napi, skb); 890 net->skb = NULL; 891 } 892 } 893 894 net->stats.rx_packets += rx_packets; 895 896 if (cleaned_count) 897 tbnet_alloc_rx_buffers(net, cleaned_count); 898 899 if (rx_packets >= budget) 900 return budget; 901 902 napi_complete_done(napi, rx_packets); 903 /* Re-enable the ring interrupt */ 904 tb_ring_poll_complete(net->rx_ring.ring); 905 906 return rx_packets; 907 } 908 909 static void tbnet_start_poll(void *data) 910 { 911 struct tbnet *net = data; 912 913 napi_schedule(&net->napi); 914 } 915 916 static int tbnet_open(struct net_device *dev) 917 { 918 struct tbnet *net = netdev_priv(dev); 919 struct tb_xdomain *xd = net->xd; 920 u16 sof_mask, eof_mask; 921 struct tb_ring *ring; 922 unsigned int flags; 923 int hopid; 924 925 netif_carrier_off(dev); 926 927 ring = tb_ring_alloc_tx(xd->tb->nhi, -1, TBNET_RING_SIZE, 928 RING_FLAG_FRAME); 929 if (!ring) { 930 netdev_err(dev, "failed to allocate Tx ring\n"); 931 return -ENOMEM; 932 } 933 net->tx_ring.ring = ring; 934 935 hopid = tb_xdomain_alloc_out_hopid(xd, -1); 936 if (hopid < 0) { 937 netdev_err(dev, "failed to allocate Tx HopID\n"); 938 tb_ring_free(net->tx_ring.ring); 939 net->tx_ring.ring = NULL; 940 return hopid; 941 } 942 net->local_transmit_path = hopid; 943 944 sof_mask = BIT(TBIP_PDF_FRAME_START); 945 eof_mask = BIT(TBIP_PDF_FRAME_END); 946 947 flags = RING_FLAG_FRAME; 948 /* Only enable full E2E if the other end supports it too */ 949 if (tbnet_e2e && net->svc->prtcstns & TBNET_E2E) 950 flags |= RING_FLAG_E2E; 951 952 ring = tb_ring_alloc_rx(xd->tb->nhi, -1, TBNET_RING_SIZE, flags, 953 net->tx_ring.ring->hop, sof_mask, 954 eof_mask, tbnet_start_poll, net); 955 if (!ring) { 956 netdev_err(dev, "failed to allocate Rx ring\n"); 957 tb_xdomain_release_out_hopid(xd, hopid); 958 tb_ring_free(net->tx_ring.ring); 959 net->tx_ring.ring = NULL; 960 return -ENOMEM; 961 } 962 net->rx_ring.ring = ring; 963 964 napi_enable(&net->napi); 965 start_login(net); 966 967 return 0; 968 } 969 970 static int tbnet_stop(struct net_device *dev) 971 { 972 struct tbnet *net = netdev_priv(dev); 973 974 napi_disable(&net->napi); 975 976 cancel_work_sync(&net->disconnect_work); 977 tbnet_tear_down(net, true); 978 979 tb_ring_free(net->rx_ring.ring); 980 net->rx_ring.ring = NULL; 981 982 tb_xdomain_release_out_hopid(net->xd, net->local_transmit_path); 983 tb_ring_free(net->tx_ring.ring); 984 net->tx_ring.ring = NULL; 985 986 return 0; 987 } 988 989 static bool tbnet_xmit_csum_and_map(struct tbnet *net, struct sk_buff *skb, 990 struct tbnet_frame **frames, u32 frame_count) 991 { 992 struct thunderbolt_ip_frame_header *hdr = page_address(frames[0]->page); 993 struct device *dma_dev = tb_ring_dma_device(net->tx_ring.ring); 994 unsigned int i, len, offset = skb_transport_offset(skb); 995 /* Remove payload length from checksum */ 996 u32 paylen = skb->len - skb_transport_offset(skb); 997 __wsum wsum = (__force __wsum)htonl(paylen); 998 __be16 protocol = skb->protocol; 999 void *data = skb->data; 1000 void *dest = hdr + 1; 1001 __sum16 *tucso; 1002 1003 if (skb->ip_summed != CHECKSUM_PARTIAL) { 1004 /* No need to calculate checksum so we just update the 1005 * total frame count and sync the frames for DMA. 1006 */ 1007 for (i = 0; i < frame_count; i++) { 1008 hdr = page_address(frames[i]->page); 1009 hdr->frame_count = cpu_to_le32(frame_count); 1010 trace_tbnet_tx_ip_frame(hdr->frame_size, hdr->frame_id, 1011 hdr->frame_index, hdr->frame_count); 1012 dma_sync_single_for_device(dma_dev, 1013 frames[i]->frame.buffer_phy, 1014 tbnet_frame_size(frames[i]), DMA_TO_DEVICE); 1015 } 1016 1017 return true; 1018 } 1019 1020 if (protocol == htons(ETH_P_8021Q)) { 1021 struct vlan_hdr *vhdr, vh; 1022 1023 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(vh), &vh); 1024 if (!vhdr) 1025 return false; 1026 1027 protocol = vhdr->h_vlan_encapsulated_proto; 1028 } 1029 1030 /* Data points on the beginning of packet. 1031 * Check is the checksum absolute place in the packet. 1032 * ipcso will update IP checksum. 1033 * tucso will update TCP/UDP checksum. 1034 */ 1035 if (protocol == htons(ETH_P_IP)) { 1036 __sum16 *ipcso = dest + ((void *)&(ip_hdr(skb)->check) - data); 1037 1038 *ipcso = 0; 1039 *ipcso = ip_fast_csum(dest + skb_network_offset(skb), 1040 ip_hdr(skb)->ihl); 1041 1042 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 1043 tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data); 1044 else if (ip_hdr(skb)->protocol == IPPROTO_UDP) 1045 tucso = dest + ((void *)&(udp_hdr(skb)->check) - data); 1046 else 1047 return false; 1048 1049 *tucso = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 1050 ip_hdr(skb)->daddr, 0, 1051 ip_hdr(skb)->protocol, 0); 1052 } else if (skb_is_gso_v6(skb)) { 1053 tucso = dest + ((void *)&(tcp_hdr(skb)->check) - data); 1054 *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1055 &ipv6_hdr(skb)->daddr, 0, 1056 IPPROTO_TCP, 0); 1057 return false; 1058 } else if (protocol == htons(ETH_P_IPV6)) { 1059 tucso = dest + skb_checksum_start_offset(skb) + skb->csum_offset; 1060 *tucso = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1061 &ipv6_hdr(skb)->daddr, 0, 1062 ipv6_hdr(skb)->nexthdr, 0); 1063 } else { 1064 return false; 1065 } 1066 1067 /* First frame was headers, rest of the frames contain data. 1068 * Calculate checksum over each frame. 1069 */ 1070 for (i = 0; i < frame_count; i++) { 1071 hdr = page_address(frames[i]->page); 1072 dest = (void *)(hdr + 1) + offset; 1073 len = le32_to_cpu(hdr->frame_size) - offset; 1074 wsum = csum_partial(dest, len, wsum); 1075 hdr->frame_count = cpu_to_le32(frame_count); 1076 trace_tbnet_tx_ip_frame(hdr->frame_size, hdr->frame_id, 1077 hdr->frame_index, hdr->frame_count); 1078 1079 offset = 0; 1080 } 1081 1082 *tucso = csum_fold(wsum); 1083 1084 /* Checksum is finally calculated and we don't touch the memory 1085 * anymore, so DMA sync the frames now. 1086 */ 1087 for (i = 0; i < frame_count; i++) { 1088 dma_sync_single_for_device(dma_dev, frames[i]->frame.buffer_phy, 1089 tbnet_frame_size(frames[i]), DMA_TO_DEVICE); 1090 } 1091 1092 return true; 1093 } 1094 1095 static void *tbnet_kmap_frag(struct sk_buff *skb, unsigned int frag_num, 1096 unsigned int *len) 1097 { 1098 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; 1099 1100 *len = skb_frag_size(frag); 1101 return kmap_local_page(skb_frag_page(frag)) + skb_frag_off(frag); 1102 } 1103 1104 static netdev_tx_t tbnet_start_xmit(struct sk_buff *skb, 1105 struct net_device *dev) 1106 { 1107 struct tbnet *net = netdev_priv(dev); 1108 struct tbnet_frame *frames[MAX_SKB_FRAGS]; 1109 u16 frame_id = atomic_read(&net->frame_id); 1110 struct thunderbolt_ip_frame_header *hdr; 1111 unsigned int len = skb_headlen(skb); 1112 unsigned int data_len = skb->len; 1113 unsigned int nframes, i; 1114 unsigned int frag = 0; 1115 void *src = skb->data; 1116 u32 frame_index = 0; 1117 bool unmap = false; 1118 void *dest; 1119 1120 trace_tbnet_tx_skb(skb); 1121 1122 nframes = DIV_ROUND_UP(data_len, TBNET_MAX_PAYLOAD_SIZE); 1123 if (tbnet_available_buffers(&net->tx_ring) < nframes) { 1124 netif_stop_queue(net->dev); 1125 return NETDEV_TX_BUSY; 1126 } 1127 1128 frames[frame_index] = tbnet_get_tx_buffer(net); 1129 if (!frames[frame_index]) 1130 goto err_drop; 1131 1132 hdr = page_address(frames[frame_index]->page); 1133 dest = hdr + 1; 1134 1135 /* If overall packet is bigger than the frame data size */ 1136 while (data_len > TBNET_MAX_PAYLOAD_SIZE) { 1137 unsigned int size_left = TBNET_MAX_PAYLOAD_SIZE; 1138 1139 hdr->frame_size = cpu_to_le32(TBNET_MAX_PAYLOAD_SIZE); 1140 hdr->frame_index = cpu_to_le16(frame_index); 1141 hdr->frame_id = cpu_to_le16(frame_id); 1142 1143 do { 1144 if (len > size_left) { 1145 /* Copy data onto Tx buffer data with 1146 * full frame size then break and go to 1147 * next frame 1148 */ 1149 memcpy(dest, src, size_left); 1150 len -= size_left; 1151 dest += size_left; 1152 src += size_left; 1153 break; 1154 } 1155 1156 memcpy(dest, src, len); 1157 size_left -= len; 1158 dest += len; 1159 1160 if (unmap) { 1161 kunmap_local(src); 1162 unmap = false; 1163 } 1164 1165 /* Ensure all fragments have been processed */ 1166 if (frag < skb_shinfo(skb)->nr_frags) { 1167 /* Map and then unmap quickly */ 1168 src = tbnet_kmap_frag(skb, frag++, &len); 1169 unmap = true; 1170 } else if (unlikely(size_left > 0)) { 1171 goto err_drop; 1172 } 1173 } while (size_left > 0); 1174 1175 data_len -= TBNET_MAX_PAYLOAD_SIZE; 1176 frame_index++; 1177 1178 frames[frame_index] = tbnet_get_tx_buffer(net); 1179 if (!frames[frame_index]) 1180 goto err_drop; 1181 1182 hdr = page_address(frames[frame_index]->page); 1183 dest = hdr + 1; 1184 } 1185 1186 hdr->frame_size = cpu_to_le32(data_len); 1187 hdr->frame_index = cpu_to_le16(frame_index); 1188 hdr->frame_id = cpu_to_le16(frame_id); 1189 1190 frames[frame_index]->frame.size = data_len + sizeof(*hdr); 1191 1192 /* In case the remaining data_len is smaller than a frame */ 1193 while (len < data_len) { 1194 memcpy(dest, src, len); 1195 data_len -= len; 1196 dest += len; 1197 1198 if (unmap) { 1199 kunmap_local(src); 1200 unmap = false; 1201 } 1202 1203 if (frag < skb_shinfo(skb)->nr_frags) { 1204 src = tbnet_kmap_frag(skb, frag++, &len); 1205 unmap = true; 1206 } else if (unlikely(data_len > 0)) { 1207 goto err_drop; 1208 } 1209 } 1210 1211 memcpy(dest, src, data_len); 1212 1213 if (unmap) 1214 kunmap_local(src); 1215 1216 if (!tbnet_xmit_csum_and_map(net, skb, frames, frame_index + 1)) 1217 goto err_drop; 1218 1219 for (i = 0; i < frame_index + 1; i++) 1220 tb_ring_tx(net->tx_ring.ring, &frames[i]->frame); 1221 1222 if (net->svc->prtcstns & TBNET_MATCH_FRAGS_ID) 1223 atomic_inc(&net->frame_id); 1224 1225 net->stats.tx_packets++; 1226 net->stats.tx_bytes += skb->len; 1227 1228 trace_tbnet_consume_skb(skb); 1229 dev_consume_skb_any(skb); 1230 1231 return NETDEV_TX_OK; 1232 1233 err_drop: 1234 /* We can re-use the buffers */ 1235 net->tx_ring.cons -= frame_index; 1236 1237 dev_kfree_skb_any(skb); 1238 net->stats.tx_errors++; 1239 1240 return NETDEV_TX_OK; 1241 } 1242 1243 static void tbnet_get_stats64(struct net_device *dev, 1244 struct rtnl_link_stats64 *stats) 1245 { 1246 struct tbnet *net = netdev_priv(dev); 1247 1248 stats->tx_packets = net->stats.tx_packets; 1249 stats->rx_packets = net->stats.rx_packets; 1250 stats->tx_bytes = net->stats.tx_bytes; 1251 stats->rx_bytes = net->stats.rx_bytes; 1252 stats->rx_errors = net->stats.rx_errors + net->stats.rx_length_errors + 1253 net->stats.rx_over_errors + net->stats.rx_crc_errors + 1254 net->stats.rx_missed_errors; 1255 stats->tx_errors = net->stats.tx_errors; 1256 stats->rx_length_errors = net->stats.rx_length_errors; 1257 stats->rx_over_errors = net->stats.rx_over_errors; 1258 stats->rx_crc_errors = net->stats.rx_crc_errors; 1259 stats->rx_missed_errors = net->stats.rx_missed_errors; 1260 } 1261 1262 static const struct net_device_ops tbnet_netdev_ops = { 1263 .ndo_open = tbnet_open, 1264 .ndo_stop = tbnet_stop, 1265 .ndo_start_xmit = tbnet_start_xmit, 1266 .ndo_get_stats64 = tbnet_get_stats64, 1267 }; 1268 1269 static void tbnet_generate_mac(struct net_device *dev) 1270 { 1271 const struct tbnet *net = netdev_priv(dev); 1272 const struct tb_xdomain *xd = net->xd; 1273 u8 addr[ETH_ALEN]; 1274 u8 phy_port; 1275 u32 hash; 1276 1277 phy_port = tb_phy_port_from_link(TBNET_L0_PORT_NUM(xd->route)); 1278 1279 /* Unicast and locally administered MAC */ 1280 addr[0] = phy_port << 4 | 0x02; 1281 hash = jhash2((u32 *)xd->local_uuid, 4, 0); 1282 memcpy(addr + 1, &hash, sizeof(hash)); 1283 hash = jhash2((u32 *)xd->local_uuid, 4, hash); 1284 addr[5] = hash & 0xff; 1285 eth_hw_addr_set(dev, addr); 1286 } 1287 1288 static int tbnet_probe(struct tb_service *svc, const struct tb_service_id *id) 1289 { 1290 struct tb_xdomain *xd = tb_service_parent(svc); 1291 struct net_device *dev; 1292 struct tbnet *net; 1293 int ret; 1294 1295 dev = alloc_etherdev(sizeof(*net)); 1296 if (!dev) 1297 return -ENOMEM; 1298 1299 SET_NETDEV_DEV(dev, &svc->dev); 1300 1301 net = netdev_priv(dev); 1302 INIT_DELAYED_WORK(&net->login_work, tbnet_login_work); 1303 INIT_WORK(&net->connected_work, tbnet_connected_work); 1304 INIT_WORK(&net->disconnect_work, tbnet_disconnect_work); 1305 mutex_init(&net->connection_lock); 1306 atomic_set(&net->command_id, 0); 1307 atomic_set(&net->frame_id, 0); 1308 net->svc = svc; 1309 net->dev = dev; 1310 net->xd = xd; 1311 1312 tbnet_generate_mac(dev); 1313 1314 strcpy(dev->name, "thunderbolt%d"); 1315 dev->netdev_ops = &tbnet_netdev_ops; 1316 1317 /* ThunderboltIP takes advantage of TSO packets but instead of 1318 * segmenting them we just split the packet into Thunderbolt 1319 * frames (maximum payload size of each frame is 4084 bytes) and 1320 * calculate checksum over the whole packet here. 1321 * 1322 * The receiving side does the opposite if the host OS supports 1323 * LRO, otherwise it needs to split the large packet into MTU 1324 * sized smaller packets. 1325 * 1326 * In order to receive large packets from the networking stack, 1327 * we need to announce support for most of the offloading 1328 * features here. 1329 */ 1330 dev->hw_features = NETIF_F_SG | NETIF_F_ALL_TSO | NETIF_F_GRO | 1331 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 1332 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1333 dev->hard_header_len += sizeof(struct thunderbolt_ip_frame_header); 1334 1335 netif_napi_add(dev, &net->napi, tbnet_poll); 1336 1337 /* MTU range: 68 - 65522 */ 1338 dev->min_mtu = ETH_MIN_MTU; 1339 dev->max_mtu = TBNET_MAX_MTU - ETH_HLEN; 1340 1341 net->handler.uuid = &tbnet_svc_uuid; 1342 net->handler.callback = tbnet_handle_packet; 1343 net->handler.data = net; 1344 tb_register_protocol_handler(&net->handler); 1345 1346 tb_service_set_drvdata(svc, net); 1347 1348 ret = register_netdev(dev); 1349 if (ret) { 1350 tb_unregister_protocol_handler(&net->handler); 1351 free_netdev(dev); 1352 return ret; 1353 } 1354 1355 return 0; 1356 } 1357 1358 static void tbnet_remove(struct tb_service *svc) 1359 { 1360 struct tbnet *net = tb_service_get_drvdata(svc); 1361 1362 unregister_netdev(net->dev); 1363 tb_unregister_protocol_handler(&net->handler); 1364 free_netdev(net->dev); 1365 } 1366 1367 static void tbnet_shutdown(struct tb_service *svc) 1368 { 1369 tbnet_tear_down(tb_service_get_drvdata(svc), true); 1370 } 1371 1372 static int tbnet_suspend(struct device *dev) 1373 { 1374 struct tb_service *svc = tb_to_service(dev); 1375 struct tbnet *net = tb_service_get_drvdata(svc); 1376 1377 stop_login(net); 1378 if (netif_running(net->dev)) { 1379 netif_device_detach(net->dev); 1380 tbnet_tear_down(net, true); 1381 } 1382 1383 tb_unregister_protocol_handler(&net->handler); 1384 return 0; 1385 } 1386 1387 static int tbnet_resume(struct device *dev) 1388 { 1389 struct tb_service *svc = tb_to_service(dev); 1390 struct tbnet *net = tb_service_get_drvdata(svc); 1391 1392 tb_register_protocol_handler(&net->handler); 1393 1394 netif_carrier_off(net->dev); 1395 if (netif_running(net->dev)) { 1396 netif_device_attach(net->dev); 1397 start_login(net); 1398 } 1399 1400 return 0; 1401 } 1402 1403 static DEFINE_SIMPLE_DEV_PM_OPS(tbnet_pm_ops, tbnet_suspend, tbnet_resume); 1404 1405 static const struct tb_service_id tbnet_ids[] = { 1406 { TB_SERVICE("network", 1) }, 1407 { }, 1408 }; 1409 MODULE_DEVICE_TABLE(tbsvc, tbnet_ids); 1410 1411 static struct tb_service_driver tbnet_driver = { 1412 .driver = { 1413 .owner = THIS_MODULE, 1414 .name = "thunderbolt-net", 1415 .pm = pm_sleep_ptr(&tbnet_pm_ops), 1416 }, 1417 .probe = tbnet_probe, 1418 .remove = tbnet_remove, 1419 .shutdown = tbnet_shutdown, 1420 .id_table = tbnet_ids, 1421 }; 1422 1423 static int __init tbnet_init(void) 1424 { 1425 unsigned int flags; 1426 int ret; 1427 1428 tbnet_dir = tb_property_create_dir(&tbnet_dir_uuid); 1429 if (!tbnet_dir) 1430 return -ENOMEM; 1431 1432 tb_property_add_immediate(tbnet_dir, "prtcid", 1); 1433 tb_property_add_immediate(tbnet_dir, "prtcvers", 1); 1434 tb_property_add_immediate(tbnet_dir, "prtcrevs", 1); 1435 1436 flags = TBNET_MATCH_FRAGS_ID | TBNET_64K_FRAMES; 1437 if (tbnet_e2e) 1438 flags |= TBNET_E2E; 1439 tb_property_add_immediate(tbnet_dir, "prtcstns", flags); 1440 1441 ret = tb_register_property_dir("network", tbnet_dir); 1442 if (ret) 1443 goto err_free_dir; 1444 1445 ret = tb_register_service_driver(&tbnet_driver); 1446 if (ret) 1447 goto err_unregister; 1448 1449 return 0; 1450 1451 err_unregister: 1452 tb_unregister_property_dir("network", tbnet_dir); 1453 err_free_dir: 1454 tb_property_free_dir(tbnet_dir); 1455 1456 return ret; 1457 } 1458 module_init(tbnet_init); 1459 1460 static void __exit tbnet_exit(void) 1461 { 1462 tb_unregister_service_driver(&tbnet_driver); 1463 tb_unregister_property_dir("network", tbnet_dir); 1464 tb_property_free_dir(tbnet_dir); 1465 } 1466 module_exit(tbnet_exit); 1467 1468 MODULE_AUTHOR("Amir Levy <amir.jer.levy@intel.com>"); 1469 MODULE_AUTHOR("Michael Jamet <michael.jamet@intel.com>"); 1470 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); 1471 MODULE_DESCRIPTION("Thunderbolt/USB4 network driver"); 1472 MODULE_LICENSE("GPL v2"); 1473