xref: /openbmc/linux/drivers/net/sungem_phy.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PHY drivers for the sungem ethernet driver.
4  *
5  * This file could be shared with other drivers.
6  *
7  * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  *
9  * TODO:
10  *  - Add support for PHYs that provide an IRQ line
11  *  - Eventually moved the entire polling state machine in
12  *    there (out of the eth driver), so that it can easily be
13  *    skipped on PHYs that implement it in hardware.
14  *  - On LXT971 & BCM5201, Apple uses some chip specific regs
15  *    to read the link status. Figure out why and if it makes
16  *    sense to do the same (magic aneg ?)
17  *  - Apple has some additional power management code for some
18  *    Broadcom PHYs that they "hide" from the OpenSource version
19  *    of darwin, still need to reverse engineer that
20  */
21 
22 
23 #include <linux/module.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/delay.h>
32 
33 #ifdef CONFIG_PPC_PMAC
34 #include <asm/prom.h>
35 #endif
36 
37 #include <linux/sungem_phy.h>
38 
39 /* Link modes of the BCM5400 PHY */
40 static const int phy_BCM5400_link_table[8][3] = {
41 	{ 0, 0, 0 },	/* No link */
42 	{ 0, 0, 0 },	/* 10BT Half Duplex */
43 	{ 1, 0, 0 },	/* 10BT Full Duplex */
44 	{ 0, 1, 0 },	/* 100BT Half Duplex */
45 	{ 0, 1, 0 },	/* 100BT Half Duplex */
46 	{ 1, 1, 0 },	/* 100BT Full Duplex*/
47 	{ 1, 0, 1 },	/* 1000BT */
48 	{ 1, 0, 1 },	/* 1000BT */
49 };
50 
51 static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
52 {
53 	return phy->mdio_read(phy->dev, id, reg);
54 }
55 
56 static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
57 {
58 	phy->mdio_write(phy->dev, id, reg, val);
59 }
60 
61 static inline int sungem_phy_read(struct mii_phy* phy, int reg)
62 {
63 	return phy->mdio_read(phy->dev, phy->mii_id, reg);
64 }
65 
66 static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
67 {
68 	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
69 }
70 
71 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
72 {
73 	u16 val;
74 	int limit = 10000;
75 
76 	val = __sungem_phy_read(phy, phy_id, MII_BMCR);
77 	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
78 	val |= BMCR_RESET;
79 	__sungem_phy_write(phy, phy_id, MII_BMCR, val);
80 
81 	udelay(100);
82 
83 	while (--limit) {
84 		val = __sungem_phy_read(phy, phy_id, MII_BMCR);
85 		if ((val & BMCR_RESET) == 0)
86 			break;
87 		udelay(10);
88 	}
89 	if ((val & BMCR_ISOLATE) && limit > 0)
90 		__sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
91 
92 	return limit <= 0;
93 }
94 
95 static int bcm5201_init(struct mii_phy* phy)
96 {
97 	u16 data;
98 
99 	data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
100 	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
101 	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
102 
103 	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
104 
105 	return 0;
106 }
107 
108 static int bcm5201_suspend(struct mii_phy* phy)
109 {
110 	sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
111 	sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
112 
113 	return 0;
114 }
115 
116 static int bcm5221_init(struct mii_phy* phy)
117 {
118 	u16 data;
119 
120 	data = sungem_phy_read(phy, MII_BCM5221_TEST);
121 	sungem_phy_write(phy, MII_BCM5221_TEST,
122 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
123 
124 	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
125 	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
126 		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
127 
128 	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
129 	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
130 		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
131 
132 	data = sungem_phy_read(phy, MII_BCM5221_TEST);
133 	sungem_phy_write(phy, MII_BCM5221_TEST,
134 		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
135 
136 	return 0;
137 }
138 
139 static int bcm5221_suspend(struct mii_phy* phy)
140 {
141 	u16 data;
142 
143 	data = sungem_phy_read(phy, MII_BCM5221_TEST);
144 	sungem_phy_write(phy, MII_BCM5221_TEST,
145 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
146 
147 	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
148 	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
149 		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
150 
151 	return 0;
152 }
153 
154 static int bcm5241_init(struct mii_phy* phy)
155 {
156 	u16 data;
157 
158 	data = sungem_phy_read(phy, MII_BCM5221_TEST);
159 	sungem_phy_write(phy, MII_BCM5221_TEST,
160 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
161 
162 	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
163 	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
164 		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
165 
166 	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
167 	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
168 		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
169 
170 	data = sungem_phy_read(phy, MII_BCM5221_TEST);
171 	sungem_phy_write(phy, MII_BCM5221_TEST,
172 		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
173 
174 	return 0;
175 }
176 
177 static int bcm5241_suspend(struct mii_phy* phy)
178 {
179 	u16 data;
180 
181 	data = sungem_phy_read(phy, MII_BCM5221_TEST);
182 	sungem_phy_write(phy, MII_BCM5221_TEST,
183 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
184 
185 	data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
186 	sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
187 		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
188 
189 	return 0;
190 }
191 
192 static int bcm5400_init(struct mii_phy* phy)
193 {
194 	u16 data;
195 
196 	/* Configure for gigabit full duplex */
197 	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
198 	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
199 	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
200 
201 	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
202 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
203 	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
204 
205 	udelay(100);
206 
207 	/* Reset and configure cascaded 10/100 PHY */
208 	(void)reset_one_mii_phy(phy, 0x1f);
209 
210 	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
211 	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
212 	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
213 
214 	data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
215 	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
216 	sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
217 
218 	return 0;
219 }
220 
221 static int bcm5400_suspend(struct mii_phy* phy)
222 {
223 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
224 	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
225 #endif
226 	return 0;
227 }
228 
229 static int bcm5401_init(struct mii_phy* phy)
230 {
231 	u16 data;
232 	int rev;
233 
234 	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
235 	if (rev == 0 || rev == 3) {
236 		/* Some revisions of 5401 appear to need this
237 		 * initialisation sequence to disable, according
238 		 * to OF, "tap power management"
239 		 *
240 		 * WARNING ! OF and Darwin don't agree on the
241 		 * register addresses. OF seem to interpret the
242 		 * register numbers below as decimal
243 		 *
244 		 * Note: This should (and does) match tg3_init_5401phy_dsp
245 		 *       in the tg3.c driver. -DaveM
246 		 */
247 		sungem_phy_write(phy, 0x18, 0x0c20);
248 		sungem_phy_write(phy, 0x17, 0x0012);
249 		sungem_phy_write(phy, 0x15, 0x1804);
250 		sungem_phy_write(phy, 0x17, 0x0013);
251 		sungem_phy_write(phy, 0x15, 0x1204);
252 		sungem_phy_write(phy, 0x17, 0x8006);
253 		sungem_phy_write(phy, 0x15, 0x0132);
254 		sungem_phy_write(phy, 0x17, 0x8006);
255 		sungem_phy_write(phy, 0x15, 0x0232);
256 		sungem_phy_write(phy, 0x17, 0x201f);
257 		sungem_phy_write(phy, 0x15, 0x0a20);
258 	}
259 
260 	/* Configure for gigabit full duplex */
261 	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
262 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
263 	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
264 
265 	udelay(10);
266 
267 	/* Reset and configure cascaded 10/100 PHY */
268 	(void)reset_one_mii_phy(phy, 0x1f);
269 
270 	data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
271 	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
272 	__sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
273 
274 	return 0;
275 }
276 
277 static int bcm5401_suspend(struct mii_phy* phy)
278 {
279 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
280 	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
281 #endif
282 	return 0;
283 }
284 
285 static int bcm5411_init(struct mii_phy* phy)
286 {
287 	u16 data;
288 
289 	/* Here's some more Apple black magic to setup
290 	 * some voltage stuffs.
291 	 */
292 	sungem_phy_write(phy, 0x1c, 0x8c23);
293 	sungem_phy_write(phy, 0x1c, 0x8ca3);
294 	sungem_phy_write(phy, 0x1c, 0x8c23);
295 
296 	/* Here, Apple seems to want to reset it, do
297 	 * it as well
298 	 */
299 	sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
300 	sungem_phy_write(phy, MII_BMCR, 0x1340);
301 
302 	data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
303 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
304 	sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
305 
306 	udelay(10);
307 
308 	/* Reset and configure cascaded 10/100 PHY */
309 	(void)reset_one_mii_phy(phy, 0x1f);
310 
311 	return 0;
312 }
313 
314 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
315 {
316 	u16 ctl, adv;
317 
318 	phy->autoneg = 1;
319 	phy->speed = SPEED_10;
320 	phy->duplex = DUPLEX_HALF;
321 	phy->pause = 0;
322 	phy->advertising = advertise;
323 
324 	/* Setup standard advertise */
325 	adv = sungem_phy_read(phy, MII_ADVERTISE);
326 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
327 	if (advertise & ADVERTISED_10baseT_Half)
328 		adv |= ADVERTISE_10HALF;
329 	if (advertise & ADVERTISED_10baseT_Full)
330 		adv |= ADVERTISE_10FULL;
331 	if (advertise & ADVERTISED_100baseT_Half)
332 		adv |= ADVERTISE_100HALF;
333 	if (advertise & ADVERTISED_100baseT_Full)
334 		adv |= ADVERTISE_100FULL;
335 	sungem_phy_write(phy, MII_ADVERTISE, adv);
336 
337 	/* Start/Restart aneg */
338 	ctl = sungem_phy_read(phy, MII_BMCR);
339 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
340 	sungem_phy_write(phy, MII_BMCR, ctl);
341 
342 	return 0;
343 }
344 
345 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
346 {
347 	u16 ctl;
348 
349 	phy->autoneg = 0;
350 	phy->speed = speed;
351 	phy->duplex = fd;
352 	phy->pause = 0;
353 
354 	ctl = sungem_phy_read(phy, MII_BMCR);
355 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
356 
357 	/* First reset the PHY */
358 	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
359 
360 	/* Select speed & duplex */
361 	switch(speed) {
362 	case SPEED_10:
363 		break;
364 	case SPEED_100:
365 		ctl |= BMCR_SPEED100;
366 		break;
367 	case SPEED_1000:
368 	default:
369 		return -EINVAL;
370 	}
371 	if (fd == DUPLEX_FULL)
372 		ctl |= BMCR_FULLDPLX;
373 	sungem_phy_write(phy, MII_BMCR, ctl);
374 
375 	return 0;
376 }
377 
378 static int genmii_poll_link(struct mii_phy *phy)
379 {
380 	u16 status;
381 
382 	(void)sungem_phy_read(phy, MII_BMSR);
383 	status = sungem_phy_read(phy, MII_BMSR);
384 	if ((status & BMSR_LSTATUS) == 0)
385 		return 0;
386 	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
387 		return 0;
388 	return 1;
389 }
390 
391 static int genmii_read_link(struct mii_phy *phy)
392 {
393 	u16 lpa;
394 
395 	if (phy->autoneg) {
396 		lpa = sungem_phy_read(phy, MII_LPA);
397 
398 		if (lpa & (LPA_10FULL | LPA_100FULL))
399 			phy->duplex = DUPLEX_FULL;
400 		else
401 			phy->duplex = DUPLEX_HALF;
402 		if (lpa & (LPA_100FULL | LPA_100HALF))
403 			phy->speed = SPEED_100;
404 		else
405 			phy->speed = SPEED_10;
406 		phy->pause = 0;
407 	}
408 	/* On non-aneg, we assume what we put in BMCR is the speed,
409 	 * though magic-aneg shouldn't prevent this case from occurring
410 	 */
411 
412 	return 0;
413 }
414 
415 static int generic_suspend(struct mii_phy* phy)
416 {
417 	sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
418 
419 	return 0;
420 }
421 
422 static int bcm5421_init(struct mii_phy* phy)
423 {
424 	u16 data;
425 	unsigned int id;
426 
427 	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
428 
429 	/* Revision 0 of 5421 needs some fixups */
430 	if (id == 0x002060e0) {
431 		/* This is borrowed from MacOS
432 		 */
433 		sungem_phy_write(phy, 0x18, 0x1007);
434 		data = sungem_phy_read(phy, 0x18);
435 		sungem_phy_write(phy, 0x18, data | 0x0400);
436 		sungem_phy_write(phy, 0x18, 0x0007);
437 		data = sungem_phy_read(phy, 0x18);
438 		sungem_phy_write(phy, 0x18, data | 0x0800);
439 		sungem_phy_write(phy, 0x17, 0x000a);
440 		data = sungem_phy_read(phy, 0x15);
441 		sungem_phy_write(phy, 0x15, data | 0x0200);
442 	}
443 
444 	/* Pick up some init code from OF for K2 version */
445 	if ((id & 0xfffffff0) == 0x002062e0) {
446 		sungem_phy_write(phy, 4, 0x01e1);
447 		sungem_phy_write(phy, 9, 0x0300);
448 	}
449 
450 	/* Check if we can enable automatic low power */
451 #ifdef CONFIG_PPC_PMAC
452 	if (phy->platform_data) {
453 		struct device_node *np = of_get_parent(phy->platform_data);
454 		int can_low_power = 1;
455 		if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
456 			can_low_power = 0;
457 		if (can_low_power) {
458 			/* Enable automatic low-power */
459 			sungem_phy_write(phy, 0x1c, 0x9002);
460 			sungem_phy_write(phy, 0x1c, 0xa821);
461 			sungem_phy_write(phy, 0x1c, 0x941d);
462 		}
463 	}
464 #endif /* CONFIG_PPC_PMAC */
465 
466 	return 0;
467 }
468 
469 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
470 {
471 	u16 ctl, adv;
472 
473 	phy->autoneg = 1;
474 	phy->speed = SPEED_10;
475 	phy->duplex = DUPLEX_HALF;
476 	phy->pause = 0;
477 	phy->advertising = advertise;
478 
479 	/* Setup standard advertise */
480 	adv = sungem_phy_read(phy, MII_ADVERTISE);
481 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
482 	if (advertise & ADVERTISED_10baseT_Half)
483 		adv |= ADVERTISE_10HALF;
484 	if (advertise & ADVERTISED_10baseT_Full)
485 		adv |= ADVERTISE_10FULL;
486 	if (advertise & ADVERTISED_100baseT_Half)
487 		adv |= ADVERTISE_100HALF;
488 	if (advertise & ADVERTISED_100baseT_Full)
489 		adv |= ADVERTISE_100FULL;
490 	if (advertise & ADVERTISED_Pause)
491 		adv |= ADVERTISE_PAUSE_CAP;
492 	if (advertise & ADVERTISED_Asym_Pause)
493 		adv |= ADVERTISE_PAUSE_ASYM;
494 	sungem_phy_write(phy, MII_ADVERTISE, adv);
495 
496 	/* Setup 1000BT advertise */
497 	adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
498 	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
499 	if (advertise & SUPPORTED_1000baseT_Half)
500 		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
501 	if (advertise & SUPPORTED_1000baseT_Full)
502 		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
503 	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
504 
505 	/* Start/Restart aneg */
506 	ctl = sungem_phy_read(phy, MII_BMCR);
507 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
508 	sungem_phy_write(phy, MII_BMCR, ctl);
509 
510 	return 0;
511 }
512 
513 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
514 {
515 	u16 ctl;
516 
517 	phy->autoneg = 0;
518 	phy->speed = speed;
519 	phy->duplex = fd;
520 	phy->pause = 0;
521 
522 	ctl = sungem_phy_read(phy, MII_BMCR);
523 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
524 
525 	/* First reset the PHY */
526 	sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
527 
528 	/* Select speed & duplex */
529 	switch(speed) {
530 	case SPEED_10:
531 		break;
532 	case SPEED_100:
533 		ctl |= BMCR_SPEED100;
534 		break;
535 	case SPEED_1000:
536 		ctl |= BMCR_SPD2;
537 	}
538 	if (fd == DUPLEX_FULL)
539 		ctl |= BMCR_FULLDPLX;
540 
541 	// XXX Should we set the sungem to GII now on 1000BT ?
542 
543 	sungem_phy_write(phy, MII_BMCR, ctl);
544 
545 	return 0;
546 }
547 
548 static int bcm54xx_read_link(struct mii_phy *phy)
549 {
550 	int link_mode;
551 	u16 val;
552 
553 	if (phy->autoneg) {
554 	    	val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
555 		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
556 			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
557 		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
558 			DUPLEX_FULL : DUPLEX_HALF;
559 		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
560 				SPEED_1000 :
561 				(phy_BCM5400_link_table[link_mode][1] ?
562 				 SPEED_100 : SPEED_10);
563 		val = sungem_phy_read(phy, MII_LPA);
564 		phy->pause = (phy->duplex == DUPLEX_FULL) &&
565 			((val & LPA_PAUSE) != 0);
566 	}
567 	/* On non-aneg, we assume what we put in BMCR is the speed,
568 	 * though magic-aneg shouldn't prevent this case from occurring
569 	 */
570 
571 	return 0;
572 }
573 
574 static int marvell88e1111_init(struct mii_phy* phy)
575 {
576 	u16 rev;
577 
578 	/* magic init sequence for rev 0 */
579 	rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
580 	if (rev == 0) {
581 		sungem_phy_write(phy, 0x1d, 0x000a);
582 		sungem_phy_write(phy, 0x1e, 0x0821);
583 
584 		sungem_phy_write(phy, 0x1d, 0x0006);
585 		sungem_phy_write(phy, 0x1e, 0x8600);
586 
587 		sungem_phy_write(phy, 0x1d, 0x000b);
588 		sungem_phy_write(phy, 0x1e, 0x0100);
589 
590 		sungem_phy_write(phy, 0x1d, 0x0004);
591 		sungem_phy_write(phy, 0x1e, 0x4850);
592 	}
593 	return 0;
594 }
595 
596 #define BCM5421_MODE_MASK	(1 << 5)
597 
598 static int bcm5421_poll_link(struct mii_phy* phy)
599 {
600 	u32 phy_reg;
601 	int mode;
602 
603 	/* find out in what mode we are */
604 	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
605 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
606 
607 	mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
608 
609 	if ( mode == BCM54XX_COPPER)
610 		return genmii_poll_link(phy);
611 
612 	/* try to find out whether we have a link */
613 	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
614 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
615 
616 	if (phy_reg & 0x0020)
617 		return 0;
618 	else
619 		return 1;
620 }
621 
622 static int bcm5421_read_link(struct mii_phy* phy)
623 {
624 	u32 phy_reg;
625 	int mode;
626 
627 	/* find out in what mode we are */
628 	sungem_phy_write(phy, MII_NCONFIG, 0x1000);
629 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
630 
631 	mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
632 
633 	if ( mode == BCM54XX_COPPER)
634 		return bcm54xx_read_link(phy);
635 
636 	phy->speed = SPEED_1000;
637 
638 	/* find out whether we are running half- or full duplex */
639 	sungem_phy_write(phy, MII_NCONFIG, 0x2000);
640 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
641 
642 	if ( (phy_reg & 0x0080) >> 7)
643 		phy->duplex |=  DUPLEX_HALF;
644 	else
645 		phy->duplex |=  DUPLEX_FULL;
646 
647 	return 0;
648 }
649 
650 static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
651 {
652 	/* enable fiber mode */
653 	sungem_phy_write(phy, MII_NCONFIG, 0x9020);
654 	/* LEDs active in both modes, autosense prio = fiber */
655 	sungem_phy_write(phy, MII_NCONFIG, 0x945f);
656 
657 	if (!autoneg) {
658 		/* switch off fibre autoneg */
659 		sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
660 		sungem_phy_write(phy, 0x0b, 0x0004);
661 	}
662 
663 	phy->autoneg = autoneg;
664 
665 	return 0;
666 }
667 
668 #define BCM5461_FIBER_LINK	(1 << 2)
669 #define BCM5461_MODE_MASK	(3 << 1)
670 
671 static int bcm5461_poll_link(struct mii_phy* phy)
672 {
673 	u32 phy_reg;
674 	int mode;
675 
676 	/* find out in what mode we are */
677 	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
678 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
679 
680 	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
681 
682 	if ( mode == BCM54XX_COPPER)
683 		return genmii_poll_link(phy);
684 
685 	/* find out whether we have a link */
686 	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
687 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
688 
689 	if (phy_reg & BCM5461_FIBER_LINK)
690 		return 1;
691 	else
692 		return 0;
693 }
694 
695 #define BCM5461_FIBER_DUPLEX	(1 << 3)
696 
697 static int bcm5461_read_link(struct mii_phy* phy)
698 {
699 	u32 phy_reg;
700 	int mode;
701 
702 	/* find out in what mode we are */
703 	sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
704 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
705 
706 	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
707 
708 	if ( mode == BCM54XX_COPPER) {
709 		return bcm54xx_read_link(phy);
710 	}
711 
712 	phy->speed = SPEED_1000;
713 
714 	/* find out whether we are running half- or full duplex */
715 	sungem_phy_write(phy, MII_NCONFIG, 0x7000);
716 	phy_reg = sungem_phy_read(phy, MII_NCONFIG);
717 
718 	if (phy_reg & BCM5461_FIBER_DUPLEX)
719 		phy->duplex |=  DUPLEX_FULL;
720 	else
721 		phy->duplex |=  DUPLEX_HALF;
722 
723 	return 0;
724 }
725 
726 static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
727 {
728 	/* select fiber mode, enable 1000 base-X registers */
729 	sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
730 
731 	if (autoneg) {
732 		/* enable fiber with no autonegotiation */
733 		sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
734 		sungem_phy_write(phy, MII_BMCR, 0x1140);
735 	} else {
736 		/* enable fiber with autonegotiation */
737 		sungem_phy_write(phy, MII_BMCR, 0x0140);
738 	}
739 
740 	phy->autoneg = autoneg;
741 
742 	return 0;
743 }
744 
745 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
746 {
747 	u16 ctl, adv;
748 
749 	phy->autoneg = 1;
750 	phy->speed = SPEED_10;
751 	phy->duplex = DUPLEX_HALF;
752 	phy->pause = 0;
753 	phy->advertising = advertise;
754 
755 	/* Setup standard advertise */
756 	adv = sungem_phy_read(phy, MII_ADVERTISE);
757 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
758 	if (advertise & ADVERTISED_10baseT_Half)
759 		adv |= ADVERTISE_10HALF;
760 	if (advertise & ADVERTISED_10baseT_Full)
761 		adv |= ADVERTISE_10FULL;
762 	if (advertise & ADVERTISED_100baseT_Half)
763 		adv |= ADVERTISE_100HALF;
764 	if (advertise & ADVERTISED_100baseT_Full)
765 		adv |= ADVERTISE_100FULL;
766 	if (advertise & ADVERTISED_Pause)
767 		adv |= ADVERTISE_PAUSE_CAP;
768 	if (advertise & ADVERTISED_Asym_Pause)
769 		adv |= ADVERTISE_PAUSE_ASYM;
770 	sungem_phy_write(phy, MII_ADVERTISE, adv);
771 
772 	/* Setup 1000BT advertise & enable crossover detect
773 	 * XXX How do we advertise 1000BT ? Darwin source is
774 	 * confusing here, they read from specific control and
775 	 * write to control... Someone has specs for those
776 	 * beasts ?
777 	 */
778 	adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
779 	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
780 	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
781 			MII_1000BASETCONTROL_HALFDUPLEXCAP);
782 	if (advertise & SUPPORTED_1000baseT_Half)
783 		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
784 	if (advertise & SUPPORTED_1000baseT_Full)
785 		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
786 	sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
787 
788 	/* Start/Restart aneg */
789 	ctl = sungem_phy_read(phy, MII_BMCR);
790 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
791 	sungem_phy_write(phy, MII_BMCR, ctl);
792 
793 	return 0;
794 }
795 
796 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
797 {
798 	u16 ctl, ctl2;
799 
800 	phy->autoneg = 0;
801 	phy->speed = speed;
802 	phy->duplex = fd;
803 	phy->pause = 0;
804 
805 	ctl = sungem_phy_read(phy, MII_BMCR);
806 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
807 	ctl |= BMCR_RESET;
808 
809 	/* Select speed & duplex */
810 	switch(speed) {
811 	case SPEED_10:
812 		break;
813 	case SPEED_100:
814 		ctl |= BMCR_SPEED100;
815 		break;
816 	/* I'm not sure about the one below, again, Darwin source is
817 	 * quite confusing and I lack chip specs
818 	 */
819 	case SPEED_1000:
820 		ctl |= BMCR_SPD2;
821 	}
822 	if (fd == DUPLEX_FULL)
823 		ctl |= BMCR_FULLDPLX;
824 
825 	/* Disable crossover. Again, the way Apple does it is strange,
826 	 * though I don't assume they are wrong ;)
827 	 */
828 	ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
829 	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
830 		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
831 		MII_1000BASETCONTROL_FULLDUPLEXCAP |
832 		MII_1000BASETCONTROL_HALFDUPLEXCAP);
833 	if (speed == SPEED_1000)
834 		ctl2 |= (fd == DUPLEX_FULL) ?
835 			MII_1000BASETCONTROL_FULLDUPLEXCAP :
836 			MII_1000BASETCONTROL_HALFDUPLEXCAP;
837 	sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
838 
839 	// XXX Should we set the sungem to GII now on 1000BT ?
840 
841 	sungem_phy_write(phy, MII_BMCR, ctl);
842 
843 	return 0;
844 }
845 
846 static int marvell_read_link(struct mii_phy *phy)
847 {
848 	u16 status, pmask;
849 
850 	if (phy->autoneg) {
851 		status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
852 		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
853 			return -EAGAIN;
854 		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
855 			phy->speed = SPEED_1000;
856 		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
857 			phy->speed = SPEED_100;
858 		else
859 			phy->speed = SPEED_10;
860 		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
861 			phy->duplex = DUPLEX_FULL;
862 		else
863 			phy->duplex = DUPLEX_HALF;
864 		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
865 			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
866 		phy->pause = (status & pmask) == pmask;
867 	}
868 	/* On non-aneg, we assume what we put in BMCR is the speed,
869 	 * though magic-aneg shouldn't prevent this case from occurring
870 	 */
871 
872 	return 0;
873 }
874 
875 #define MII_BASIC_FEATURES \
876 	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
877 	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
878 	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
879 	 SUPPORTED_Pause)
880 
881 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
882  * support for now as I'm not sure it's supported and Darwin doesn't do
883  * it neither. --BenH.
884  */
885 #define MII_GBIT_FEATURES \
886 	(MII_BASIC_FEATURES |	\
887 	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
888 
889 /* Broadcom BCM 5201 */
890 static const struct mii_phy_ops bcm5201_phy_ops = {
891 	.init		= bcm5201_init,
892 	.suspend	= bcm5201_suspend,
893 	.setup_aneg	= genmii_setup_aneg,
894 	.setup_forced	= genmii_setup_forced,
895 	.poll_link	= genmii_poll_link,
896 	.read_link	= genmii_read_link,
897 };
898 
899 static struct mii_phy_def bcm5201_phy_def = {
900 	.phy_id		= 0x00406210,
901 	.phy_id_mask	= 0xfffffff0,
902 	.name		= "BCM5201",
903 	.features	= MII_BASIC_FEATURES,
904 	.magic_aneg	= 1,
905 	.ops		= &bcm5201_phy_ops
906 };
907 
908 /* Broadcom BCM 5221 */
909 static const struct mii_phy_ops bcm5221_phy_ops = {
910 	.suspend	= bcm5221_suspend,
911 	.init		= bcm5221_init,
912 	.setup_aneg	= genmii_setup_aneg,
913 	.setup_forced	= genmii_setup_forced,
914 	.poll_link	= genmii_poll_link,
915 	.read_link	= genmii_read_link,
916 };
917 
918 static struct mii_phy_def bcm5221_phy_def = {
919 	.phy_id		= 0x004061e0,
920 	.phy_id_mask	= 0xfffffff0,
921 	.name		= "BCM5221",
922 	.features	= MII_BASIC_FEATURES,
923 	.magic_aneg	= 1,
924 	.ops		= &bcm5221_phy_ops
925 };
926 
927 /* Broadcom BCM 5241 */
928 static const struct mii_phy_ops bcm5241_phy_ops = {
929 	.suspend	= bcm5241_suspend,
930 	.init		= bcm5241_init,
931 	.setup_aneg	= genmii_setup_aneg,
932 	.setup_forced	= genmii_setup_forced,
933 	.poll_link	= genmii_poll_link,
934 	.read_link	= genmii_read_link,
935 };
936 static struct mii_phy_def bcm5241_phy_def = {
937 	.phy_id		= 0x0143bc30,
938 	.phy_id_mask	= 0xfffffff0,
939 	.name		= "BCM5241",
940 	.features	= MII_BASIC_FEATURES,
941 	.magic_aneg	= 1,
942 	.ops		= &bcm5241_phy_ops
943 };
944 
945 /* Broadcom BCM 5400 */
946 static const struct mii_phy_ops bcm5400_phy_ops = {
947 	.init		= bcm5400_init,
948 	.suspend	= bcm5400_suspend,
949 	.setup_aneg	= bcm54xx_setup_aneg,
950 	.setup_forced	= bcm54xx_setup_forced,
951 	.poll_link	= genmii_poll_link,
952 	.read_link	= bcm54xx_read_link,
953 };
954 
955 static struct mii_phy_def bcm5400_phy_def = {
956 	.phy_id		= 0x00206040,
957 	.phy_id_mask	= 0xfffffff0,
958 	.name		= "BCM5400",
959 	.features	= MII_GBIT_FEATURES,
960 	.magic_aneg	= 1,
961 	.ops		= &bcm5400_phy_ops
962 };
963 
964 /* Broadcom BCM 5401 */
965 static const struct mii_phy_ops bcm5401_phy_ops = {
966 	.init		= bcm5401_init,
967 	.suspend	= bcm5401_suspend,
968 	.setup_aneg	= bcm54xx_setup_aneg,
969 	.setup_forced	= bcm54xx_setup_forced,
970 	.poll_link	= genmii_poll_link,
971 	.read_link	= bcm54xx_read_link,
972 };
973 
974 static struct mii_phy_def bcm5401_phy_def = {
975 	.phy_id		= 0x00206050,
976 	.phy_id_mask	= 0xfffffff0,
977 	.name		= "BCM5401",
978 	.features	= MII_GBIT_FEATURES,
979 	.magic_aneg	= 1,
980 	.ops		= &bcm5401_phy_ops
981 };
982 
983 /* Broadcom BCM 5411 */
984 static const struct mii_phy_ops bcm5411_phy_ops = {
985 	.init		= bcm5411_init,
986 	.suspend	= generic_suspend,
987 	.setup_aneg	= bcm54xx_setup_aneg,
988 	.setup_forced	= bcm54xx_setup_forced,
989 	.poll_link	= genmii_poll_link,
990 	.read_link	= bcm54xx_read_link,
991 };
992 
993 static struct mii_phy_def bcm5411_phy_def = {
994 	.phy_id		= 0x00206070,
995 	.phy_id_mask	= 0xfffffff0,
996 	.name		= "BCM5411",
997 	.features	= MII_GBIT_FEATURES,
998 	.magic_aneg	= 1,
999 	.ops		= &bcm5411_phy_ops
1000 };
1001 
1002 /* Broadcom BCM 5421 */
1003 static const struct mii_phy_ops bcm5421_phy_ops = {
1004 	.init		= bcm5421_init,
1005 	.suspend	= generic_suspend,
1006 	.setup_aneg	= bcm54xx_setup_aneg,
1007 	.setup_forced	= bcm54xx_setup_forced,
1008 	.poll_link	= bcm5421_poll_link,
1009 	.read_link	= bcm5421_read_link,
1010 	.enable_fiber   = bcm5421_enable_fiber,
1011 };
1012 
1013 static struct mii_phy_def bcm5421_phy_def = {
1014 	.phy_id		= 0x002060e0,
1015 	.phy_id_mask	= 0xfffffff0,
1016 	.name		= "BCM5421",
1017 	.features	= MII_GBIT_FEATURES,
1018 	.magic_aneg	= 1,
1019 	.ops		= &bcm5421_phy_ops
1020 };
1021 
1022 /* Broadcom BCM 5421 built-in K2 */
1023 static const struct mii_phy_ops bcm5421k2_phy_ops = {
1024 	.init		= bcm5421_init,
1025 	.suspend	= generic_suspend,
1026 	.setup_aneg	= bcm54xx_setup_aneg,
1027 	.setup_forced	= bcm54xx_setup_forced,
1028 	.poll_link	= genmii_poll_link,
1029 	.read_link	= bcm54xx_read_link,
1030 };
1031 
1032 static struct mii_phy_def bcm5421k2_phy_def = {
1033 	.phy_id		= 0x002062e0,
1034 	.phy_id_mask	= 0xfffffff0,
1035 	.name		= "BCM5421-K2",
1036 	.features	= MII_GBIT_FEATURES,
1037 	.magic_aneg	= 1,
1038 	.ops		= &bcm5421k2_phy_ops
1039 };
1040 
1041 static const struct mii_phy_ops bcm5461_phy_ops = {
1042 	.init		= bcm5421_init,
1043 	.suspend	= generic_suspend,
1044 	.setup_aneg	= bcm54xx_setup_aneg,
1045 	.setup_forced	= bcm54xx_setup_forced,
1046 	.poll_link	= bcm5461_poll_link,
1047 	.read_link	= bcm5461_read_link,
1048 	.enable_fiber   = bcm5461_enable_fiber,
1049 };
1050 
1051 static struct mii_phy_def bcm5461_phy_def = {
1052 	.phy_id		= 0x002060c0,
1053 	.phy_id_mask	= 0xfffffff0,
1054 	.name		= "BCM5461",
1055 	.features	= MII_GBIT_FEATURES,
1056 	.magic_aneg	= 1,
1057 	.ops		= &bcm5461_phy_ops
1058 };
1059 
1060 /* Broadcom BCM 5462 built-in Vesta */
1061 static const struct mii_phy_ops bcm5462V_phy_ops = {
1062 	.init		= bcm5421_init,
1063 	.suspend	= generic_suspend,
1064 	.setup_aneg	= bcm54xx_setup_aneg,
1065 	.setup_forced	= bcm54xx_setup_forced,
1066 	.poll_link	= genmii_poll_link,
1067 	.read_link	= bcm54xx_read_link,
1068 };
1069 
1070 static struct mii_phy_def bcm5462V_phy_def = {
1071 	.phy_id		= 0x002060d0,
1072 	.phy_id_mask	= 0xfffffff0,
1073 	.name		= "BCM5462-Vesta",
1074 	.features	= MII_GBIT_FEATURES,
1075 	.magic_aneg	= 1,
1076 	.ops		= &bcm5462V_phy_ops
1077 };
1078 
1079 /* Marvell 88E1101 amd 88E1111 */
1080 static const struct mii_phy_ops marvell88e1101_phy_ops = {
1081 	.suspend	= generic_suspend,
1082 	.setup_aneg	= marvell_setup_aneg,
1083 	.setup_forced	= marvell_setup_forced,
1084 	.poll_link	= genmii_poll_link,
1085 	.read_link	= marvell_read_link
1086 };
1087 
1088 static const struct mii_phy_ops marvell88e1111_phy_ops = {
1089 	.init		= marvell88e1111_init,
1090 	.suspend	= generic_suspend,
1091 	.setup_aneg	= marvell_setup_aneg,
1092 	.setup_forced	= marvell_setup_forced,
1093 	.poll_link	= genmii_poll_link,
1094 	.read_link	= marvell_read_link
1095 };
1096 
1097 /* two revs in darwin for the 88e1101 ... I could use a datasheet
1098  * to get the proper names...
1099  */
1100 static struct mii_phy_def marvell88e1101v1_phy_def = {
1101 	.phy_id		= 0x01410c20,
1102 	.phy_id_mask	= 0xfffffff0,
1103 	.name		= "Marvell 88E1101v1",
1104 	.features	= MII_GBIT_FEATURES,
1105 	.magic_aneg	= 1,
1106 	.ops		= &marvell88e1101_phy_ops
1107 };
1108 static struct mii_phy_def marvell88e1101v2_phy_def = {
1109 	.phy_id		= 0x01410c60,
1110 	.phy_id_mask	= 0xfffffff0,
1111 	.name		= "Marvell 88E1101v2",
1112 	.features	= MII_GBIT_FEATURES,
1113 	.magic_aneg	= 1,
1114 	.ops		= &marvell88e1101_phy_ops
1115 };
1116 static struct mii_phy_def marvell88e1111_phy_def = {
1117 	.phy_id		= 0x01410cc0,
1118 	.phy_id_mask	= 0xfffffff0,
1119 	.name		= "Marvell 88E1111",
1120 	.features	= MII_GBIT_FEATURES,
1121 	.magic_aneg	= 1,
1122 	.ops		= &marvell88e1111_phy_ops
1123 };
1124 
1125 /* Generic implementation for most 10/100 PHYs */
1126 static const struct mii_phy_ops generic_phy_ops = {
1127 	.setup_aneg	= genmii_setup_aneg,
1128 	.setup_forced	= genmii_setup_forced,
1129 	.poll_link	= genmii_poll_link,
1130 	.read_link	= genmii_read_link
1131 };
1132 
1133 static struct mii_phy_def genmii_phy_def = {
1134 	.phy_id		= 0x00000000,
1135 	.phy_id_mask	= 0x00000000,
1136 	.name		= "Generic MII",
1137 	.features	= MII_BASIC_FEATURES,
1138 	.magic_aneg	= 0,
1139 	.ops		= &generic_phy_ops
1140 };
1141 
1142 static struct mii_phy_def* mii_phy_table[] = {
1143 	&bcm5201_phy_def,
1144 	&bcm5221_phy_def,
1145 	&bcm5241_phy_def,
1146 	&bcm5400_phy_def,
1147 	&bcm5401_phy_def,
1148 	&bcm5411_phy_def,
1149 	&bcm5421_phy_def,
1150 	&bcm5421k2_phy_def,
1151 	&bcm5461_phy_def,
1152 	&bcm5462V_phy_def,
1153 	&marvell88e1101v1_phy_def,
1154 	&marvell88e1101v2_phy_def,
1155 	&marvell88e1111_phy_def,
1156 	&genmii_phy_def,
1157 	NULL
1158 };
1159 
1160 int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1161 {
1162 	int rc;
1163 	u32 id;
1164 	struct mii_phy_def* def;
1165 	int i;
1166 
1167 	/* We do not reset the mii_phy structure as the driver
1168 	 * may re-probe the PHY regulary
1169 	 */
1170 	phy->mii_id = mii_id;
1171 
1172 	/* Take PHY out of isloate mode and reset it. */
1173 	rc = reset_one_mii_phy(phy, mii_id);
1174 	if (rc)
1175 		goto fail;
1176 
1177 	/* Read ID and find matching entry */
1178 	id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1179 	printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1180 	       id, mii_id);
1181 	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1182 		if ((id & def->phy_id_mask) == def->phy_id)
1183 			break;
1184 	/* Should never be NULL (we have a generic entry), but... */
1185 	if (def == NULL)
1186 		goto fail;
1187 
1188 	phy->def = def;
1189 
1190 	return 0;
1191 fail:
1192 	phy->speed = 0;
1193 	phy->duplex = 0;
1194 	phy->pause = 0;
1195 	phy->advertising = 0;
1196 	return -ENODEV;
1197 }
1198 
1199 EXPORT_SYMBOL(sungem_phy_probe);
1200 MODULE_LICENSE("GPL");
1201