1 /* sb1000.c: A General Instruments SB1000 driver for linux. */ 2 /* 3 Written 1998 by Franco Venturi. 4 5 Copyright 1998 by Franco Venturi. 6 Copyright 1994,1995 by Donald Becker. 7 Copyright 1993 United States Government as represented by the 8 Director, National Security Agency. 9 10 This driver is for the General Instruments SB1000 (internal SURFboard) 11 12 The author may be reached as fventuri@mediaone.net 13 14 This program is free software; you can redistribute it 15 and/or modify it under the terms of the GNU General 16 Public License as published by the Free Software 17 Foundation; either version 2 of the License, or (at 18 your option) any later version. 19 20 Changes: 21 22 981115 Steven Hirsch <shirsch@adelphia.net> 23 24 Linus changed the timer interface. Should work on all recent 25 development kernels. 26 27 980608 Steven Hirsch <shirsch@adelphia.net> 28 29 Small changes to make it work with 2.1.x kernels. Hopefully, 30 nothing major will change before official release of Linux 2.2. 31 32 Merged with 2.2 - Alan Cox 33 */ 34 35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n"; 36 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/string.h> 40 #include <linux/interrupt.h> 41 #include <linux/errno.h> 42 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */ 43 #include <linux/in.h> 44 #include <linux/slab.h> 45 #include <linux/ioport.h> 46 #include <linux/netdevice.h> 47 #include <linux/if_arp.h> 48 #include <linux/skbuff.h> 49 #include <linux/delay.h> /* for udelay() */ 50 #include <linux/etherdevice.h> 51 #include <linux/pnp.h> 52 #include <linux/init.h> 53 #include <linux/bitops.h> 54 55 #include <asm/io.h> 56 #include <asm/processor.h> 57 #include <asm/uaccess.h> 58 59 #ifdef SB1000_DEBUG 60 static int sb1000_debug = SB1000_DEBUG; 61 #else 62 static const int sb1000_debug = 1; 63 #endif 64 65 static const int SB1000_IO_EXTENT = 8; 66 /* SB1000 Maximum Receive Unit */ 67 static const int SB1000_MRU = 1500; /* octects */ 68 69 #define NPIDS 4 70 struct sb1000_private { 71 struct sk_buff *rx_skb[NPIDS]; 72 short rx_dlen[NPIDS]; 73 unsigned int rx_frames; 74 short rx_error_count; 75 short rx_error_dpc_count; 76 unsigned char rx_session_id[NPIDS]; 77 unsigned char rx_frame_id[NPIDS]; 78 unsigned char rx_pkt_type[NPIDS]; 79 }; 80 81 /* prototypes for Linux interface */ 82 extern int sb1000_probe(struct net_device *dev); 83 static int sb1000_open(struct net_device *dev); 84 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd); 85 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb, 86 struct net_device *dev); 87 static irqreturn_t sb1000_interrupt(int irq, void *dev_id); 88 static int sb1000_close(struct net_device *dev); 89 90 91 /* SB1000 hardware routines to be used during open/configuration phases */ 92 static int card_wait_for_busy_clear(const int ioaddr[], 93 const char* name); 94 static int card_wait_for_ready(const int ioaddr[], const char* name, 95 unsigned char in[]); 96 static int card_send_command(const int ioaddr[], const char* name, 97 const unsigned char out[], unsigned char in[]); 98 99 /* SB1000 hardware routines to be used during frame rx interrupt */ 100 static int sb1000_wait_for_ready(const int ioaddr[], const char* name); 101 static int sb1000_wait_for_ready_clear(const int ioaddr[], 102 const char* name); 103 static void sb1000_send_command(const int ioaddr[], const char* name, 104 const unsigned char out[]); 105 static void sb1000_read_status(const int ioaddr[], unsigned char in[]); 106 static void sb1000_issue_read_command(const int ioaddr[], 107 const char* name); 108 109 /* SB1000 commands for open/configuration */ 110 static int sb1000_reset(const int ioaddr[], const char* name); 111 static int sb1000_check_CRC(const int ioaddr[], const char* name); 112 static inline int sb1000_start_get_set_command(const int ioaddr[], 113 const char* name); 114 static int sb1000_end_get_set_command(const int ioaddr[], 115 const char* name); 116 static int sb1000_activate(const int ioaddr[], const char* name); 117 static int sb1000_get_firmware_version(const int ioaddr[], 118 const char* name, unsigned char version[], int do_end); 119 static int sb1000_get_frequency(const int ioaddr[], const char* name, 120 int* frequency); 121 static int sb1000_set_frequency(const int ioaddr[], const char* name, 122 int frequency); 123 static int sb1000_get_PIDs(const int ioaddr[], const char* name, 124 short PID[]); 125 static int sb1000_set_PIDs(const int ioaddr[], const char* name, 126 const short PID[]); 127 128 /* SB1000 commands for frame rx interrupt */ 129 static int sb1000_rx(struct net_device *dev); 130 static void sb1000_error_dpc(struct net_device *dev); 131 132 static const struct pnp_device_id sb1000_pnp_ids[] = { 133 { "GIC1000", 0 }, 134 { "", 0 } 135 }; 136 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids); 137 138 static const struct net_device_ops sb1000_netdev_ops = { 139 .ndo_open = sb1000_open, 140 .ndo_start_xmit = sb1000_start_xmit, 141 .ndo_do_ioctl = sb1000_dev_ioctl, 142 .ndo_stop = sb1000_close, 143 .ndo_change_mtu = eth_change_mtu, 144 .ndo_set_mac_address = eth_mac_addr, 145 .ndo_validate_addr = eth_validate_addr, 146 }; 147 148 static int 149 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id) 150 { 151 struct net_device *dev; 152 unsigned short ioaddr[2], irq; 153 unsigned int serial_number; 154 int error = -ENODEV; 155 156 if (pnp_device_attach(pdev) < 0) 157 return -ENODEV; 158 if (pnp_activate_dev(pdev) < 0) 159 goto out_detach; 160 161 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1)) 162 goto out_disable; 163 if (!pnp_irq_valid(pdev, 0)) 164 goto out_disable; 165 166 serial_number = pdev->card->serial; 167 168 ioaddr[0] = pnp_port_start(pdev, 0); 169 ioaddr[1] = pnp_port_start(pdev, 0); 170 171 irq = pnp_irq(pdev, 0); 172 173 if (!request_region(ioaddr[0], 16, "sb1000")) 174 goto out_disable; 175 if (!request_region(ioaddr[1], 16, "sb1000")) 176 goto out_release_region0; 177 178 dev = alloc_etherdev(sizeof(struct sb1000_private)); 179 if (!dev) { 180 error = -ENOMEM; 181 goto out_release_regions; 182 } 183 184 185 dev->base_addr = ioaddr[0]; 186 /* mem_start holds the second I/O address */ 187 dev->mem_start = ioaddr[1]; 188 dev->irq = irq; 189 190 if (sb1000_debug > 0) 191 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), " 192 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr, 193 dev->mem_start, serial_number, dev->irq); 194 195 /* 196 * The SB1000 is an rx-only cable modem device. The uplink is a modem 197 * and we do not want to arp on it. 198 */ 199 dev->flags = IFF_POINTOPOINT|IFF_NOARP; 200 201 SET_NETDEV_DEV(dev, &pdev->dev); 202 203 if (sb1000_debug > 0) 204 printk(KERN_NOTICE "%s", version); 205 206 dev->netdev_ops = &sb1000_netdev_ops; 207 208 /* hardware address is 0:0:serial_number */ 209 dev->dev_addr[2] = serial_number >> 24 & 0xff; 210 dev->dev_addr[3] = serial_number >> 16 & 0xff; 211 dev->dev_addr[4] = serial_number >> 8 & 0xff; 212 dev->dev_addr[5] = serial_number >> 0 & 0xff; 213 214 pnp_set_drvdata(pdev, dev); 215 216 error = register_netdev(dev); 217 if (error) 218 goto out_free_netdev; 219 return 0; 220 221 out_free_netdev: 222 free_netdev(dev); 223 out_release_regions: 224 release_region(ioaddr[1], 16); 225 out_release_region0: 226 release_region(ioaddr[0], 16); 227 out_disable: 228 pnp_disable_dev(pdev); 229 out_detach: 230 pnp_device_detach(pdev); 231 return error; 232 } 233 234 static void 235 sb1000_remove_one(struct pnp_dev *pdev) 236 { 237 struct net_device *dev = pnp_get_drvdata(pdev); 238 239 unregister_netdev(dev); 240 release_region(dev->base_addr, 16); 241 release_region(dev->mem_start, 16); 242 free_netdev(dev); 243 } 244 245 static struct pnp_driver sb1000_driver = { 246 .name = "sb1000", 247 .id_table = sb1000_pnp_ids, 248 .probe = sb1000_probe_one, 249 .remove = sb1000_remove_one, 250 }; 251 252 253 /* 254 * SB1000 hardware routines to be used during open/configuration phases 255 */ 256 257 static const int TimeOutJiffies = (875 * HZ) / 100; 258 259 /* Card Wait For Busy Clear (cannot be used during an interrupt) */ 260 static int 261 card_wait_for_busy_clear(const int ioaddr[], const char* name) 262 { 263 unsigned char a; 264 unsigned long timeout; 265 266 a = inb(ioaddr[0] + 7); 267 timeout = jiffies + TimeOutJiffies; 268 while (a & 0x80 || a & 0x40) { 269 /* a little sleep */ 270 yield(); 271 272 a = inb(ioaddr[0] + 7); 273 if (time_after_eq(jiffies, timeout)) { 274 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n", 275 name); 276 return -ETIME; 277 } 278 } 279 280 return 0; 281 } 282 283 /* Card Wait For Ready (cannot be used during an interrupt) */ 284 static int 285 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[]) 286 { 287 unsigned char a; 288 unsigned long timeout; 289 290 a = inb(ioaddr[1] + 6); 291 timeout = jiffies + TimeOutJiffies; 292 while (a & 0x80 || !(a & 0x40)) { 293 /* a little sleep */ 294 yield(); 295 296 a = inb(ioaddr[1] + 6); 297 if (time_after_eq(jiffies, timeout)) { 298 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n", 299 name); 300 return -ETIME; 301 } 302 } 303 304 in[1] = inb(ioaddr[0] + 1); 305 in[2] = inb(ioaddr[0] + 2); 306 in[3] = inb(ioaddr[0] + 3); 307 in[4] = inb(ioaddr[0] + 4); 308 in[0] = inb(ioaddr[0] + 5); 309 in[6] = inb(ioaddr[0] + 6); 310 in[5] = inb(ioaddr[1] + 6); 311 return 0; 312 } 313 314 /* Card Send Command (cannot be used during an interrupt) */ 315 static int 316 card_send_command(const int ioaddr[], const char* name, 317 const unsigned char out[], unsigned char in[]) 318 { 319 int status, x; 320 321 if ((status = card_wait_for_busy_clear(ioaddr, name))) 322 return status; 323 outb(0xa0, ioaddr[0] + 6); 324 outb(out[2], ioaddr[0] + 1); 325 outb(out[3], ioaddr[0] + 2); 326 outb(out[4], ioaddr[0] + 3); 327 outb(out[5], ioaddr[0] + 4); 328 outb(out[1], ioaddr[0] + 5); 329 outb(0xa0, ioaddr[0] + 6); 330 outb(out[0], ioaddr[0] + 7); 331 if (out[0] != 0x20 && out[0] != 0x30) { 332 if ((status = card_wait_for_ready(ioaddr, name, in))) 333 return status; 334 inb(ioaddr[0] + 7); 335 if (sb1000_debug > 3) 336 printk(KERN_DEBUG "%s: card_send_command " 337 "out: %02x%02x%02x%02x%02x%02x " 338 "in: %02x%02x%02x%02x%02x%02x%02x\n", name, 339 out[0], out[1], out[2], out[3], out[4], out[5], 340 in[0], in[1], in[2], in[3], in[4], in[5], in[6]); 341 } else { 342 if (sb1000_debug > 3) 343 printk(KERN_DEBUG "%s: card_send_command " 344 "out: %02x%02x%02x%02x%02x%02x\n", name, 345 out[0], out[1], out[2], out[3], out[4], out[5]); 346 } 347 348 if (out[1] == 0x1b) { 349 x = (out[2] == 0x02); 350 } else { 351 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80)) 352 return -EIO; 353 } 354 return 0; 355 } 356 357 358 /* 359 * SB1000 hardware routines to be used during frame rx interrupt 360 */ 361 static const int Sb1000TimeOutJiffies = 7 * HZ; 362 363 /* Card Wait For Ready (to be used during frame rx) */ 364 static int 365 sb1000_wait_for_ready(const int ioaddr[], const char* name) 366 { 367 unsigned long timeout; 368 369 timeout = jiffies + Sb1000TimeOutJiffies; 370 while (inb(ioaddr[1] + 6) & 0x80) { 371 if (time_after_eq(jiffies, timeout)) { 372 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 373 name); 374 return -ETIME; 375 } 376 } 377 timeout = jiffies + Sb1000TimeOutJiffies; 378 while (!(inb(ioaddr[1] + 6) & 0x40)) { 379 if (time_after_eq(jiffies, timeout)) { 380 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 381 name); 382 return -ETIME; 383 } 384 } 385 inb(ioaddr[0] + 7); 386 return 0; 387 } 388 389 /* Card Wait For Ready Clear (to be used during frame rx) */ 390 static int 391 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name) 392 { 393 unsigned long timeout; 394 395 timeout = jiffies + Sb1000TimeOutJiffies; 396 while (inb(ioaddr[1] + 6) & 0x80) { 397 if (time_after_eq(jiffies, timeout)) { 398 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 399 name); 400 return -ETIME; 401 } 402 } 403 timeout = jiffies + Sb1000TimeOutJiffies; 404 while (inb(ioaddr[1] + 6) & 0x40) { 405 if (time_after_eq(jiffies, timeout)) { 406 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 407 name); 408 return -ETIME; 409 } 410 } 411 return 0; 412 } 413 414 /* Card Send Command (to be used during frame rx) */ 415 static void 416 sb1000_send_command(const int ioaddr[], const char* name, 417 const unsigned char out[]) 418 { 419 outb(out[2], ioaddr[0] + 1); 420 outb(out[3], ioaddr[0] + 2); 421 outb(out[4], ioaddr[0] + 3); 422 outb(out[5], ioaddr[0] + 4); 423 outb(out[1], ioaddr[0] + 5); 424 outb(out[0], ioaddr[0] + 7); 425 if (sb1000_debug > 3) 426 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x" 427 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]); 428 return; 429 } 430 431 /* Card Read Status (to be used during frame rx) */ 432 static void 433 sb1000_read_status(const int ioaddr[], unsigned char in[]) 434 { 435 in[1] = inb(ioaddr[0] + 1); 436 in[2] = inb(ioaddr[0] + 2); 437 in[3] = inb(ioaddr[0] + 3); 438 in[4] = inb(ioaddr[0] + 4); 439 in[0] = inb(ioaddr[0] + 5); 440 return; 441 } 442 443 /* Issue Read Command (to be used during frame rx) */ 444 static void 445 sb1000_issue_read_command(const int ioaddr[], const char* name) 446 { 447 static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00}; 448 449 sb1000_wait_for_ready_clear(ioaddr, name); 450 outb(0xa0, ioaddr[0] + 6); 451 sb1000_send_command(ioaddr, name, Command0); 452 return; 453 } 454 455 456 /* 457 * SB1000 commands for open/configuration 458 */ 459 /* reset SB1000 card */ 460 static int 461 sb1000_reset(const int ioaddr[], const char* name) 462 { 463 static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 464 465 unsigned char st[7]; 466 int port, status; 467 468 port = ioaddr[1] + 6; 469 outb(0x4, port); 470 inb(port); 471 udelay(1000); 472 outb(0x0, port); 473 inb(port); 474 ssleep(1); 475 outb(0x4, port); 476 inb(port); 477 udelay(1000); 478 outb(0x0, port); 479 inb(port); 480 udelay(0); 481 482 if ((status = card_send_command(ioaddr, name, Command0, st))) 483 return status; 484 if (st[3] != 0xf0) 485 return -EIO; 486 return 0; 487 } 488 489 /* check SB1000 firmware CRC */ 490 static int 491 sb1000_check_CRC(const int ioaddr[], const char* name) 492 { 493 static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00}; 494 495 unsigned char st[7]; 496 int crc, status; 497 498 /* check CRC */ 499 if ((status = card_send_command(ioaddr, name, Command0, st))) 500 return status; 501 if (st[1] != st[3] || st[2] != st[4]) 502 return -EIO; 503 crc = st[1] << 8 | st[2]; 504 return 0; 505 } 506 507 static inline int 508 sb1000_start_get_set_command(const int ioaddr[], const char* name) 509 { 510 static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00}; 511 512 unsigned char st[7]; 513 514 return card_send_command(ioaddr, name, Command0, st); 515 } 516 517 static int 518 sb1000_end_get_set_command(const int ioaddr[], const char* name) 519 { 520 static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00}; 521 static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00}; 522 523 unsigned char st[7]; 524 int status; 525 526 if ((status = card_send_command(ioaddr, name, Command0, st))) 527 return status; 528 return card_send_command(ioaddr, name, Command1, st); 529 } 530 531 static int 532 sb1000_activate(const int ioaddr[], const char* name) 533 { 534 static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00}; 535 static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 536 537 unsigned char st[7]; 538 int status; 539 540 ssleep(1); 541 if ((status = card_send_command(ioaddr, name, Command0, st))) 542 return status; 543 if ((status = card_send_command(ioaddr, name, Command1, st))) 544 return status; 545 if (st[3] != 0xf1) { 546 if ((status = sb1000_start_get_set_command(ioaddr, name))) 547 return status; 548 return -EIO; 549 } 550 udelay(1000); 551 return sb1000_start_get_set_command(ioaddr, name); 552 } 553 554 /* get SB1000 firmware version */ 555 static int 556 sb1000_get_firmware_version(const int ioaddr[], const char* name, 557 unsigned char version[], int do_end) 558 { 559 static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00}; 560 561 unsigned char st[7]; 562 int status; 563 564 if ((status = sb1000_start_get_set_command(ioaddr, name))) 565 return status; 566 if ((status = card_send_command(ioaddr, name, Command0, st))) 567 return status; 568 if (st[0] != 0xa3) 569 return -EIO; 570 version[0] = st[1]; 571 version[1] = st[2]; 572 if (do_end) 573 return sb1000_end_get_set_command(ioaddr, name); 574 else 575 return 0; 576 } 577 578 /* get SB1000 frequency */ 579 static int 580 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency) 581 { 582 static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00}; 583 584 unsigned char st[7]; 585 int status; 586 587 udelay(1000); 588 if ((status = sb1000_start_get_set_command(ioaddr, name))) 589 return status; 590 if ((status = card_send_command(ioaddr, name, Command0, st))) 591 return status; 592 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4]; 593 return sb1000_end_get_set_command(ioaddr, name); 594 } 595 596 /* set SB1000 frequency */ 597 static int 598 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency) 599 { 600 unsigned char st[7]; 601 int status; 602 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00}; 603 604 const int FrequencyLowerLimit = 57000; 605 const int FrequencyUpperLimit = 804000; 606 607 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) { 608 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range " 609 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit, 610 FrequencyUpperLimit); 611 return -EINVAL; 612 } 613 udelay(1000); 614 if ((status = sb1000_start_get_set_command(ioaddr, name))) 615 return status; 616 Command0[5] = frequency & 0xff; 617 frequency >>= 8; 618 Command0[4] = frequency & 0xff; 619 frequency >>= 8; 620 Command0[3] = frequency & 0xff; 621 frequency >>= 8; 622 Command0[2] = frequency & 0xff; 623 return card_send_command(ioaddr, name, Command0, st); 624 } 625 626 /* get SB1000 PIDs */ 627 static int 628 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[]) 629 { 630 static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00}; 631 static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00}; 632 static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00}; 633 static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00}; 634 635 unsigned char st[7]; 636 int status; 637 638 udelay(1000); 639 if ((status = sb1000_start_get_set_command(ioaddr, name))) 640 return status; 641 642 if ((status = card_send_command(ioaddr, name, Command0, st))) 643 return status; 644 PID[0] = st[1] << 8 | st[2]; 645 646 if ((status = card_send_command(ioaddr, name, Command1, st))) 647 return status; 648 PID[1] = st[1] << 8 | st[2]; 649 650 if ((status = card_send_command(ioaddr, name, Command2, st))) 651 return status; 652 PID[2] = st[1] << 8 | st[2]; 653 654 if ((status = card_send_command(ioaddr, name, Command3, st))) 655 return status; 656 PID[3] = st[1] << 8 | st[2]; 657 658 return sb1000_end_get_set_command(ioaddr, name); 659 } 660 661 /* set SB1000 PIDs */ 662 static int 663 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[]) 664 { 665 static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 666 667 unsigned char st[7]; 668 short p; 669 int status; 670 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00}; 671 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00}; 672 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00}; 673 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00}; 674 675 udelay(1000); 676 if ((status = sb1000_start_get_set_command(ioaddr, name))) 677 return status; 678 679 p = PID[0]; 680 Command0[3] = p & 0xff; 681 p >>= 8; 682 Command0[2] = p & 0xff; 683 if ((status = card_send_command(ioaddr, name, Command0, st))) 684 return status; 685 686 p = PID[1]; 687 Command1[3] = p & 0xff; 688 p >>= 8; 689 Command1[2] = p & 0xff; 690 if ((status = card_send_command(ioaddr, name, Command1, st))) 691 return status; 692 693 p = PID[2]; 694 Command2[3] = p & 0xff; 695 p >>= 8; 696 Command2[2] = p & 0xff; 697 if ((status = card_send_command(ioaddr, name, Command2, st))) 698 return status; 699 700 p = PID[3]; 701 Command3[3] = p & 0xff; 702 p >>= 8; 703 Command3[2] = p & 0xff; 704 if ((status = card_send_command(ioaddr, name, Command3, st))) 705 return status; 706 707 if ((status = card_send_command(ioaddr, name, Command4, st))) 708 return status; 709 return sb1000_end_get_set_command(ioaddr, name); 710 } 711 712 713 static void 714 sb1000_print_status_buffer(const char* name, unsigned char st[], 715 unsigned char buffer[], int size) 716 { 717 int i, j, k; 718 719 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]); 720 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) { 721 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d " 722 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29], 723 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41], 724 buffer[46] << 8 | buffer[47], 725 buffer[42], buffer[43], buffer[44], buffer[45], 726 buffer[48] << 8 | buffer[49]); 727 } else { 728 for (i = 0, k = 0; i < (size + 7) / 8; i++) { 729 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:"); 730 for (j = 0; j < 8 && k < size; j++, k++) 731 printk(" %02x", buffer[k]); 732 printk("\n"); 733 } 734 } 735 return; 736 } 737 738 /* 739 * SB1000 commands for frame rx interrupt 740 */ 741 /* receive a single frame and assemble datagram 742 * (this is the heart of the interrupt routine) 743 */ 744 static int 745 sb1000_rx(struct net_device *dev) 746 { 747 748 #define FRAMESIZE 184 749 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id; 750 short dlen; 751 int ioaddr, ns; 752 unsigned int skbsize; 753 struct sk_buff *skb; 754 struct sb1000_private *lp = netdev_priv(dev); 755 struct net_device_stats *stats = &dev->stats; 756 757 /* SB1000 frame constants */ 758 const int FrameSize = FRAMESIZE; 759 const int NewDatagramHeaderSkip = 8; 760 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18; 761 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize; 762 const int ContDatagramHeaderSkip = 7; 763 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1; 764 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize; 765 const int TrailerSize = 4; 766 767 ioaddr = dev->base_addr; 768 769 insw(ioaddr, (unsigned short*) st, 1); 770 #ifdef XXXDEBUG 771 printk("cm0: received: %02x %02x\n", st[0], st[1]); 772 #endif /* XXXDEBUG */ 773 lp->rx_frames++; 774 775 /* decide if it is a good or bad frame */ 776 for (ns = 0; ns < NPIDS; ns++) { 777 session_id = lp->rx_session_id[ns]; 778 frame_id = lp->rx_frame_id[ns]; 779 if (st[0] == session_id) { 780 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) { 781 goto good_frame; 782 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) { 783 goto skipped_frame; 784 } else { 785 goto bad_frame; 786 } 787 } else if (st[0] == (session_id | 0x40)) { 788 if ((st[1] & 0xf0) == 0x30) { 789 goto skipped_frame; 790 } else { 791 goto bad_frame; 792 } 793 } 794 } 795 goto bad_frame; 796 797 skipped_frame: 798 stats->rx_frame_errors++; 799 skb = lp->rx_skb[ns]; 800 if (sb1000_debug > 1) 801 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x " 802 "expecting %02x %02x\n", dev->name, st[0], st[1], 803 skb ? session_id : session_id | 0x40, frame_id); 804 if (skb) { 805 dev_kfree_skb(skb); 806 skb = NULL; 807 } 808 809 good_frame: 810 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f); 811 /* new datagram */ 812 if (st[0] & 0x40) { 813 /* get data length */ 814 insw(ioaddr, buffer, NewDatagramHeaderSize / 2); 815 #ifdef XXXDEBUG 816 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]); 817 #endif /* XXXDEBUG */ 818 if (buffer[0] != NewDatagramHeaderSkip) { 819 if (sb1000_debug > 1) 820 printk(KERN_WARNING "%s: new datagram header skip error: " 821 "got %02x expecting %02x\n", dev->name, buffer[0], 822 NewDatagramHeaderSkip); 823 stats->rx_length_errors++; 824 insw(ioaddr, buffer, NewDatagramDataSize / 2); 825 goto bad_frame_next; 826 } 827 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 | 828 buffer[NewDatagramHeaderSkip + 4]) - 17; 829 if (dlen > SB1000_MRU) { 830 if (sb1000_debug > 1) 831 printk(KERN_WARNING "%s: datagram length (%d) greater " 832 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU); 833 stats->rx_length_errors++; 834 insw(ioaddr, buffer, NewDatagramDataSize / 2); 835 goto bad_frame_next; 836 } 837 lp->rx_dlen[ns] = dlen; 838 /* compute size to allocate for datagram */ 839 skbsize = dlen + FrameSize; 840 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) { 841 if (sb1000_debug > 1) 842 printk(KERN_WARNING "%s: can't allocate %d bytes long " 843 "skbuff\n", dev->name, skbsize); 844 stats->rx_dropped++; 845 insw(ioaddr, buffer, NewDatagramDataSize / 2); 846 goto dropped_frame; 847 } 848 skb->dev = dev; 849 skb_reset_mac_header(skb); 850 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16]; 851 insw(ioaddr, skb_put(skb, NewDatagramDataSize), 852 NewDatagramDataSize / 2); 853 lp->rx_skb[ns] = skb; 854 } else { 855 /* continuation of previous datagram */ 856 insw(ioaddr, buffer, ContDatagramHeaderSize / 2); 857 if (buffer[0] != ContDatagramHeaderSkip) { 858 if (sb1000_debug > 1) 859 printk(KERN_WARNING "%s: cont datagram header skip error: " 860 "got %02x expecting %02x\n", dev->name, buffer[0], 861 ContDatagramHeaderSkip); 862 stats->rx_length_errors++; 863 insw(ioaddr, buffer, ContDatagramDataSize / 2); 864 goto bad_frame_next; 865 } 866 skb = lp->rx_skb[ns]; 867 insw(ioaddr, skb_put(skb, ContDatagramDataSize), 868 ContDatagramDataSize / 2); 869 dlen = lp->rx_dlen[ns]; 870 } 871 if (skb->len < dlen + TrailerSize) { 872 lp->rx_session_id[ns] &= ~0x40; 873 return 0; 874 } 875 876 /* datagram completed: send to upper level */ 877 skb_trim(skb, dlen); 878 netif_rx(skb); 879 stats->rx_bytes+=dlen; 880 stats->rx_packets++; 881 lp->rx_skb[ns] = NULL; 882 lp->rx_session_id[ns] |= 0x40; 883 return 0; 884 885 bad_frame: 886 insw(ioaddr, buffer, FrameSize / 2); 887 if (sb1000_debug > 1) 888 printk(KERN_WARNING "%s: frame error: got %02x %02x\n", 889 dev->name, st[0], st[1]); 890 stats->rx_frame_errors++; 891 bad_frame_next: 892 if (sb1000_debug > 2) 893 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize); 894 dropped_frame: 895 stats->rx_errors++; 896 if (ns < NPIDS) { 897 if ((skb = lp->rx_skb[ns])) { 898 dev_kfree_skb(skb); 899 lp->rx_skb[ns] = NULL; 900 } 901 lp->rx_session_id[ns] |= 0x40; 902 } 903 return -1; 904 } 905 906 static void 907 sb1000_error_dpc(struct net_device *dev) 908 { 909 static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00}; 910 911 char *name; 912 unsigned char st[5]; 913 int ioaddr[2]; 914 struct sb1000_private *lp = netdev_priv(dev); 915 const int ErrorDpcCounterInitialize = 200; 916 917 ioaddr[0] = dev->base_addr; 918 /* mem_start holds the second I/O address */ 919 ioaddr[1] = dev->mem_start; 920 name = dev->name; 921 922 sb1000_wait_for_ready_clear(ioaddr, name); 923 sb1000_send_command(ioaddr, name, Command0); 924 sb1000_wait_for_ready(ioaddr, name); 925 sb1000_read_status(ioaddr, st); 926 if (st[1] & 0x10) 927 lp->rx_error_dpc_count = ErrorDpcCounterInitialize; 928 return; 929 } 930 931 932 /* 933 * Linux interface functions 934 */ 935 static int 936 sb1000_open(struct net_device *dev) 937 { 938 char *name; 939 int ioaddr[2], status; 940 struct sb1000_private *lp = netdev_priv(dev); 941 const unsigned short FirmwareVersion[] = {0x01, 0x01}; 942 943 ioaddr[0] = dev->base_addr; 944 /* mem_start holds the second I/O address */ 945 ioaddr[1] = dev->mem_start; 946 name = dev->name; 947 948 /* initialize sb1000 */ 949 if ((status = sb1000_reset(ioaddr, name))) 950 return status; 951 ssleep(1); 952 if ((status = sb1000_check_CRC(ioaddr, name))) 953 return status; 954 955 /* initialize private data before board can catch interrupts */ 956 lp->rx_skb[0] = NULL; 957 lp->rx_skb[1] = NULL; 958 lp->rx_skb[2] = NULL; 959 lp->rx_skb[3] = NULL; 960 lp->rx_dlen[0] = 0; 961 lp->rx_dlen[1] = 0; 962 lp->rx_dlen[2] = 0; 963 lp->rx_dlen[3] = 0; 964 lp->rx_frames = 0; 965 lp->rx_error_count = 0; 966 lp->rx_error_dpc_count = 0; 967 lp->rx_session_id[0] = 0x50; 968 lp->rx_session_id[0] = 0x48; 969 lp->rx_session_id[0] = 0x44; 970 lp->rx_session_id[0] = 0x42; 971 lp->rx_frame_id[0] = 0; 972 lp->rx_frame_id[1] = 0; 973 lp->rx_frame_id[2] = 0; 974 lp->rx_frame_id[3] = 0; 975 if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) { 976 return -EAGAIN; 977 } 978 979 if (sb1000_debug > 2) 980 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq); 981 982 /* Activate board and check firmware version */ 983 udelay(1000); 984 if ((status = sb1000_activate(ioaddr, name))) 985 return status; 986 udelay(0); 987 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0))) 988 return status; 989 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1]) 990 printk(KERN_WARNING "%s: found firmware version %x.%02x " 991 "(should be %x.%02x)\n", name, version[0], version[1], 992 FirmwareVersion[0], FirmwareVersion[1]); 993 994 995 netif_start_queue(dev); 996 return 0; /* Always succeed */ 997 } 998 999 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1000 { 1001 char* name; 1002 unsigned char version[2]; 1003 short PID[4]; 1004 int ioaddr[2], status, frequency; 1005 unsigned int stats[5]; 1006 struct sb1000_private *lp = netdev_priv(dev); 1007 1008 if (!(dev && dev->flags & IFF_UP)) 1009 return -ENODEV; 1010 1011 ioaddr[0] = dev->base_addr; 1012 /* mem_start holds the second I/O address */ 1013 ioaddr[1] = dev->mem_start; 1014 name = dev->name; 1015 1016 switch (cmd) { 1017 case SIOCGCMSTATS: /* get statistics */ 1018 stats[0] = dev->stats.rx_bytes; 1019 stats[1] = lp->rx_frames; 1020 stats[2] = dev->stats.rx_packets; 1021 stats[3] = dev->stats.rx_errors; 1022 stats[4] = dev->stats.rx_dropped; 1023 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats))) 1024 return -EFAULT; 1025 status = 0; 1026 break; 1027 1028 case SIOCGCMFIRMWARE: /* get firmware version */ 1029 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1))) 1030 return status; 1031 if(copy_to_user(ifr->ifr_data, version, sizeof(version))) 1032 return -EFAULT; 1033 break; 1034 1035 case SIOCGCMFREQUENCY: /* get frequency */ 1036 if ((status = sb1000_get_frequency(ioaddr, name, &frequency))) 1037 return status; 1038 if(put_user(frequency, (int __user *) ifr->ifr_data)) 1039 return -EFAULT; 1040 break; 1041 1042 case SIOCSCMFREQUENCY: /* set frequency */ 1043 if (!capable(CAP_NET_ADMIN)) 1044 return -EPERM; 1045 if(get_user(frequency, (int __user *) ifr->ifr_data)) 1046 return -EFAULT; 1047 if ((status = sb1000_set_frequency(ioaddr, name, frequency))) 1048 return status; 1049 break; 1050 1051 case SIOCGCMPIDS: /* get PIDs */ 1052 if ((status = sb1000_get_PIDs(ioaddr, name, PID))) 1053 return status; 1054 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID))) 1055 return -EFAULT; 1056 break; 1057 1058 case SIOCSCMPIDS: /* set PIDs */ 1059 if (!capable(CAP_NET_ADMIN)) 1060 return -EPERM; 1061 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID))) 1062 return -EFAULT; 1063 if ((status = sb1000_set_PIDs(ioaddr, name, PID))) 1064 return status; 1065 /* set session_id, frame_id and pkt_type too */ 1066 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f); 1067 lp->rx_session_id[1] = 0x48; 1068 lp->rx_session_id[2] = 0x44; 1069 lp->rx_session_id[3] = 0x42; 1070 lp->rx_frame_id[0] = 0; 1071 lp->rx_frame_id[1] = 0; 1072 lp->rx_frame_id[2] = 0; 1073 lp->rx_frame_id[3] = 0; 1074 break; 1075 1076 default: 1077 status = -EINVAL; 1078 break; 1079 } 1080 return status; 1081 } 1082 1083 /* transmit function: do nothing since SB1000 can't send anything out */ 1084 static netdev_tx_t 1085 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1086 { 1087 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name); 1088 /* sb1000 can't xmit datagrams */ 1089 dev_kfree_skb(skb); 1090 return NETDEV_TX_OK; 1091 } 1092 1093 /* SB1000 interrupt handler. */ 1094 static irqreturn_t sb1000_interrupt(int irq, void *dev_id) 1095 { 1096 static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00}; 1097 static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 1098 1099 char *name; 1100 unsigned char st; 1101 int ioaddr[2]; 1102 struct net_device *dev = dev_id; 1103 struct sb1000_private *lp = netdev_priv(dev); 1104 1105 const int MaxRxErrorCount = 6; 1106 1107 ioaddr[0] = dev->base_addr; 1108 /* mem_start holds the second I/O address */ 1109 ioaddr[1] = dev->mem_start; 1110 name = dev->name; 1111 1112 /* is it a good interrupt? */ 1113 st = inb(ioaddr[1] + 6); 1114 if (!(st & 0x08 && st & 0x20)) { 1115 return IRQ_NONE; 1116 } 1117 1118 if (sb1000_debug > 3) 1119 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name); 1120 1121 st = inb(ioaddr[0] + 7); 1122 if (sb1000_rx(dev)) 1123 lp->rx_error_count++; 1124 #ifdef SB1000_DELAY 1125 udelay(SB1000_DELAY); 1126 #endif /* SB1000_DELAY */ 1127 sb1000_issue_read_command(ioaddr, name); 1128 if (st & 0x01) { 1129 sb1000_error_dpc(dev); 1130 sb1000_issue_read_command(ioaddr, name); 1131 } 1132 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) { 1133 sb1000_wait_for_ready_clear(ioaddr, name); 1134 sb1000_send_command(ioaddr, name, Command0); 1135 sb1000_wait_for_ready(ioaddr, name); 1136 sb1000_issue_read_command(ioaddr, name); 1137 } 1138 if (lp->rx_error_count >= MaxRxErrorCount) { 1139 sb1000_wait_for_ready_clear(ioaddr, name); 1140 sb1000_send_command(ioaddr, name, Command1); 1141 sb1000_wait_for_ready(ioaddr, name); 1142 sb1000_issue_read_command(ioaddr, name); 1143 lp->rx_error_count = 0; 1144 } 1145 1146 return IRQ_HANDLED; 1147 } 1148 1149 static int sb1000_close(struct net_device *dev) 1150 { 1151 int i; 1152 int ioaddr[2]; 1153 struct sb1000_private *lp = netdev_priv(dev); 1154 1155 if (sb1000_debug > 2) 1156 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name); 1157 1158 netif_stop_queue(dev); 1159 1160 ioaddr[0] = dev->base_addr; 1161 /* mem_start holds the second I/O address */ 1162 ioaddr[1] = dev->mem_start; 1163 1164 free_irq(dev->irq, dev); 1165 /* If we don't do this, we can't re-insmod it later. */ 1166 release_region(ioaddr[1], SB1000_IO_EXTENT); 1167 release_region(ioaddr[0], SB1000_IO_EXTENT); 1168 1169 /* free rx_skb's if needed */ 1170 for (i=0; i<4; i++) { 1171 if (lp->rx_skb[i]) { 1172 dev_kfree_skb(lp->rx_skb[i]); 1173 } 1174 } 1175 return 0; 1176 } 1177 1178 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>"); 1179 MODULE_DESCRIPTION("General Instruments SB1000 driver"); 1180 MODULE_LICENSE("GPL"); 1181 1182 static int __init 1183 sb1000_init(void) 1184 { 1185 return pnp_register_driver(&sb1000_driver); 1186 } 1187 1188 static void __exit 1189 sb1000_exit(void) 1190 { 1191 pnp_unregister_driver(&sb1000_driver); 1192 } 1193 1194 module_init(sb1000_init); 1195 module_exit(sb1000_exit); 1196