1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* sb1000.c: A General Instruments SB1000 driver for linux. */ 3 /* 4 Written 1998 by Franco Venturi. 5 6 Copyright 1998 by Franco Venturi. 7 Copyright 1994,1995 by Donald Becker. 8 Copyright 1993 United States Government as represented by the 9 Director, National Security Agency. 10 11 This driver is for the General Instruments SB1000 (internal SURFboard) 12 13 The author may be reached as fventuri@mediaone.net 14 15 16 Changes: 17 18 981115 Steven Hirsch <shirsch@adelphia.net> 19 20 Linus changed the timer interface. Should work on all recent 21 development kernels. 22 23 980608 Steven Hirsch <shirsch@adelphia.net> 24 25 Small changes to make it work with 2.1.x kernels. Hopefully, 26 nothing major will change before official release of Linux 2.2. 27 28 Merged with 2.2 - Alan Cox 29 */ 30 31 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n"; 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/string.h> 37 #include <linux/interrupt.h> 38 #include <linux/errno.h> 39 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */ 40 #include <linux/in.h> 41 #include <linux/ioport.h> 42 #include <linux/netdevice.h> 43 #include <linux/if_arp.h> 44 #include <linux/skbuff.h> 45 #include <linux/delay.h> /* for udelay() */ 46 #include <linux/etherdevice.h> 47 #include <linux/pnp.h> 48 #include <linux/init.h> 49 #include <linux/bitops.h> 50 #include <linux/gfp.h> 51 52 #include <asm/io.h> 53 #include <asm/processor.h> 54 #include <linux/uaccess.h> 55 56 #ifdef SB1000_DEBUG 57 static int sb1000_debug = SB1000_DEBUG; 58 #else 59 static const int sb1000_debug = 1; 60 #endif 61 62 static const int SB1000_IO_EXTENT = 8; 63 /* SB1000 Maximum Receive Unit */ 64 static const int SB1000_MRU = 1500; /* octects */ 65 66 #define NPIDS 4 67 struct sb1000_private { 68 struct sk_buff *rx_skb[NPIDS]; 69 short rx_dlen[NPIDS]; 70 unsigned int rx_frames; 71 short rx_error_count; 72 short rx_error_dpc_count; 73 unsigned char rx_session_id[NPIDS]; 74 unsigned char rx_frame_id[NPIDS]; 75 unsigned char rx_pkt_type[NPIDS]; 76 }; 77 78 /* prototypes for Linux interface */ 79 extern int sb1000_probe(struct net_device *dev); 80 static int sb1000_open(struct net_device *dev); 81 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd); 82 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb, 83 struct net_device *dev); 84 static irqreturn_t sb1000_interrupt(int irq, void *dev_id); 85 static int sb1000_close(struct net_device *dev); 86 87 88 /* SB1000 hardware routines to be used during open/configuration phases */ 89 static int card_wait_for_busy_clear(const int ioaddr[], 90 const char* name); 91 static int card_wait_for_ready(const int ioaddr[], const char* name, 92 unsigned char in[]); 93 static int card_send_command(const int ioaddr[], const char* name, 94 const unsigned char out[], unsigned char in[]); 95 96 /* SB1000 hardware routines to be used during frame rx interrupt */ 97 static int sb1000_wait_for_ready(const int ioaddr[], const char* name); 98 static int sb1000_wait_for_ready_clear(const int ioaddr[], 99 const char* name); 100 static void sb1000_send_command(const int ioaddr[], const char* name, 101 const unsigned char out[]); 102 static void sb1000_read_status(const int ioaddr[], unsigned char in[]); 103 static void sb1000_issue_read_command(const int ioaddr[], 104 const char* name); 105 106 /* SB1000 commands for open/configuration */ 107 static int sb1000_reset(const int ioaddr[], const char* name); 108 static int sb1000_check_CRC(const int ioaddr[], const char* name); 109 static inline int sb1000_start_get_set_command(const int ioaddr[], 110 const char* name); 111 static int sb1000_end_get_set_command(const int ioaddr[], 112 const char* name); 113 static int sb1000_activate(const int ioaddr[], const char* name); 114 static int sb1000_get_firmware_version(const int ioaddr[], 115 const char* name, unsigned char version[], int do_end); 116 static int sb1000_get_frequency(const int ioaddr[], const char* name, 117 int* frequency); 118 static int sb1000_set_frequency(const int ioaddr[], const char* name, 119 int frequency); 120 static int sb1000_get_PIDs(const int ioaddr[], const char* name, 121 short PID[]); 122 static int sb1000_set_PIDs(const int ioaddr[], const char* name, 123 const short PID[]); 124 125 /* SB1000 commands for frame rx interrupt */ 126 static int sb1000_rx(struct net_device *dev); 127 static void sb1000_error_dpc(struct net_device *dev); 128 129 static const struct pnp_device_id sb1000_pnp_ids[] = { 130 { "GIC1000", 0 }, 131 { "", 0 } 132 }; 133 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids); 134 135 static const struct net_device_ops sb1000_netdev_ops = { 136 .ndo_open = sb1000_open, 137 .ndo_start_xmit = sb1000_start_xmit, 138 .ndo_do_ioctl = sb1000_dev_ioctl, 139 .ndo_stop = sb1000_close, 140 .ndo_set_mac_address = eth_mac_addr, 141 .ndo_validate_addr = eth_validate_addr, 142 }; 143 144 static int 145 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id) 146 { 147 struct net_device *dev; 148 unsigned short ioaddr[2], irq; 149 unsigned int serial_number; 150 int error = -ENODEV; 151 152 if (pnp_device_attach(pdev) < 0) 153 return -ENODEV; 154 if (pnp_activate_dev(pdev) < 0) 155 goto out_detach; 156 157 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1)) 158 goto out_disable; 159 if (!pnp_irq_valid(pdev, 0)) 160 goto out_disable; 161 162 serial_number = pdev->card->serial; 163 164 ioaddr[0] = pnp_port_start(pdev, 0); 165 ioaddr[1] = pnp_port_start(pdev, 0); 166 167 irq = pnp_irq(pdev, 0); 168 169 if (!request_region(ioaddr[0], 16, "sb1000")) 170 goto out_disable; 171 if (!request_region(ioaddr[1], 16, "sb1000")) 172 goto out_release_region0; 173 174 dev = alloc_etherdev(sizeof(struct sb1000_private)); 175 if (!dev) { 176 error = -ENOMEM; 177 goto out_release_regions; 178 } 179 180 181 dev->base_addr = ioaddr[0]; 182 /* mem_start holds the second I/O address */ 183 dev->mem_start = ioaddr[1]; 184 dev->irq = irq; 185 186 if (sb1000_debug > 0) 187 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), " 188 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr, 189 dev->mem_start, serial_number, dev->irq); 190 191 /* 192 * The SB1000 is an rx-only cable modem device. The uplink is a modem 193 * and we do not want to arp on it. 194 */ 195 dev->flags = IFF_POINTOPOINT|IFF_NOARP; 196 197 SET_NETDEV_DEV(dev, &pdev->dev); 198 199 if (sb1000_debug > 0) 200 printk(KERN_NOTICE "%s", version); 201 202 dev->netdev_ops = &sb1000_netdev_ops; 203 204 /* hardware address is 0:0:serial_number */ 205 dev->dev_addr[2] = serial_number >> 24 & 0xff; 206 dev->dev_addr[3] = serial_number >> 16 & 0xff; 207 dev->dev_addr[4] = serial_number >> 8 & 0xff; 208 dev->dev_addr[5] = serial_number >> 0 & 0xff; 209 210 pnp_set_drvdata(pdev, dev); 211 212 error = register_netdev(dev); 213 if (error) 214 goto out_free_netdev; 215 return 0; 216 217 out_free_netdev: 218 free_netdev(dev); 219 out_release_regions: 220 release_region(ioaddr[1], 16); 221 out_release_region0: 222 release_region(ioaddr[0], 16); 223 out_disable: 224 pnp_disable_dev(pdev); 225 out_detach: 226 pnp_device_detach(pdev); 227 return error; 228 } 229 230 static void 231 sb1000_remove_one(struct pnp_dev *pdev) 232 { 233 struct net_device *dev = pnp_get_drvdata(pdev); 234 235 unregister_netdev(dev); 236 release_region(dev->base_addr, 16); 237 release_region(dev->mem_start, 16); 238 free_netdev(dev); 239 } 240 241 static struct pnp_driver sb1000_driver = { 242 .name = "sb1000", 243 .id_table = sb1000_pnp_ids, 244 .probe = sb1000_probe_one, 245 .remove = sb1000_remove_one, 246 }; 247 248 249 /* 250 * SB1000 hardware routines to be used during open/configuration phases 251 */ 252 253 static const int TimeOutJiffies = (875 * HZ) / 100; 254 255 /* Card Wait For Busy Clear (cannot be used during an interrupt) */ 256 static int 257 card_wait_for_busy_clear(const int ioaddr[], const char* name) 258 { 259 unsigned char a; 260 unsigned long timeout; 261 262 a = inb(ioaddr[0] + 7); 263 timeout = jiffies + TimeOutJiffies; 264 while (a & 0x80 || a & 0x40) { 265 /* a little sleep */ 266 yield(); 267 268 a = inb(ioaddr[0] + 7); 269 if (time_after_eq(jiffies, timeout)) { 270 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n", 271 name); 272 return -ETIME; 273 } 274 } 275 276 return 0; 277 } 278 279 /* Card Wait For Ready (cannot be used during an interrupt) */ 280 static int 281 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[]) 282 { 283 unsigned char a; 284 unsigned long timeout; 285 286 a = inb(ioaddr[1] + 6); 287 timeout = jiffies + TimeOutJiffies; 288 while (a & 0x80 || !(a & 0x40)) { 289 /* a little sleep */ 290 yield(); 291 292 a = inb(ioaddr[1] + 6); 293 if (time_after_eq(jiffies, timeout)) { 294 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n", 295 name); 296 return -ETIME; 297 } 298 } 299 300 in[1] = inb(ioaddr[0] + 1); 301 in[2] = inb(ioaddr[0] + 2); 302 in[3] = inb(ioaddr[0] + 3); 303 in[4] = inb(ioaddr[0] + 4); 304 in[0] = inb(ioaddr[0] + 5); 305 in[6] = inb(ioaddr[0] + 6); 306 in[5] = inb(ioaddr[1] + 6); 307 return 0; 308 } 309 310 /* Card Send Command (cannot be used during an interrupt) */ 311 static int 312 card_send_command(const int ioaddr[], const char* name, 313 const unsigned char out[], unsigned char in[]) 314 { 315 int status; 316 317 if ((status = card_wait_for_busy_clear(ioaddr, name))) 318 return status; 319 outb(0xa0, ioaddr[0] + 6); 320 outb(out[2], ioaddr[0] + 1); 321 outb(out[3], ioaddr[0] + 2); 322 outb(out[4], ioaddr[0] + 3); 323 outb(out[5], ioaddr[0] + 4); 324 outb(out[1], ioaddr[0] + 5); 325 outb(0xa0, ioaddr[0] + 6); 326 outb(out[0], ioaddr[0] + 7); 327 if (out[0] != 0x20 && out[0] != 0x30) { 328 if ((status = card_wait_for_ready(ioaddr, name, in))) 329 return status; 330 inb(ioaddr[0] + 7); 331 if (sb1000_debug > 3) 332 printk(KERN_DEBUG "%s: card_send_command " 333 "out: %02x%02x%02x%02x%02x%02x " 334 "in: %02x%02x%02x%02x%02x%02x%02x\n", name, 335 out[0], out[1], out[2], out[3], out[4], out[5], 336 in[0], in[1], in[2], in[3], in[4], in[5], in[6]); 337 } else { 338 if (sb1000_debug > 3) 339 printk(KERN_DEBUG "%s: card_send_command " 340 "out: %02x%02x%02x%02x%02x%02x\n", name, 341 out[0], out[1], out[2], out[3], out[4], out[5]); 342 } 343 344 if (out[1] != 0x1b) { 345 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80)) 346 return -EIO; 347 } 348 return 0; 349 } 350 351 352 /* 353 * SB1000 hardware routines to be used during frame rx interrupt 354 */ 355 static const int Sb1000TimeOutJiffies = 7 * HZ; 356 357 /* Card Wait For Ready (to be used during frame rx) */ 358 static int 359 sb1000_wait_for_ready(const int ioaddr[], const char* name) 360 { 361 unsigned long timeout; 362 363 timeout = jiffies + Sb1000TimeOutJiffies; 364 while (inb(ioaddr[1] + 6) & 0x80) { 365 if (time_after_eq(jiffies, timeout)) { 366 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 367 name); 368 return -ETIME; 369 } 370 } 371 timeout = jiffies + Sb1000TimeOutJiffies; 372 while (!(inb(ioaddr[1] + 6) & 0x40)) { 373 if (time_after_eq(jiffies, timeout)) { 374 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 375 name); 376 return -ETIME; 377 } 378 } 379 inb(ioaddr[0] + 7); 380 return 0; 381 } 382 383 /* Card Wait For Ready Clear (to be used during frame rx) */ 384 static int 385 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name) 386 { 387 unsigned long timeout; 388 389 timeout = jiffies + Sb1000TimeOutJiffies; 390 while (inb(ioaddr[1] + 6) & 0x80) { 391 if (time_after_eq(jiffies, timeout)) { 392 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 393 name); 394 return -ETIME; 395 } 396 } 397 timeout = jiffies + Sb1000TimeOutJiffies; 398 while (inb(ioaddr[1] + 6) & 0x40) { 399 if (time_after_eq(jiffies, timeout)) { 400 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 401 name); 402 return -ETIME; 403 } 404 } 405 return 0; 406 } 407 408 /* Card Send Command (to be used during frame rx) */ 409 static void 410 sb1000_send_command(const int ioaddr[], const char* name, 411 const unsigned char out[]) 412 { 413 outb(out[2], ioaddr[0] + 1); 414 outb(out[3], ioaddr[0] + 2); 415 outb(out[4], ioaddr[0] + 3); 416 outb(out[5], ioaddr[0] + 4); 417 outb(out[1], ioaddr[0] + 5); 418 outb(out[0], ioaddr[0] + 7); 419 if (sb1000_debug > 3) 420 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x" 421 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]); 422 } 423 424 /* Card Read Status (to be used during frame rx) */ 425 static void 426 sb1000_read_status(const int ioaddr[], unsigned char in[]) 427 { 428 in[1] = inb(ioaddr[0] + 1); 429 in[2] = inb(ioaddr[0] + 2); 430 in[3] = inb(ioaddr[0] + 3); 431 in[4] = inb(ioaddr[0] + 4); 432 in[0] = inb(ioaddr[0] + 5); 433 } 434 435 /* Issue Read Command (to be used during frame rx) */ 436 static void 437 sb1000_issue_read_command(const int ioaddr[], const char* name) 438 { 439 static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00}; 440 441 sb1000_wait_for_ready_clear(ioaddr, name); 442 outb(0xa0, ioaddr[0] + 6); 443 sb1000_send_command(ioaddr, name, Command0); 444 } 445 446 447 /* 448 * SB1000 commands for open/configuration 449 */ 450 /* reset SB1000 card */ 451 static int 452 sb1000_reset(const int ioaddr[], const char* name) 453 { 454 static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 455 456 unsigned char st[7]; 457 int port, status; 458 459 port = ioaddr[1] + 6; 460 outb(0x4, port); 461 inb(port); 462 udelay(1000); 463 outb(0x0, port); 464 inb(port); 465 ssleep(1); 466 outb(0x4, port); 467 inb(port); 468 udelay(1000); 469 outb(0x0, port); 470 inb(port); 471 udelay(0); 472 473 if ((status = card_send_command(ioaddr, name, Command0, st))) 474 return status; 475 if (st[3] != 0xf0) 476 return -EIO; 477 return 0; 478 } 479 480 /* check SB1000 firmware CRC */ 481 static int 482 sb1000_check_CRC(const int ioaddr[], const char* name) 483 { 484 static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00}; 485 486 unsigned char st[7]; 487 int status; 488 489 /* check CRC */ 490 if ((status = card_send_command(ioaddr, name, Command0, st))) 491 return status; 492 if (st[1] != st[3] || st[2] != st[4]) 493 return -EIO; 494 return 0; 495 } 496 497 static inline int 498 sb1000_start_get_set_command(const int ioaddr[], const char* name) 499 { 500 static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00}; 501 502 unsigned char st[7]; 503 504 return card_send_command(ioaddr, name, Command0, st); 505 } 506 507 static int 508 sb1000_end_get_set_command(const int ioaddr[], const char* name) 509 { 510 static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00}; 511 static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00}; 512 513 unsigned char st[7]; 514 int status; 515 516 if ((status = card_send_command(ioaddr, name, Command0, st))) 517 return status; 518 return card_send_command(ioaddr, name, Command1, st); 519 } 520 521 static int 522 sb1000_activate(const int ioaddr[], const char* name) 523 { 524 static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00}; 525 static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 526 527 unsigned char st[7]; 528 int status; 529 530 ssleep(1); 531 status = card_send_command(ioaddr, name, Command0, st); 532 if (status) 533 return status; 534 status = card_send_command(ioaddr, name, Command1, st); 535 if (status) 536 return status; 537 if (st[3] != 0xf1) { 538 status = sb1000_start_get_set_command(ioaddr, name); 539 if (status) 540 return status; 541 return -EIO; 542 } 543 udelay(1000); 544 return sb1000_start_get_set_command(ioaddr, name); 545 } 546 547 /* get SB1000 firmware version */ 548 static int 549 sb1000_get_firmware_version(const int ioaddr[], const char* name, 550 unsigned char version[], int do_end) 551 { 552 static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00}; 553 554 unsigned char st[7]; 555 int status; 556 557 if ((status = sb1000_start_get_set_command(ioaddr, name))) 558 return status; 559 if ((status = card_send_command(ioaddr, name, Command0, st))) 560 return status; 561 if (st[0] != 0xa3) 562 return -EIO; 563 version[0] = st[1]; 564 version[1] = st[2]; 565 if (do_end) 566 return sb1000_end_get_set_command(ioaddr, name); 567 else 568 return 0; 569 } 570 571 /* get SB1000 frequency */ 572 static int 573 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency) 574 { 575 static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00}; 576 577 unsigned char st[7]; 578 int status; 579 580 udelay(1000); 581 if ((status = sb1000_start_get_set_command(ioaddr, name))) 582 return status; 583 if ((status = card_send_command(ioaddr, name, Command0, st))) 584 return status; 585 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4]; 586 return sb1000_end_get_set_command(ioaddr, name); 587 } 588 589 /* set SB1000 frequency */ 590 static int 591 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency) 592 { 593 unsigned char st[7]; 594 int status; 595 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00}; 596 597 const int FrequencyLowerLimit = 57000; 598 const int FrequencyUpperLimit = 804000; 599 600 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) { 601 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range " 602 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit, 603 FrequencyUpperLimit); 604 return -EINVAL; 605 } 606 udelay(1000); 607 if ((status = sb1000_start_get_set_command(ioaddr, name))) 608 return status; 609 Command0[5] = frequency & 0xff; 610 frequency >>= 8; 611 Command0[4] = frequency & 0xff; 612 frequency >>= 8; 613 Command0[3] = frequency & 0xff; 614 frequency >>= 8; 615 Command0[2] = frequency & 0xff; 616 return card_send_command(ioaddr, name, Command0, st); 617 } 618 619 /* get SB1000 PIDs */ 620 static int 621 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[]) 622 { 623 static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00}; 624 static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00}; 625 static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00}; 626 static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00}; 627 628 unsigned char st[7]; 629 int status; 630 631 udelay(1000); 632 if ((status = sb1000_start_get_set_command(ioaddr, name))) 633 return status; 634 635 if ((status = card_send_command(ioaddr, name, Command0, st))) 636 return status; 637 PID[0] = st[1] << 8 | st[2]; 638 639 if ((status = card_send_command(ioaddr, name, Command1, st))) 640 return status; 641 PID[1] = st[1] << 8 | st[2]; 642 643 if ((status = card_send_command(ioaddr, name, Command2, st))) 644 return status; 645 PID[2] = st[1] << 8 | st[2]; 646 647 if ((status = card_send_command(ioaddr, name, Command3, st))) 648 return status; 649 PID[3] = st[1] << 8 | st[2]; 650 651 return sb1000_end_get_set_command(ioaddr, name); 652 } 653 654 /* set SB1000 PIDs */ 655 static int 656 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[]) 657 { 658 static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 659 660 unsigned char st[7]; 661 short p; 662 int status; 663 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00}; 664 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00}; 665 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00}; 666 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00}; 667 668 udelay(1000); 669 if ((status = sb1000_start_get_set_command(ioaddr, name))) 670 return status; 671 672 p = PID[0]; 673 Command0[3] = p & 0xff; 674 p >>= 8; 675 Command0[2] = p & 0xff; 676 if ((status = card_send_command(ioaddr, name, Command0, st))) 677 return status; 678 679 p = PID[1]; 680 Command1[3] = p & 0xff; 681 p >>= 8; 682 Command1[2] = p & 0xff; 683 if ((status = card_send_command(ioaddr, name, Command1, st))) 684 return status; 685 686 p = PID[2]; 687 Command2[3] = p & 0xff; 688 p >>= 8; 689 Command2[2] = p & 0xff; 690 if ((status = card_send_command(ioaddr, name, Command2, st))) 691 return status; 692 693 p = PID[3]; 694 Command3[3] = p & 0xff; 695 p >>= 8; 696 Command3[2] = p & 0xff; 697 if ((status = card_send_command(ioaddr, name, Command3, st))) 698 return status; 699 700 if ((status = card_send_command(ioaddr, name, Command4, st))) 701 return status; 702 return sb1000_end_get_set_command(ioaddr, name); 703 } 704 705 706 static void 707 sb1000_print_status_buffer(const char* name, unsigned char st[], 708 unsigned char buffer[], int size) 709 { 710 int i, j, k; 711 712 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]); 713 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) { 714 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d " 715 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29], 716 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41], 717 buffer[46] << 8 | buffer[47], 718 buffer[42], buffer[43], buffer[44], buffer[45], 719 buffer[48] << 8 | buffer[49]); 720 } else { 721 for (i = 0, k = 0; i < (size + 7) / 8; i++) { 722 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:"); 723 for (j = 0; j < 8 && k < size; j++, k++) 724 printk(" %02x", buffer[k]); 725 printk("\n"); 726 } 727 } 728 } 729 730 /* 731 * SB1000 commands for frame rx interrupt 732 */ 733 /* receive a single frame and assemble datagram 734 * (this is the heart of the interrupt routine) 735 */ 736 static int 737 sb1000_rx(struct net_device *dev) 738 { 739 740 #define FRAMESIZE 184 741 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id; 742 short dlen; 743 int ioaddr, ns; 744 unsigned int skbsize; 745 struct sk_buff *skb; 746 struct sb1000_private *lp = netdev_priv(dev); 747 struct net_device_stats *stats = &dev->stats; 748 749 /* SB1000 frame constants */ 750 const int FrameSize = FRAMESIZE; 751 const int NewDatagramHeaderSkip = 8; 752 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18; 753 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize; 754 const int ContDatagramHeaderSkip = 7; 755 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1; 756 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize; 757 const int TrailerSize = 4; 758 759 ioaddr = dev->base_addr; 760 761 insw(ioaddr, (unsigned short*) st, 1); 762 #ifdef XXXDEBUG 763 printk("cm0: received: %02x %02x\n", st[0], st[1]); 764 #endif /* XXXDEBUG */ 765 lp->rx_frames++; 766 767 /* decide if it is a good or bad frame */ 768 for (ns = 0; ns < NPIDS; ns++) { 769 session_id = lp->rx_session_id[ns]; 770 frame_id = lp->rx_frame_id[ns]; 771 if (st[0] == session_id) { 772 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) { 773 goto good_frame; 774 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) { 775 goto skipped_frame; 776 } else { 777 goto bad_frame; 778 } 779 } else if (st[0] == (session_id | 0x40)) { 780 if ((st[1] & 0xf0) == 0x30) { 781 goto skipped_frame; 782 } else { 783 goto bad_frame; 784 } 785 } 786 } 787 goto bad_frame; 788 789 skipped_frame: 790 stats->rx_frame_errors++; 791 skb = lp->rx_skb[ns]; 792 if (sb1000_debug > 1) 793 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x " 794 "expecting %02x %02x\n", dev->name, st[0], st[1], 795 skb ? session_id : session_id | 0x40, frame_id); 796 if (skb) { 797 dev_kfree_skb(skb); 798 skb = NULL; 799 } 800 801 good_frame: 802 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f); 803 /* new datagram */ 804 if (st[0] & 0x40) { 805 /* get data length */ 806 insw(ioaddr, buffer, NewDatagramHeaderSize / 2); 807 #ifdef XXXDEBUG 808 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]); 809 #endif /* XXXDEBUG */ 810 if (buffer[0] != NewDatagramHeaderSkip) { 811 if (sb1000_debug > 1) 812 printk(KERN_WARNING "%s: new datagram header skip error: " 813 "got %02x expecting %02x\n", dev->name, buffer[0], 814 NewDatagramHeaderSkip); 815 stats->rx_length_errors++; 816 insw(ioaddr, buffer, NewDatagramDataSize / 2); 817 goto bad_frame_next; 818 } 819 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 | 820 buffer[NewDatagramHeaderSkip + 4]) - 17; 821 if (dlen > SB1000_MRU) { 822 if (sb1000_debug > 1) 823 printk(KERN_WARNING "%s: datagram length (%d) greater " 824 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU); 825 stats->rx_length_errors++; 826 insw(ioaddr, buffer, NewDatagramDataSize / 2); 827 goto bad_frame_next; 828 } 829 lp->rx_dlen[ns] = dlen; 830 /* compute size to allocate for datagram */ 831 skbsize = dlen + FrameSize; 832 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) { 833 if (sb1000_debug > 1) 834 printk(KERN_WARNING "%s: can't allocate %d bytes long " 835 "skbuff\n", dev->name, skbsize); 836 stats->rx_dropped++; 837 insw(ioaddr, buffer, NewDatagramDataSize / 2); 838 goto dropped_frame; 839 } 840 skb->dev = dev; 841 skb_reset_mac_header(skb); 842 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16]; 843 insw(ioaddr, skb_put(skb, NewDatagramDataSize), 844 NewDatagramDataSize / 2); 845 lp->rx_skb[ns] = skb; 846 } else { 847 /* continuation of previous datagram */ 848 insw(ioaddr, buffer, ContDatagramHeaderSize / 2); 849 if (buffer[0] != ContDatagramHeaderSkip) { 850 if (sb1000_debug > 1) 851 printk(KERN_WARNING "%s: cont datagram header skip error: " 852 "got %02x expecting %02x\n", dev->name, buffer[0], 853 ContDatagramHeaderSkip); 854 stats->rx_length_errors++; 855 insw(ioaddr, buffer, ContDatagramDataSize / 2); 856 goto bad_frame_next; 857 } 858 skb = lp->rx_skb[ns]; 859 insw(ioaddr, skb_put(skb, ContDatagramDataSize), 860 ContDatagramDataSize / 2); 861 dlen = lp->rx_dlen[ns]; 862 } 863 if (skb->len < dlen + TrailerSize) { 864 lp->rx_session_id[ns] &= ~0x40; 865 return 0; 866 } 867 868 /* datagram completed: send to upper level */ 869 skb_trim(skb, dlen); 870 netif_rx(skb); 871 stats->rx_bytes+=dlen; 872 stats->rx_packets++; 873 lp->rx_skb[ns] = NULL; 874 lp->rx_session_id[ns] |= 0x40; 875 return 0; 876 877 bad_frame: 878 insw(ioaddr, buffer, FrameSize / 2); 879 if (sb1000_debug > 1) 880 printk(KERN_WARNING "%s: frame error: got %02x %02x\n", 881 dev->name, st[0], st[1]); 882 stats->rx_frame_errors++; 883 bad_frame_next: 884 if (sb1000_debug > 2) 885 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize); 886 dropped_frame: 887 stats->rx_errors++; 888 if (ns < NPIDS) { 889 if ((skb = lp->rx_skb[ns])) { 890 dev_kfree_skb(skb); 891 lp->rx_skb[ns] = NULL; 892 } 893 lp->rx_session_id[ns] |= 0x40; 894 } 895 return -1; 896 } 897 898 static void 899 sb1000_error_dpc(struct net_device *dev) 900 { 901 static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00}; 902 903 char *name; 904 unsigned char st[5]; 905 int ioaddr[2]; 906 struct sb1000_private *lp = netdev_priv(dev); 907 const int ErrorDpcCounterInitialize = 200; 908 909 ioaddr[0] = dev->base_addr; 910 /* mem_start holds the second I/O address */ 911 ioaddr[1] = dev->mem_start; 912 name = dev->name; 913 914 sb1000_wait_for_ready_clear(ioaddr, name); 915 sb1000_send_command(ioaddr, name, Command0); 916 sb1000_wait_for_ready(ioaddr, name); 917 sb1000_read_status(ioaddr, st); 918 if (st[1] & 0x10) 919 lp->rx_error_dpc_count = ErrorDpcCounterInitialize; 920 } 921 922 923 /* 924 * Linux interface functions 925 */ 926 static int 927 sb1000_open(struct net_device *dev) 928 { 929 char *name; 930 int ioaddr[2], status; 931 struct sb1000_private *lp = netdev_priv(dev); 932 const unsigned short FirmwareVersion[] = {0x01, 0x01}; 933 934 ioaddr[0] = dev->base_addr; 935 /* mem_start holds the second I/O address */ 936 ioaddr[1] = dev->mem_start; 937 name = dev->name; 938 939 /* initialize sb1000 */ 940 if ((status = sb1000_reset(ioaddr, name))) 941 return status; 942 ssleep(1); 943 if ((status = sb1000_check_CRC(ioaddr, name))) 944 return status; 945 946 /* initialize private data before board can catch interrupts */ 947 lp->rx_skb[0] = NULL; 948 lp->rx_skb[1] = NULL; 949 lp->rx_skb[2] = NULL; 950 lp->rx_skb[3] = NULL; 951 lp->rx_dlen[0] = 0; 952 lp->rx_dlen[1] = 0; 953 lp->rx_dlen[2] = 0; 954 lp->rx_dlen[3] = 0; 955 lp->rx_frames = 0; 956 lp->rx_error_count = 0; 957 lp->rx_error_dpc_count = 0; 958 lp->rx_session_id[0] = 0x50; 959 lp->rx_session_id[1] = 0x48; 960 lp->rx_session_id[2] = 0x44; 961 lp->rx_session_id[3] = 0x42; 962 lp->rx_frame_id[0] = 0; 963 lp->rx_frame_id[1] = 0; 964 lp->rx_frame_id[2] = 0; 965 lp->rx_frame_id[3] = 0; 966 if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) { 967 return -EAGAIN; 968 } 969 970 if (sb1000_debug > 2) 971 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq); 972 973 /* Activate board and check firmware version */ 974 udelay(1000); 975 if ((status = sb1000_activate(ioaddr, name))) 976 return status; 977 udelay(0); 978 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0))) 979 return status; 980 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1]) 981 printk(KERN_WARNING "%s: found firmware version %x.%02x " 982 "(should be %x.%02x)\n", name, version[0], version[1], 983 FirmwareVersion[0], FirmwareVersion[1]); 984 985 986 netif_start_queue(dev); 987 return 0; /* Always succeed */ 988 } 989 990 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 991 { 992 char* name; 993 unsigned char version[2]; 994 short PID[4]; 995 int ioaddr[2], status, frequency; 996 unsigned int stats[5]; 997 struct sb1000_private *lp = netdev_priv(dev); 998 999 if (!(dev && dev->flags & IFF_UP)) 1000 return -ENODEV; 1001 1002 ioaddr[0] = dev->base_addr; 1003 /* mem_start holds the second I/O address */ 1004 ioaddr[1] = dev->mem_start; 1005 name = dev->name; 1006 1007 switch (cmd) { 1008 case SIOCGCMSTATS: /* get statistics */ 1009 stats[0] = dev->stats.rx_bytes; 1010 stats[1] = lp->rx_frames; 1011 stats[2] = dev->stats.rx_packets; 1012 stats[3] = dev->stats.rx_errors; 1013 stats[4] = dev->stats.rx_dropped; 1014 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats))) 1015 return -EFAULT; 1016 status = 0; 1017 break; 1018 1019 case SIOCGCMFIRMWARE: /* get firmware version */ 1020 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1))) 1021 return status; 1022 if(copy_to_user(ifr->ifr_data, version, sizeof(version))) 1023 return -EFAULT; 1024 break; 1025 1026 case SIOCGCMFREQUENCY: /* get frequency */ 1027 if ((status = sb1000_get_frequency(ioaddr, name, &frequency))) 1028 return status; 1029 if(put_user(frequency, (int __user *) ifr->ifr_data)) 1030 return -EFAULT; 1031 break; 1032 1033 case SIOCSCMFREQUENCY: /* set frequency */ 1034 if (!capable(CAP_NET_ADMIN)) 1035 return -EPERM; 1036 if(get_user(frequency, (int __user *) ifr->ifr_data)) 1037 return -EFAULT; 1038 if ((status = sb1000_set_frequency(ioaddr, name, frequency))) 1039 return status; 1040 break; 1041 1042 case SIOCGCMPIDS: /* get PIDs */ 1043 if ((status = sb1000_get_PIDs(ioaddr, name, PID))) 1044 return status; 1045 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID))) 1046 return -EFAULT; 1047 break; 1048 1049 case SIOCSCMPIDS: /* set PIDs */ 1050 if (!capable(CAP_NET_ADMIN)) 1051 return -EPERM; 1052 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID))) 1053 return -EFAULT; 1054 if ((status = sb1000_set_PIDs(ioaddr, name, PID))) 1055 return status; 1056 /* set session_id, frame_id and pkt_type too */ 1057 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f); 1058 lp->rx_session_id[1] = 0x48; 1059 lp->rx_session_id[2] = 0x44; 1060 lp->rx_session_id[3] = 0x42; 1061 lp->rx_frame_id[0] = 0; 1062 lp->rx_frame_id[1] = 0; 1063 lp->rx_frame_id[2] = 0; 1064 lp->rx_frame_id[3] = 0; 1065 break; 1066 1067 default: 1068 status = -EINVAL; 1069 break; 1070 } 1071 return status; 1072 } 1073 1074 /* transmit function: do nothing since SB1000 can't send anything out */ 1075 static netdev_tx_t 1076 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1077 { 1078 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name); 1079 /* sb1000 can't xmit datagrams */ 1080 dev_kfree_skb(skb); 1081 return NETDEV_TX_OK; 1082 } 1083 1084 /* SB1000 interrupt handler. */ 1085 static irqreturn_t sb1000_interrupt(int irq, void *dev_id) 1086 { 1087 static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00}; 1088 static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 1089 1090 char *name; 1091 unsigned char st; 1092 int ioaddr[2]; 1093 struct net_device *dev = dev_id; 1094 struct sb1000_private *lp = netdev_priv(dev); 1095 1096 const int MaxRxErrorCount = 6; 1097 1098 ioaddr[0] = dev->base_addr; 1099 /* mem_start holds the second I/O address */ 1100 ioaddr[1] = dev->mem_start; 1101 name = dev->name; 1102 1103 /* is it a good interrupt? */ 1104 st = inb(ioaddr[1] + 6); 1105 if (!(st & 0x08 && st & 0x20)) { 1106 return IRQ_NONE; 1107 } 1108 1109 if (sb1000_debug > 3) 1110 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name); 1111 1112 st = inb(ioaddr[0] + 7); 1113 if (sb1000_rx(dev)) 1114 lp->rx_error_count++; 1115 #ifdef SB1000_DELAY 1116 udelay(SB1000_DELAY); 1117 #endif /* SB1000_DELAY */ 1118 sb1000_issue_read_command(ioaddr, name); 1119 if (st & 0x01) { 1120 sb1000_error_dpc(dev); 1121 sb1000_issue_read_command(ioaddr, name); 1122 } 1123 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) { 1124 sb1000_wait_for_ready_clear(ioaddr, name); 1125 sb1000_send_command(ioaddr, name, Command0); 1126 sb1000_wait_for_ready(ioaddr, name); 1127 sb1000_issue_read_command(ioaddr, name); 1128 } 1129 if (lp->rx_error_count >= MaxRxErrorCount) { 1130 sb1000_wait_for_ready_clear(ioaddr, name); 1131 sb1000_send_command(ioaddr, name, Command1); 1132 sb1000_wait_for_ready(ioaddr, name); 1133 sb1000_issue_read_command(ioaddr, name); 1134 lp->rx_error_count = 0; 1135 } 1136 1137 return IRQ_HANDLED; 1138 } 1139 1140 static int sb1000_close(struct net_device *dev) 1141 { 1142 int i; 1143 int ioaddr[2]; 1144 struct sb1000_private *lp = netdev_priv(dev); 1145 1146 if (sb1000_debug > 2) 1147 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name); 1148 1149 netif_stop_queue(dev); 1150 1151 ioaddr[0] = dev->base_addr; 1152 /* mem_start holds the second I/O address */ 1153 ioaddr[1] = dev->mem_start; 1154 1155 free_irq(dev->irq, dev); 1156 /* If we don't do this, we can't re-insmod it later. */ 1157 release_region(ioaddr[1], SB1000_IO_EXTENT); 1158 release_region(ioaddr[0], SB1000_IO_EXTENT); 1159 1160 /* free rx_skb's if needed */ 1161 for (i=0; i<4; i++) { 1162 if (lp->rx_skb[i]) { 1163 dev_kfree_skb(lp->rx_skb[i]); 1164 } 1165 } 1166 return 0; 1167 } 1168 1169 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>"); 1170 MODULE_DESCRIPTION("General Instruments SB1000 driver"); 1171 MODULE_LICENSE("GPL"); 1172 1173 module_pnp_driver(sb1000_driver); 1174