1 /* sb1000.c: A General Instruments SB1000 driver for linux. */ 2 /* 3 Written 1998 by Franco Venturi. 4 5 Copyright 1998 by Franco Venturi. 6 Copyright 1994,1995 by Donald Becker. 7 Copyright 1993 United States Government as represented by the 8 Director, National Security Agency. 9 10 This driver is for the General Instruments SB1000 (internal SURFboard) 11 12 The author may be reached as fventuri@mediaone.net 13 14 This program is free software; you can redistribute it 15 and/or modify it under the terms of the GNU General 16 Public License as published by the Free Software 17 Foundation; either version 2 of the License, or (at 18 your option) any later version. 19 20 Changes: 21 22 981115 Steven Hirsch <shirsch@adelphia.net> 23 24 Linus changed the timer interface. Should work on all recent 25 development kernels. 26 27 980608 Steven Hirsch <shirsch@adelphia.net> 28 29 Small changes to make it work with 2.1.x kernels. Hopefully, 30 nothing major will change before official release of Linux 2.2. 31 32 Merged with 2.2 - Alan Cox 33 */ 34 35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n"; 36 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/string.h> 40 #include <linux/interrupt.h> 41 #include <linux/errno.h> 42 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */ 43 #include <linux/in.h> 44 #include <linux/slab.h> 45 #include <linux/ioport.h> 46 #include <linux/netdevice.h> 47 #include <linux/if_arp.h> 48 #include <linux/skbuff.h> 49 #include <linux/delay.h> /* for udelay() */ 50 #include <linux/etherdevice.h> 51 #include <linux/pnp.h> 52 #include <linux/init.h> 53 #include <linux/bitops.h> 54 55 #include <asm/io.h> 56 #include <asm/processor.h> 57 #include <asm/uaccess.h> 58 59 #ifdef SB1000_DEBUG 60 static int sb1000_debug = SB1000_DEBUG; 61 #else 62 static const int sb1000_debug = 1; 63 #endif 64 65 static const int SB1000_IO_EXTENT = 8; 66 /* SB1000 Maximum Receive Unit */ 67 static const int SB1000_MRU = 1500; /* octects */ 68 69 #define NPIDS 4 70 struct sb1000_private { 71 struct sk_buff *rx_skb[NPIDS]; 72 short rx_dlen[NPIDS]; 73 unsigned int rx_frames; 74 short rx_error_count; 75 short rx_error_dpc_count; 76 unsigned char rx_session_id[NPIDS]; 77 unsigned char rx_frame_id[NPIDS]; 78 unsigned char rx_pkt_type[NPIDS]; 79 }; 80 81 /* prototypes for Linux interface */ 82 extern int sb1000_probe(struct net_device *dev); 83 static int sb1000_open(struct net_device *dev); 84 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd); 85 static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev); 86 static irqreturn_t sb1000_interrupt(int irq, void *dev_id); 87 static int sb1000_close(struct net_device *dev); 88 89 90 /* SB1000 hardware routines to be used during open/configuration phases */ 91 static int card_wait_for_busy_clear(const int ioaddr[], 92 const char* name); 93 static int card_wait_for_ready(const int ioaddr[], const char* name, 94 unsigned char in[]); 95 static int card_send_command(const int ioaddr[], const char* name, 96 const unsigned char out[], unsigned char in[]); 97 98 /* SB1000 hardware routines to be used during frame rx interrupt */ 99 static int sb1000_wait_for_ready(const int ioaddr[], const char* name); 100 static int sb1000_wait_for_ready_clear(const int ioaddr[], 101 const char* name); 102 static void sb1000_send_command(const int ioaddr[], const char* name, 103 const unsigned char out[]); 104 static void sb1000_read_status(const int ioaddr[], unsigned char in[]); 105 static void sb1000_issue_read_command(const int ioaddr[], 106 const char* name); 107 108 /* SB1000 commands for open/configuration */ 109 static int sb1000_reset(const int ioaddr[], const char* name); 110 static int sb1000_check_CRC(const int ioaddr[], const char* name); 111 static inline int sb1000_start_get_set_command(const int ioaddr[], 112 const char* name); 113 static int sb1000_end_get_set_command(const int ioaddr[], 114 const char* name); 115 static int sb1000_activate(const int ioaddr[], const char* name); 116 static int sb1000_get_firmware_version(const int ioaddr[], 117 const char* name, unsigned char version[], int do_end); 118 static int sb1000_get_frequency(const int ioaddr[], const char* name, 119 int* frequency); 120 static int sb1000_set_frequency(const int ioaddr[], const char* name, 121 int frequency); 122 static int sb1000_get_PIDs(const int ioaddr[], const char* name, 123 short PID[]); 124 static int sb1000_set_PIDs(const int ioaddr[], const char* name, 125 const short PID[]); 126 127 /* SB1000 commands for frame rx interrupt */ 128 static int sb1000_rx(struct net_device *dev); 129 static void sb1000_error_dpc(struct net_device *dev); 130 131 static const struct pnp_device_id sb1000_pnp_ids[] = { 132 { "GIC1000", 0 }, 133 { "", 0 } 134 }; 135 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids); 136 137 static const struct net_device_ops sb1000_netdev_ops = { 138 .ndo_open = sb1000_open, 139 .ndo_start_xmit = sb1000_start_xmit, 140 .ndo_do_ioctl = sb1000_dev_ioctl, 141 .ndo_stop = sb1000_close, 142 .ndo_change_mtu = eth_change_mtu, 143 .ndo_set_mac_address = eth_mac_addr, 144 .ndo_validate_addr = eth_validate_addr, 145 }; 146 147 static int 148 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id) 149 { 150 struct net_device *dev; 151 unsigned short ioaddr[2], irq; 152 unsigned int serial_number; 153 int error = -ENODEV; 154 155 if (pnp_device_attach(pdev) < 0) 156 return -ENODEV; 157 if (pnp_activate_dev(pdev) < 0) 158 goto out_detach; 159 160 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1)) 161 goto out_disable; 162 if (!pnp_irq_valid(pdev, 0)) 163 goto out_disable; 164 165 serial_number = pdev->card->serial; 166 167 ioaddr[0] = pnp_port_start(pdev, 0); 168 ioaddr[1] = pnp_port_start(pdev, 0); 169 170 irq = pnp_irq(pdev, 0); 171 172 if (!request_region(ioaddr[0], 16, "sb1000")) 173 goto out_disable; 174 if (!request_region(ioaddr[1], 16, "sb1000")) 175 goto out_release_region0; 176 177 dev = alloc_etherdev(sizeof(struct sb1000_private)); 178 if (!dev) { 179 error = -ENOMEM; 180 goto out_release_regions; 181 } 182 183 184 dev->base_addr = ioaddr[0]; 185 /* mem_start holds the second I/O address */ 186 dev->mem_start = ioaddr[1]; 187 dev->irq = irq; 188 189 if (sb1000_debug > 0) 190 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), " 191 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr, 192 dev->mem_start, serial_number, dev->irq); 193 194 /* 195 * The SB1000 is an rx-only cable modem device. The uplink is a modem 196 * and we do not want to arp on it. 197 */ 198 dev->flags = IFF_POINTOPOINT|IFF_NOARP; 199 200 SET_NETDEV_DEV(dev, &pdev->dev); 201 202 if (sb1000_debug > 0) 203 printk(KERN_NOTICE "%s", version); 204 205 dev->netdev_ops = &sb1000_netdev_ops; 206 207 /* hardware address is 0:0:serial_number */ 208 dev->dev_addr[2] = serial_number >> 24 & 0xff; 209 dev->dev_addr[3] = serial_number >> 16 & 0xff; 210 dev->dev_addr[4] = serial_number >> 8 & 0xff; 211 dev->dev_addr[5] = serial_number >> 0 & 0xff; 212 213 pnp_set_drvdata(pdev, dev); 214 215 error = register_netdev(dev); 216 if (error) 217 goto out_free_netdev; 218 return 0; 219 220 out_free_netdev: 221 free_netdev(dev); 222 out_release_regions: 223 release_region(ioaddr[1], 16); 224 out_release_region0: 225 release_region(ioaddr[0], 16); 226 out_disable: 227 pnp_disable_dev(pdev); 228 out_detach: 229 pnp_device_detach(pdev); 230 return error; 231 } 232 233 static void 234 sb1000_remove_one(struct pnp_dev *pdev) 235 { 236 struct net_device *dev = pnp_get_drvdata(pdev); 237 238 unregister_netdev(dev); 239 release_region(dev->base_addr, 16); 240 release_region(dev->mem_start, 16); 241 free_netdev(dev); 242 } 243 244 static struct pnp_driver sb1000_driver = { 245 .name = "sb1000", 246 .id_table = sb1000_pnp_ids, 247 .probe = sb1000_probe_one, 248 .remove = sb1000_remove_one, 249 }; 250 251 252 /* 253 * SB1000 hardware routines to be used during open/configuration phases 254 */ 255 256 static const int TimeOutJiffies = (875 * HZ) / 100; 257 258 /* Card Wait For Busy Clear (cannot be used during an interrupt) */ 259 static int 260 card_wait_for_busy_clear(const int ioaddr[], const char* name) 261 { 262 unsigned char a; 263 unsigned long timeout; 264 265 a = inb(ioaddr[0] + 7); 266 timeout = jiffies + TimeOutJiffies; 267 while (a & 0x80 || a & 0x40) { 268 /* a little sleep */ 269 yield(); 270 271 a = inb(ioaddr[0] + 7); 272 if (time_after_eq(jiffies, timeout)) { 273 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n", 274 name); 275 return -ETIME; 276 } 277 } 278 279 return 0; 280 } 281 282 /* Card Wait For Ready (cannot be used during an interrupt) */ 283 static int 284 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[]) 285 { 286 unsigned char a; 287 unsigned long timeout; 288 289 a = inb(ioaddr[1] + 6); 290 timeout = jiffies + TimeOutJiffies; 291 while (a & 0x80 || !(a & 0x40)) { 292 /* a little sleep */ 293 yield(); 294 295 a = inb(ioaddr[1] + 6); 296 if (time_after_eq(jiffies, timeout)) { 297 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n", 298 name); 299 return -ETIME; 300 } 301 } 302 303 in[1] = inb(ioaddr[0] + 1); 304 in[2] = inb(ioaddr[0] + 2); 305 in[3] = inb(ioaddr[0] + 3); 306 in[4] = inb(ioaddr[0] + 4); 307 in[0] = inb(ioaddr[0] + 5); 308 in[6] = inb(ioaddr[0] + 6); 309 in[5] = inb(ioaddr[1] + 6); 310 return 0; 311 } 312 313 /* Card Send Command (cannot be used during an interrupt) */ 314 static int 315 card_send_command(const int ioaddr[], const char* name, 316 const unsigned char out[], unsigned char in[]) 317 { 318 int status, x; 319 320 if ((status = card_wait_for_busy_clear(ioaddr, name))) 321 return status; 322 outb(0xa0, ioaddr[0] + 6); 323 outb(out[2], ioaddr[0] + 1); 324 outb(out[3], ioaddr[0] + 2); 325 outb(out[4], ioaddr[0] + 3); 326 outb(out[5], ioaddr[0] + 4); 327 outb(out[1], ioaddr[0] + 5); 328 outb(0xa0, ioaddr[0] + 6); 329 outb(out[0], ioaddr[0] + 7); 330 if (out[0] != 0x20 && out[0] != 0x30) { 331 if ((status = card_wait_for_ready(ioaddr, name, in))) 332 return status; 333 inb(ioaddr[0] + 7); 334 if (sb1000_debug > 3) 335 printk(KERN_DEBUG "%s: card_send_command " 336 "out: %02x%02x%02x%02x%02x%02x " 337 "in: %02x%02x%02x%02x%02x%02x%02x\n", name, 338 out[0], out[1], out[2], out[3], out[4], out[5], 339 in[0], in[1], in[2], in[3], in[4], in[5], in[6]); 340 } else { 341 if (sb1000_debug > 3) 342 printk(KERN_DEBUG "%s: card_send_command " 343 "out: %02x%02x%02x%02x%02x%02x\n", name, 344 out[0], out[1], out[2], out[3], out[4], out[5]); 345 } 346 347 if (out[1] == 0x1b) { 348 x = (out[2] == 0x02); 349 } else { 350 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80)) 351 return -EIO; 352 } 353 return 0; 354 } 355 356 357 /* 358 * SB1000 hardware routines to be used during frame rx interrupt 359 */ 360 static const int Sb1000TimeOutJiffies = 7 * HZ; 361 362 /* Card Wait For Ready (to be used during frame rx) */ 363 static int 364 sb1000_wait_for_ready(const int ioaddr[], const char* name) 365 { 366 unsigned long timeout; 367 368 timeout = jiffies + Sb1000TimeOutJiffies; 369 while (inb(ioaddr[1] + 6) & 0x80) { 370 if (time_after_eq(jiffies, timeout)) { 371 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 372 name); 373 return -ETIME; 374 } 375 } 376 timeout = jiffies + Sb1000TimeOutJiffies; 377 while (!(inb(ioaddr[1] + 6) & 0x40)) { 378 if (time_after_eq(jiffies, timeout)) { 379 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 380 name); 381 return -ETIME; 382 } 383 } 384 inb(ioaddr[0] + 7); 385 return 0; 386 } 387 388 /* Card Wait For Ready Clear (to be used during frame rx) */ 389 static int 390 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name) 391 { 392 unsigned long timeout; 393 394 timeout = jiffies + Sb1000TimeOutJiffies; 395 while (inb(ioaddr[1] + 6) & 0x80) { 396 if (time_after_eq(jiffies, timeout)) { 397 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 398 name); 399 return -ETIME; 400 } 401 } 402 timeout = jiffies + Sb1000TimeOutJiffies; 403 while (inb(ioaddr[1] + 6) & 0x40) { 404 if (time_after_eq(jiffies, timeout)) { 405 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 406 name); 407 return -ETIME; 408 } 409 } 410 return 0; 411 } 412 413 /* Card Send Command (to be used during frame rx) */ 414 static void 415 sb1000_send_command(const int ioaddr[], const char* name, 416 const unsigned char out[]) 417 { 418 outb(out[2], ioaddr[0] + 1); 419 outb(out[3], ioaddr[0] + 2); 420 outb(out[4], ioaddr[0] + 3); 421 outb(out[5], ioaddr[0] + 4); 422 outb(out[1], ioaddr[0] + 5); 423 outb(out[0], ioaddr[0] + 7); 424 if (sb1000_debug > 3) 425 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x" 426 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]); 427 return; 428 } 429 430 /* Card Read Status (to be used during frame rx) */ 431 static void 432 sb1000_read_status(const int ioaddr[], unsigned char in[]) 433 { 434 in[1] = inb(ioaddr[0] + 1); 435 in[2] = inb(ioaddr[0] + 2); 436 in[3] = inb(ioaddr[0] + 3); 437 in[4] = inb(ioaddr[0] + 4); 438 in[0] = inb(ioaddr[0] + 5); 439 return; 440 } 441 442 /* Issue Read Command (to be used during frame rx) */ 443 static void 444 sb1000_issue_read_command(const int ioaddr[], const char* name) 445 { 446 static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00}; 447 448 sb1000_wait_for_ready_clear(ioaddr, name); 449 outb(0xa0, ioaddr[0] + 6); 450 sb1000_send_command(ioaddr, name, Command0); 451 return; 452 } 453 454 455 /* 456 * SB1000 commands for open/configuration 457 */ 458 /* reset SB1000 card */ 459 static int 460 sb1000_reset(const int ioaddr[], const char* name) 461 { 462 static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 463 464 unsigned char st[7]; 465 int port, status; 466 467 port = ioaddr[1] + 6; 468 outb(0x4, port); 469 inb(port); 470 udelay(1000); 471 outb(0x0, port); 472 inb(port); 473 ssleep(1); 474 outb(0x4, port); 475 inb(port); 476 udelay(1000); 477 outb(0x0, port); 478 inb(port); 479 udelay(0); 480 481 if ((status = card_send_command(ioaddr, name, Command0, st))) 482 return status; 483 if (st[3] != 0xf0) 484 return -EIO; 485 return 0; 486 } 487 488 /* check SB1000 firmware CRC */ 489 static int 490 sb1000_check_CRC(const int ioaddr[], const char* name) 491 { 492 static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00}; 493 494 unsigned char st[7]; 495 int crc, status; 496 497 /* check CRC */ 498 if ((status = card_send_command(ioaddr, name, Command0, st))) 499 return status; 500 if (st[1] != st[3] || st[2] != st[4]) 501 return -EIO; 502 crc = st[1] << 8 | st[2]; 503 return 0; 504 } 505 506 static inline int 507 sb1000_start_get_set_command(const int ioaddr[], const char* name) 508 { 509 static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00}; 510 511 unsigned char st[7]; 512 513 return card_send_command(ioaddr, name, Command0, st); 514 } 515 516 static int 517 sb1000_end_get_set_command(const int ioaddr[], const char* name) 518 { 519 static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00}; 520 static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00}; 521 522 unsigned char st[7]; 523 int status; 524 525 if ((status = card_send_command(ioaddr, name, Command0, st))) 526 return status; 527 return card_send_command(ioaddr, name, Command1, st); 528 } 529 530 static int 531 sb1000_activate(const int ioaddr[], const char* name) 532 { 533 static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00}; 534 static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 535 536 unsigned char st[7]; 537 int status; 538 539 ssleep(1); 540 if ((status = card_send_command(ioaddr, name, Command0, st))) 541 return status; 542 if ((status = card_send_command(ioaddr, name, Command1, st))) 543 return status; 544 if (st[3] != 0xf1) { 545 if ((status = sb1000_start_get_set_command(ioaddr, name))) 546 return status; 547 return -EIO; 548 } 549 udelay(1000); 550 return sb1000_start_get_set_command(ioaddr, name); 551 } 552 553 /* get SB1000 firmware version */ 554 static int 555 sb1000_get_firmware_version(const int ioaddr[], const char* name, 556 unsigned char version[], int do_end) 557 { 558 static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00}; 559 560 unsigned char st[7]; 561 int status; 562 563 if ((status = sb1000_start_get_set_command(ioaddr, name))) 564 return status; 565 if ((status = card_send_command(ioaddr, name, Command0, st))) 566 return status; 567 if (st[0] != 0xa3) 568 return -EIO; 569 version[0] = st[1]; 570 version[1] = st[2]; 571 if (do_end) 572 return sb1000_end_get_set_command(ioaddr, name); 573 else 574 return 0; 575 } 576 577 /* get SB1000 frequency */ 578 static int 579 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency) 580 { 581 static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00}; 582 583 unsigned char st[7]; 584 int status; 585 586 udelay(1000); 587 if ((status = sb1000_start_get_set_command(ioaddr, name))) 588 return status; 589 if ((status = card_send_command(ioaddr, name, Command0, st))) 590 return status; 591 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4]; 592 return sb1000_end_get_set_command(ioaddr, name); 593 } 594 595 /* set SB1000 frequency */ 596 static int 597 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency) 598 { 599 unsigned char st[7]; 600 int status; 601 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00}; 602 603 const int FrequencyLowerLimit = 57000; 604 const int FrequencyUpperLimit = 804000; 605 606 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) { 607 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range " 608 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit, 609 FrequencyUpperLimit); 610 return -EINVAL; 611 } 612 udelay(1000); 613 if ((status = sb1000_start_get_set_command(ioaddr, name))) 614 return status; 615 Command0[5] = frequency & 0xff; 616 frequency >>= 8; 617 Command0[4] = frequency & 0xff; 618 frequency >>= 8; 619 Command0[3] = frequency & 0xff; 620 frequency >>= 8; 621 Command0[2] = frequency & 0xff; 622 return card_send_command(ioaddr, name, Command0, st); 623 } 624 625 /* get SB1000 PIDs */ 626 static int 627 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[]) 628 { 629 static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00}; 630 static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00}; 631 static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00}; 632 static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00}; 633 634 unsigned char st[7]; 635 int status; 636 637 udelay(1000); 638 if ((status = sb1000_start_get_set_command(ioaddr, name))) 639 return status; 640 641 if ((status = card_send_command(ioaddr, name, Command0, st))) 642 return status; 643 PID[0] = st[1] << 8 | st[2]; 644 645 if ((status = card_send_command(ioaddr, name, Command1, st))) 646 return status; 647 PID[1] = st[1] << 8 | st[2]; 648 649 if ((status = card_send_command(ioaddr, name, Command2, st))) 650 return status; 651 PID[2] = st[1] << 8 | st[2]; 652 653 if ((status = card_send_command(ioaddr, name, Command3, st))) 654 return status; 655 PID[3] = st[1] << 8 | st[2]; 656 657 return sb1000_end_get_set_command(ioaddr, name); 658 } 659 660 /* set SB1000 PIDs */ 661 static int 662 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[]) 663 { 664 static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 665 666 unsigned char st[7]; 667 short p; 668 int status; 669 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00}; 670 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00}; 671 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00}; 672 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00}; 673 674 udelay(1000); 675 if ((status = sb1000_start_get_set_command(ioaddr, name))) 676 return status; 677 678 p = PID[0]; 679 Command0[3] = p & 0xff; 680 p >>= 8; 681 Command0[2] = p & 0xff; 682 if ((status = card_send_command(ioaddr, name, Command0, st))) 683 return status; 684 685 p = PID[1]; 686 Command1[3] = p & 0xff; 687 p >>= 8; 688 Command1[2] = p & 0xff; 689 if ((status = card_send_command(ioaddr, name, Command1, st))) 690 return status; 691 692 p = PID[2]; 693 Command2[3] = p & 0xff; 694 p >>= 8; 695 Command2[2] = p & 0xff; 696 if ((status = card_send_command(ioaddr, name, Command2, st))) 697 return status; 698 699 p = PID[3]; 700 Command3[3] = p & 0xff; 701 p >>= 8; 702 Command3[2] = p & 0xff; 703 if ((status = card_send_command(ioaddr, name, Command3, st))) 704 return status; 705 706 if ((status = card_send_command(ioaddr, name, Command4, st))) 707 return status; 708 return sb1000_end_get_set_command(ioaddr, name); 709 } 710 711 712 static void 713 sb1000_print_status_buffer(const char* name, unsigned char st[], 714 unsigned char buffer[], int size) 715 { 716 int i, j, k; 717 718 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]); 719 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) { 720 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d " 721 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29], 722 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41], 723 buffer[46] << 8 | buffer[47], 724 buffer[42], buffer[43], buffer[44], buffer[45], 725 buffer[48] << 8 | buffer[49]); 726 } else { 727 for (i = 0, k = 0; i < (size + 7) / 8; i++) { 728 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:"); 729 for (j = 0; j < 8 && k < size; j++, k++) 730 printk(" %02x", buffer[k]); 731 printk("\n"); 732 } 733 } 734 return; 735 } 736 737 /* 738 * SB1000 commands for frame rx interrupt 739 */ 740 /* receive a single frame and assemble datagram 741 * (this is the heart of the interrupt routine) 742 */ 743 static int 744 sb1000_rx(struct net_device *dev) 745 { 746 747 #define FRAMESIZE 184 748 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id; 749 short dlen; 750 int ioaddr, ns; 751 unsigned int skbsize; 752 struct sk_buff *skb; 753 struct sb1000_private *lp = netdev_priv(dev); 754 struct net_device_stats *stats = &dev->stats; 755 756 /* SB1000 frame constants */ 757 const int FrameSize = FRAMESIZE; 758 const int NewDatagramHeaderSkip = 8; 759 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18; 760 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize; 761 const int ContDatagramHeaderSkip = 7; 762 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1; 763 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize; 764 const int TrailerSize = 4; 765 766 ioaddr = dev->base_addr; 767 768 insw(ioaddr, (unsigned short*) st, 1); 769 #ifdef XXXDEBUG 770 printk("cm0: received: %02x %02x\n", st[0], st[1]); 771 #endif /* XXXDEBUG */ 772 lp->rx_frames++; 773 774 /* decide if it is a good or bad frame */ 775 for (ns = 0; ns < NPIDS; ns++) { 776 session_id = lp->rx_session_id[ns]; 777 frame_id = lp->rx_frame_id[ns]; 778 if (st[0] == session_id) { 779 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) { 780 goto good_frame; 781 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) { 782 goto skipped_frame; 783 } else { 784 goto bad_frame; 785 } 786 } else if (st[0] == (session_id | 0x40)) { 787 if ((st[1] & 0xf0) == 0x30) { 788 goto skipped_frame; 789 } else { 790 goto bad_frame; 791 } 792 } 793 } 794 goto bad_frame; 795 796 skipped_frame: 797 stats->rx_frame_errors++; 798 skb = lp->rx_skb[ns]; 799 if (sb1000_debug > 1) 800 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x " 801 "expecting %02x %02x\n", dev->name, st[0], st[1], 802 skb ? session_id : session_id | 0x40, frame_id); 803 if (skb) { 804 dev_kfree_skb(skb); 805 skb = NULL; 806 } 807 808 good_frame: 809 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f); 810 /* new datagram */ 811 if (st[0] & 0x40) { 812 /* get data length */ 813 insw(ioaddr, buffer, NewDatagramHeaderSize / 2); 814 #ifdef XXXDEBUG 815 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]); 816 #endif /* XXXDEBUG */ 817 if (buffer[0] != NewDatagramHeaderSkip) { 818 if (sb1000_debug > 1) 819 printk(KERN_WARNING "%s: new datagram header skip error: " 820 "got %02x expecting %02x\n", dev->name, buffer[0], 821 NewDatagramHeaderSkip); 822 stats->rx_length_errors++; 823 insw(ioaddr, buffer, NewDatagramDataSize / 2); 824 goto bad_frame_next; 825 } 826 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 | 827 buffer[NewDatagramHeaderSkip + 4]) - 17; 828 if (dlen > SB1000_MRU) { 829 if (sb1000_debug > 1) 830 printk(KERN_WARNING "%s: datagram length (%d) greater " 831 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU); 832 stats->rx_length_errors++; 833 insw(ioaddr, buffer, NewDatagramDataSize / 2); 834 goto bad_frame_next; 835 } 836 lp->rx_dlen[ns] = dlen; 837 /* compute size to allocate for datagram */ 838 skbsize = dlen + FrameSize; 839 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) { 840 if (sb1000_debug > 1) 841 printk(KERN_WARNING "%s: can't allocate %d bytes long " 842 "skbuff\n", dev->name, skbsize); 843 stats->rx_dropped++; 844 insw(ioaddr, buffer, NewDatagramDataSize / 2); 845 goto dropped_frame; 846 } 847 skb->dev = dev; 848 skb_reset_mac_header(skb); 849 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16]; 850 insw(ioaddr, skb_put(skb, NewDatagramDataSize), 851 NewDatagramDataSize / 2); 852 lp->rx_skb[ns] = skb; 853 } else { 854 /* continuation of previous datagram */ 855 insw(ioaddr, buffer, ContDatagramHeaderSize / 2); 856 if (buffer[0] != ContDatagramHeaderSkip) { 857 if (sb1000_debug > 1) 858 printk(KERN_WARNING "%s: cont datagram header skip error: " 859 "got %02x expecting %02x\n", dev->name, buffer[0], 860 ContDatagramHeaderSkip); 861 stats->rx_length_errors++; 862 insw(ioaddr, buffer, ContDatagramDataSize / 2); 863 goto bad_frame_next; 864 } 865 skb = lp->rx_skb[ns]; 866 insw(ioaddr, skb_put(skb, ContDatagramDataSize), 867 ContDatagramDataSize / 2); 868 dlen = lp->rx_dlen[ns]; 869 } 870 if (skb->len < dlen + TrailerSize) { 871 lp->rx_session_id[ns] &= ~0x40; 872 return 0; 873 } 874 875 /* datagram completed: send to upper level */ 876 skb_trim(skb, dlen); 877 netif_rx(skb); 878 stats->rx_bytes+=dlen; 879 stats->rx_packets++; 880 lp->rx_skb[ns] = NULL; 881 lp->rx_session_id[ns] |= 0x40; 882 return 0; 883 884 bad_frame: 885 insw(ioaddr, buffer, FrameSize / 2); 886 if (sb1000_debug > 1) 887 printk(KERN_WARNING "%s: frame error: got %02x %02x\n", 888 dev->name, st[0], st[1]); 889 stats->rx_frame_errors++; 890 bad_frame_next: 891 if (sb1000_debug > 2) 892 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize); 893 dropped_frame: 894 stats->rx_errors++; 895 if (ns < NPIDS) { 896 if ((skb = lp->rx_skb[ns])) { 897 dev_kfree_skb(skb); 898 lp->rx_skb[ns] = NULL; 899 } 900 lp->rx_session_id[ns] |= 0x40; 901 } 902 return -1; 903 } 904 905 static void 906 sb1000_error_dpc(struct net_device *dev) 907 { 908 static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00}; 909 910 char *name; 911 unsigned char st[5]; 912 int ioaddr[2]; 913 struct sb1000_private *lp = netdev_priv(dev); 914 const int ErrorDpcCounterInitialize = 200; 915 916 ioaddr[0] = dev->base_addr; 917 /* mem_start holds the second I/O address */ 918 ioaddr[1] = dev->mem_start; 919 name = dev->name; 920 921 sb1000_wait_for_ready_clear(ioaddr, name); 922 sb1000_send_command(ioaddr, name, Command0); 923 sb1000_wait_for_ready(ioaddr, name); 924 sb1000_read_status(ioaddr, st); 925 if (st[1] & 0x10) 926 lp->rx_error_dpc_count = ErrorDpcCounterInitialize; 927 return; 928 } 929 930 931 /* 932 * Linux interface functions 933 */ 934 static int 935 sb1000_open(struct net_device *dev) 936 { 937 char *name; 938 int ioaddr[2], status; 939 struct sb1000_private *lp = netdev_priv(dev); 940 const unsigned short FirmwareVersion[] = {0x01, 0x01}; 941 942 ioaddr[0] = dev->base_addr; 943 /* mem_start holds the second I/O address */ 944 ioaddr[1] = dev->mem_start; 945 name = dev->name; 946 947 /* initialize sb1000 */ 948 if ((status = sb1000_reset(ioaddr, name))) 949 return status; 950 ssleep(1); 951 if ((status = sb1000_check_CRC(ioaddr, name))) 952 return status; 953 954 /* initialize private data before board can catch interrupts */ 955 lp->rx_skb[0] = NULL; 956 lp->rx_skb[1] = NULL; 957 lp->rx_skb[2] = NULL; 958 lp->rx_skb[3] = NULL; 959 lp->rx_dlen[0] = 0; 960 lp->rx_dlen[1] = 0; 961 lp->rx_dlen[2] = 0; 962 lp->rx_dlen[3] = 0; 963 lp->rx_frames = 0; 964 lp->rx_error_count = 0; 965 lp->rx_error_dpc_count = 0; 966 lp->rx_session_id[0] = 0x50; 967 lp->rx_session_id[0] = 0x48; 968 lp->rx_session_id[0] = 0x44; 969 lp->rx_session_id[0] = 0x42; 970 lp->rx_frame_id[0] = 0; 971 lp->rx_frame_id[1] = 0; 972 lp->rx_frame_id[2] = 0; 973 lp->rx_frame_id[3] = 0; 974 if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) { 975 return -EAGAIN; 976 } 977 978 if (sb1000_debug > 2) 979 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq); 980 981 /* Activate board and check firmware version */ 982 udelay(1000); 983 if ((status = sb1000_activate(ioaddr, name))) 984 return status; 985 udelay(0); 986 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0))) 987 return status; 988 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1]) 989 printk(KERN_WARNING "%s: found firmware version %x.%02x " 990 "(should be %x.%02x)\n", name, version[0], version[1], 991 FirmwareVersion[0], FirmwareVersion[1]); 992 993 994 netif_start_queue(dev); 995 return 0; /* Always succeed */ 996 } 997 998 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 999 { 1000 char* name; 1001 unsigned char version[2]; 1002 short PID[4]; 1003 int ioaddr[2], status, frequency; 1004 unsigned int stats[5]; 1005 struct sb1000_private *lp = netdev_priv(dev); 1006 1007 if (!(dev && dev->flags & IFF_UP)) 1008 return -ENODEV; 1009 1010 ioaddr[0] = dev->base_addr; 1011 /* mem_start holds the second I/O address */ 1012 ioaddr[1] = dev->mem_start; 1013 name = dev->name; 1014 1015 switch (cmd) { 1016 case SIOCGCMSTATS: /* get statistics */ 1017 stats[0] = dev->stats.rx_bytes; 1018 stats[1] = lp->rx_frames; 1019 stats[2] = dev->stats.rx_packets; 1020 stats[3] = dev->stats.rx_errors; 1021 stats[4] = dev->stats.rx_dropped; 1022 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats))) 1023 return -EFAULT; 1024 status = 0; 1025 break; 1026 1027 case SIOCGCMFIRMWARE: /* get firmware version */ 1028 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1))) 1029 return status; 1030 if(copy_to_user(ifr->ifr_data, version, sizeof(version))) 1031 return -EFAULT; 1032 break; 1033 1034 case SIOCGCMFREQUENCY: /* get frequency */ 1035 if ((status = sb1000_get_frequency(ioaddr, name, &frequency))) 1036 return status; 1037 if(put_user(frequency, (int __user *) ifr->ifr_data)) 1038 return -EFAULT; 1039 break; 1040 1041 case SIOCSCMFREQUENCY: /* set frequency */ 1042 if (!capable(CAP_NET_ADMIN)) 1043 return -EPERM; 1044 if(get_user(frequency, (int __user *) ifr->ifr_data)) 1045 return -EFAULT; 1046 if ((status = sb1000_set_frequency(ioaddr, name, frequency))) 1047 return status; 1048 break; 1049 1050 case SIOCGCMPIDS: /* get PIDs */ 1051 if ((status = sb1000_get_PIDs(ioaddr, name, PID))) 1052 return status; 1053 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID))) 1054 return -EFAULT; 1055 break; 1056 1057 case SIOCSCMPIDS: /* set PIDs */ 1058 if (!capable(CAP_NET_ADMIN)) 1059 return -EPERM; 1060 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID))) 1061 return -EFAULT; 1062 if ((status = sb1000_set_PIDs(ioaddr, name, PID))) 1063 return status; 1064 /* set session_id, frame_id and pkt_type too */ 1065 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f); 1066 lp->rx_session_id[1] = 0x48; 1067 lp->rx_session_id[2] = 0x44; 1068 lp->rx_session_id[3] = 0x42; 1069 lp->rx_frame_id[0] = 0; 1070 lp->rx_frame_id[1] = 0; 1071 lp->rx_frame_id[2] = 0; 1072 lp->rx_frame_id[3] = 0; 1073 break; 1074 1075 default: 1076 status = -EINVAL; 1077 break; 1078 } 1079 return status; 1080 } 1081 1082 /* transmit function: do nothing since SB1000 can't send anything out */ 1083 static int 1084 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1085 { 1086 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name); 1087 /* sb1000 can't xmit datagrams */ 1088 dev_kfree_skb(skb); 1089 return 0; 1090 } 1091 1092 /* SB1000 interrupt handler. */ 1093 static irqreturn_t sb1000_interrupt(int irq, void *dev_id) 1094 { 1095 static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00}; 1096 static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 1097 1098 char *name; 1099 unsigned char st; 1100 int ioaddr[2]; 1101 struct net_device *dev = dev_id; 1102 struct sb1000_private *lp = netdev_priv(dev); 1103 1104 const int MaxRxErrorCount = 6; 1105 1106 ioaddr[0] = dev->base_addr; 1107 /* mem_start holds the second I/O address */ 1108 ioaddr[1] = dev->mem_start; 1109 name = dev->name; 1110 1111 /* is it a good interrupt? */ 1112 st = inb(ioaddr[1] + 6); 1113 if (!(st & 0x08 && st & 0x20)) { 1114 return IRQ_NONE; 1115 } 1116 1117 if (sb1000_debug > 3) 1118 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name); 1119 1120 st = inb(ioaddr[0] + 7); 1121 if (sb1000_rx(dev)) 1122 lp->rx_error_count++; 1123 #ifdef SB1000_DELAY 1124 udelay(SB1000_DELAY); 1125 #endif /* SB1000_DELAY */ 1126 sb1000_issue_read_command(ioaddr, name); 1127 if (st & 0x01) { 1128 sb1000_error_dpc(dev); 1129 sb1000_issue_read_command(ioaddr, name); 1130 } 1131 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) { 1132 sb1000_wait_for_ready_clear(ioaddr, name); 1133 sb1000_send_command(ioaddr, name, Command0); 1134 sb1000_wait_for_ready(ioaddr, name); 1135 sb1000_issue_read_command(ioaddr, name); 1136 } 1137 if (lp->rx_error_count >= MaxRxErrorCount) { 1138 sb1000_wait_for_ready_clear(ioaddr, name); 1139 sb1000_send_command(ioaddr, name, Command1); 1140 sb1000_wait_for_ready(ioaddr, name); 1141 sb1000_issue_read_command(ioaddr, name); 1142 lp->rx_error_count = 0; 1143 } 1144 1145 return IRQ_HANDLED; 1146 } 1147 1148 static int sb1000_close(struct net_device *dev) 1149 { 1150 int i; 1151 int ioaddr[2]; 1152 struct sb1000_private *lp = netdev_priv(dev); 1153 1154 if (sb1000_debug > 2) 1155 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name); 1156 1157 netif_stop_queue(dev); 1158 1159 ioaddr[0] = dev->base_addr; 1160 /* mem_start holds the second I/O address */ 1161 ioaddr[1] = dev->mem_start; 1162 1163 free_irq(dev->irq, dev); 1164 /* If we don't do this, we can't re-insmod it later. */ 1165 release_region(ioaddr[1], SB1000_IO_EXTENT); 1166 release_region(ioaddr[0], SB1000_IO_EXTENT); 1167 1168 /* free rx_skb's if needed */ 1169 for (i=0; i<4; i++) { 1170 if (lp->rx_skb[i]) { 1171 dev_kfree_skb(lp->rx_skb[i]); 1172 } 1173 } 1174 return 0; 1175 } 1176 1177 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>"); 1178 MODULE_DESCRIPTION("General Instruments SB1000 driver"); 1179 MODULE_LICENSE("GPL"); 1180 1181 static int __init 1182 sb1000_init(void) 1183 { 1184 return pnp_register_driver(&sb1000_driver); 1185 } 1186 1187 static void __exit 1188 sb1000_exit(void) 1189 { 1190 pnp_unregister_driver(&sb1000_driver); 1191 } 1192 1193 module_init(sb1000_init); 1194 module_exit(sb1000_exit); 1195