xref: /openbmc/linux/drivers/net/sb1000.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3 	Written 1998 by Franco Venturi.
4 
5 	Copyright 1998 by Franco Venturi.
6 	Copyright 1994,1995 by Donald Becker.
7 	Copyright 1993 United States Government as represented by the
8 	Director, National Security Agency.
9 
10 	This driver is for the General Instruments SB1000 (internal SURFboard)
11 
12 	The author may be reached as fventuri@mediaone.net
13 
14 	This program is free software; you can redistribute it
15 	and/or  modify it under  the terms of  the GNU General
16 	Public  License as  published  by  the  Free  Software
17 	Foundation;  either  version 2 of the License, or  (at
18 	your option) any later version.
19 
20 	Changes:
21 
22 	981115 Steven Hirsch <shirsch@adelphia.net>
23 
24 	Linus changed the timer interface.  Should work on all recent
25 	development kernels.
26 
27 	980608 Steven Hirsch <shirsch@adelphia.net>
28 
29 	Small changes to make it work with 2.1.x kernels. Hopefully,
30 	nothing major will change before official release of Linux 2.2.
31 
32 	Merged with 2.2 - Alan Cox
33 */
34 
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
36 
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/string.h>
40 #include <linux/interrupt.h>
41 #include <linux/errno.h>
42 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
43 #include <linux/in.h>
44 #include <linux/slab.h>
45 #include <linux/ioport.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/skbuff.h>
49 #include <linux/delay.h>	/* for udelay() */
50 #include <linux/etherdevice.h>
51 #include <linux/pnp.h>
52 #include <linux/init.h>
53 #include <linux/bitops.h>
54 
55 #include <asm/io.h>
56 #include <asm/processor.h>
57 #include <asm/uaccess.h>
58 
59 #ifdef SB1000_DEBUG
60 static int sb1000_debug = SB1000_DEBUG;
61 #else
62 static const int sb1000_debug = 1;
63 #endif
64 
65 static const int SB1000_IO_EXTENT = 8;
66 /* SB1000 Maximum Receive Unit */
67 static const int SB1000_MRU = 1500; /* octects */
68 
69 #define NPIDS 4
70 struct sb1000_private {
71 	struct sk_buff *rx_skb[NPIDS];
72 	short rx_dlen[NPIDS];
73 	unsigned int rx_frames;
74 	short rx_error_count;
75 	short rx_error_dpc_count;
76 	unsigned char rx_session_id[NPIDS];
77 	unsigned char rx_frame_id[NPIDS];
78 	unsigned char rx_pkt_type[NPIDS];
79 };
80 
81 /* prototypes for Linux interface */
82 extern int sb1000_probe(struct net_device *dev);
83 static int sb1000_open(struct net_device *dev);
84 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
85 static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
86 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
87 static int sb1000_close(struct net_device *dev);
88 
89 
90 /* SB1000 hardware routines to be used during open/configuration phases */
91 static int card_wait_for_busy_clear(const int ioaddr[],
92 	const char* name);
93 static int card_wait_for_ready(const int ioaddr[], const char* name,
94 	unsigned char in[]);
95 static int card_send_command(const int ioaddr[], const char* name,
96 	const unsigned char out[], unsigned char in[]);
97 
98 /* SB1000 hardware routines to be used during frame rx interrupt */
99 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
100 static int sb1000_wait_for_ready_clear(const int ioaddr[],
101 	const char* name);
102 static void sb1000_send_command(const int ioaddr[], const char* name,
103 	const unsigned char out[]);
104 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
105 static void sb1000_issue_read_command(const int ioaddr[],
106 	const char* name);
107 
108 /* SB1000 commands for open/configuration */
109 static int sb1000_reset(const int ioaddr[], const char* name);
110 static int sb1000_check_CRC(const int ioaddr[], const char* name);
111 static inline int sb1000_start_get_set_command(const int ioaddr[],
112 	const char* name);
113 static int sb1000_end_get_set_command(const int ioaddr[],
114 	const char* name);
115 static int sb1000_activate(const int ioaddr[], const char* name);
116 static int sb1000_get_firmware_version(const int ioaddr[],
117 	const char* name, unsigned char version[], int do_end);
118 static int sb1000_get_frequency(const int ioaddr[], const char* name,
119 	int* frequency);
120 static int sb1000_set_frequency(const int ioaddr[], const char* name,
121 	int frequency);
122 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
123 	short PID[]);
124 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
125 	const short PID[]);
126 
127 /* SB1000 commands for frame rx interrupt */
128 static int sb1000_rx(struct net_device *dev);
129 static void sb1000_error_dpc(struct net_device *dev);
130 
131 static const struct pnp_device_id sb1000_pnp_ids[] = {
132 	{ "GIC1000", 0 },
133 	{ "", 0 }
134 };
135 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
136 
137 static int
138 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
139 {
140 	struct net_device *dev;
141 	unsigned short ioaddr[2], irq;
142 	unsigned int serial_number;
143 	int error = -ENODEV;
144 
145 	if (pnp_device_attach(pdev) < 0)
146 		return -ENODEV;
147 	if (pnp_activate_dev(pdev) < 0)
148 		goto out_detach;
149 
150 	if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
151 		goto out_disable;
152 	if (!pnp_irq_valid(pdev, 0))
153 		goto out_disable;
154 
155 	serial_number = pdev->card->serial;
156 
157 	ioaddr[0] = pnp_port_start(pdev, 0);
158 	ioaddr[1] = pnp_port_start(pdev, 0);
159 
160 	irq = pnp_irq(pdev, 0);
161 
162 	if (!request_region(ioaddr[0], 16, "sb1000"))
163 		goto out_disable;
164 	if (!request_region(ioaddr[1], 16, "sb1000"))
165 		goto out_release_region0;
166 
167 	dev = alloc_etherdev(sizeof(struct sb1000_private));
168 	if (!dev) {
169 		error = -ENOMEM;
170 		goto out_release_regions;
171 	}
172 
173 
174 	dev->base_addr = ioaddr[0];
175 	/* mem_start holds the second I/O address */
176 	dev->mem_start = ioaddr[1];
177 	dev->irq = irq;
178 
179 	if (sb1000_debug > 0)
180 		printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
181 			"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
182 			dev->mem_start, serial_number, dev->irq);
183 
184 	/*
185 	 * The SB1000 is an rx-only cable modem device.  The uplink is a modem
186 	 * and we do not want to arp on it.
187 	 */
188 	dev->flags = IFF_POINTOPOINT|IFF_NOARP;
189 
190 	SET_NETDEV_DEV(dev, &pdev->dev);
191 
192 	if (sb1000_debug > 0)
193 		printk(KERN_NOTICE "%s", version);
194 
195 	/* The SB1000-specific entries in the device structure. */
196 	dev->open		= sb1000_open;
197 	dev->do_ioctl		= sb1000_dev_ioctl;
198 	dev->hard_start_xmit	= sb1000_start_xmit;
199 	dev->stop		= sb1000_close;
200 
201 	/* hardware address is 0:0:serial_number */
202 	dev->dev_addr[2]	= serial_number >> 24 & 0xff;
203 	dev->dev_addr[3]	= serial_number >> 16 & 0xff;
204 	dev->dev_addr[4]	= serial_number >>  8 & 0xff;
205 	dev->dev_addr[5]	= serial_number >>  0 & 0xff;
206 
207 	pnp_set_drvdata(pdev, dev);
208 
209 	error = register_netdev(dev);
210 	if (error)
211 		goto out_free_netdev;
212 	return 0;
213 
214  out_free_netdev:
215 	free_netdev(dev);
216  out_release_regions:
217 	release_region(ioaddr[1], 16);
218  out_release_region0:
219 	release_region(ioaddr[0], 16);
220  out_disable:
221 	pnp_disable_dev(pdev);
222  out_detach:
223 	pnp_device_detach(pdev);
224 	return error;
225 }
226 
227 static void
228 sb1000_remove_one(struct pnp_dev *pdev)
229 {
230 	struct net_device *dev = pnp_get_drvdata(pdev);
231 
232 	unregister_netdev(dev);
233 	release_region(dev->base_addr, 16);
234 	release_region(dev->mem_start, 16);
235 	free_netdev(dev);
236 }
237 
238 static struct pnp_driver sb1000_driver = {
239 	.name		= "sb1000",
240 	.id_table	= sb1000_pnp_ids,
241 	.probe		= sb1000_probe_one,
242 	.remove		= sb1000_remove_one,
243 };
244 
245 
246 /*
247  * SB1000 hardware routines to be used during open/configuration phases
248  */
249 
250 static const int TimeOutJiffies = (875 * HZ) / 100;
251 
252 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
253 static int
254 card_wait_for_busy_clear(const int ioaddr[], const char* name)
255 {
256 	unsigned char a;
257 	unsigned long timeout;
258 
259 	a = inb(ioaddr[0] + 7);
260 	timeout = jiffies + TimeOutJiffies;
261 	while (a & 0x80 || a & 0x40) {
262 		/* a little sleep */
263 		yield();
264 
265 		a = inb(ioaddr[0] + 7);
266 		if (time_after_eq(jiffies, timeout)) {
267 			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
268 				name);
269 			return -ETIME;
270 		}
271 	}
272 
273 	return 0;
274 }
275 
276 /* Card Wait For Ready (cannot be used during an interrupt) */
277 static int
278 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
279 {
280 	unsigned char a;
281 	unsigned long timeout;
282 
283 	a = inb(ioaddr[1] + 6);
284 	timeout = jiffies + TimeOutJiffies;
285 	while (a & 0x80 || !(a & 0x40)) {
286 		/* a little sleep */
287 		yield();
288 
289 		a = inb(ioaddr[1] + 6);
290 		if (time_after_eq(jiffies, timeout)) {
291 			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
292 				name);
293 			return -ETIME;
294 		}
295 	}
296 
297 	in[1] = inb(ioaddr[0] + 1);
298 	in[2] = inb(ioaddr[0] + 2);
299 	in[3] = inb(ioaddr[0] + 3);
300 	in[4] = inb(ioaddr[0] + 4);
301 	in[0] = inb(ioaddr[0] + 5);
302 	in[6] = inb(ioaddr[0] + 6);
303 	in[5] = inb(ioaddr[1] + 6);
304 	return 0;
305 }
306 
307 /* Card Send Command (cannot be used during an interrupt) */
308 static int
309 card_send_command(const int ioaddr[], const char* name,
310 	const unsigned char out[], unsigned char in[])
311 {
312 	int status, x;
313 
314 	if ((status = card_wait_for_busy_clear(ioaddr, name)))
315 		return status;
316 	outb(0xa0, ioaddr[0] + 6);
317 	outb(out[2], ioaddr[0] + 1);
318 	outb(out[3], ioaddr[0] + 2);
319 	outb(out[4], ioaddr[0] + 3);
320 	outb(out[5], ioaddr[0] + 4);
321 	outb(out[1], ioaddr[0] + 5);
322 	outb(0xa0, ioaddr[0] + 6);
323 	outb(out[0], ioaddr[0] + 7);
324 	if (out[0] != 0x20 && out[0] != 0x30) {
325 		if ((status = card_wait_for_ready(ioaddr, name, in)))
326 			return status;
327 		inb(ioaddr[0] + 7);
328 		if (sb1000_debug > 3)
329 			printk(KERN_DEBUG "%s: card_send_command "
330 				"out: %02x%02x%02x%02x%02x%02x  "
331 				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
332 				out[0], out[1], out[2], out[3], out[4], out[5],
333 				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
334 	} else {
335 		if (sb1000_debug > 3)
336 			printk(KERN_DEBUG "%s: card_send_command "
337 				"out: %02x%02x%02x%02x%02x%02x\n", name,
338 				out[0], out[1], out[2], out[3], out[4], out[5]);
339 	}
340 
341 	if (out[1] == 0x1b) {
342 		x = (out[2] == 0x02);
343 	} else {
344 		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
345 			return -EIO;
346 	}
347 	return 0;
348 }
349 
350 
351 /*
352  * SB1000 hardware routines to be used during frame rx interrupt
353  */
354 static const int Sb1000TimeOutJiffies = 7 * HZ;
355 
356 /* Card Wait For Ready (to be used during frame rx) */
357 static int
358 sb1000_wait_for_ready(const int ioaddr[], const char* name)
359 {
360 	unsigned long timeout;
361 
362 	timeout = jiffies + Sb1000TimeOutJiffies;
363 	while (inb(ioaddr[1] + 6) & 0x80) {
364 		if (time_after_eq(jiffies, timeout)) {
365 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
366 				name);
367 			return -ETIME;
368 		}
369 	}
370 	timeout = jiffies + Sb1000TimeOutJiffies;
371 	while (!(inb(ioaddr[1] + 6) & 0x40)) {
372 		if (time_after_eq(jiffies, timeout)) {
373 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
374 				name);
375 			return -ETIME;
376 		}
377 	}
378 	inb(ioaddr[0] + 7);
379 	return 0;
380 }
381 
382 /* Card Wait For Ready Clear (to be used during frame rx) */
383 static int
384 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
385 {
386 	unsigned long timeout;
387 
388 	timeout = jiffies + Sb1000TimeOutJiffies;
389 	while (inb(ioaddr[1] + 6) & 0x80) {
390 		if (time_after_eq(jiffies, timeout)) {
391 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
392 				name);
393 			return -ETIME;
394 		}
395 	}
396 	timeout = jiffies + Sb1000TimeOutJiffies;
397 	while (inb(ioaddr[1] + 6) & 0x40) {
398 		if (time_after_eq(jiffies, timeout)) {
399 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
400 				name);
401 			return -ETIME;
402 		}
403 	}
404 	return 0;
405 }
406 
407 /* Card Send Command (to be used during frame rx) */
408 static void
409 sb1000_send_command(const int ioaddr[], const char* name,
410 	const unsigned char out[])
411 {
412 	outb(out[2], ioaddr[0] + 1);
413 	outb(out[3], ioaddr[0] + 2);
414 	outb(out[4], ioaddr[0] + 3);
415 	outb(out[5], ioaddr[0] + 4);
416 	outb(out[1], ioaddr[0] + 5);
417 	outb(out[0], ioaddr[0] + 7);
418 	if (sb1000_debug > 3)
419 		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
420 			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
421 	return;
422 }
423 
424 /* Card Read Status (to be used during frame rx) */
425 static void
426 sb1000_read_status(const int ioaddr[], unsigned char in[])
427 {
428 	in[1] = inb(ioaddr[0] + 1);
429 	in[2] = inb(ioaddr[0] + 2);
430 	in[3] = inb(ioaddr[0] + 3);
431 	in[4] = inb(ioaddr[0] + 4);
432 	in[0] = inb(ioaddr[0] + 5);
433 	return;
434 }
435 
436 /* Issue Read Command (to be used during frame rx) */
437 static void
438 sb1000_issue_read_command(const int ioaddr[], const char* name)
439 {
440 	static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
441 
442 	sb1000_wait_for_ready_clear(ioaddr, name);
443 	outb(0xa0, ioaddr[0] + 6);
444 	sb1000_send_command(ioaddr, name, Command0);
445 	return;
446 }
447 
448 
449 /*
450  * SB1000 commands for open/configuration
451  */
452 /* reset SB1000 card */
453 static int
454 sb1000_reset(const int ioaddr[], const char* name)
455 {
456 	static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
457 
458 	unsigned char st[7];
459 	int port, status;
460 
461 	port = ioaddr[1] + 6;
462 	outb(0x4, port);
463 	inb(port);
464 	udelay(1000);
465 	outb(0x0, port);
466 	inb(port);
467 	ssleep(1);
468 	outb(0x4, port);
469 	inb(port);
470 	udelay(1000);
471 	outb(0x0, port);
472 	inb(port);
473 	udelay(0);
474 
475 	if ((status = card_send_command(ioaddr, name, Command0, st)))
476 		return status;
477 	if (st[3] != 0xf0)
478 		return -EIO;
479 	return 0;
480 }
481 
482 /* check SB1000 firmware CRC */
483 static int
484 sb1000_check_CRC(const int ioaddr[], const char* name)
485 {
486 	static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
487 
488 	unsigned char st[7];
489 	int crc, status;
490 
491 	/* check CRC */
492 	if ((status = card_send_command(ioaddr, name, Command0, st)))
493 		return status;
494 	if (st[1] != st[3] || st[2] != st[4])
495 		return -EIO;
496 	crc = st[1] << 8 | st[2];
497 	return 0;
498 }
499 
500 static inline int
501 sb1000_start_get_set_command(const int ioaddr[], const char* name)
502 {
503 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
504 
505 	unsigned char st[7];
506 
507 	return card_send_command(ioaddr, name, Command0, st);
508 }
509 
510 static int
511 sb1000_end_get_set_command(const int ioaddr[], const char* name)
512 {
513 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
514 	static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
515 
516 	unsigned char st[7];
517 	int status;
518 
519 	if ((status = card_send_command(ioaddr, name, Command0, st)))
520 		return status;
521 	return card_send_command(ioaddr, name, Command1, st);
522 }
523 
524 static int
525 sb1000_activate(const int ioaddr[], const char* name)
526 {
527 	static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
528 	static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
529 
530 	unsigned char st[7];
531 	int status;
532 
533 	ssleep(1);
534 	if ((status = card_send_command(ioaddr, name, Command0, st)))
535 		return status;
536 	if ((status = card_send_command(ioaddr, name, Command1, st)))
537 		return status;
538 	if (st[3] != 0xf1) {
539     	if ((status = sb1000_start_get_set_command(ioaddr, name)))
540 			return status;
541 		return -EIO;
542 	}
543 	udelay(1000);
544     return sb1000_start_get_set_command(ioaddr, name);
545 }
546 
547 /* get SB1000 firmware version */
548 static int
549 sb1000_get_firmware_version(const int ioaddr[], const char* name,
550 	unsigned char version[], int do_end)
551 {
552 	static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
553 
554 	unsigned char st[7];
555 	int status;
556 
557 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
558 		return status;
559 	if ((status = card_send_command(ioaddr, name, Command0, st)))
560 		return status;
561 	if (st[0] != 0xa3)
562 		return -EIO;
563 	version[0] = st[1];
564 	version[1] = st[2];
565 	if (do_end)
566 		return sb1000_end_get_set_command(ioaddr, name);
567 	else
568 		return 0;
569 }
570 
571 /* get SB1000 frequency */
572 static int
573 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
574 {
575 	static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
576 
577 	unsigned char st[7];
578 	int status;
579 
580 	udelay(1000);
581 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
582 		return status;
583 	if ((status = card_send_command(ioaddr, name, Command0, st)))
584 		return status;
585 	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
586 	return sb1000_end_get_set_command(ioaddr, name);
587 }
588 
589 /* set SB1000 frequency */
590 static int
591 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
592 {
593 	unsigned char st[7];
594 	int status;
595 	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
596 
597 	const int FrequencyLowerLimit = 57000;
598 	const int FrequencyUpperLimit = 804000;
599 
600 	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
601 		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
602 			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
603 			FrequencyUpperLimit);
604 		return -EINVAL;
605 	}
606 	udelay(1000);
607 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
608 		return status;
609 	Command0[5] = frequency & 0xff;
610 	frequency >>= 8;
611 	Command0[4] = frequency & 0xff;
612 	frequency >>= 8;
613 	Command0[3] = frequency & 0xff;
614 	frequency >>= 8;
615 	Command0[2] = frequency & 0xff;
616 	return card_send_command(ioaddr, name, Command0, st);
617 }
618 
619 /* get SB1000 PIDs */
620 static int
621 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
622 {
623 	static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
624 	static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
625 	static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
626 	static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
627 
628 	unsigned char st[7];
629 	int status;
630 
631 	udelay(1000);
632 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
633 		return status;
634 
635 	if ((status = card_send_command(ioaddr, name, Command0, st)))
636 		return status;
637 	PID[0] = st[1] << 8 | st[2];
638 
639 	if ((status = card_send_command(ioaddr, name, Command1, st)))
640 		return status;
641 	PID[1] = st[1] << 8 | st[2];
642 
643 	if ((status = card_send_command(ioaddr, name, Command2, st)))
644 		return status;
645 	PID[2] = st[1] << 8 | st[2];
646 
647 	if ((status = card_send_command(ioaddr, name, Command3, st)))
648 		return status;
649 	PID[3] = st[1] << 8 | st[2];
650 
651 	return sb1000_end_get_set_command(ioaddr, name);
652 }
653 
654 /* set SB1000 PIDs */
655 static int
656 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
657 {
658 	static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
659 
660 	unsigned char st[7];
661 	short p;
662 	int status;
663 	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
664 	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
665 	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
666 	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
667 
668 	udelay(1000);
669 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
670 		return status;
671 
672 	p = PID[0];
673 	Command0[3] = p & 0xff;
674 	p >>= 8;
675 	Command0[2] = p & 0xff;
676 	if ((status = card_send_command(ioaddr, name, Command0, st)))
677 		return status;
678 
679 	p = PID[1];
680 	Command1[3] = p & 0xff;
681 	p >>= 8;
682 	Command1[2] = p & 0xff;
683 	if ((status = card_send_command(ioaddr, name, Command1, st)))
684 		return status;
685 
686 	p = PID[2];
687 	Command2[3] = p & 0xff;
688 	p >>= 8;
689 	Command2[2] = p & 0xff;
690 	if ((status = card_send_command(ioaddr, name, Command2, st)))
691 		return status;
692 
693 	p = PID[3];
694 	Command3[3] = p & 0xff;
695 	p >>= 8;
696 	Command3[2] = p & 0xff;
697 	if ((status = card_send_command(ioaddr, name, Command3, st)))
698 		return status;
699 
700 	if ((status = card_send_command(ioaddr, name, Command4, st)))
701 		return status;
702 	return sb1000_end_get_set_command(ioaddr, name);
703 }
704 
705 
706 static void
707 sb1000_print_status_buffer(const char* name, unsigned char st[],
708 	unsigned char buffer[], int size)
709 {
710 	int i, j, k;
711 
712 	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
713 	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
714 		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
715 			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
716 			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
717             buffer[46] << 8 | buffer[47],
718 			buffer[42], buffer[43], buffer[44], buffer[45],
719             buffer[48] << 8 | buffer[49]);
720 	} else {
721 		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
722 			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
723 			for (j = 0; j < 8 && k < size; j++, k++)
724 				printk(" %02x", buffer[k]);
725 			printk("\n");
726 		}
727 	}
728 	return;
729 }
730 
731 /*
732  * SB1000 commands for frame rx interrupt
733  */
734 /* receive a single frame and assemble datagram
735  * (this is the heart of the interrupt routine)
736  */
737 static int
738 sb1000_rx(struct net_device *dev)
739 {
740 
741 #define FRAMESIZE 184
742 	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
743 	short dlen;
744 	int ioaddr, ns;
745 	unsigned int skbsize;
746 	struct sk_buff *skb;
747 	struct sb1000_private *lp = netdev_priv(dev);
748 	struct net_device_stats *stats = &dev->stats;
749 
750 	/* SB1000 frame constants */
751 	const int FrameSize = FRAMESIZE;
752 	const int NewDatagramHeaderSkip = 8;
753 	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
754 	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
755 	const int ContDatagramHeaderSkip = 7;
756 	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
757 	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
758 	const int TrailerSize = 4;
759 
760 	ioaddr = dev->base_addr;
761 
762 	insw(ioaddr, (unsigned short*) st, 1);
763 #ifdef XXXDEBUG
764 printk("cm0: received: %02x %02x\n", st[0], st[1]);
765 #endif /* XXXDEBUG */
766 	lp->rx_frames++;
767 
768 	/* decide if it is a good or bad frame */
769 	for (ns = 0; ns < NPIDS; ns++) {
770 		session_id = lp->rx_session_id[ns];
771 		frame_id = lp->rx_frame_id[ns];
772 		if (st[0] == session_id) {
773 			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
774 				goto good_frame;
775 			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
776 				goto skipped_frame;
777 			} else {
778 				goto bad_frame;
779 			}
780 		} else if (st[0] == (session_id | 0x40)) {
781 			if ((st[1] & 0xf0) == 0x30) {
782 				goto skipped_frame;
783 			} else {
784 				goto bad_frame;
785 			}
786 		}
787 	}
788 	goto bad_frame;
789 
790 skipped_frame:
791 	stats->rx_frame_errors++;
792 	skb = lp->rx_skb[ns];
793 	if (sb1000_debug > 1)
794 		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
795 			"expecting %02x %02x\n", dev->name, st[0], st[1],
796 			skb ? session_id : session_id | 0x40, frame_id);
797 	if (skb) {
798 		dev_kfree_skb(skb);
799 		skb = NULL;
800 	}
801 
802 good_frame:
803 	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
804 	/* new datagram */
805 	if (st[0] & 0x40) {
806 		/* get data length */
807 		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
808 #ifdef XXXDEBUG
809 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
810 #endif /* XXXDEBUG */
811 		if (buffer[0] != NewDatagramHeaderSkip) {
812 			if (sb1000_debug > 1)
813 				printk(KERN_WARNING "%s: new datagram header skip error: "
814 					"got %02x expecting %02x\n", dev->name, buffer[0],
815 					NewDatagramHeaderSkip);
816 			stats->rx_length_errors++;
817 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
818 			goto bad_frame_next;
819 		}
820 		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
821 			buffer[NewDatagramHeaderSkip + 4]) - 17;
822 		if (dlen > SB1000_MRU) {
823 			if (sb1000_debug > 1)
824 				printk(KERN_WARNING "%s: datagram length (%d) greater "
825 					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
826 			stats->rx_length_errors++;
827 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
828 			goto bad_frame_next;
829 		}
830 		lp->rx_dlen[ns] = dlen;
831 		/* compute size to allocate for datagram */
832 		skbsize = dlen + FrameSize;
833 		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
834 			if (sb1000_debug > 1)
835 				printk(KERN_WARNING "%s: can't allocate %d bytes long "
836 					"skbuff\n", dev->name, skbsize);
837 			stats->rx_dropped++;
838 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
839 			goto dropped_frame;
840 		}
841 		skb->dev = dev;
842 		skb_reset_mac_header(skb);
843 		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
844 		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
845 			NewDatagramDataSize / 2);
846 		lp->rx_skb[ns] = skb;
847 	} else {
848 		/* continuation of previous datagram */
849 		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
850 		if (buffer[0] != ContDatagramHeaderSkip) {
851 			if (sb1000_debug > 1)
852 				printk(KERN_WARNING "%s: cont datagram header skip error: "
853 					"got %02x expecting %02x\n", dev->name, buffer[0],
854 					ContDatagramHeaderSkip);
855 			stats->rx_length_errors++;
856 			insw(ioaddr, buffer, ContDatagramDataSize / 2);
857 			goto bad_frame_next;
858 		}
859 		skb = lp->rx_skb[ns];
860 		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
861 			ContDatagramDataSize / 2);
862 		dlen = lp->rx_dlen[ns];
863 	}
864 	if (skb->len < dlen + TrailerSize) {
865 		lp->rx_session_id[ns] &= ~0x40;
866 		return 0;
867 	}
868 
869 	/* datagram completed: send to upper level */
870 	skb_trim(skb, dlen);
871 	netif_rx(skb);
872 	dev->last_rx = jiffies;
873 	stats->rx_bytes+=dlen;
874 	stats->rx_packets++;
875 	lp->rx_skb[ns] = NULL;
876 	lp->rx_session_id[ns] |= 0x40;
877 	return 0;
878 
879 bad_frame:
880 	insw(ioaddr, buffer, FrameSize / 2);
881 	if (sb1000_debug > 1)
882 		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
883 			dev->name, st[0], st[1]);
884 	stats->rx_frame_errors++;
885 bad_frame_next:
886 	if (sb1000_debug > 2)
887 		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
888 dropped_frame:
889 	stats->rx_errors++;
890 	if (ns < NPIDS) {
891 		if ((skb = lp->rx_skb[ns])) {
892 			dev_kfree_skb(skb);
893 			lp->rx_skb[ns] = NULL;
894 		}
895 		lp->rx_session_id[ns] |= 0x40;
896 	}
897 	return -1;
898 }
899 
900 static void
901 sb1000_error_dpc(struct net_device *dev)
902 {
903 	static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
904 
905 	char *name;
906 	unsigned char st[5];
907 	int ioaddr[2];
908 	struct sb1000_private *lp = netdev_priv(dev);
909 	const int ErrorDpcCounterInitialize = 200;
910 
911 	ioaddr[0] = dev->base_addr;
912 	/* mem_start holds the second I/O address */
913 	ioaddr[1] = dev->mem_start;
914 	name = dev->name;
915 
916 	sb1000_wait_for_ready_clear(ioaddr, name);
917 	sb1000_send_command(ioaddr, name, Command0);
918 	sb1000_wait_for_ready(ioaddr, name);
919 	sb1000_read_status(ioaddr, st);
920 	if (st[1] & 0x10)
921 		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
922 	return;
923 }
924 
925 
926 /*
927  * Linux interface functions
928  */
929 static int
930 sb1000_open(struct net_device *dev)
931 {
932 	char *name;
933 	int ioaddr[2], status;
934 	struct sb1000_private *lp = netdev_priv(dev);
935 	const unsigned short FirmwareVersion[] = {0x01, 0x01};
936 
937 	ioaddr[0] = dev->base_addr;
938 	/* mem_start holds the second I/O address */
939 	ioaddr[1] = dev->mem_start;
940 	name = dev->name;
941 
942 	/* initialize sb1000 */
943 	if ((status = sb1000_reset(ioaddr, name)))
944 		return status;
945 	ssleep(1);
946 	if ((status = sb1000_check_CRC(ioaddr, name)))
947 		return status;
948 
949 	/* initialize private data before board can catch interrupts */
950 	lp->rx_skb[0] = NULL;
951 	lp->rx_skb[1] = NULL;
952 	lp->rx_skb[2] = NULL;
953 	lp->rx_skb[3] = NULL;
954 	lp->rx_dlen[0] = 0;
955 	lp->rx_dlen[1] = 0;
956 	lp->rx_dlen[2] = 0;
957 	lp->rx_dlen[3] = 0;
958 	lp->rx_frames = 0;
959 	lp->rx_error_count = 0;
960 	lp->rx_error_dpc_count = 0;
961 	lp->rx_session_id[0] = 0x50;
962 	lp->rx_session_id[0] = 0x48;
963 	lp->rx_session_id[0] = 0x44;
964 	lp->rx_session_id[0] = 0x42;
965 	lp->rx_frame_id[0] = 0;
966 	lp->rx_frame_id[1] = 0;
967 	lp->rx_frame_id[2] = 0;
968 	lp->rx_frame_id[3] = 0;
969 	if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) {
970 		return -EAGAIN;
971 	}
972 
973 	if (sb1000_debug > 2)
974 		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
975 
976 	/* Activate board and check firmware version */
977 	udelay(1000);
978 	if ((status = sb1000_activate(ioaddr, name)))
979 		return status;
980 	udelay(0);
981 	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
982 		return status;
983 	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
984 		printk(KERN_WARNING "%s: found firmware version %x.%02x "
985 			"(should be %x.%02x)\n", name, version[0], version[1],
986 			FirmwareVersion[0], FirmwareVersion[1]);
987 
988 
989 	netif_start_queue(dev);
990 	return 0;					/* Always succeed */
991 }
992 
993 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
994 {
995 	char* name;
996 	unsigned char version[2];
997 	short PID[4];
998 	int ioaddr[2], status, frequency;
999 	unsigned int stats[5];
1000 	struct sb1000_private *lp = netdev_priv(dev);
1001 
1002 	if (!(dev && dev->flags & IFF_UP))
1003 		return -ENODEV;
1004 
1005 	ioaddr[0] = dev->base_addr;
1006 	/* mem_start holds the second I/O address */
1007 	ioaddr[1] = dev->mem_start;
1008 	name = dev->name;
1009 
1010 	switch (cmd) {
1011 	case SIOCGCMSTATS:		/* get statistics */
1012 		stats[0] = dev->stats.rx_bytes;
1013 		stats[1] = lp->rx_frames;
1014 		stats[2] = dev->stats.rx_packets;
1015 		stats[3] = dev->stats.rx_errors;
1016 		stats[4] = dev->stats.rx_dropped;
1017 		if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1018 			return -EFAULT;
1019 		status = 0;
1020 		break;
1021 
1022 	case SIOCGCMFIRMWARE:		/* get firmware version */
1023 		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1024 			return status;
1025 		if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1026 			return -EFAULT;
1027 		break;
1028 
1029 	case SIOCGCMFREQUENCY:		/* get frequency */
1030 		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1031 			return status;
1032 		if(put_user(frequency, (int __user *) ifr->ifr_data))
1033 			return -EFAULT;
1034 		break;
1035 
1036 	case SIOCSCMFREQUENCY:		/* set frequency */
1037 		if (!capable(CAP_NET_ADMIN))
1038 			return -EPERM;
1039 		if(get_user(frequency, (int __user *) ifr->ifr_data))
1040 			return -EFAULT;
1041 		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1042 			return status;
1043 		break;
1044 
1045 	case SIOCGCMPIDS:			/* get PIDs */
1046 		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1047 			return status;
1048 		if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1049 			return -EFAULT;
1050 		break;
1051 
1052 	case SIOCSCMPIDS:			/* set PIDs */
1053 		if (!capable(CAP_NET_ADMIN))
1054 			return -EPERM;
1055 		if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1056 			return -EFAULT;
1057 		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1058 			return status;
1059 		/* set session_id, frame_id and pkt_type too */
1060 		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1061 		lp->rx_session_id[1] = 0x48;
1062 		lp->rx_session_id[2] = 0x44;
1063 		lp->rx_session_id[3] = 0x42;
1064 		lp->rx_frame_id[0] = 0;
1065 		lp->rx_frame_id[1] = 0;
1066 		lp->rx_frame_id[2] = 0;
1067 		lp->rx_frame_id[3] = 0;
1068 		break;
1069 
1070 	default:
1071 		status = -EINVAL;
1072 		break;
1073 	}
1074 	return status;
1075 }
1076 
1077 /* transmit function: do nothing since SB1000 can't send anything out */
1078 static int
1079 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1080 {
1081 	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1082 	/* sb1000 can't xmit datagrams */
1083 	dev_kfree_skb(skb);
1084 	return 0;
1085 }
1086 
1087 /* SB1000 interrupt handler. */
1088 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1089 {
1090 	static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1091 	static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1092 
1093 	char *name;
1094 	unsigned char st;
1095 	int ioaddr[2];
1096 	struct net_device *dev = dev_id;
1097 	struct sb1000_private *lp = netdev_priv(dev);
1098 
1099 	const int MaxRxErrorCount = 6;
1100 
1101 	ioaddr[0] = dev->base_addr;
1102 	/* mem_start holds the second I/O address */
1103 	ioaddr[1] = dev->mem_start;
1104 	name = dev->name;
1105 
1106 	/* is it a good interrupt? */
1107 	st = inb(ioaddr[1] + 6);
1108 	if (!(st & 0x08 && st & 0x20)) {
1109 		return IRQ_NONE;
1110 	}
1111 
1112 	if (sb1000_debug > 3)
1113 		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1114 
1115 	st = inb(ioaddr[0] + 7);
1116 	if (sb1000_rx(dev))
1117 		lp->rx_error_count++;
1118 #ifdef SB1000_DELAY
1119 	udelay(SB1000_DELAY);
1120 #endif /* SB1000_DELAY */
1121 	sb1000_issue_read_command(ioaddr, name);
1122 	if (st & 0x01) {
1123 		sb1000_error_dpc(dev);
1124 		sb1000_issue_read_command(ioaddr, name);
1125 	}
1126 	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1127 		sb1000_wait_for_ready_clear(ioaddr, name);
1128 		sb1000_send_command(ioaddr, name, Command0);
1129 		sb1000_wait_for_ready(ioaddr, name);
1130 		sb1000_issue_read_command(ioaddr, name);
1131 	}
1132 	if (lp->rx_error_count >= MaxRxErrorCount) {
1133 		sb1000_wait_for_ready_clear(ioaddr, name);
1134 		sb1000_send_command(ioaddr, name, Command1);
1135 		sb1000_wait_for_ready(ioaddr, name);
1136 		sb1000_issue_read_command(ioaddr, name);
1137 		lp->rx_error_count = 0;
1138 	}
1139 
1140 	return IRQ_HANDLED;
1141 }
1142 
1143 static int sb1000_close(struct net_device *dev)
1144 {
1145 	int i;
1146 	int ioaddr[2];
1147 	struct sb1000_private *lp = netdev_priv(dev);
1148 
1149 	if (sb1000_debug > 2)
1150 		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1151 
1152 	netif_stop_queue(dev);
1153 
1154 	ioaddr[0] = dev->base_addr;
1155 	/* mem_start holds the second I/O address */
1156 	ioaddr[1] = dev->mem_start;
1157 
1158 	free_irq(dev->irq, dev);
1159 	/* If we don't do this, we can't re-insmod it later. */
1160 	release_region(ioaddr[1], SB1000_IO_EXTENT);
1161 	release_region(ioaddr[0], SB1000_IO_EXTENT);
1162 
1163 	/* free rx_skb's if needed */
1164 	for (i=0; i<4; i++) {
1165 		if (lp->rx_skb[i]) {
1166 			dev_kfree_skb(lp->rx_skb[i]);
1167 		}
1168 	}
1169 	return 0;
1170 }
1171 
1172 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1173 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1174 MODULE_LICENSE("GPL");
1175 
1176 static int __init
1177 sb1000_init(void)
1178 {
1179 	return pnp_register_driver(&sb1000_driver);
1180 }
1181 
1182 static void __exit
1183 sb1000_exit(void)
1184 {
1185 	pnp_unregister_driver(&sb1000_driver);
1186 }
1187 
1188 module_init(sb1000_init);
1189 module_exit(sb1000_exit);
1190