xref: /openbmc/linux/drivers/net/sb1000.c (revision 7dd65feb)
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3 	Written 1998 by Franco Venturi.
4 
5 	Copyright 1998 by Franco Venturi.
6 	Copyright 1994,1995 by Donald Becker.
7 	Copyright 1993 United States Government as represented by the
8 	Director, National Security Agency.
9 
10 	This driver is for the General Instruments SB1000 (internal SURFboard)
11 
12 	The author may be reached as fventuri@mediaone.net
13 
14 	This program is free software; you can redistribute it
15 	and/or  modify it under  the terms of  the GNU General
16 	Public  License as  published  by  the  Free  Software
17 	Foundation;  either  version 2 of the License, or  (at
18 	your option) any later version.
19 
20 	Changes:
21 
22 	981115 Steven Hirsch <shirsch@adelphia.net>
23 
24 	Linus changed the timer interface.  Should work on all recent
25 	development kernels.
26 
27 	980608 Steven Hirsch <shirsch@adelphia.net>
28 
29 	Small changes to make it work with 2.1.x kernels. Hopefully,
30 	nothing major will change before official release of Linux 2.2.
31 
32 	Merged with 2.2 - Alan Cox
33 */
34 
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
36 
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/sched.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/errno.h>
43 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/netdevice.h>
48 #include <linux/if_arp.h>
49 #include <linux/skbuff.h>
50 #include <linux/delay.h>	/* for udelay() */
51 #include <linux/etherdevice.h>
52 #include <linux/pnp.h>
53 #include <linux/init.h>
54 #include <linux/bitops.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/uaccess.h>
59 
60 #ifdef SB1000_DEBUG
61 static int sb1000_debug = SB1000_DEBUG;
62 #else
63 static const int sb1000_debug = 1;
64 #endif
65 
66 static const int SB1000_IO_EXTENT = 8;
67 /* SB1000 Maximum Receive Unit */
68 static const int SB1000_MRU = 1500; /* octects */
69 
70 #define NPIDS 4
71 struct sb1000_private {
72 	struct sk_buff *rx_skb[NPIDS];
73 	short rx_dlen[NPIDS];
74 	unsigned int rx_frames;
75 	short rx_error_count;
76 	short rx_error_dpc_count;
77 	unsigned char rx_session_id[NPIDS];
78 	unsigned char rx_frame_id[NPIDS];
79 	unsigned char rx_pkt_type[NPIDS];
80 };
81 
82 /* prototypes for Linux interface */
83 extern int sb1000_probe(struct net_device *dev);
84 static int sb1000_open(struct net_device *dev);
85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
86 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
87 				     struct net_device *dev);
88 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
89 static int sb1000_close(struct net_device *dev);
90 
91 
92 /* SB1000 hardware routines to be used during open/configuration phases */
93 static int card_wait_for_busy_clear(const int ioaddr[],
94 	const char* name);
95 static int card_wait_for_ready(const int ioaddr[], const char* name,
96 	unsigned char in[]);
97 static int card_send_command(const int ioaddr[], const char* name,
98 	const unsigned char out[], unsigned char in[]);
99 
100 /* SB1000 hardware routines to be used during frame rx interrupt */
101 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
102 static int sb1000_wait_for_ready_clear(const int ioaddr[],
103 	const char* name);
104 static void sb1000_send_command(const int ioaddr[], const char* name,
105 	const unsigned char out[]);
106 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
107 static void sb1000_issue_read_command(const int ioaddr[],
108 	const char* name);
109 
110 /* SB1000 commands for open/configuration */
111 static int sb1000_reset(const int ioaddr[], const char* name);
112 static int sb1000_check_CRC(const int ioaddr[], const char* name);
113 static inline int sb1000_start_get_set_command(const int ioaddr[],
114 	const char* name);
115 static int sb1000_end_get_set_command(const int ioaddr[],
116 	const char* name);
117 static int sb1000_activate(const int ioaddr[], const char* name);
118 static int sb1000_get_firmware_version(const int ioaddr[],
119 	const char* name, unsigned char version[], int do_end);
120 static int sb1000_get_frequency(const int ioaddr[], const char* name,
121 	int* frequency);
122 static int sb1000_set_frequency(const int ioaddr[], const char* name,
123 	int frequency);
124 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
125 	short PID[]);
126 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
127 	const short PID[]);
128 
129 /* SB1000 commands for frame rx interrupt */
130 static int sb1000_rx(struct net_device *dev);
131 static void sb1000_error_dpc(struct net_device *dev);
132 
133 static const struct pnp_device_id sb1000_pnp_ids[] = {
134 	{ "GIC1000", 0 },
135 	{ "", 0 }
136 };
137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
138 
139 static const struct net_device_ops sb1000_netdev_ops = {
140 	.ndo_open		= sb1000_open,
141 	.ndo_start_xmit		= sb1000_start_xmit,
142 	.ndo_do_ioctl		= sb1000_dev_ioctl,
143 	.ndo_stop		= sb1000_close,
144 	.ndo_change_mtu		= eth_change_mtu,
145 	.ndo_set_mac_address 	= eth_mac_addr,
146 	.ndo_validate_addr	= eth_validate_addr,
147 };
148 
149 static int
150 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
151 {
152 	struct net_device *dev;
153 	unsigned short ioaddr[2], irq;
154 	unsigned int serial_number;
155 	int error = -ENODEV;
156 
157 	if (pnp_device_attach(pdev) < 0)
158 		return -ENODEV;
159 	if (pnp_activate_dev(pdev) < 0)
160 		goto out_detach;
161 
162 	if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
163 		goto out_disable;
164 	if (!pnp_irq_valid(pdev, 0))
165 		goto out_disable;
166 
167 	serial_number = pdev->card->serial;
168 
169 	ioaddr[0] = pnp_port_start(pdev, 0);
170 	ioaddr[1] = pnp_port_start(pdev, 0);
171 
172 	irq = pnp_irq(pdev, 0);
173 
174 	if (!request_region(ioaddr[0], 16, "sb1000"))
175 		goto out_disable;
176 	if (!request_region(ioaddr[1], 16, "sb1000"))
177 		goto out_release_region0;
178 
179 	dev = alloc_etherdev(sizeof(struct sb1000_private));
180 	if (!dev) {
181 		error = -ENOMEM;
182 		goto out_release_regions;
183 	}
184 
185 
186 	dev->base_addr = ioaddr[0];
187 	/* mem_start holds the second I/O address */
188 	dev->mem_start = ioaddr[1];
189 	dev->irq = irq;
190 
191 	if (sb1000_debug > 0)
192 		printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
193 			"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
194 			dev->mem_start, serial_number, dev->irq);
195 
196 	/*
197 	 * The SB1000 is an rx-only cable modem device.  The uplink is a modem
198 	 * and we do not want to arp on it.
199 	 */
200 	dev->flags = IFF_POINTOPOINT|IFF_NOARP;
201 
202 	SET_NETDEV_DEV(dev, &pdev->dev);
203 
204 	if (sb1000_debug > 0)
205 		printk(KERN_NOTICE "%s", version);
206 
207 	dev->netdev_ops	= &sb1000_netdev_ops;
208 
209 	/* hardware address is 0:0:serial_number */
210 	dev->dev_addr[2]	= serial_number >> 24 & 0xff;
211 	dev->dev_addr[3]	= serial_number >> 16 & 0xff;
212 	dev->dev_addr[4]	= serial_number >>  8 & 0xff;
213 	dev->dev_addr[5]	= serial_number >>  0 & 0xff;
214 
215 	pnp_set_drvdata(pdev, dev);
216 
217 	error = register_netdev(dev);
218 	if (error)
219 		goto out_free_netdev;
220 	return 0;
221 
222  out_free_netdev:
223 	free_netdev(dev);
224  out_release_regions:
225 	release_region(ioaddr[1], 16);
226  out_release_region0:
227 	release_region(ioaddr[0], 16);
228  out_disable:
229 	pnp_disable_dev(pdev);
230  out_detach:
231 	pnp_device_detach(pdev);
232 	return error;
233 }
234 
235 static void
236 sb1000_remove_one(struct pnp_dev *pdev)
237 {
238 	struct net_device *dev = pnp_get_drvdata(pdev);
239 
240 	unregister_netdev(dev);
241 	release_region(dev->base_addr, 16);
242 	release_region(dev->mem_start, 16);
243 	free_netdev(dev);
244 }
245 
246 static struct pnp_driver sb1000_driver = {
247 	.name		= "sb1000",
248 	.id_table	= sb1000_pnp_ids,
249 	.probe		= sb1000_probe_one,
250 	.remove		= sb1000_remove_one,
251 };
252 
253 
254 /*
255  * SB1000 hardware routines to be used during open/configuration phases
256  */
257 
258 static const int TimeOutJiffies = (875 * HZ) / 100;
259 
260 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
261 static int
262 card_wait_for_busy_clear(const int ioaddr[], const char* name)
263 {
264 	unsigned char a;
265 	unsigned long timeout;
266 
267 	a = inb(ioaddr[0] + 7);
268 	timeout = jiffies + TimeOutJiffies;
269 	while (a & 0x80 || a & 0x40) {
270 		/* a little sleep */
271 		yield();
272 
273 		a = inb(ioaddr[0] + 7);
274 		if (time_after_eq(jiffies, timeout)) {
275 			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
276 				name);
277 			return -ETIME;
278 		}
279 	}
280 
281 	return 0;
282 }
283 
284 /* Card Wait For Ready (cannot be used during an interrupt) */
285 static int
286 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
287 {
288 	unsigned char a;
289 	unsigned long timeout;
290 
291 	a = inb(ioaddr[1] + 6);
292 	timeout = jiffies + TimeOutJiffies;
293 	while (a & 0x80 || !(a & 0x40)) {
294 		/* a little sleep */
295 		yield();
296 
297 		a = inb(ioaddr[1] + 6);
298 		if (time_after_eq(jiffies, timeout)) {
299 			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
300 				name);
301 			return -ETIME;
302 		}
303 	}
304 
305 	in[1] = inb(ioaddr[0] + 1);
306 	in[2] = inb(ioaddr[0] + 2);
307 	in[3] = inb(ioaddr[0] + 3);
308 	in[4] = inb(ioaddr[0] + 4);
309 	in[0] = inb(ioaddr[0] + 5);
310 	in[6] = inb(ioaddr[0] + 6);
311 	in[5] = inb(ioaddr[1] + 6);
312 	return 0;
313 }
314 
315 /* Card Send Command (cannot be used during an interrupt) */
316 static int
317 card_send_command(const int ioaddr[], const char* name,
318 	const unsigned char out[], unsigned char in[])
319 {
320 	int status, x;
321 
322 	if ((status = card_wait_for_busy_clear(ioaddr, name)))
323 		return status;
324 	outb(0xa0, ioaddr[0] + 6);
325 	outb(out[2], ioaddr[0] + 1);
326 	outb(out[3], ioaddr[0] + 2);
327 	outb(out[4], ioaddr[0] + 3);
328 	outb(out[5], ioaddr[0] + 4);
329 	outb(out[1], ioaddr[0] + 5);
330 	outb(0xa0, ioaddr[0] + 6);
331 	outb(out[0], ioaddr[0] + 7);
332 	if (out[0] != 0x20 && out[0] != 0x30) {
333 		if ((status = card_wait_for_ready(ioaddr, name, in)))
334 			return status;
335 		inb(ioaddr[0] + 7);
336 		if (sb1000_debug > 3)
337 			printk(KERN_DEBUG "%s: card_send_command "
338 				"out: %02x%02x%02x%02x%02x%02x  "
339 				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
340 				out[0], out[1], out[2], out[3], out[4], out[5],
341 				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
342 	} else {
343 		if (sb1000_debug > 3)
344 			printk(KERN_DEBUG "%s: card_send_command "
345 				"out: %02x%02x%02x%02x%02x%02x\n", name,
346 				out[0], out[1], out[2], out[3], out[4], out[5]);
347 	}
348 
349 	if (out[1] == 0x1b) {
350 		x = (out[2] == 0x02);
351 	} else {
352 		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
353 			return -EIO;
354 	}
355 	return 0;
356 }
357 
358 
359 /*
360  * SB1000 hardware routines to be used during frame rx interrupt
361  */
362 static const int Sb1000TimeOutJiffies = 7 * HZ;
363 
364 /* Card Wait For Ready (to be used during frame rx) */
365 static int
366 sb1000_wait_for_ready(const int ioaddr[], const char* name)
367 {
368 	unsigned long timeout;
369 
370 	timeout = jiffies + Sb1000TimeOutJiffies;
371 	while (inb(ioaddr[1] + 6) & 0x80) {
372 		if (time_after_eq(jiffies, timeout)) {
373 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
374 				name);
375 			return -ETIME;
376 		}
377 	}
378 	timeout = jiffies + Sb1000TimeOutJiffies;
379 	while (!(inb(ioaddr[1] + 6) & 0x40)) {
380 		if (time_after_eq(jiffies, timeout)) {
381 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
382 				name);
383 			return -ETIME;
384 		}
385 	}
386 	inb(ioaddr[0] + 7);
387 	return 0;
388 }
389 
390 /* Card Wait For Ready Clear (to be used during frame rx) */
391 static int
392 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
393 {
394 	unsigned long timeout;
395 
396 	timeout = jiffies + Sb1000TimeOutJiffies;
397 	while (inb(ioaddr[1] + 6) & 0x80) {
398 		if (time_after_eq(jiffies, timeout)) {
399 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
400 				name);
401 			return -ETIME;
402 		}
403 	}
404 	timeout = jiffies + Sb1000TimeOutJiffies;
405 	while (inb(ioaddr[1] + 6) & 0x40) {
406 		if (time_after_eq(jiffies, timeout)) {
407 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
408 				name);
409 			return -ETIME;
410 		}
411 	}
412 	return 0;
413 }
414 
415 /* Card Send Command (to be used during frame rx) */
416 static void
417 sb1000_send_command(const int ioaddr[], const char* name,
418 	const unsigned char out[])
419 {
420 	outb(out[2], ioaddr[0] + 1);
421 	outb(out[3], ioaddr[0] + 2);
422 	outb(out[4], ioaddr[0] + 3);
423 	outb(out[5], ioaddr[0] + 4);
424 	outb(out[1], ioaddr[0] + 5);
425 	outb(out[0], ioaddr[0] + 7);
426 	if (sb1000_debug > 3)
427 		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
428 			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
429 	return;
430 }
431 
432 /* Card Read Status (to be used during frame rx) */
433 static void
434 sb1000_read_status(const int ioaddr[], unsigned char in[])
435 {
436 	in[1] = inb(ioaddr[0] + 1);
437 	in[2] = inb(ioaddr[0] + 2);
438 	in[3] = inb(ioaddr[0] + 3);
439 	in[4] = inb(ioaddr[0] + 4);
440 	in[0] = inb(ioaddr[0] + 5);
441 	return;
442 }
443 
444 /* Issue Read Command (to be used during frame rx) */
445 static void
446 sb1000_issue_read_command(const int ioaddr[], const char* name)
447 {
448 	static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
449 
450 	sb1000_wait_for_ready_clear(ioaddr, name);
451 	outb(0xa0, ioaddr[0] + 6);
452 	sb1000_send_command(ioaddr, name, Command0);
453 	return;
454 }
455 
456 
457 /*
458  * SB1000 commands for open/configuration
459  */
460 /* reset SB1000 card */
461 static int
462 sb1000_reset(const int ioaddr[], const char* name)
463 {
464 	static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
465 
466 	unsigned char st[7];
467 	int port, status;
468 
469 	port = ioaddr[1] + 6;
470 	outb(0x4, port);
471 	inb(port);
472 	udelay(1000);
473 	outb(0x0, port);
474 	inb(port);
475 	ssleep(1);
476 	outb(0x4, port);
477 	inb(port);
478 	udelay(1000);
479 	outb(0x0, port);
480 	inb(port);
481 	udelay(0);
482 
483 	if ((status = card_send_command(ioaddr, name, Command0, st)))
484 		return status;
485 	if (st[3] != 0xf0)
486 		return -EIO;
487 	return 0;
488 }
489 
490 /* check SB1000 firmware CRC */
491 static int
492 sb1000_check_CRC(const int ioaddr[], const char* name)
493 {
494 	static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
495 
496 	unsigned char st[7];
497 	int crc, status;
498 
499 	/* check CRC */
500 	if ((status = card_send_command(ioaddr, name, Command0, st)))
501 		return status;
502 	if (st[1] != st[3] || st[2] != st[4])
503 		return -EIO;
504 	crc = st[1] << 8 | st[2];
505 	return 0;
506 }
507 
508 static inline int
509 sb1000_start_get_set_command(const int ioaddr[], const char* name)
510 {
511 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
512 
513 	unsigned char st[7];
514 
515 	return card_send_command(ioaddr, name, Command0, st);
516 }
517 
518 static int
519 sb1000_end_get_set_command(const int ioaddr[], const char* name)
520 {
521 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
522 	static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
523 
524 	unsigned char st[7];
525 	int status;
526 
527 	if ((status = card_send_command(ioaddr, name, Command0, st)))
528 		return status;
529 	return card_send_command(ioaddr, name, Command1, st);
530 }
531 
532 static int
533 sb1000_activate(const int ioaddr[], const char* name)
534 {
535 	static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
536 	static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
537 
538 	unsigned char st[7];
539 	int status;
540 
541 	ssleep(1);
542 	if ((status = card_send_command(ioaddr, name, Command0, st)))
543 		return status;
544 	if ((status = card_send_command(ioaddr, name, Command1, st)))
545 		return status;
546 	if (st[3] != 0xf1) {
547     	if ((status = sb1000_start_get_set_command(ioaddr, name)))
548 			return status;
549 		return -EIO;
550 	}
551 	udelay(1000);
552     return sb1000_start_get_set_command(ioaddr, name);
553 }
554 
555 /* get SB1000 firmware version */
556 static int
557 sb1000_get_firmware_version(const int ioaddr[], const char* name,
558 	unsigned char version[], int do_end)
559 {
560 	static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
561 
562 	unsigned char st[7];
563 	int status;
564 
565 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
566 		return status;
567 	if ((status = card_send_command(ioaddr, name, Command0, st)))
568 		return status;
569 	if (st[0] != 0xa3)
570 		return -EIO;
571 	version[0] = st[1];
572 	version[1] = st[2];
573 	if (do_end)
574 		return sb1000_end_get_set_command(ioaddr, name);
575 	else
576 		return 0;
577 }
578 
579 /* get SB1000 frequency */
580 static int
581 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
582 {
583 	static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
584 
585 	unsigned char st[7];
586 	int status;
587 
588 	udelay(1000);
589 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
590 		return status;
591 	if ((status = card_send_command(ioaddr, name, Command0, st)))
592 		return status;
593 	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
594 	return sb1000_end_get_set_command(ioaddr, name);
595 }
596 
597 /* set SB1000 frequency */
598 static int
599 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
600 {
601 	unsigned char st[7];
602 	int status;
603 	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
604 
605 	const int FrequencyLowerLimit = 57000;
606 	const int FrequencyUpperLimit = 804000;
607 
608 	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
609 		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
610 			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
611 			FrequencyUpperLimit);
612 		return -EINVAL;
613 	}
614 	udelay(1000);
615 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
616 		return status;
617 	Command0[5] = frequency & 0xff;
618 	frequency >>= 8;
619 	Command0[4] = frequency & 0xff;
620 	frequency >>= 8;
621 	Command0[3] = frequency & 0xff;
622 	frequency >>= 8;
623 	Command0[2] = frequency & 0xff;
624 	return card_send_command(ioaddr, name, Command0, st);
625 }
626 
627 /* get SB1000 PIDs */
628 static int
629 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
630 {
631 	static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
632 	static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
633 	static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
634 	static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
635 
636 	unsigned char st[7];
637 	int status;
638 
639 	udelay(1000);
640 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
641 		return status;
642 
643 	if ((status = card_send_command(ioaddr, name, Command0, st)))
644 		return status;
645 	PID[0] = st[1] << 8 | st[2];
646 
647 	if ((status = card_send_command(ioaddr, name, Command1, st)))
648 		return status;
649 	PID[1] = st[1] << 8 | st[2];
650 
651 	if ((status = card_send_command(ioaddr, name, Command2, st)))
652 		return status;
653 	PID[2] = st[1] << 8 | st[2];
654 
655 	if ((status = card_send_command(ioaddr, name, Command3, st)))
656 		return status;
657 	PID[3] = st[1] << 8 | st[2];
658 
659 	return sb1000_end_get_set_command(ioaddr, name);
660 }
661 
662 /* set SB1000 PIDs */
663 static int
664 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
665 {
666 	static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
667 
668 	unsigned char st[7];
669 	short p;
670 	int status;
671 	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
672 	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
673 	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
674 	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
675 
676 	udelay(1000);
677 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
678 		return status;
679 
680 	p = PID[0];
681 	Command0[3] = p & 0xff;
682 	p >>= 8;
683 	Command0[2] = p & 0xff;
684 	if ((status = card_send_command(ioaddr, name, Command0, st)))
685 		return status;
686 
687 	p = PID[1];
688 	Command1[3] = p & 0xff;
689 	p >>= 8;
690 	Command1[2] = p & 0xff;
691 	if ((status = card_send_command(ioaddr, name, Command1, st)))
692 		return status;
693 
694 	p = PID[2];
695 	Command2[3] = p & 0xff;
696 	p >>= 8;
697 	Command2[2] = p & 0xff;
698 	if ((status = card_send_command(ioaddr, name, Command2, st)))
699 		return status;
700 
701 	p = PID[3];
702 	Command3[3] = p & 0xff;
703 	p >>= 8;
704 	Command3[2] = p & 0xff;
705 	if ((status = card_send_command(ioaddr, name, Command3, st)))
706 		return status;
707 
708 	if ((status = card_send_command(ioaddr, name, Command4, st)))
709 		return status;
710 	return sb1000_end_get_set_command(ioaddr, name);
711 }
712 
713 
714 static void
715 sb1000_print_status_buffer(const char* name, unsigned char st[],
716 	unsigned char buffer[], int size)
717 {
718 	int i, j, k;
719 
720 	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
721 	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
722 		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
723 			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
724 			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
725             buffer[46] << 8 | buffer[47],
726 			buffer[42], buffer[43], buffer[44], buffer[45],
727             buffer[48] << 8 | buffer[49]);
728 	} else {
729 		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
730 			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
731 			for (j = 0; j < 8 && k < size; j++, k++)
732 				printk(" %02x", buffer[k]);
733 			printk("\n");
734 		}
735 	}
736 	return;
737 }
738 
739 /*
740  * SB1000 commands for frame rx interrupt
741  */
742 /* receive a single frame and assemble datagram
743  * (this is the heart of the interrupt routine)
744  */
745 static int
746 sb1000_rx(struct net_device *dev)
747 {
748 
749 #define FRAMESIZE 184
750 	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
751 	short dlen;
752 	int ioaddr, ns;
753 	unsigned int skbsize;
754 	struct sk_buff *skb;
755 	struct sb1000_private *lp = netdev_priv(dev);
756 	struct net_device_stats *stats = &dev->stats;
757 
758 	/* SB1000 frame constants */
759 	const int FrameSize = FRAMESIZE;
760 	const int NewDatagramHeaderSkip = 8;
761 	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
762 	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
763 	const int ContDatagramHeaderSkip = 7;
764 	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
765 	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
766 	const int TrailerSize = 4;
767 
768 	ioaddr = dev->base_addr;
769 
770 	insw(ioaddr, (unsigned short*) st, 1);
771 #ifdef XXXDEBUG
772 printk("cm0: received: %02x %02x\n", st[0], st[1]);
773 #endif /* XXXDEBUG */
774 	lp->rx_frames++;
775 
776 	/* decide if it is a good or bad frame */
777 	for (ns = 0; ns < NPIDS; ns++) {
778 		session_id = lp->rx_session_id[ns];
779 		frame_id = lp->rx_frame_id[ns];
780 		if (st[0] == session_id) {
781 			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
782 				goto good_frame;
783 			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
784 				goto skipped_frame;
785 			} else {
786 				goto bad_frame;
787 			}
788 		} else if (st[0] == (session_id | 0x40)) {
789 			if ((st[1] & 0xf0) == 0x30) {
790 				goto skipped_frame;
791 			} else {
792 				goto bad_frame;
793 			}
794 		}
795 	}
796 	goto bad_frame;
797 
798 skipped_frame:
799 	stats->rx_frame_errors++;
800 	skb = lp->rx_skb[ns];
801 	if (sb1000_debug > 1)
802 		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
803 			"expecting %02x %02x\n", dev->name, st[0], st[1],
804 			skb ? session_id : session_id | 0x40, frame_id);
805 	if (skb) {
806 		dev_kfree_skb(skb);
807 		skb = NULL;
808 	}
809 
810 good_frame:
811 	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
812 	/* new datagram */
813 	if (st[0] & 0x40) {
814 		/* get data length */
815 		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
816 #ifdef XXXDEBUG
817 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
818 #endif /* XXXDEBUG */
819 		if (buffer[0] != NewDatagramHeaderSkip) {
820 			if (sb1000_debug > 1)
821 				printk(KERN_WARNING "%s: new datagram header skip error: "
822 					"got %02x expecting %02x\n", dev->name, buffer[0],
823 					NewDatagramHeaderSkip);
824 			stats->rx_length_errors++;
825 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
826 			goto bad_frame_next;
827 		}
828 		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
829 			buffer[NewDatagramHeaderSkip + 4]) - 17;
830 		if (dlen > SB1000_MRU) {
831 			if (sb1000_debug > 1)
832 				printk(KERN_WARNING "%s: datagram length (%d) greater "
833 					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
834 			stats->rx_length_errors++;
835 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
836 			goto bad_frame_next;
837 		}
838 		lp->rx_dlen[ns] = dlen;
839 		/* compute size to allocate for datagram */
840 		skbsize = dlen + FrameSize;
841 		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
842 			if (sb1000_debug > 1)
843 				printk(KERN_WARNING "%s: can't allocate %d bytes long "
844 					"skbuff\n", dev->name, skbsize);
845 			stats->rx_dropped++;
846 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
847 			goto dropped_frame;
848 		}
849 		skb->dev = dev;
850 		skb_reset_mac_header(skb);
851 		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
852 		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
853 			NewDatagramDataSize / 2);
854 		lp->rx_skb[ns] = skb;
855 	} else {
856 		/* continuation of previous datagram */
857 		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
858 		if (buffer[0] != ContDatagramHeaderSkip) {
859 			if (sb1000_debug > 1)
860 				printk(KERN_WARNING "%s: cont datagram header skip error: "
861 					"got %02x expecting %02x\n", dev->name, buffer[0],
862 					ContDatagramHeaderSkip);
863 			stats->rx_length_errors++;
864 			insw(ioaddr, buffer, ContDatagramDataSize / 2);
865 			goto bad_frame_next;
866 		}
867 		skb = lp->rx_skb[ns];
868 		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
869 			ContDatagramDataSize / 2);
870 		dlen = lp->rx_dlen[ns];
871 	}
872 	if (skb->len < dlen + TrailerSize) {
873 		lp->rx_session_id[ns] &= ~0x40;
874 		return 0;
875 	}
876 
877 	/* datagram completed: send to upper level */
878 	skb_trim(skb, dlen);
879 	netif_rx(skb);
880 	stats->rx_bytes+=dlen;
881 	stats->rx_packets++;
882 	lp->rx_skb[ns] = NULL;
883 	lp->rx_session_id[ns] |= 0x40;
884 	return 0;
885 
886 bad_frame:
887 	insw(ioaddr, buffer, FrameSize / 2);
888 	if (sb1000_debug > 1)
889 		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
890 			dev->name, st[0], st[1]);
891 	stats->rx_frame_errors++;
892 bad_frame_next:
893 	if (sb1000_debug > 2)
894 		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
895 dropped_frame:
896 	stats->rx_errors++;
897 	if (ns < NPIDS) {
898 		if ((skb = lp->rx_skb[ns])) {
899 			dev_kfree_skb(skb);
900 			lp->rx_skb[ns] = NULL;
901 		}
902 		lp->rx_session_id[ns] |= 0x40;
903 	}
904 	return -1;
905 }
906 
907 static void
908 sb1000_error_dpc(struct net_device *dev)
909 {
910 	static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
911 
912 	char *name;
913 	unsigned char st[5];
914 	int ioaddr[2];
915 	struct sb1000_private *lp = netdev_priv(dev);
916 	const int ErrorDpcCounterInitialize = 200;
917 
918 	ioaddr[0] = dev->base_addr;
919 	/* mem_start holds the second I/O address */
920 	ioaddr[1] = dev->mem_start;
921 	name = dev->name;
922 
923 	sb1000_wait_for_ready_clear(ioaddr, name);
924 	sb1000_send_command(ioaddr, name, Command0);
925 	sb1000_wait_for_ready(ioaddr, name);
926 	sb1000_read_status(ioaddr, st);
927 	if (st[1] & 0x10)
928 		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
929 	return;
930 }
931 
932 
933 /*
934  * Linux interface functions
935  */
936 static int
937 sb1000_open(struct net_device *dev)
938 {
939 	char *name;
940 	int ioaddr[2], status;
941 	struct sb1000_private *lp = netdev_priv(dev);
942 	const unsigned short FirmwareVersion[] = {0x01, 0x01};
943 
944 	ioaddr[0] = dev->base_addr;
945 	/* mem_start holds the second I/O address */
946 	ioaddr[1] = dev->mem_start;
947 	name = dev->name;
948 
949 	/* initialize sb1000 */
950 	if ((status = sb1000_reset(ioaddr, name)))
951 		return status;
952 	ssleep(1);
953 	if ((status = sb1000_check_CRC(ioaddr, name)))
954 		return status;
955 
956 	/* initialize private data before board can catch interrupts */
957 	lp->rx_skb[0] = NULL;
958 	lp->rx_skb[1] = NULL;
959 	lp->rx_skb[2] = NULL;
960 	lp->rx_skb[3] = NULL;
961 	lp->rx_dlen[0] = 0;
962 	lp->rx_dlen[1] = 0;
963 	lp->rx_dlen[2] = 0;
964 	lp->rx_dlen[3] = 0;
965 	lp->rx_frames = 0;
966 	lp->rx_error_count = 0;
967 	lp->rx_error_dpc_count = 0;
968 	lp->rx_session_id[0] = 0x50;
969 	lp->rx_session_id[0] = 0x48;
970 	lp->rx_session_id[0] = 0x44;
971 	lp->rx_session_id[0] = 0x42;
972 	lp->rx_frame_id[0] = 0;
973 	lp->rx_frame_id[1] = 0;
974 	lp->rx_frame_id[2] = 0;
975 	lp->rx_frame_id[3] = 0;
976 	if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
977 		return -EAGAIN;
978 	}
979 
980 	if (sb1000_debug > 2)
981 		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
982 
983 	/* Activate board and check firmware version */
984 	udelay(1000);
985 	if ((status = sb1000_activate(ioaddr, name)))
986 		return status;
987 	udelay(0);
988 	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
989 		return status;
990 	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
991 		printk(KERN_WARNING "%s: found firmware version %x.%02x "
992 			"(should be %x.%02x)\n", name, version[0], version[1],
993 			FirmwareVersion[0], FirmwareVersion[1]);
994 
995 
996 	netif_start_queue(dev);
997 	return 0;					/* Always succeed */
998 }
999 
1000 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1001 {
1002 	char* name;
1003 	unsigned char version[2];
1004 	short PID[4];
1005 	int ioaddr[2], status, frequency;
1006 	unsigned int stats[5];
1007 	struct sb1000_private *lp = netdev_priv(dev);
1008 
1009 	if (!(dev && dev->flags & IFF_UP))
1010 		return -ENODEV;
1011 
1012 	ioaddr[0] = dev->base_addr;
1013 	/* mem_start holds the second I/O address */
1014 	ioaddr[1] = dev->mem_start;
1015 	name = dev->name;
1016 
1017 	switch (cmd) {
1018 	case SIOCGCMSTATS:		/* get statistics */
1019 		stats[0] = dev->stats.rx_bytes;
1020 		stats[1] = lp->rx_frames;
1021 		stats[2] = dev->stats.rx_packets;
1022 		stats[3] = dev->stats.rx_errors;
1023 		stats[4] = dev->stats.rx_dropped;
1024 		if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1025 			return -EFAULT;
1026 		status = 0;
1027 		break;
1028 
1029 	case SIOCGCMFIRMWARE:		/* get firmware version */
1030 		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1031 			return status;
1032 		if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1033 			return -EFAULT;
1034 		break;
1035 
1036 	case SIOCGCMFREQUENCY:		/* get frequency */
1037 		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1038 			return status;
1039 		if(put_user(frequency, (int __user *) ifr->ifr_data))
1040 			return -EFAULT;
1041 		break;
1042 
1043 	case SIOCSCMFREQUENCY:		/* set frequency */
1044 		if (!capable(CAP_NET_ADMIN))
1045 			return -EPERM;
1046 		if(get_user(frequency, (int __user *) ifr->ifr_data))
1047 			return -EFAULT;
1048 		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1049 			return status;
1050 		break;
1051 
1052 	case SIOCGCMPIDS:			/* get PIDs */
1053 		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1054 			return status;
1055 		if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1056 			return -EFAULT;
1057 		break;
1058 
1059 	case SIOCSCMPIDS:			/* set PIDs */
1060 		if (!capable(CAP_NET_ADMIN))
1061 			return -EPERM;
1062 		if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1063 			return -EFAULT;
1064 		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1065 			return status;
1066 		/* set session_id, frame_id and pkt_type too */
1067 		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1068 		lp->rx_session_id[1] = 0x48;
1069 		lp->rx_session_id[2] = 0x44;
1070 		lp->rx_session_id[3] = 0x42;
1071 		lp->rx_frame_id[0] = 0;
1072 		lp->rx_frame_id[1] = 0;
1073 		lp->rx_frame_id[2] = 0;
1074 		lp->rx_frame_id[3] = 0;
1075 		break;
1076 
1077 	default:
1078 		status = -EINVAL;
1079 		break;
1080 	}
1081 	return status;
1082 }
1083 
1084 /* transmit function: do nothing since SB1000 can't send anything out */
1085 static netdev_tx_t
1086 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1087 {
1088 	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1089 	/* sb1000 can't xmit datagrams */
1090 	dev_kfree_skb(skb);
1091 	return NETDEV_TX_OK;
1092 }
1093 
1094 /* SB1000 interrupt handler. */
1095 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1096 {
1097 	static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1098 	static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1099 
1100 	char *name;
1101 	unsigned char st;
1102 	int ioaddr[2];
1103 	struct net_device *dev = dev_id;
1104 	struct sb1000_private *lp = netdev_priv(dev);
1105 
1106 	const int MaxRxErrorCount = 6;
1107 
1108 	ioaddr[0] = dev->base_addr;
1109 	/* mem_start holds the second I/O address */
1110 	ioaddr[1] = dev->mem_start;
1111 	name = dev->name;
1112 
1113 	/* is it a good interrupt? */
1114 	st = inb(ioaddr[1] + 6);
1115 	if (!(st & 0x08 && st & 0x20)) {
1116 		return IRQ_NONE;
1117 	}
1118 
1119 	if (sb1000_debug > 3)
1120 		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1121 
1122 	st = inb(ioaddr[0] + 7);
1123 	if (sb1000_rx(dev))
1124 		lp->rx_error_count++;
1125 #ifdef SB1000_DELAY
1126 	udelay(SB1000_DELAY);
1127 #endif /* SB1000_DELAY */
1128 	sb1000_issue_read_command(ioaddr, name);
1129 	if (st & 0x01) {
1130 		sb1000_error_dpc(dev);
1131 		sb1000_issue_read_command(ioaddr, name);
1132 	}
1133 	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1134 		sb1000_wait_for_ready_clear(ioaddr, name);
1135 		sb1000_send_command(ioaddr, name, Command0);
1136 		sb1000_wait_for_ready(ioaddr, name);
1137 		sb1000_issue_read_command(ioaddr, name);
1138 	}
1139 	if (lp->rx_error_count >= MaxRxErrorCount) {
1140 		sb1000_wait_for_ready_clear(ioaddr, name);
1141 		sb1000_send_command(ioaddr, name, Command1);
1142 		sb1000_wait_for_ready(ioaddr, name);
1143 		sb1000_issue_read_command(ioaddr, name);
1144 		lp->rx_error_count = 0;
1145 	}
1146 
1147 	return IRQ_HANDLED;
1148 }
1149 
1150 static int sb1000_close(struct net_device *dev)
1151 {
1152 	int i;
1153 	int ioaddr[2];
1154 	struct sb1000_private *lp = netdev_priv(dev);
1155 
1156 	if (sb1000_debug > 2)
1157 		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1158 
1159 	netif_stop_queue(dev);
1160 
1161 	ioaddr[0] = dev->base_addr;
1162 	/* mem_start holds the second I/O address */
1163 	ioaddr[1] = dev->mem_start;
1164 
1165 	free_irq(dev->irq, dev);
1166 	/* If we don't do this, we can't re-insmod it later. */
1167 	release_region(ioaddr[1], SB1000_IO_EXTENT);
1168 	release_region(ioaddr[0], SB1000_IO_EXTENT);
1169 
1170 	/* free rx_skb's if needed */
1171 	for (i=0; i<4; i++) {
1172 		if (lp->rx_skb[i]) {
1173 			dev_kfree_skb(lp->rx_skb[i]);
1174 		}
1175 	}
1176 	return 0;
1177 }
1178 
1179 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1180 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1181 MODULE_LICENSE("GPL");
1182 
1183 static int __init
1184 sb1000_init(void)
1185 {
1186 	return pnp_register_driver(&sb1000_driver);
1187 }
1188 
1189 static void __exit
1190 sb1000_exit(void)
1191 {
1192 	pnp_unregister_driver(&sb1000_driver);
1193 }
1194 
1195 module_init(sb1000_init);
1196 module_exit(sb1000_exit);
1197