xref: /openbmc/linux/drivers/net/sb1000.c (revision 6d99a79c)
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3 	Written 1998 by Franco Venturi.
4 
5 	Copyright 1998 by Franco Venturi.
6 	Copyright 1994,1995 by Donald Becker.
7 	Copyright 1993 United States Government as represented by the
8 	Director, National Security Agency.
9 
10 	This driver is for the General Instruments SB1000 (internal SURFboard)
11 
12 	The author may be reached as fventuri@mediaone.net
13 
14 	This program is free software; you can redistribute it
15 	and/or  modify it under  the terms of  the GNU General
16 	Public  License as  published  by  the  Free  Software
17 	Foundation;  either  version 2 of the License, or  (at
18 	your option) any later version.
19 
20 	Changes:
21 
22 	981115 Steven Hirsch <shirsch@adelphia.net>
23 
24 	Linus changed the timer interface.  Should work on all recent
25 	development kernels.
26 
27 	980608 Steven Hirsch <shirsch@adelphia.net>
28 
29 	Small changes to make it work with 2.1.x kernels. Hopefully,
30 	nothing major will change before official release of Linux 2.2.
31 
32 	Merged with 2.2 - Alan Cox
33 */
34 
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
36 
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/sched.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/errno.h>
43 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
44 #include <linux/in.h>
45 #include <linux/ioport.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/skbuff.h>
49 #include <linux/delay.h>	/* for udelay() */
50 #include <linux/etherdevice.h>
51 #include <linux/pnp.h>
52 #include <linux/init.h>
53 #include <linux/bitops.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <linux/uaccess.h>
59 
60 #ifdef SB1000_DEBUG
61 static int sb1000_debug = SB1000_DEBUG;
62 #else
63 static const int sb1000_debug = 1;
64 #endif
65 
66 static const int SB1000_IO_EXTENT = 8;
67 /* SB1000 Maximum Receive Unit */
68 static const int SB1000_MRU = 1500; /* octects */
69 
70 #define NPIDS 4
71 struct sb1000_private {
72 	struct sk_buff *rx_skb[NPIDS];
73 	short rx_dlen[NPIDS];
74 	unsigned int rx_frames;
75 	short rx_error_count;
76 	short rx_error_dpc_count;
77 	unsigned char rx_session_id[NPIDS];
78 	unsigned char rx_frame_id[NPIDS];
79 	unsigned char rx_pkt_type[NPIDS];
80 };
81 
82 /* prototypes for Linux interface */
83 extern int sb1000_probe(struct net_device *dev);
84 static int sb1000_open(struct net_device *dev);
85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
86 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
87 				     struct net_device *dev);
88 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
89 static int sb1000_close(struct net_device *dev);
90 
91 
92 /* SB1000 hardware routines to be used during open/configuration phases */
93 static int card_wait_for_busy_clear(const int ioaddr[],
94 	const char* name);
95 static int card_wait_for_ready(const int ioaddr[], const char* name,
96 	unsigned char in[]);
97 static int card_send_command(const int ioaddr[], const char* name,
98 	const unsigned char out[], unsigned char in[]);
99 
100 /* SB1000 hardware routines to be used during frame rx interrupt */
101 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
102 static int sb1000_wait_for_ready_clear(const int ioaddr[],
103 	const char* name);
104 static void sb1000_send_command(const int ioaddr[], const char* name,
105 	const unsigned char out[]);
106 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
107 static void sb1000_issue_read_command(const int ioaddr[],
108 	const char* name);
109 
110 /* SB1000 commands for open/configuration */
111 static int sb1000_reset(const int ioaddr[], const char* name);
112 static int sb1000_check_CRC(const int ioaddr[], const char* name);
113 static inline int sb1000_start_get_set_command(const int ioaddr[],
114 	const char* name);
115 static int sb1000_end_get_set_command(const int ioaddr[],
116 	const char* name);
117 static int sb1000_activate(const int ioaddr[], const char* name);
118 static int sb1000_get_firmware_version(const int ioaddr[],
119 	const char* name, unsigned char version[], int do_end);
120 static int sb1000_get_frequency(const int ioaddr[], const char* name,
121 	int* frequency);
122 static int sb1000_set_frequency(const int ioaddr[], const char* name,
123 	int frequency);
124 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
125 	short PID[]);
126 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
127 	const short PID[]);
128 
129 /* SB1000 commands for frame rx interrupt */
130 static int sb1000_rx(struct net_device *dev);
131 static void sb1000_error_dpc(struct net_device *dev);
132 
133 static const struct pnp_device_id sb1000_pnp_ids[] = {
134 	{ "GIC1000", 0 },
135 	{ "", 0 }
136 };
137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
138 
139 static const struct net_device_ops sb1000_netdev_ops = {
140 	.ndo_open		= sb1000_open,
141 	.ndo_start_xmit		= sb1000_start_xmit,
142 	.ndo_do_ioctl		= sb1000_dev_ioctl,
143 	.ndo_stop		= sb1000_close,
144 	.ndo_set_mac_address 	= eth_mac_addr,
145 	.ndo_validate_addr	= eth_validate_addr,
146 };
147 
148 static int
149 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
150 {
151 	struct net_device *dev;
152 	unsigned short ioaddr[2], irq;
153 	unsigned int serial_number;
154 	int error = -ENODEV;
155 
156 	if (pnp_device_attach(pdev) < 0)
157 		return -ENODEV;
158 	if (pnp_activate_dev(pdev) < 0)
159 		goto out_detach;
160 
161 	if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
162 		goto out_disable;
163 	if (!pnp_irq_valid(pdev, 0))
164 		goto out_disable;
165 
166 	serial_number = pdev->card->serial;
167 
168 	ioaddr[0] = pnp_port_start(pdev, 0);
169 	ioaddr[1] = pnp_port_start(pdev, 0);
170 
171 	irq = pnp_irq(pdev, 0);
172 
173 	if (!request_region(ioaddr[0], 16, "sb1000"))
174 		goto out_disable;
175 	if (!request_region(ioaddr[1], 16, "sb1000"))
176 		goto out_release_region0;
177 
178 	dev = alloc_etherdev(sizeof(struct sb1000_private));
179 	if (!dev) {
180 		error = -ENOMEM;
181 		goto out_release_regions;
182 	}
183 
184 
185 	dev->base_addr = ioaddr[0];
186 	/* mem_start holds the second I/O address */
187 	dev->mem_start = ioaddr[1];
188 	dev->irq = irq;
189 
190 	if (sb1000_debug > 0)
191 		printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
192 			"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
193 			dev->mem_start, serial_number, dev->irq);
194 
195 	/*
196 	 * The SB1000 is an rx-only cable modem device.  The uplink is a modem
197 	 * and we do not want to arp on it.
198 	 */
199 	dev->flags = IFF_POINTOPOINT|IFF_NOARP;
200 
201 	SET_NETDEV_DEV(dev, &pdev->dev);
202 
203 	if (sb1000_debug > 0)
204 		printk(KERN_NOTICE "%s", version);
205 
206 	dev->netdev_ops	= &sb1000_netdev_ops;
207 
208 	/* hardware address is 0:0:serial_number */
209 	dev->dev_addr[2]	= serial_number >> 24 & 0xff;
210 	dev->dev_addr[3]	= serial_number >> 16 & 0xff;
211 	dev->dev_addr[4]	= serial_number >>  8 & 0xff;
212 	dev->dev_addr[5]	= serial_number >>  0 & 0xff;
213 
214 	pnp_set_drvdata(pdev, dev);
215 
216 	error = register_netdev(dev);
217 	if (error)
218 		goto out_free_netdev;
219 	return 0;
220 
221  out_free_netdev:
222 	free_netdev(dev);
223  out_release_regions:
224 	release_region(ioaddr[1], 16);
225  out_release_region0:
226 	release_region(ioaddr[0], 16);
227  out_disable:
228 	pnp_disable_dev(pdev);
229  out_detach:
230 	pnp_device_detach(pdev);
231 	return error;
232 }
233 
234 static void
235 sb1000_remove_one(struct pnp_dev *pdev)
236 {
237 	struct net_device *dev = pnp_get_drvdata(pdev);
238 
239 	unregister_netdev(dev);
240 	release_region(dev->base_addr, 16);
241 	release_region(dev->mem_start, 16);
242 	free_netdev(dev);
243 }
244 
245 static struct pnp_driver sb1000_driver = {
246 	.name		= "sb1000",
247 	.id_table	= sb1000_pnp_ids,
248 	.probe		= sb1000_probe_one,
249 	.remove		= sb1000_remove_one,
250 };
251 
252 
253 /*
254  * SB1000 hardware routines to be used during open/configuration phases
255  */
256 
257 static const int TimeOutJiffies = (875 * HZ) / 100;
258 
259 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
260 static int
261 card_wait_for_busy_clear(const int ioaddr[], const char* name)
262 {
263 	unsigned char a;
264 	unsigned long timeout;
265 
266 	a = inb(ioaddr[0] + 7);
267 	timeout = jiffies + TimeOutJiffies;
268 	while (a & 0x80 || a & 0x40) {
269 		/* a little sleep */
270 		yield();
271 
272 		a = inb(ioaddr[0] + 7);
273 		if (time_after_eq(jiffies, timeout)) {
274 			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
275 				name);
276 			return -ETIME;
277 		}
278 	}
279 
280 	return 0;
281 }
282 
283 /* Card Wait For Ready (cannot be used during an interrupt) */
284 static int
285 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
286 {
287 	unsigned char a;
288 	unsigned long timeout;
289 
290 	a = inb(ioaddr[1] + 6);
291 	timeout = jiffies + TimeOutJiffies;
292 	while (a & 0x80 || !(a & 0x40)) {
293 		/* a little sleep */
294 		yield();
295 
296 		a = inb(ioaddr[1] + 6);
297 		if (time_after_eq(jiffies, timeout)) {
298 			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
299 				name);
300 			return -ETIME;
301 		}
302 	}
303 
304 	in[1] = inb(ioaddr[0] + 1);
305 	in[2] = inb(ioaddr[0] + 2);
306 	in[3] = inb(ioaddr[0] + 3);
307 	in[4] = inb(ioaddr[0] + 4);
308 	in[0] = inb(ioaddr[0] + 5);
309 	in[6] = inb(ioaddr[0] + 6);
310 	in[5] = inb(ioaddr[1] + 6);
311 	return 0;
312 }
313 
314 /* Card Send Command (cannot be used during an interrupt) */
315 static int
316 card_send_command(const int ioaddr[], const char* name,
317 	const unsigned char out[], unsigned char in[])
318 {
319 	int status, x;
320 
321 	if ((status = card_wait_for_busy_clear(ioaddr, name)))
322 		return status;
323 	outb(0xa0, ioaddr[0] + 6);
324 	outb(out[2], ioaddr[0] + 1);
325 	outb(out[3], ioaddr[0] + 2);
326 	outb(out[4], ioaddr[0] + 3);
327 	outb(out[5], ioaddr[0] + 4);
328 	outb(out[1], ioaddr[0] + 5);
329 	outb(0xa0, ioaddr[0] + 6);
330 	outb(out[0], ioaddr[0] + 7);
331 	if (out[0] != 0x20 && out[0] != 0x30) {
332 		if ((status = card_wait_for_ready(ioaddr, name, in)))
333 			return status;
334 		inb(ioaddr[0] + 7);
335 		if (sb1000_debug > 3)
336 			printk(KERN_DEBUG "%s: card_send_command "
337 				"out: %02x%02x%02x%02x%02x%02x  "
338 				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
339 				out[0], out[1], out[2], out[3], out[4], out[5],
340 				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
341 	} else {
342 		if (sb1000_debug > 3)
343 			printk(KERN_DEBUG "%s: card_send_command "
344 				"out: %02x%02x%02x%02x%02x%02x\n", name,
345 				out[0], out[1], out[2], out[3], out[4], out[5]);
346 	}
347 
348 	if (out[1] == 0x1b) {
349 		x = (out[2] == 0x02);
350 	} else {
351 		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
352 			return -EIO;
353 	}
354 	return 0;
355 }
356 
357 
358 /*
359  * SB1000 hardware routines to be used during frame rx interrupt
360  */
361 static const int Sb1000TimeOutJiffies = 7 * HZ;
362 
363 /* Card Wait For Ready (to be used during frame rx) */
364 static int
365 sb1000_wait_for_ready(const int ioaddr[], const char* name)
366 {
367 	unsigned long timeout;
368 
369 	timeout = jiffies + Sb1000TimeOutJiffies;
370 	while (inb(ioaddr[1] + 6) & 0x80) {
371 		if (time_after_eq(jiffies, timeout)) {
372 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
373 				name);
374 			return -ETIME;
375 		}
376 	}
377 	timeout = jiffies + Sb1000TimeOutJiffies;
378 	while (!(inb(ioaddr[1] + 6) & 0x40)) {
379 		if (time_after_eq(jiffies, timeout)) {
380 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
381 				name);
382 			return -ETIME;
383 		}
384 	}
385 	inb(ioaddr[0] + 7);
386 	return 0;
387 }
388 
389 /* Card Wait For Ready Clear (to be used during frame rx) */
390 static int
391 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
392 {
393 	unsigned long timeout;
394 
395 	timeout = jiffies + Sb1000TimeOutJiffies;
396 	while (inb(ioaddr[1] + 6) & 0x80) {
397 		if (time_after_eq(jiffies, timeout)) {
398 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
399 				name);
400 			return -ETIME;
401 		}
402 	}
403 	timeout = jiffies + Sb1000TimeOutJiffies;
404 	while (inb(ioaddr[1] + 6) & 0x40) {
405 		if (time_after_eq(jiffies, timeout)) {
406 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
407 				name);
408 			return -ETIME;
409 		}
410 	}
411 	return 0;
412 }
413 
414 /* Card Send Command (to be used during frame rx) */
415 static void
416 sb1000_send_command(const int ioaddr[], const char* name,
417 	const unsigned char out[])
418 {
419 	outb(out[2], ioaddr[0] + 1);
420 	outb(out[3], ioaddr[0] + 2);
421 	outb(out[4], ioaddr[0] + 3);
422 	outb(out[5], ioaddr[0] + 4);
423 	outb(out[1], ioaddr[0] + 5);
424 	outb(out[0], ioaddr[0] + 7);
425 	if (sb1000_debug > 3)
426 		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
427 			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
428 }
429 
430 /* Card Read Status (to be used during frame rx) */
431 static void
432 sb1000_read_status(const int ioaddr[], unsigned char in[])
433 {
434 	in[1] = inb(ioaddr[0] + 1);
435 	in[2] = inb(ioaddr[0] + 2);
436 	in[3] = inb(ioaddr[0] + 3);
437 	in[4] = inb(ioaddr[0] + 4);
438 	in[0] = inb(ioaddr[0] + 5);
439 }
440 
441 /* Issue Read Command (to be used during frame rx) */
442 static void
443 sb1000_issue_read_command(const int ioaddr[], const char* name)
444 {
445 	static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
446 
447 	sb1000_wait_for_ready_clear(ioaddr, name);
448 	outb(0xa0, ioaddr[0] + 6);
449 	sb1000_send_command(ioaddr, name, Command0);
450 }
451 
452 
453 /*
454  * SB1000 commands for open/configuration
455  */
456 /* reset SB1000 card */
457 static int
458 sb1000_reset(const int ioaddr[], const char* name)
459 {
460 	static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
461 
462 	unsigned char st[7];
463 	int port, status;
464 
465 	port = ioaddr[1] + 6;
466 	outb(0x4, port);
467 	inb(port);
468 	udelay(1000);
469 	outb(0x0, port);
470 	inb(port);
471 	ssleep(1);
472 	outb(0x4, port);
473 	inb(port);
474 	udelay(1000);
475 	outb(0x0, port);
476 	inb(port);
477 	udelay(0);
478 
479 	if ((status = card_send_command(ioaddr, name, Command0, st)))
480 		return status;
481 	if (st[3] != 0xf0)
482 		return -EIO;
483 	return 0;
484 }
485 
486 /* check SB1000 firmware CRC */
487 static int
488 sb1000_check_CRC(const int ioaddr[], const char* name)
489 {
490 	static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
491 
492 	unsigned char st[7];
493 	int crc, status;
494 
495 	/* check CRC */
496 	if ((status = card_send_command(ioaddr, name, Command0, st)))
497 		return status;
498 	if (st[1] != st[3] || st[2] != st[4])
499 		return -EIO;
500 	crc = st[1] << 8 | st[2];
501 	return 0;
502 }
503 
504 static inline int
505 sb1000_start_get_set_command(const int ioaddr[], const char* name)
506 {
507 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
508 
509 	unsigned char st[7];
510 
511 	return card_send_command(ioaddr, name, Command0, st);
512 }
513 
514 static int
515 sb1000_end_get_set_command(const int ioaddr[], const char* name)
516 {
517 	static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
518 	static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
519 
520 	unsigned char st[7];
521 	int status;
522 
523 	if ((status = card_send_command(ioaddr, name, Command0, st)))
524 		return status;
525 	return card_send_command(ioaddr, name, Command1, st);
526 }
527 
528 static int
529 sb1000_activate(const int ioaddr[], const char* name)
530 {
531 	static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
532 	static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
533 
534 	unsigned char st[7];
535 	int status;
536 
537 	ssleep(1);
538 	if ((status = card_send_command(ioaddr, name, Command0, st)))
539 		return status;
540 	if ((status = card_send_command(ioaddr, name, Command1, st)))
541 		return status;
542 	if (st[3] != 0xf1) {
543     	if ((status = sb1000_start_get_set_command(ioaddr, name)))
544 			return status;
545 		return -EIO;
546 	}
547 	udelay(1000);
548     return sb1000_start_get_set_command(ioaddr, name);
549 }
550 
551 /* get SB1000 firmware version */
552 static int
553 sb1000_get_firmware_version(const int ioaddr[], const char* name,
554 	unsigned char version[], int do_end)
555 {
556 	static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
557 
558 	unsigned char st[7];
559 	int status;
560 
561 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
562 		return status;
563 	if ((status = card_send_command(ioaddr, name, Command0, st)))
564 		return status;
565 	if (st[0] != 0xa3)
566 		return -EIO;
567 	version[0] = st[1];
568 	version[1] = st[2];
569 	if (do_end)
570 		return sb1000_end_get_set_command(ioaddr, name);
571 	else
572 		return 0;
573 }
574 
575 /* get SB1000 frequency */
576 static int
577 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
578 {
579 	static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
580 
581 	unsigned char st[7];
582 	int status;
583 
584 	udelay(1000);
585 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
586 		return status;
587 	if ((status = card_send_command(ioaddr, name, Command0, st)))
588 		return status;
589 	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
590 	return sb1000_end_get_set_command(ioaddr, name);
591 }
592 
593 /* set SB1000 frequency */
594 static int
595 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
596 {
597 	unsigned char st[7];
598 	int status;
599 	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
600 
601 	const int FrequencyLowerLimit = 57000;
602 	const int FrequencyUpperLimit = 804000;
603 
604 	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
605 		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
606 			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
607 			FrequencyUpperLimit);
608 		return -EINVAL;
609 	}
610 	udelay(1000);
611 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
612 		return status;
613 	Command0[5] = frequency & 0xff;
614 	frequency >>= 8;
615 	Command0[4] = frequency & 0xff;
616 	frequency >>= 8;
617 	Command0[3] = frequency & 0xff;
618 	frequency >>= 8;
619 	Command0[2] = frequency & 0xff;
620 	return card_send_command(ioaddr, name, Command0, st);
621 }
622 
623 /* get SB1000 PIDs */
624 static int
625 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
626 {
627 	static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
628 	static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
629 	static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
630 	static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
631 
632 	unsigned char st[7];
633 	int status;
634 
635 	udelay(1000);
636 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
637 		return status;
638 
639 	if ((status = card_send_command(ioaddr, name, Command0, st)))
640 		return status;
641 	PID[0] = st[1] << 8 | st[2];
642 
643 	if ((status = card_send_command(ioaddr, name, Command1, st)))
644 		return status;
645 	PID[1] = st[1] << 8 | st[2];
646 
647 	if ((status = card_send_command(ioaddr, name, Command2, st)))
648 		return status;
649 	PID[2] = st[1] << 8 | st[2];
650 
651 	if ((status = card_send_command(ioaddr, name, Command3, st)))
652 		return status;
653 	PID[3] = st[1] << 8 | st[2];
654 
655 	return sb1000_end_get_set_command(ioaddr, name);
656 }
657 
658 /* set SB1000 PIDs */
659 static int
660 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
661 {
662 	static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
663 
664 	unsigned char st[7];
665 	short p;
666 	int status;
667 	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
668 	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
669 	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
670 	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
671 
672 	udelay(1000);
673 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
674 		return status;
675 
676 	p = PID[0];
677 	Command0[3] = p & 0xff;
678 	p >>= 8;
679 	Command0[2] = p & 0xff;
680 	if ((status = card_send_command(ioaddr, name, Command0, st)))
681 		return status;
682 
683 	p = PID[1];
684 	Command1[3] = p & 0xff;
685 	p >>= 8;
686 	Command1[2] = p & 0xff;
687 	if ((status = card_send_command(ioaddr, name, Command1, st)))
688 		return status;
689 
690 	p = PID[2];
691 	Command2[3] = p & 0xff;
692 	p >>= 8;
693 	Command2[2] = p & 0xff;
694 	if ((status = card_send_command(ioaddr, name, Command2, st)))
695 		return status;
696 
697 	p = PID[3];
698 	Command3[3] = p & 0xff;
699 	p >>= 8;
700 	Command3[2] = p & 0xff;
701 	if ((status = card_send_command(ioaddr, name, Command3, st)))
702 		return status;
703 
704 	if ((status = card_send_command(ioaddr, name, Command4, st)))
705 		return status;
706 	return sb1000_end_get_set_command(ioaddr, name);
707 }
708 
709 
710 static void
711 sb1000_print_status_buffer(const char* name, unsigned char st[],
712 	unsigned char buffer[], int size)
713 {
714 	int i, j, k;
715 
716 	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
717 	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
718 		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
719 			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
720 			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
721             buffer[46] << 8 | buffer[47],
722 			buffer[42], buffer[43], buffer[44], buffer[45],
723             buffer[48] << 8 | buffer[49]);
724 	} else {
725 		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
726 			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
727 			for (j = 0; j < 8 && k < size; j++, k++)
728 				printk(" %02x", buffer[k]);
729 			printk("\n");
730 		}
731 	}
732 }
733 
734 /*
735  * SB1000 commands for frame rx interrupt
736  */
737 /* receive a single frame and assemble datagram
738  * (this is the heart of the interrupt routine)
739  */
740 static int
741 sb1000_rx(struct net_device *dev)
742 {
743 
744 #define FRAMESIZE 184
745 	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
746 	short dlen;
747 	int ioaddr, ns;
748 	unsigned int skbsize;
749 	struct sk_buff *skb;
750 	struct sb1000_private *lp = netdev_priv(dev);
751 	struct net_device_stats *stats = &dev->stats;
752 
753 	/* SB1000 frame constants */
754 	const int FrameSize = FRAMESIZE;
755 	const int NewDatagramHeaderSkip = 8;
756 	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
757 	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
758 	const int ContDatagramHeaderSkip = 7;
759 	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
760 	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
761 	const int TrailerSize = 4;
762 
763 	ioaddr = dev->base_addr;
764 
765 	insw(ioaddr, (unsigned short*) st, 1);
766 #ifdef XXXDEBUG
767 printk("cm0: received: %02x %02x\n", st[0], st[1]);
768 #endif /* XXXDEBUG */
769 	lp->rx_frames++;
770 
771 	/* decide if it is a good or bad frame */
772 	for (ns = 0; ns < NPIDS; ns++) {
773 		session_id = lp->rx_session_id[ns];
774 		frame_id = lp->rx_frame_id[ns];
775 		if (st[0] == session_id) {
776 			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
777 				goto good_frame;
778 			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
779 				goto skipped_frame;
780 			} else {
781 				goto bad_frame;
782 			}
783 		} else if (st[0] == (session_id | 0x40)) {
784 			if ((st[1] & 0xf0) == 0x30) {
785 				goto skipped_frame;
786 			} else {
787 				goto bad_frame;
788 			}
789 		}
790 	}
791 	goto bad_frame;
792 
793 skipped_frame:
794 	stats->rx_frame_errors++;
795 	skb = lp->rx_skb[ns];
796 	if (sb1000_debug > 1)
797 		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
798 			"expecting %02x %02x\n", dev->name, st[0], st[1],
799 			skb ? session_id : session_id | 0x40, frame_id);
800 	if (skb) {
801 		dev_kfree_skb(skb);
802 		skb = NULL;
803 	}
804 
805 good_frame:
806 	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
807 	/* new datagram */
808 	if (st[0] & 0x40) {
809 		/* get data length */
810 		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
811 #ifdef XXXDEBUG
812 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
813 #endif /* XXXDEBUG */
814 		if (buffer[0] != NewDatagramHeaderSkip) {
815 			if (sb1000_debug > 1)
816 				printk(KERN_WARNING "%s: new datagram header skip error: "
817 					"got %02x expecting %02x\n", dev->name, buffer[0],
818 					NewDatagramHeaderSkip);
819 			stats->rx_length_errors++;
820 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
821 			goto bad_frame_next;
822 		}
823 		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
824 			buffer[NewDatagramHeaderSkip + 4]) - 17;
825 		if (dlen > SB1000_MRU) {
826 			if (sb1000_debug > 1)
827 				printk(KERN_WARNING "%s: datagram length (%d) greater "
828 					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
829 			stats->rx_length_errors++;
830 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
831 			goto bad_frame_next;
832 		}
833 		lp->rx_dlen[ns] = dlen;
834 		/* compute size to allocate for datagram */
835 		skbsize = dlen + FrameSize;
836 		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
837 			if (sb1000_debug > 1)
838 				printk(KERN_WARNING "%s: can't allocate %d bytes long "
839 					"skbuff\n", dev->name, skbsize);
840 			stats->rx_dropped++;
841 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
842 			goto dropped_frame;
843 		}
844 		skb->dev = dev;
845 		skb_reset_mac_header(skb);
846 		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
847 		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
848 			NewDatagramDataSize / 2);
849 		lp->rx_skb[ns] = skb;
850 	} else {
851 		/* continuation of previous datagram */
852 		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
853 		if (buffer[0] != ContDatagramHeaderSkip) {
854 			if (sb1000_debug > 1)
855 				printk(KERN_WARNING "%s: cont datagram header skip error: "
856 					"got %02x expecting %02x\n", dev->name, buffer[0],
857 					ContDatagramHeaderSkip);
858 			stats->rx_length_errors++;
859 			insw(ioaddr, buffer, ContDatagramDataSize / 2);
860 			goto bad_frame_next;
861 		}
862 		skb = lp->rx_skb[ns];
863 		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
864 			ContDatagramDataSize / 2);
865 		dlen = lp->rx_dlen[ns];
866 	}
867 	if (skb->len < dlen + TrailerSize) {
868 		lp->rx_session_id[ns] &= ~0x40;
869 		return 0;
870 	}
871 
872 	/* datagram completed: send to upper level */
873 	skb_trim(skb, dlen);
874 	netif_rx(skb);
875 	stats->rx_bytes+=dlen;
876 	stats->rx_packets++;
877 	lp->rx_skb[ns] = NULL;
878 	lp->rx_session_id[ns] |= 0x40;
879 	return 0;
880 
881 bad_frame:
882 	insw(ioaddr, buffer, FrameSize / 2);
883 	if (sb1000_debug > 1)
884 		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
885 			dev->name, st[0], st[1]);
886 	stats->rx_frame_errors++;
887 bad_frame_next:
888 	if (sb1000_debug > 2)
889 		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
890 dropped_frame:
891 	stats->rx_errors++;
892 	if (ns < NPIDS) {
893 		if ((skb = lp->rx_skb[ns])) {
894 			dev_kfree_skb(skb);
895 			lp->rx_skb[ns] = NULL;
896 		}
897 		lp->rx_session_id[ns] |= 0x40;
898 	}
899 	return -1;
900 }
901 
902 static void
903 sb1000_error_dpc(struct net_device *dev)
904 {
905 	static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
906 
907 	char *name;
908 	unsigned char st[5];
909 	int ioaddr[2];
910 	struct sb1000_private *lp = netdev_priv(dev);
911 	const int ErrorDpcCounterInitialize = 200;
912 
913 	ioaddr[0] = dev->base_addr;
914 	/* mem_start holds the second I/O address */
915 	ioaddr[1] = dev->mem_start;
916 	name = dev->name;
917 
918 	sb1000_wait_for_ready_clear(ioaddr, name);
919 	sb1000_send_command(ioaddr, name, Command0);
920 	sb1000_wait_for_ready(ioaddr, name);
921 	sb1000_read_status(ioaddr, st);
922 	if (st[1] & 0x10)
923 		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
924 }
925 
926 
927 /*
928  * Linux interface functions
929  */
930 static int
931 sb1000_open(struct net_device *dev)
932 {
933 	char *name;
934 	int ioaddr[2], status;
935 	struct sb1000_private *lp = netdev_priv(dev);
936 	const unsigned short FirmwareVersion[] = {0x01, 0x01};
937 
938 	ioaddr[0] = dev->base_addr;
939 	/* mem_start holds the second I/O address */
940 	ioaddr[1] = dev->mem_start;
941 	name = dev->name;
942 
943 	/* initialize sb1000 */
944 	if ((status = sb1000_reset(ioaddr, name)))
945 		return status;
946 	ssleep(1);
947 	if ((status = sb1000_check_CRC(ioaddr, name)))
948 		return status;
949 
950 	/* initialize private data before board can catch interrupts */
951 	lp->rx_skb[0] = NULL;
952 	lp->rx_skb[1] = NULL;
953 	lp->rx_skb[2] = NULL;
954 	lp->rx_skb[3] = NULL;
955 	lp->rx_dlen[0] = 0;
956 	lp->rx_dlen[1] = 0;
957 	lp->rx_dlen[2] = 0;
958 	lp->rx_dlen[3] = 0;
959 	lp->rx_frames = 0;
960 	lp->rx_error_count = 0;
961 	lp->rx_error_dpc_count = 0;
962 	lp->rx_session_id[0] = 0x50;
963 	lp->rx_session_id[1] = 0x48;
964 	lp->rx_session_id[2] = 0x44;
965 	lp->rx_session_id[3] = 0x42;
966 	lp->rx_frame_id[0] = 0;
967 	lp->rx_frame_id[1] = 0;
968 	lp->rx_frame_id[2] = 0;
969 	lp->rx_frame_id[3] = 0;
970 	if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
971 		return -EAGAIN;
972 	}
973 
974 	if (sb1000_debug > 2)
975 		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
976 
977 	/* Activate board and check firmware version */
978 	udelay(1000);
979 	if ((status = sb1000_activate(ioaddr, name)))
980 		return status;
981 	udelay(0);
982 	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
983 		return status;
984 	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
985 		printk(KERN_WARNING "%s: found firmware version %x.%02x "
986 			"(should be %x.%02x)\n", name, version[0], version[1],
987 			FirmwareVersion[0], FirmwareVersion[1]);
988 
989 
990 	netif_start_queue(dev);
991 	return 0;					/* Always succeed */
992 }
993 
994 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
995 {
996 	char* name;
997 	unsigned char version[2];
998 	short PID[4];
999 	int ioaddr[2], status, frequency;
1000 	unsigned int stats[5];
1001 	struct sb1000_private *lp = netdev_priv(dev);
1002 
1003 	if (!(dev && dev->flags & IFF_UP))
1004 		return -ENODEV;
1005 
1006 	ioaddr[0] = dev->base_addr;
1007 	/* mem_start holds the second I/O address */
1008 	ioaddr[1] = dev->mem_start;
1009 	name = dev->name;
1010 
1011 	switch (cmd) {
1012 	case SIOCGCMSTATS:		/* get statistics */
1013 		stats[0] = dev->stats.rx_bytes;
1014 		stats[1] = lp->rx_frames;
1015 		stats[2] = dev->stats.rx_packets;
1016 		stats[3] = dev->stats.rx_errors;
1017 		stats[4] = dev->stats.rx_dropped;
1018 		if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1019 			return -EFAULT;
1020 		status = 0;
1021 		break;
1022 
1023 	case SIOCGCMFIRMWARE:		/* get firmware version */
1024 		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1025 			return status;
1026 		if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1027 			return -EFAULT;
1028 		break;
1029 
1030 	case SIOCGCMFREQUENCY:		/* get frequency */
1031 		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1032 			return status;
1033 		if(put_user(frequency, (int __user *) ifr->ifr_data))
1034 			return -EFAULT;
1035 		break;
1036 
1037 	case SIOCSCMFREQUENCY:		/* set frequency */
1038 		if (!capable(CAP_NET_ADMIN))
1039 			return -EPERM;
1040 		if(get_user(frequency, (int __user *) ifr->ifr_data))
1041 			return -EFAULT;
1042 		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1043 			return status;
1044 		break;
1045 
1046 	case SIOCGCMPIDS:			/* get PIDs */
1047 		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1048 			return status;
1049 		if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1050 			return -EFAULT;
1051 		break;
1052 
1053 	case SIOCSCMPIDS:			/* set PIDs */
1054 		if (!capable(CAP_NET_ADMIN))
1055 			return -EPERM;
1056 		if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1057 			return -EFAULT;
1058 		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1059 			return status;
1060 		/* set session_id, frame_id and pkt_type too */
1061 		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1062 		lp->rx_session_id[1] = 0x48;
1063 		lp->rx_session_id[2] = 0x44;
1064 		lp->rx_session_id[3] = 0x42;
1065 		lp->rx_frame_id[0] = 0;
1066 		lp->rx_frame_id[1] = 0;
1067 		lp->rx_frame_id[2] = 0;
1068 		lp->rx_frame_id[3] = 0;
1069 		break;
1070 
1071 	default:
1072 		status = -EINVAL;
1073 		break;
1074 	}
1075 	return status;
1076 }
1077 
1078 /* transmit function: do nothing since SB1000 can't send anything out */
1079 static netdev_tx_t
1080 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1081 {
1082 	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1083 	/* sb1000 can't xmit datagrams */
1084 	dev_kfree_skb(skb);
1085 	return NETDEV_TX_OK;
1086 }
1087 
1088 /* SB1000 interrupt handler. */
1089 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1090 {
1091 	static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1092 	static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1093 
1094 	char *name;
1095 	unsigned char st;
1096 	int ioaddr[2];
1097 	struct net_device *dev = dev_id;
1098 	struct sb1000_private *lp = netdev_priv(dev);
1099 
1100 	const int MaxRxErrorCount = 6;
1101 
1102 	ioaddr[0] = dev->base_addr;
1103 	/* mem_start holds the second I/O address */
1104 	ioaddr[1] = dev->mem_start;
1105 	name = dev->name;
1106 
1107 	/* is it a good interrupt? */
1108 	st = inb(ioaddr[1] + 6);
1109 	if (!(st & 0x08 && st & 0x20)) {
1110 		return IRQ_NONE;
1111 	}
1112 
1113 	if (sb1000_debug > 3)
1114 		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1115 
1116 	st = inb(ioaddr[0] + 7);
1117 	if (sb1000_rx(dev))
1118 		lp->rx_error_count++;
1119 #ifdef SB1000_DELAY
1120 	udelay(SB1000_DELAY);
1121 #endif /* SB1000_DELAY */
1122 	sb1000_issue_read_command(ioaddr, name);
1123 	if (st & 0x01) {
1124 		sb1000_error_dpc(dev);
1125 		sb1000_issue_read_command(ioaddr, name);
1126 	}
1127 	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1128 		sb1000_wait_for_ready_clear(ioaddr, name);
1129 		sb1000_send_command(ioaddr, name, Command0);
1130 		sb1000_wait_for_ready(ioaddr, name);
1131 		sb1000_issue_read_command(ioaddr, name);
1132 	}
1133 	if (lp->rx_error_count >= MaxRxErrorCount) {
1134 		sb1000_wait_for_ready_clear(ioaddr, name);
1135 		sb1000_send_command(ioaddr, name, Command1);
1136 		sb1000_wait_for_ready(ioaddr, name);
1137 		sb1000_issue_read_command(ioaddr, name);
1138 		lp->rx_error_count = 0;
1139 	}
1140 
1141 	return IRQ_HANDLED;
1142 }
1143 
1144 static int sb1000_close(struct net_device *dev)
1145 {
1146 	int i;
1147 	int ioaddr[2];
1148 	struct sb1000_private *lp = netdev_priv(dev);
1149 
1150 	if (sb1000_debug > 2)
1151 		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1152 
1153 	netif_stop_queue(dev);
1154 
1155 	ioaddr[0] = dev->base_addr;
1156 	/* mem_start holds the second I/O address */
1157 	ioaddr[1] = dev->mem_start;
1158 
1159 	free_irq(dev->irq, dev);
1160 	/* If we don't do this, we can't re-insmod it later. */
1161 	release_region(ioaddr[1], SB1000_IO_EXTENT);
1162 	release_region(ioaddr[0], SB1000_IO_EXTENT);
1163 
1164 	/* free rx_skb's if needed */
1165 	for (i=0; i<4; i++) {
1166 		if (lp->rx_skb[i]) {
1167 			dev_kfree_skb(lp->rx_skb[i]);
1168 		}
1169 	}
1170 	return 0;
1171 }
1172 
1173 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1174 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1175 MODULE_LICENSE("GPL");
1176 
1177 module_pnp_driver(sb1000_driver);
1178