1 /* sb1000.c: A General Instruments SB1000 driver for linux. */ 2 /* 3 Written 1998 by Franco Venturi. 4 5 Copyright 1998 by Franco Venturi. 6 Copyright 1994,1995 by Donald Becker. 7 Copyright 1993 United States Government as represented by the 8 Director, National Security Agency. 9 10 This driver is for the General Instruments SB1000 (internal SURFboard) 11 12 The author may be reached as fventuri@mediaone.net 13 14 This program is free software; you can redistribute it 15 and/or modify it under the terms of the GNU General 16 Public License as published by the Free Software 17 Foundation; either version 2 of the License, or (at 18 your option) any later version. 19 20 Changes: 21 22 981115 Steven Hirsch <shirsch@adelphia.net> 23 24 Linus changed the timer interface. Should work on all recent 25 development kernels. 26 27 980608 Steven Hirsch <shirsch@adelphia.net> 28 29 Small changes to make it work with 2.1.x kernels. Hopefully, 30 nothing major will change before official release of Linux 2.2. 31 32 Merged with 2.2 - Alan Cox 33 */ 34 35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n"; 36 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/string.h> 40 #include <linux/interrupt.h> 41 #include <linux/errno.h> 42 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */ 43 #include <linux/in.h> 44 #include <linux/slab.h> 45 #include <linux/ioport.h> 46 #include <linux/netdevice.h> 47 #include <linux/if_arp.h> 48 #include <linux/skbuff.h> 49 #include <linux/delay.h> /* for udelay() */ 50 #include <linux/etherdevice.h> 51 #include <linux/pnp.h> 52 #include <linux/init.h> 53 #include <linux/bitops.h> 54 55 #include <asm/io.h> 56 #include <asm/processor.h> 57 #include <asm/uaccess.h> 58 59 #ifdef SB1000_DEBUG 60 static int sb1000_debug = SB1000_DEBUG; 61 #else 62 static const int sb1000_debug = 1; 63 #endif 64 65 static const int SB1000_IO_EXTENT = 8; 66 /* SB1000 Maximum Receive Unit */ 67 static const int SB1000_MRU = 1500; /* octects */ 68 69 #define NPIDS 4 70 struct sb1000_private { 71 struct sk_buff *rx_skb[NPIDS]; 72 short rx_dlen[NPIDS]; 73 unsigned int rx_frames; 74 short rx_error_count; 75 short rx_error_dpc_count; 76 unsigned char rx_session_id[NPIDS]; 77 unsigned char rx_frame_id[NPIDS]; 78 unsigned char rx_pkt_type[NPIDS]; 79 struct net_device_stats stats; 80 }; 81 82 /* prototypes for Linux interface */ 83 extern int sb1000_probe(struct net_device *dev); 84 static int sb1000_open(struct net_device *dev); 85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd); 86 static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev); 87 static irqreturn_t sb1000_interrupt(int irq, void *dev_id); 88 static struct net_device_stats *sb1000_stats(struct net_device *dev); 89 static int sb1000_close(struct net_device *dev); 90 91 92 /* SB1000 hardware routines to be used during open/configuration phases */ 93 static inline int card_wait_for_busy_clear(const int ioaddr[], 94 const char* name); 95 static inline int card_wait_for_ready(const int ioaddr[], const char* name, 96 unsigned char in[]); 97 static int card_send_command(const int ioaddr[], const char* name, 98 const unsigned char out[], unsigned char in[]); 99 100 /* SB1000 hardware routines to be used during frame rx interrupt */ 101 static inline int sb1000_wait_for_ready(const int ioaddr[], const char* name); 102 static inline int sb1000_wait_for_ready_clear(const int ioaddr[], 103 const char* name); 104 static inline void sb1000_send_command(const int ioaddr[], const char* name, 105 const unsigned char out[]); 106 static inline void sb1000_read_status(const int ioaddr[], unsigned char in[]); 107 static inline void sb1000_issue_read_command(const int ioaddr[], 108 const char* name); 109 110 /* SB1000 commands for open/configuration */ 111 static inline int sb1000_reset(const int ioaddr[], const char* name); 112 static inline int sb1000_check_CRC(const int ioaddr[], const char* name); 113 static inline int sb1000_start_get_set_command(const int ioaddr[], 114 const char* name); 115 static inline int sb1000_end_get_set_command(const int ioaddr[], 116 const char* name); 117 static inline int sb1000_activate(const int ioaddr[], const char* name); 118 static int sb1000_get_firmware_version(const int ioaddr[], 119 const char* name, unsigned char version[], int do_end); 120 static int sb1000_get_frequency(const int ioaddr[], const char* name, 121 int* frequency); 122 static int sb1000_set_frequency(const int ioaddr[], const char* name, 123 int frequency); 124 static int sb1000_get_PIDs(const int ioaddr[], const char* name, 125 short PID[]); 126 static int sb1000_set_PIDs(const int ioaddr[], const char* name, 127 const short PID[]); 128 129 /* SB1000 commands for frame rx interrupt */ 130 static inline int sb1000_rx(struct net_device *dev); 131 static inline void sb1000_error_dpc(struct net_device *dev); 132 133 static const struct pnp_device_id sb1000_pnp_ids[] = { 134 { "GIC1000", 0 }, 135 { "", 0 } 136 }; 137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids); 138 139 static int 140 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id) 141 { 142 struct net_device *dev; 143 unsigned short ioaddr[2], irq; 144 unsigned int serial_number; 145 int error = -ENODEV; 146 147 if (pnp_device_attach(pdev) < 0) 148 return -ENODEV; 149 if (pnp_activate_dev(pdev) < 0) 150 goto out_detach; 151 152 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1)) 153 goto out_disable; 154 if (!pnp_irq_valid(pdev, 0)) 155 goto out_disable; 156 157 serial_number = pdev->card->serial; 158 159 ioaddr[0] = pnp_port_start(pdev, 0); 160 ioaddr[1] = pnp_port_start(pdev, 0); 161 162 irq = pnp_irq(pdev, 0); 163 164 if (!request_region(ioaddr[0], 16, "sb1000")) 165 goto out_disable; 166 if (!request_region(ioaddr[1], 16, "sb1000")) 167 goto out_release_region0; 168 169 dev = alloc_etherdev(sizeof(struct sb1000_private)); 170 if (!dev) { 171 error = -ENOMEM; 172 goto out_release_regions; 173 } 174 175 176 dev->base_addr = ioaddr[0]; 177 /* mem_start holds the second I/O address */ 178 dev->mem_start = ioaddr[1]; 179 dev->irq = irq; 180 181 if (sb1000_debug > 0) 182 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), " 183 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr, 184 dev->mem_start, serial_number, dev->irq); 185 186 /* 187 * The SB1000 is an rx-only cable modem device. The uplink is a modem 188 * and we do not want to arp on it. 189 */ 190 dev->flags = IFF_POINTOPOINT|IFF_NOARP; 191 192 SET_MODULE_OWNER(dev); 193 SET_NETDEV_DEV(dev, &pdev->dev); 194 195 if (sb1000_debug > 0) 196 printk(KERN_NOTICE "%s", version); 197 198 /* The SB1000-specific entries in the device structure. */ 199 dev->open = sb1000_open; 200 dev->do_ioctl = sb1000_dev_ioctl; 201 dev->hard_start_xmit = sb1000_start_xmit; 202 dev->stop = sb1000_close; 203 dev->get_stats = sb1000_stats; 204 205 /* hardware address is 0:0:serial_number */ 206 dev->dev_addr[2] = serial_number >> 24 & 0xff; 207 dev->dev_addr[3] = serial_number >> 16 & 0xff; 208 dev->dev_addr[4] = serial_number >> 8 & 0xff; 209 dev->dev_addr[5] = serial_number >> 0 & 0xff; 210 211 pnp_set_drvdata(pdev, dev); 212 213 error = register_netdev(dev); 214 if (error) 215 goto out_free_netdev; 216 return 0; 217 218 out_free_netdev: 219 free_netdev(dev); 220 out_release_regions: 221 release_region(ioaddr[1], 16); 222 out_release_region0: 223 release_region(ioaddr[0], 16); 224 out_disable: 225 pnp_disable_dev(pdev); 226 out_detach: 227 pnp_device_detach(pdev); 228 return error; 229 } 230 231 static void 232 sb1000_remove_one(struct pnp_dev *pdev) 233 { 234 struct net_device *dev = pnp_get_drvdata(pdev); 235 236 unregister_netdev(dev); 237 release_region(dev->base_addr, 16); 238 release_region(dev->mem_start, 16); 239 free_netdev(dev); 240 } 241 242 static struct pnp_driver sb1000_driver = { 243 .name = "sb1000", 244 .id_table = sb1000_pnp_ids, 245 .probe = sb1000_probe_one, 246 .remove = sb1000_remove_one, 247 }; 248 249 250 /* 251 * SB1000 hardware routines to be used during open/configuration phases 252 */ 253 254 static const int TimeOutJiffies = (875 * HZ) / 100; 255 256 /* Card Wait For Busy Clear (cannot be used during an interrupt) */ 257 static inline int 258 card_wait_for_busy_clear(const int ioaddr[], const char* name) 259 { 260 unsigned char a; 261 unsigned long timeout; 262 263 a = inb(ioaddr[0] + 7); 264 timeout = jiffies + TimeOutJiffies; 265 while (a & 0x80 || a & 0x40) { 266 /* a little sleep */ 267 yield(); 268 269 a = inb(ioaddr[0] + 7); 270 if (time_after_eq(jiffies, timeout)) { 271 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n", 272 name); 273 return -ETIME; 274 } 275 } 276 277 return 0; 278 } 279 280 /* Card Wait For Ready (cannot be used during an interrupt) */ 281 static inline int 282 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[]) 283 { 284 unsigned char a; 285 unsigned long timeout; 286 287 a = inb(ioaddr[1] + 6); 288 timeout = jiffies + TimeOutJiffies; 289 while (a & 0x80 || !(a & 0x40)) { 290 /* a little sleep */ 291 yield(); 292 293 a = inb(ioaddr[1] + 6); 294 if (time_after_eq(jiffies, timeout)) { 295 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n", 296 name); 297 return -ETIME; 298 } 299 } 300 301 in[1] = inb(ioaddr[0] + 1); 302 in[2] = inb(ioaddr[0] + 2); 303 in[3] = inb(ioaddr[0] + 3); 304 in[4] = inb(ioaddr[0] + 4); 305 in[0] = inb(ioaddr[0] + 5); 306 in[6] = inb(ioaddr[0] + 6); 307 in[5] = inb(ioaddr[1] + 6); 308 return 0; 309 } 310 311 /* Card Send Command (cannot be used during an interrupt) */ 312 static int 313 card_send_command(const int ioaddr[], const char* name, 314 const unsigned char out[], unsigned char in[]) 315 { 316 int status, x; 317 318 if ((status = card_wait_for_busy_clear(ioaddr, name))) 319 return status; 320 outb(0xa0, ioaddr[0] + 6); 321 outb(out[2], ioaddr[0] + 1); 322 outb(out[3], ioaddr[0] + 2); 323 outb(out[4], ioaddr[0] + 3); 324 outb(out[5], ioaddr[0] + 4); 325 outb(out[1], ioaddr[0] + 5); 326 outb(0xa0, ioaddr[0] + 6); 327 outb(out[0], ioaddr[0] + 7); 328 if (out[0] != 0x20 && out[0] != 0x30) { 329 if ((status = card_wait_for_ready(ioaddr, name, in))) 330 return status; 331 inb(ioaddr[0] + 7); 332 if (sb1000_debug > 3) 333 printk(KERN_DEBUG "%s: card_send_command " 334 "out: %02x%02x%02x%02x%02x%02x " 335 "in: %02x%02x%02x%02x%02x%02x%02x\n", name, 336 out[0], out[1], out[2], out[3], out[4], out[5], 337 in[0], in[1], in[2], in[3], in[4], in[5], in[6]); 338 } else { 339 if (sb1000_debug > 3) 340 printk(KERN_DEBUG "%s: card_send_command " 341 "out: %02x%02x%02x%02x%02x%02x\n", name, 342 out[0], out[1], out[2], out[3], out[4], out[5]); 343 } 344 345 if (out[1] == 0x1b) { 346 x = (out[2] == 0x02); 347 } else { 348 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80)) 349 return -EIO; 350 } 351 return 0; 352 } 353 354 355 /* 356 * SB1000 hardware routines to be used during frame rx interrupt 357 */ 358 static const int Sb1000TimeOutJiffies = 7 * HZ; 359 360 /* Card Wait For Ready (to be used during frame rx) */ 361 static inline int 362 sb1000_wait_for_ready(const int ioaddr[], const char* name) 363 { 364 unsigned long timeout; 365 366 timeout = jiffies + Sb1000TimeOutJiffies; 367 while (inb(ioaddr[1] + 6) & 0x80) { 368 if (time_after_eq(jiffies, timeout)) { 369 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 370 name); 371 return -ETIME; 372 } 373 } 374 timeout = jiffies + Sb1000TimeOutJiffies; 375 while (!(inb(ioaddr[1] + 6) & 0x40)) { 376 if (time_after_eq(jiffies, timeout)) { 377 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n", 378 name); 379 return -ETIME; 380 } 381 } 382 inb(ioaddr[0] + 7); 383 return 0; 384 } 385 386 /* Card Wait For Ready Clear (to be used during frame rx) */ 387 static inline int 388 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name) 389 { 390 unsigned long timeout; 391 392 timeout = jiffies + Sb1000TimeOutJiffies; 393 while (inb(ioaddr[1] + 6) & 0x80) { 394 if (time_after_eq(jiffies, timeout)) { 395 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 396 name); 397 return -ETIME; 398 } 399 } 400 timeout = jiffies + Sb1000TimeOutJiffies; 401 while (inb(ioaddr[1] + 6) & 0x40) { 402 if (time_after_eq(jiffies, timeout)) { 403 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n", 404 name); 405 return -ETIME; 406 } 407 } 408 return 0; 409 } 410 411 /* Card Send Command (to be used during frame rx) */ 412 static inline void 413 sb1000_send_command(const int ioaddr[], const char* name, 414 const unsigned char out[]) 415 { 416 outb(out[2], ioaddr[0] + 1); 417 outb(out[3], ioaddr[0] + 2); 418 outb(out[4], ioaddr[0] + 3); 419 outb(out[5], ioaddr[0] + 4); 420 outb(out[1], ioaddr[0] + 5); 421 outb(out[0], ioaddr[0] + 7); 422 if (sb1000_debug > 3) 423 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x" 424 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]); 425 return; 426 } 427 428 /* Card Read Status (to be used during frame rx) */ 429 static inline void 430 sb1000_read_status(const int ioaddr[], unsigned char in[]) 431 { 432 in[1] = inb(ioaddr[0] + 1); 433 in[2] = inb(ioaddr[0] + 2); 434 in[3] = inb(ioaddr[0] + 3); 435 in[4] = inb(ioaddr[0] + 4); 436 in[0] = inb(ioaddr[0] + 5); 437 return; 438 } 439 440 /* Issue Read Command (to be used during frame rx) */ 441 static inline void 442 sb1000_issue_read_command(const int ioaddr[], const char* name) 443 { 444 const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00}; 445 446 sb1000_wait_for_ready_clear(ioaddr, name); 447 outb(0xa0, ioaddr[0] + 6); 448 sb1000_send_command(ioaddr, name, Command0); 449 return; 450 } 451 452 453 /* 454 * SB1000 commands for open/configuration 455 */ 456 /* reset SB1000 card */ 457 static inline int 458 sb1000_reset(const int ioaddr[], const char* name) 459 { 460 unsigned char st[7]; 461 int port, status; 462 const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 463 464 port = ioaddr[1] + 6; 465 outb(0x4, port); 466 inb(port); 467 udelay(1000); 468 outb(0x0, port); 469 inb(port); 470 ssleep(1); 471 outb(0x4, port); 472 inb(port); 473 udelay(1000); 474 outb(0x0, port); 475 inb(port); 476 udelay(0); 477 478 if ((status = card_send_command(ioaddr, name, Command0, st))) 479 return status; 480 if (st[3] != 0xf0) 481 return -EIO; 482 return 0; 483 } 484 485 /* check SB1000 firmware CRC */ 486 static inline int 487 sb1000_check_CRC(const int ioaddr[], const char* name) 488 { 489 unsigned char st[7]; 490 int crc, status; 491 const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00}; 492 493 /* check CRC */ 494 if ((status = card_send_command(ioaddr, name, Command0, st))) 495 return status; 496 if (st[1] != st[3] || st[2] != st[4]) 497 return -EIO; 498 crc = st[1] << 8 | st[2]; 499 return 0; 500 } 501 502 static inline int 503 sb1000_start_get_set_command(const int ioaddr[], const char* name) 504 { 505 unsigned char st[7]; 506 const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00}; 507 508 return card_send_command(ioaddr, name, Command0, st); 509 } 510 511 static inline int 512 sb1000_end_get_set_command(const int ioaddr[], const char* name) 513 { 514 unsigned char st[7]; 515 int status; 516 const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00}; 517 const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00}; 518 519 if ((status = card_send_command(ioaddr, name, Command0, st))) 520 return status; 521 return card_send_command(ioaddr, name, Command1, st); 522 } 523 524 static inline int 525 sb1000_activate(const int ioaddr[], const char* name) 526 { 527 unsigned char st[7]; 528 int status; 529 const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00}; 530 const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00}; 531 532 ssleep(1); 533 if ((status = card_send_command(ioaddr, name, Command0, st))) 534 return status; 535 if ((status = card_send_command(ioaddr, name, Command1, st))) 536 return status; 537 if (st[3] != 0xf1) { 538 if ((status = sb1000_start_get_set_command(ioaddr, name))) 539 return status; 540 return -EIO; 541 } 542 udelay(1000); 543 return sb1000_start_get_set_command(ioaddr, name); 544 } 545 546 /* get SB1000 firmware version */ 547 static int 548 sb1000_get_firmware_version(const int ioaddr[], const char* name, 549 unsigned char version[], int do_end) 550 { 551 unsigned char st[7]; 552 int status; 553 const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00}; 554 555 if ((status = sb1000_start_get_set_command(ioaddr, name))) 556 return status; 557 if ((status = card_send_command(ioaddr, name, Command0, st))) 558 return status; 559 if (st[0] != 0xa3) 560 return -EIO; 561 version[0] = st[1]; 562 version[1] = st[2]; 563 if (do_end) 564 return sb1000_end_get_set_command(ioaddr, name); 565 else 566 return 0; 567 } 568 569 /* get SB1000 frequency */ 570 static int 571 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency) 572 { 573 unsigned char st[7]; 574 int status; 575 const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00}; 576 577 udelay(1000); 578 if ((status = sb1000_start_get_set_command(ioaddr, name))) 579 return status; 580 if ((status = card_send_command(ioaddr, name, Command0, st))) 581 return status; 582 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4]; 583 return sb1000_end_get_set_command(ioaddr, name); 584 } 585 586 /* set SB1000 frequency */ 587 static int 588 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency) 589 { 590 unsigned char st[7]; 591 int status; 592 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00}; 593 594 const int FrequencyLowerLimit = 57000; 595 const int FrequencyUpperLimit = 804000; 596 597 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) { 598 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range " 599 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit, 600 FrequencyUpperLimit); 601 return -EINVAL; 602 } 603 udelay(1000); 604 if ((status = sb1000_start_get_set_command(ioaddr, name))) 605 return status; 606 Command0[5] = frequency & 0xff; 607 frequency >>= 8; 608 Command0[4] = frequency & 0xff; 609 frequency >>= 8; 610 Command0[3] = frequency & 0xff; 611 frequency >>= 8; 612 Command0[2] = frequency & 0xff; 613 return card_send_command(ioaddr, name, Command0, st); 614 } 615 616 /* get SB1000 PIDs */ 617 static int 618 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[]) 619 { 620 unsigned char st[7]; 621 int status; 622 const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00}; 623 const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00}; 624 const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00}; 625 const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00}; 626 627 udelay(1000); 628 if ((status = sb1000_start_get_set_command(ioaddr, name))) 629 return status; 630 631 if ((status = card_send_command(ioaddr, name, Command0, st))) 632 return status; 633 PID[0] = st[1] << 8 | st[2]; 634 635 if ((status = card_send_command(ioaddr, name, Command1, st))) 636 return status; 637 PID[1] = st[1] << 8 | st[2]; 638 639 if ((status = card_send_command(ioaddr, name, Command2, st))) 640 return status; 641 PID[2] = st[1] << 8 | st[2]; 642 643 if ((status = card_send_command(ioaddr, name, Command3, st))) 644 return status; 645 PID[3] = st[1] << 8 | st[2]; 646 647 return sb1000_end_get_set_command(ioaddr, name); 648 } 649 650 /* set SB1000 PIDs */ 651 static int 652 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[]) 653 { 654 unsigned char st[7]; 655 short p; 656 int status; 657 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00}; 658 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00}; 659 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00}; 660 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00}; 661 const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 662 663 udelay(1000); 664 if ((status = sb1000_start_get_set_command(ioaddr, name))) 665 return status; 666 667 p = PID[0]; 668 Command0[3] = p & 0xff; 669 p >>= 8; 670 Command0[2] = p & 0xff; 671 if ((status = card_send_command(ioaddr, name, Command0, st))) 672 return status; 673 674 p = PID[1]; 675 Command1[3] = p & 0xff; 676 p >>= 8; 677 Command1[2] = p & 0xff; 678 if ((status = card_send_command(ioaddr, name, Command1, st))) 679 return status; 680 681 p = PID[2]; 682 Command2[3] = p & 0xff; 683 p >>= 8; 684 Command2[2] = p & 0xff; 685 if ((status = card_send_command(ioaddr, name, Command2, st))) 686 return status; 687 688 p = PID[3]; 689 Command3[3] = p & 0xff; 690 p >>= 8; 691 Command3[2] = p & 0xff; 692 if ((status = card_send_command(ioaddr, name, Command3, st))) 693 return status; 694 695 if ((status = card_send_command(ioaddr, name, Command4, st))) 696 return status; 697 return sb1000_end_get_set_command(ioaddr, name); 698 } 699 700 701 static inline void 702 sb1000_print_status_buffer(const char* name, unsigned char st[], 703 unsigned char buffer[], int size) 704 { 705 int i, j, k; 706 707 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]); 708 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) { 709 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d " 710 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29], 711 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41], 712 buffer[46] << 8 | buffer[47], 713 buffer[42], buffer[43], buffer[44], buffer[45], 714 buffer[48] << 8 | buffer[49]); 715 } else { 716 for (i = 0, k = 0; i < (size + 7) / 8; i++) { 717 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:"); 718 for (j = 0; j < 8 && k < size; j++, k++) 719 printk(" %02x", buffer[k]); 720 printk("\n"); 721 } 722 } 723 return; 724 } 725 726 /* 727 * SB1000 commands for frame rx interrupt 728 */ 729 /* receive a single frame and assemble datagram 730 * (this is the heart of the interrupt routine) 731 */ 732 static inline int 733 sb1000_rx(struct net_device *dev) 734 { 735 736 #define FRAMESIZE 184 737 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id; 738 short dlen; 739 int ioaddr, ns; 740 unsigned int skbsize; 741 struct sk_buff *skb; 742 struct sb1000_private *lp = netdev_priv(dev); 743 struct net_device_stats *stats = &lp->stats; 744 745 /* SB1000 frame constants */ 746 const int FrameSize = FRAMESIZE; 747 const int NewDatagramHeaderSkip = 8; 748 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18; 749 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize; 750 const int ContDatagramHeaderSkip = 7; 751 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1; 752 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize; 753 const int TrailerSize = 4; 754 755 ioaddr = dev->base_addr; 756 757 insw(ioaddr, (unsigned short*) st, 1); 758 #ifdef XXXDEBUG 759 printk("cm0: received: %02x %02x\n", st[0], st[1]); 760 #endif /* XXXDEBUG */ 761 lp->rx_frames++; 762 763 /* decide if it is a good or bad frame */ 764 for (ns = 0; ns < NPIDS; ns++) { 765 session_id = lp->rx_session_id[ns]; 766 frame_id = lp->rx_frame_id[ns]; 767 if (st[0] == session_id) { 768 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) { 769 goto good_frame; 770 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) { 771 goto skipped_frame; 772 } else { 773 goto bad_frame; 774 } 775 } else if (st[0] == (session_id | 0x40)) { 776 if ((st[1] & 0xf0) == 0x30) { 777 goto skipped_frame; 778 } else { 779 goto bad_frame; 780 } 781 } 782 } 783 goto bad_frame; 784 785 skipped_frame: 786 stats->rx_frame_errors++; 787 skb = lp->rx_skb[ns]; 788 if (sb1000_debug > 1) 789 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x " 790 "expecting %02x %02x\n", dev->name, st[0], st[1], 791 skb ? session_id : session_id | 0x40, frame_id); 792 if (skb) { 793 dev_kfree_skb(skb); 794 skb = NULL; 795 } 796 797 good_frame: 798 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f); 799 /* new datagram */ 800 if (st[0] & 0x40) { 801 /* get data length */ 802 insw(ioaddr, buffer, NewDatagramHeaderSize / 2); 803 #ifdef XXXDEBUG 804 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]); 805 #endif /* XXXDEBUG */ 806 if (buffer[0] != NewDatagramHeaderSkip) { 807 if (sb1000_debug > 1) 808 printk(KERN_WARNING "%s: new datagram header skip error: " 809 "got %02x expecting %02x\n", dev->name, buffer[0], 810 NewDatagramHeaderSkip); 811 stats->rx_length_errors++; 812 insw(ioaddr, buffer, NewDatagramDataSize / 2); 813 goto bad_frame_next; 814 } 815 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 | 816 buffer[NewDatagramHeaderSkip + 4]) - 17; 817 if (dlen > SB1000_MRU) { 818 if (sb1000_debug > 1) 819 printk(KERN_WARNING "%s: datagram length (%d) greater " 820 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU); 821 stats->rx_length_errors++; 822 insw(ioaddr, buffer, NewDatagramDataSize / 2); 823 goto bad_frame_next; 824 } 825 lp->rx_dlen[ns] = dlen; 826 /* compute size to allocate for datagram */ 827 skbsize = dlen + FrameSize; 828 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) { 829 if (sb1000_debug > 1) 830 printk(KERN_WARNING "%s: can't allocate %d bytes long " 831 "skbuff\n", dev->name, skbsize); 832 stats->rx_dropped++; 833 insw(ioaddr, buffer, NewDatagramDataSize / 2); 834 goto dropped_frame; 835 } 836 skb->dev = dev; 837 skb_reset_mac_header(skb); 838 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16]; 839 insw(ioaddr, skb_put(skb, NewDatagramDataSize), 840 NewDatagramDataSize / 2); 841 lp->rx_skb[ns] = skb; 842 } else { 843 /* continuation of previous datagram */ 844 insw(ioaddr, buffer, ContDatagramHeaderSize / 2); 845 if (buffer[0] != ContDatagramHeaderSkip) { 846 if (sb1000_debug > 1) 847 printk(KERN_WARNING "%s: cont datagram header skip error: " 848 "got %02x expecting %02x\n", dev->name, buffer[0], 849 ContDatagramHeaderSkip); 850 stats->rx_length_errors++; 851 insw(ioaddr, buffer, ContDatagramDataSize / 2); 852 goto bad_frame_next; 853 } 854 skb = lp->rx_skb[ns]; 855 insw(ioaddr, skb_put(skb, ContDatagramDataSize), 856 ContDatagramDataSize / 2); 857 dlen = lp->rx_dlen[ns]; 858 } 859 if (skb->len < dlen + TrailerSize) { 860 lp->rx_session_id[ns] &= ~0x40; 861 return 0; 862 } 863 864 /* datagram completed: send to upper level */ 865 skb_trim(skb, dlen); 866 netif_rx(skb); 867 dev->last_rx = jiffies; 868 stats->rx_bytes+=dlen; 869 stats->rx_packets++; 870 lp->rx_skb[ns] = NULL; 871 lp->rx_session_id[ns] |= 0x40; 872 return 0; 873 874 bad_frame: 875 insw(ioaddr, buffer, FrameSize / 2); 876 if (sb1000_debug > 1) 877 printk(KERN_WARNING "%s: frame error: got %02x %02x\n", 878 dev->name, st[0], st[1]); 879 stats->rx_frame_errors++; 880 bad_frame_next: 881 if (sb1000_debug > 2) 882 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize); 883 dropped_frame: 884 stats->rx_errors++; 885 if (ns < NPIDS) { 886 if ((skb = lp->rx_skb[ns])) { 887 dev_kfree_skb(skb); 888 lp->rx_skb[ns] = NULL; 889 } 890 lp->rx_session_id[ns] |= 0x40; 891 } 892 return -1; 893 } 894 895 static inline void 896 sb1000_error_dpc(struct net_device *dev) 897 { 898 char *name; 899 unsigned char st[5]; 900 int ioaddr[2]; 901 struct sb1000_private *lp = netdev_priv(dev); 902 const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00}; 903 const int ErrorDpcCounterInitialize = 200; 904 905 ioaddr[0] = dev->base_addr; 906 /* mem_start holds the second I/O address */ 907 ioaddr[1] = dev->mem_start; 908 name = dev->name; 909 910 sb1000_wait_for_ready_clear(ioaddr, name); 911 sb1000_send_command(ioaddr, name, Command0); 912 sb1000_wait_for_ready(ioaddr, name); 913 sb1000_read_status(ioaddr, st); 914 if (st[1] & 0x10) 915 lp->rx_error_dpc_count = ErrorDpcCounterInitialize; 916 return; 917 } 918 919 920 /* 921 * Linux interface functions 922 */ 923 static int 924 sb1000_open(struct net_device *dev) 925 { 926 char *name; 927 int ioaddr[2], status; 928 struct sb1000_private *lp = netdev_priv(dev); 929 const unsigned short FirmwareVersion[] = {0x01, 0x01}; 930 931 ioaddr[0] = dev->base_addr; 932 /* mem_start holds the second I/O address */ 933 ioaddr[1] = dev->mem_start; 934 name = dev->name; 935 936 /* initialize sb1000 */ 937 if ((status = sb1000_reset(ioaddr, name))) 938 return status; 939 ssleep(1); 940 if ((status = sb1000_check_CRC(ioaddr, name))) 941 return status; 942 943 /* initialize private data before board can catch interrupts */ 944 lp->rx_skb[0] = NULL; 945 lp->rx_skb[1] = NULL; 946 lp->rx_skb[2] = NULL; 947 lp->rx_skb[3] = NULL; 948 lp->rx_dlen[0] = 0; 949 lp->rx_dlen[1] = 0; 950 lp->rx_dlen[2] = 0; 951 lp->rx_dlen[3] = 0; 952 lp->rx_frames = 0; 953 lp->rx_error_count = 0; 954 lp->rx_error_dpc_count = 0; 955 lp->rx_session_id[0] = 0x50; 956 lp->rx_session_id[0] = 0x48; 957 lp->rx_session_id[0] = 0x44; 958 lp->rx_session_id[0] = 0x42; 959 lp->rx_frame_id[0] = 0; 960 lp->rx_frame_id[1] = 0; 961 lp->rx_frame_id[2] = 0; 962 lp->rx_frame_id[3] = 0; 963 if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) { 964 return -EAGAIN; 965 } 966 967 if (sb1000_debug > 2) 968 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq); 969 970 /* Activate board and check firmware version */ 971 udelay(1000); 972 if ((status = sb1000_activate(ioaddr, name))) 973 return status; 974 udelay(0); 975 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0))) 976 return status; 977 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1]) 978 printk(KERN_WARNING "%s: found firmware version %x.%02x " 979 "(should be %x.%02x)\n", name, version[0], version[1], 980 FirmwareVersion[0], FirmwareVersion[1]); 981 982 983 netif_start_queue(dev); 984 return 0; /* Always succeed */ 985 } 986 987 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 988 { 989 char* name; 990 unsigned char version[2]; 991 short PID[4]; 992 int ioaddr[2], status, frequency; 993 unsigned int stats[5]; 994 struct sb1000_private *lp = netdev_priv(dev); 995 996 if (!(dev && dev->flags & IFF_UP)) 997 return -ENODEV; 998 999 ioaddr[0] = dev->base_addr; 1000 /* mem_start holds the second I/O address */ 1001 ioaddr[1] = dev->mem_start; 1002 name = dev->name; 1003 1004 switch (cmd) { 1005 case SIOCGCMSTATS: /* get statistics */ 1006 stats[0] = lp->stats.rx_bytes; 1007 stats[1] = lp->rx_frames; 1008 stats[2] = lp->stats.rx_packets; 1009 stats[3] = lp->stats.rx_errors; 1010 stats[4] = lp->stats.rx_dropped; 1011 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats))) 1012 return -EFAULT; 1013 status = 0; 1014 break; 1015 1016 case SIOCGCMFIRMWARE: /* get firmware version */ 1017 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1))) 1018 return status; 1019 if(copy_to_user(ifr->ifr_data, version, sizeof(version))) 1020 return -EFAULT; 1021 break; 1022 1023 case SIOCGCMFREQUENCY: /* get frequency */ 1024 if ((status = sb1000_get_frequency(ioaddr, name, &frequency))) 1025 return status; 1026 if(put_user(frequency, (int __user *) ifr->ifr_data)) 1027 return -EFAULT; 1028 break; 1029 1030 case SIOCSCMFREQUENCY: /* set frequency */ 1031 if (!capable(CAP_NET_ADMIN)) 1032 return -EPERM; 1033 if(get_user(frequency, (int __user *) ifr->ifr_data)) 1034 return -EFAULT; 1035 if ((status = sb1000_set_frequency(ioaddr, name, frequency))) 1036 return status; 1037 break; 1038 1039 case SIOCGCMPIDS: /* get PIDs */ 1040 if ((status = sb1000_get_PIDs(ioaddr, name, PID))) 1041 return status; 1042 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID))) 1043 return -EFAULT; 1044 break; 1045 1046 case SIOCSCMPIDS: /* set PIDs */ 1047 if (!capable(CAP_NET_ADMIN)) 1048 return -EPERM; 1049 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID))) 1050 return -EFAULT; 1051 if ((status = sb1000_set_PIDs(ioaddr, name, PID))) 1052 return status; 1053 /* set session_id, frame_id and pkt_type too */ 1054 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f); 1055 lp->rx_session_id[1] = 0x48; 1056 lp->rx_session_id[2] = 0x44; 1057 lp->rx_session_id[3] = 0x42; 1058 lp->rx_frame_id[0] = 0; 1059 lp->rx_frame_id[1] = 0; 1060 lp->rx_frame_id[2] = 0; 1061 lp->rx_frame_id[3] = 0; 1062 break; 1063 1064 default: 1065 status = -EINVAL; 1066 break; 1067 } 1068 return status; 1069 } 1070 1071 /* transmit function: do nothing since SB1000 can't send anything out */ 1072 static int 1073 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1074 { 1075 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name); 1076 /* sb1000 can't xmit datagrams */ 1077 dev_kfree_skb(skb); 1078 return 0; 1079 } 1080 1081 /* SB1000 interrupt handler. */ 1082 static irqreturn_t sb1000_interrupt(int irq, void *dev_id) 1083 { 1084 char *name; 1085 unsigned char st; 1086 int ioaddr[2]; 1087 struct net_device *dev = dev_id; 1088 struct sb1000_private *lp = netdev_priv(dev); 1089 1090 const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00}; 1091 const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00}; 1092 const int MaxRxErrorCount = 6; 1093 1094 ioaddr[0] = dev->base_addr; 1095 /* mem_start holds the second I/O address */ 1096 ioaddr[1] = dev->mem_start; 1097 name = dev->name; 1098 1099 /* is it a good interrupt? */ 1100 st = inb(ioaddr[1] + 6); 1101 if (!(st & 0x08 && st & 0x20)) { 1102 return IRQ_NONE; 1103 } 1104 1105 if (sb1000_debug > 3) 1106 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name); 1107 1108 st = inb(ioaddr[0] + 7); 1109 if (sb1000_rx(dev)) 1110 lp->rx_error_count++; 1111 #ifdef SB1000_DELAY 1112 udelay(SB1000_DELAY); 1113 #endif /* SB1000_DELAY */ 1114 sb1000_issue_read_command(ioaddr, name); 1115 if (st & 0x01) { 1116 sb1000_error_dpc(dev); 1117 sb1000_issue_read_command(ioaddr, name); 1118 } 1119 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) { 1120 sb1000_wait_for_ready_clear(ioaddr, name); 1121 sb1000_send_command(ioaddr, name, Command0); 1122 sb1000_wait_for_ready(ioaddr, name); 1123 sb1000_issue_read_command(ioaddr, name); 1124 } 1125 if (lp->rx_error_count >= MaxRxErrorCount) { 1126 sb1000_wait_for_ready_clear(ioaddr, name); 1127 sb1000_send_command(ioaddr, name, Command1); 1128 sb1000_wait_for_ready(ioaddr, name); 1129 sb1000_issue_read_command(ioaddr, name); 1130 lp->rx_error_count = 0; 1131 } 1132 1133 return IRQ_HANDLED; 1134 } 1135 1136 static struct net_device_stats *sb1000_stats(struct net_device *dev) 1137 { 1138 struct sb1000_private *lp = netdev_priv(dev); 1139 return &lp->stats; 1140 } 1141 1142 static int sb1000_close(struct net_device *dev) 1143 { 1144 int i; 1145 int ioaddr[2]; 1146 struct sb1000_private *lp = netdev_priv(dev); 1147 1148 if (sb1000_debug > 2) 1149 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name); 1150 1151 netif_stop_queue(dev); 1152 1153 ioaddr[0] = dev->base_addr; 1154 /* mem_start holds the second I/O address */ 1155 ioaddr[1] = dev->mem_start; 1156 1157 free_irq(dev->irq, dev); 1158 /* If we don't do this, we can't re-insmod it later. */ 1159 release_region(ioaddr[1], SB1000_IO_EXTENT); 1160 release_region(ioaddr[0], SB1000_IO_EXTENT); 1161 1162 /* free rx_skb's if needed */ 1163 for (i=0; i<4; i++) { 1164 if (lp->rx_skb[i]) { 1165 dev_kfree_skb(lp->rx_skb[i]); 1166 } 1167 } 1168 return 0; 1169 } 1170 1171 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>"); 1172 MODULE_DESCRIPTION("General Instruments SB1000 driver"); 1173 MODULE_LICENSE("GPL"); 1174 1175 static int __init 1176 sb1000_init(void) 1177 { 1178 return pnp_register_driver(&sb1000_driver); 1179 } 1180 1181 static void __exit 1182 sb1000_exit(void) 1183 { 1184 pnp_unregister_driver(&sb1000_driver); 1185 } 1186 1187 module_init(sb1000_init); 1188 module_exit(sb1000_exit); 1189