xref: /openbmc/linux/drivers/net/sb1000.c (revision 64c70b1c)
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3 	Written 1998 by Franco Venturi.
4 
5 	Copyright 1998 by Franco Venturi.
6 	Copyright 1994,1995 by Donald Becker.
7 	Copyright 1993 United States Government as represented by the
8 	Director, National Security Agency.
9 
10 	This driver is for the General Instruments SB1000 (internal SURFboard)
11 
12 	The author may be reached as fventuri@mediaone.net
13 
14 	This program is free software; you can redistribute it
15 	and/or  modify it under  the terms of  the GNU General
16 	Public  License as  published  by  the  Free  Software
17 	Foundation;  either  version 2 of the License, or  (at
18 	your option) any later version.
19 
20 	Changes:
21 
22 	981115 Steven Hirsch <shirsch@adelphia.net>
23 
24 	Linus changed the timer interface.  Should work on all recent
25 	development kernels.
26 
27 	980608 Steven Hirsch <shirsch@adelphia.net>
28 
29 	Small changes to make it work with 2.1.x kernels. Hopefully,
30 	nothing major will change before official release of Linux 2.2.
31 
32 	Merged with 2.2 - Alan Cox
33 */
34 
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
36 
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/string.h>
40 #include <linux/interrupt.h>
41 #include <linux/errno.h>
42 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
43 #include <linux/in.h>
44 #include <linux/slab.h>
45 #include <linux/ioport.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/skbuff.h>
49 #include <linux/delay.h>	/* for udelay() */
50 #include <linux/etherdevice.h>
51 #include <linux/pnp.h>
52 #include <linux/init.h>
53 #include <linux/bitops.h>
54 
55 #include <asm/io.h>
56 #include <asm/processor.h>
57 #include <asm/uaccess.h>
58 
59 #ifdef SB1000_DEBUG
60 static int sb1000_debug = SB1000_DEBUG;
61 #else
62 static const int sb1000_debug = 1;
63 #endif
64 
65 static const int SB1000_IO_EXTENT = 8;
66 /* SB1000 Maximum Receive Unit */
67 static const int SB1000_MRU = 1500; /* octects */
68 
69 #define NPIDS 4
70 struct sb1000_private {
71 	struct sk_buff *rx_skb[NPIDS];
72 	short rx_dlen[NPIDS];
73 	unsigned int rx_frames;
74 	short rx_error_count;
75 	short rx_error_dpc_count;
76 	unsigned char rx_session_id[NPIDS];
77 	unsigned char rx_frame_id[NPIDS];
78 	unsigned char rx_pkt_type[NPIDS];
79 	struct net_device_stats stats;
80 };
81 
82 /* prototypes for Linux interface */
83 extern int sb1000_probe(struct net_device *dev);
84 static int sb1000_open(struct net_device *dev);
85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
86 static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
87 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
88 static struct net_device_stats *sb1000_stats(struct net_device *dev);
89 static int sb1000_close(struct net_device *dev);
90 
91 
92 /* SB1000 hardware routines to be used during open/configuration phases */
93 static inline int card_wait_for_busy_clear(const int ioaddr[],
94 	const char* name);
95 static inline int card_wait_for_ready(const int ioaddr[], const char* name,
96 	unsigned char in[]);
97 static int card_send_command(const int ioaddr[], const char* name,
98 	const unsigned char out[], unsigned char in[]);
99 
100 /* SB1000 hardware routines to be used during frame rx interrupt */
101 static inline int sb1000_wait_for_ready(const int ioaddr[], const char* name);
102 static inline int sb1000_wait_for_ready_clear(const int ioaddr[],
103 	const char* name);
104 static inline void sb1000_send_command(const int ioaddr[], const char* name,
105 	const unsigned char out[]);
106 static inline void sb1000_read_status(const int ioaddr[], unsigned char in[]);
107 static inline void sb1000_issue_read_command(const int ioaddr[],
108 	const char* name);
109 
110 /* SB1000 commands for open/configuration */
111 static inline int sb1000_reset(const int ioaddr[], const char* name);
112 static inline int sb1000_check_CRC(const int ioaddr[], const char* name);
113 static inline int sb1000_start_get_set_command(const int ioaddr[],
114 	const char* name);
115 static inline int sb1000_end_get_set_command(const int ioaddr[],
116 	const char* name);
117 static inline int sb1000_activate(const int ioaddr[], const char* name);
118 static int sb1000_get_firmware_version(const int ioaddr[],
119 	const char* name, unsigned char version[], int do_end);
120 static int sb1000_get_frequency(const int ioaddr[], const char* name,
121 	int* frequency);
122 static int sb1000_set_frequency(const int ioaddr[], const char* name,
123 	int frequency);
124 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
125 	short PID[]);
126 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
127 	const short PID[]);
128 
129 /* SB1000 commands for frame rx interrupt */
130 static inline int sb1000_rx(struct net_device *dev);
131 static inline void sb1000_error_dpc(struct net_device *dev);
132 
133 static const struct pnp_device_id sb1000_pnp_ids[] = {
134 	{ "GIC1000", 0 },
135 	{ "", 0 }
136 };
137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
138 
139 static int
140 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
141 {
142 	struct net_device *dev;
143 	unsigned short ioaddr[2], irq;
144 	unsigned int serial_number;
145 	int error = -ENODEV;
146 
147 	if (pnp_device_attach(pdev) < 0)
148 		return -ENODEV;
149 	if (pnp_activate_dev(pdev) < 0)
150 		goto out_detach;
151 
152 	if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
153 		goto out_disable;
154 	if (!pnp_irq_valid(pdev, 0))
155 		goto out_disable;
156 
157 	serial_number = pdev->card->serial;
158 
159 	ioaddr[0] = pnp_port_start(pdev, 0);
160 	ioaddr[1] = pnp_port_start(pdev, 0);
161 
162 	irq = pnp_irq(pdev, 0);
163 
164 	if (!request_region(ioaddr[0], 16, "sb1000"))
165 		goto out_disable;
166 	if (!request_region(ioaddr[1], 16, "sb1000"))
167 		goto out_release_region0;
168 
169 	dev = alloc_etherdev(sizeof(struct sb1000_private));
170 	if (!dev) {
171 		error = -ENOMEM;
172 		goto out_release_regions;
173 	}
174 
175 
176 	dev->base_addr = ioaddr[0];
177 	/* mem_start holds the second I/O address */
178 	dev->mem_start = ioaddr[1];
179 	dev->irq = irq;
180 
181 	if (sb1000_debug > 0)
182 		printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
183 			"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
184 			dev->mem_start, serial_number, dev->irq);
185 
186 	/*
187 	 * The SB1000 is an rx-only cable modem device.  The uplink is a modem
188 	 * and we do not want to arp on it.
189 	 */
190 	dev->flags = IFF_POINTOPOINT|IFF_NOARP;
191 
192 	SET_MODULE_OWNER(dev);
193 	SET_NETDEV_DEV(dev, &pdev->dev);
194 
195 	if (sb1000_debug > 0)
196 		printk(KERN_NOTICE "%s", version);
197 
198 	/* The SB1000-specific entries in the device structure. */
199 	dev->open		= sb1000_open;
200 	dev->do_ioctl		= sb1000_dev_ioctl;
201 	dev->hard_start_xmit	= sb1000_start_xmit;
202 	dev->stop		= sb1000_close;
203 	dev->get_stats		= sb1000_stats;
204 
205 	/* hardware address is 0:0:serial_number */
206 	dev->dev_addr[2]	= serial_number >> 24 & 0xff;
207 	dev->dev_addr[3]	= serial_number >> 16 & 0xff;
208 	dev->dev_addr[4]	= serial_number >>  8 & 0xff;
209 	dev->dev_addr[5]	= serial_number >>  0 & 0xff;
210 
211 	pnp_set_drvdata(pdev, dev);
212 
213 	error = register_netdev(dev);
214 	if (error)
215 		goto out_free_netdev;
216 	return 0;
217 
218  out_free_netdev:
219 	free_netdev(dev);
220  out_release_regions:
221 	release_region(ioaddr[1], 16);
222  out_release_region0:
223 	release_region(ioaddr[0], 16);
224  out_disable:
225 	pnp_disable_dev(pdev);
226  out_detach:
227 	pnp_device_detach(pdev);
228 	return error;
229 }
230 
231 static void
232 sb1000_remove_one(struct pnp_dev *pdev)
233 {
234 	struct net_device *dev = pnp_get_drvdata(pdev);
235 
236 	unregister_netdev(dev);
237 	release_region(dev->base_addr, 16);
238 	release_region(dev->mem_start, 16);
239 	free_netdev(dev);
240 }
241 
242 static struct pnp_driver sb1000_driver = {
243 	.name		= "sb1000",
244 	.id_table	= sb1000_pnp_ids,
245 	.probe		= sb1000_probe_one,
246 	.remove		= sb1000_remove_one,
247 };
248 
249 
250 /*
251  * SB1000 hardware routines to be used during open/configuration phases
252  */
253 
254 static const int TimeOutJiffies = (875 * HZ) / 100;
255 
256 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
257 static inline int
258 card_wait_for_busy_clear(const int ioaddr[], const char* name)
259 {
260 	unsigned char a;
261 	unsigned long timeout;
262 
263 	a = inb(ioaddr[0] + 7);
264 	timeout = jiffies + TimeOutJiffies;
265 	while (a & 0x80 || a & 0x40) {
266 		/* a little sleep */
267 		yield();
268 
269 		a = inb(ioaddr[0] + 7);
270 		if (time_after_eq(jiffies, timeout)) {
271 			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
272 				name);
273 			return -ETIME;
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 /* Card Wait For Ready (cannot be used during an interrupt) */
281 static inline int
282 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
283 {
284 	unsigned char a;
285 	unsigned long timeout;
286 
287 	a = inb(ioaddr[1] + 6);
288 	timeout = jiffies + TimeOutJiffies;
289 	while (a & 0x80 || !(a & 0x40)) {
290 		/* a little sleep */
291 		yield();
292 
293 		a = inb(ioaddr[1] + 6);
294 		if (time_after_eq(jiffies, timeout)) {
295 			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
296 				name);
297 			return -ETIME;
298 		}
299 	}
300 
301 	in[1] = inb(ioaddr[0] + 1);
302 	in[2] = inb(ioaddr[0] + 2);
303 	in[3] = inb(ioaddr[0] + 3);
304 	in[4] = inb(ioaddr[0] + 4);
305 	in[0] = inb(ioaddr[0] + 5);
306 	in[6] = inb(ioaddr[0] + 6);
307 	in[5] = inb(ioaddr[1] + 6);
308 	return 0;
309 }
310 
311 /* Card Send Command (cannot be used during an interrupt) */
312 static int
313 card_send_command(const int ioaddr[], const char* name,
314 	const unsigned char out[], unsigned char in[])
315 {
316 	int status, x;
317 
318 	if ((status = card_wait_for_busy_clear(ioaddr, name)))
319 		return status;
320 	outb(0xa0, ioaddr[0] + 6);
321 	outb(out[2], ioaddr[0] + 1);
322 	outb(out[3], ioaddr[0] + 2);
323 	outb(out[4], ioaddr[0] + 3);
324 	outb(out[5], ioaddr[0] + 4);
325 	outb(out[1], ioaddr[0] + 5);
326 	outb(0xa0, ioaddr[0] + 6);
327 	outb(out[0], ioaddr[0] + 7);
328 	if (out[0] != 0x20 && out[0] != 0x30) {
329 		if ((status = card_wait_for_ready(ioaddr, name, in)))
330 			return status;
331 		inb(ioaddr[0] + 7);
332 		if (sb1000_debug > 3)
333 			printk(KERN_DEBUG "%s: card_send_command "
334 				"out: %02x%02x%02x%02x%02x%02x  "
335 				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
336 				out[0], out[1], out[2], out[3], out[4], out[5],
337 				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
338 	} else {
339 		if (sb1000_debug > 3)
340 			printk(KERN_DEBUG "%s: card_send_command "
341 				"out: %02x%02x%02x%02x%02x%02x\n", name,
342 				out[0], out[1], out[2], out[3], out[4], out[5]);
343 	}
344 
345 	if (out[1] == 0x1b) {
346 		x = (out[2] == 0x02);
347 	} else {
348 		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
349 			return -EIO;
350 	}
351 	return 0;
352 }
353 
354 
355 /*
356  * SB1000 hardware routines to be used during frame rx interrupt
357  */
358 static const int Sb1000TimeOutJiffies = 7 * HZ;
359 
360 /* Card Wait For Ready (to be used during frame rx) */
361 static inline int
362 sb1000_wait_for_ready(const int ioaddr[], const char* name)
363 {
364 	unsigned long timeout;
365 
366 	timeout = jiffies + Sb1000TimeOutJiffies;
367 	while (inb(ioaddr[1] + 6) & 0x80) {
368 		if (time_after_eq(jiffies, timeout)) {
369 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
370 				name);
371 			return -ETIME;
372 		}
373 	}
374 	timeout = jiffies + Sb1000TimeOutJiffies;
375 	while (!(inb(ioaddr[1] + 6) & 0x40)) {
376 		if (time_after_eq(jiffies, timeout)) {
377 			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
378 				name);
379 			return -ETIME;
380 		}
381 	}
382 	inb(ioaddr[0] + 7);
383 	return 0;
384 }
385 
386 /* Card Wait For Ready Clear (to be used during frame rx) */
387 static inline int
388 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
389 {
390 	unsigned long timeout;
391 
392 	timeout = jiffies + Sb1000TimeOutJiffies;
393 	while (inb(ioaddr[1] + 6) & 0x80) {
394 		if (time_after_eq(jiffies, timeout)) {
395 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
396 				name);
397 			return -ETIME;
398 		}
399 	}
400 	timeout = jiffies + Sb1000TimeOutJiffies;
401 	while (inb(ioaddr[1] + 6) & 0x40) {
402 		if (time_after_eq(jiffies, timeout)) {
403 			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
404 				name);
405 			return -ETIME;
406 		}
407 	}
408 	return 0;
409 }
410 
411 /* Card Send Command (to be used during frame rx) */
412 static inline void
413 sb1000_send_command(const int ioaddr[], const char* name,
414 	const unsigned char out[])
415 {
416 	outb(out[2], ioaddr[0] + 1);
417 	outb(out[3], ioaddr[0] + 2);
418 	outb(out[4], ioaddr[0] + 3);
419 	outb(out[5], ioaddr[0] + 4);
420 	outb(out[1], ioaddr[0] + 5);
421 	outb(out[0], ioaddr[0] + 7);
422 	if (sb1000_debug > 3)
423 		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
424 			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
425 	return;
426 }
427 
428 /* Card Read Status (to be used during frame rx) */
429 static inline void
430 sb1000_read_status(const int ioaddr[], unsigned char in[])
431 {
432 	in[1] = inb(ioaddr[0] + 1);
433 	in[2] = inb(ioaddr[0] + 2);
434 	in[3] = inb(ioaddr[0] + 3);
435 	in[4] = inb(ioaddr[0] + 4);
436 	in[0] = inb(ioaddr[0] + 5);
437 	return;
438 }
439 
440 /* Issue Read Command (to be used during frame rx) */
441 static inline void
442 sb1000_issue_read_command(const int ioaddr[], const char* name)
443 {
444 	const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
445 
446 	sb1000_wait_for_ready_clear(ioaddr, name);
447 	outb(0xa0, ioaddr[0] + 6);
448 	sb1000_send_command(ioaddr, name, Command0);
449 	return;
450 }
451 
452 
453 /*
454  * SB1000 commands for open/configuration
455  */
456 /* reset SB1000 card */
457 static inline int
458 sb1000_reset(const int ioaddr[], const char* name)
459 {
460 	unsigned char st[7];
461 	int port, status;
462 	const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
463 
464 	port = ioaddr[1] + 6;
465 	outb(0x4, port);
466 	inb(port);
467 	udelay(1000);
468 	outb(0x0, port);
469 	inb(port);
470 	ssleep(1);
471 	outb(0x4, port);
472 	inb(port);
473 	udelay(1000);
474 	outb(0x0, port);
475 	inb(port);
476 	udelay(0);
477 
478 	if ((status = card_send_command(ioaddr, name, Command0, st)))
479 		return status;
480 	if (st[3] != 0xf0)
481 		return -EIO;
482 	return 0;
483 }
484 
485 /* check SB1000 firmware CRC */
486 static inline int
487 sb1000_check_CRC(const int ioaddr[], const char* name)
488 {
489 	unsigned char st[7];
490 	int crc, status;
491 	const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
492 
493 	/* check CRC */
494 	if ((status = card_send_command(ioaddr, name, Command0, st)))
495 		return status;
496 	if (st[1] != st[3] || st[2] != st[4])
497 		return -EIO;
498 	crc = st[1] << 8 | st[2];
499 	return 0;
500 }
501 
502 static inline int
503 sb1000_start_get_set_command(const int ioaddr[], const char* name)
504 {
505 	unsigned char st[7];
506 	const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
507 
508 	return card_send_command(ioaddr, name, Command0, st);
509 }
510 
511 static inline int
512 sb1000_end_get_set_command(const int ioaddr[], const char* name)
513 {
514 	unsigned char st[7];
515 	int status;
516 	const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
517 	const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
518 
519 	if ((status = card_send_command(ioaddr, name, Command0, st)))
520 		return status;
521 	return card_send_command(ioaddr, name, Command1, st);
522 }
523 
524 static inline int
525 sb1000_activate(const int ioaddr[], const char* name)
526 {
527 	unsigned char st[7];
528 	int status;
529 	const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
530 	const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
531 
532 	ssleep(1);
533 	if ((status = card_send_command(ioaddr, name, Command0, st)))
534 		return status;
535 	if ((status = card_send_command(ioaddr, name, Command1, st)))
536 		return status;
537 	if (st[3] != 0xf1) {
538     	if ((status = sb1000_start_get_set_command(ioaddr, name)))
539 			return status;
540 		return -EIO;
541 	}
542 	udelay(1000);
543     return sb1000_start_get_set_command(ioaddr, name);
544 }
545 
546 /* get SB1000 firmware version */
547 static int
548 sb1000_get_firmware_version(const int ioaddr[], const char* name,
549 	unsigned char version[], int do_end)
550 {
551 	unsigned char st[7];
552 	int status;
553 	const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
554 
555 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
556 		return status;
557 	if ((status = card_send_command(ioaddr, name, Command0, st)))
558 		return status;
559 	if (st[0] != 0xa3)
560 		return -EIO;
561 	version[0] = st[1];
562 	version[1] = st[2];
563 	if (do_end)
564 		return sb1000_end_get_set_command(ioaddr, name);
565 	else
566 		return 0;
567 }
568 
569 /* get SB1000 frequency */
570 static int
571 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
572 {
573 	unsigned char st[7];
574 	int status;
575 	const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
576 
577 	udelay(1000);
578 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
579 		return status;
580 	if ((status = card_send_command(ioaddr, name, Command0, st)))
581 		return status;
582 	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
583 	return sb1000_end_get_set_command(ioaddr, name);
584 }
585 
586 /* set SB1000 frequency */
587 static int
588 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
589 {
590 	unsigned char st[7];
591 	int status;
592 	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
593 
594 	const int FrequencyLowerLimit = 57000;
595 	const int FrequencyUpperLimit = 804000;
596 
597 	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
598 		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
599 			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
600 			FrequencyUpperLimit);
601 		return -EINVAL;
602 	}
603 	udelay(1000);
604 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
605 		return status;
606 	Command0[5] = frequency & 0xff;
607 	frequency >>= 8;
608 	Command0[4] = frequency & 0xff;
609 	frequency >>= 8;
610 	Command0[3] = frequency & 0xff;
611 	frequency >>= 8;
612 	Command0[2] = frequency & 0xff;
613 	return card_send_command(ioaddr, name, Command0, st);
614 }
615 
616 /* get SB1000 PIDs */
617 static int
618 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
619 {
620 	unsigned char st[7];
621 	int status;
622 	const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
623 	const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
624 	const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
625 	const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
626 
627 	udelay(1000);
628 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
629 		return status;
630 
631 	if ((status = card_send_command(ioaddr, name, Command0, st)))
632 		return status;
633 	PID[0] = st[1] << 8 | st[2];
634 
635 	if ((status = card_send_command(ioaddr, name, Command1, st)))
636 		return status;
637 	PID[1] = st[1] << 8 | st[2];
638 
639 	if ((status = card_send_command(ioaddr, name, Command2, st)))
640 		return status;
641 	PID[2] = st[1] << 8 | st[2];
642 
643 	if ((status = card_send_command(ioaddr, name, Command3, st)))
644 		return status;
645 	PID[3] = st[1] << 8 | st[2];
646 
647 	return sb1000_end_get_set_command(ioaddr, name);
648 }
649 
650 /* set SB1000 PIDs */
651 static int
652 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
653 {
654 	unsigned char st[7];
655 	short p;
656 	int status;
657 	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
658 	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
659 	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
660 	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
661 	const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
662 
663 	udelay(1000);
664 	if ((status = sb1000_start_get_set_command(ioaddr, name)))
665 		return status;
666 
667 	p = PID[0];
668 	Command0[3] = p & 0xff;
669 	p >>= 8;
670 	Command0[2] = p & 0xff;
671 	if ((status = card_send_command(ioaddr, name, Command0, st)))
672 		return status;
673 
674 	p = PID[1];
675 	Command1[3] = p & 0xff;
676 	p >>= 8;
677 	Command1[2] = p & 0xff;
678 	if ((status = card_send_command(ioaddr, name, Command1, st)))
679 		return status;
680 
681 	p = PID[2];
682 	Command2[3] = p & 0xff;
683 	p >>= 8;
684 	Command2[2] = p & 0xff;
685 	if ((status = card_send_command(ioaddr, name, Command2, st)))
686 		return status;
687 
688 	p = PID[3];
689 	Command3[3] = p & 0xff;
690 	p >>= 8;
691 	Command3[2] = p & 0xff;
692 	if ((status = card_send_command(ioaddr, name, Command3, st)))
693 		return status;
694 
695 	if ((status = card_send_command(ioaddr, name, Command4, st)))
696 		return status;
697 	return sb1000_end_get_set_command(ioaddr, name);
698 }
699 
700 
701 static inline void
702 sb1000_print_status_buffer(const char* name, unsigned char st[],
703 	unsigned char buffer[], int size)
704 {
705 	int i, j, k;
706 
707 	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
708 	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
709 		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
710 			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
711 			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
712             buffer[46] << 8 | buffer[47],
713 			buffer[42], buffer[43], buffer[44], buffer[45],
714             buffer[48] << 8 | buffer[49]);
715 	} else {
716 		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
717 			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
718 			for (j = 0; j < 8 && k < size; j++, k++)
719 				printk(" %02x", buffer[k]);
720 			printk("\n");
721 		}
722 	}
723 	return;
724 }
725 
726 /*
727  * SB1000 commands for frame rx interrupt
728  */
729 /* receive a single frame and assemble datagram
730  * (this is the heart of the interrupt routine)
731  */
732 static inline int
733 sb1000_rx(struct net_device *dev)
734 {
735 
736 #define FRAMESIZE 184
737 	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
738 	short dlen;
739 	int ioaddr, ns;
740 	unsigned int skbsize;
741 	struct sk_buff *skb;
742 	struct sb1000_private *lp = netdev_priv(dev);
743 	struct net_device_stats *stats = &lp->stats;
744 
745 	/* SB1000 frame constants */
746 	const int FrameSize = FRAMESIZE;
747 	const int NewDatagramHeaderSkip = 8;
748 	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
749 	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
750 	const int ContDatagramHeaderSkip = 7;
751 	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
752 	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
753 	const int TrailerSize = 4;
754 
755 	ioaddr = dev->base_addr;
756 
757 	insw(ioaddr, (unsigned short*) st, 1);
758 #ifdef XXXDEBUG
759 printk("cm0: received: %02x %02x\n", st[0], st[1]);
760 #endif /* XXXDEBUG */
761 	lp->rx_frames++;
762 
763 	/* decide if it is a good or bad frame */
764 	for (ns = 0; ns < NPIDS; ns++) {
765 		session_id = lp->rx_session_id[ns];
766 		frame_id = lp->rx_frame_id[ns];
767 		if (st[0] == session_id) {
768 			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
769 				goto good_frame;
770 			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
771 				goto skipped_frame;
772 			} else {
773 				goto bad_frame;
774 			}
775 		} else if (st[0] == (session_id | 0x40)) {
776 			if ((st[1] & 0xf0) == 0x30) {
777 				goto skipped_frame;
778 			} else {
779 				goto bad_frame;
780 			}
781 		}
782 	}
783 	goto bad_frame;
784 
785 skipped_frame:
786 	stats->rx_frame_errors++;
787 	skb = lp->rx_skb[ns];
788 	if (sb1000_debug > 1)
789 		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
790 			"expecting %02x %02x\n", dev->name, st[0], st[1],
791 			skb ? session_id : session_id | 0x40, frame_id);
792 	if (skb) {
793 		dev_kfree_skb(skb);
794 		skb = NULL;
795 	}
796 
797 good_frame:
798 	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
799 	/* new datagram */
800 	if (st[0] & 0x40) {
801 		/* get data length */
802 		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
803 #ifdef XXXDEBUG
804 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
805 #endif /* XXXDEBUG */
806 		if (buffer[0] != NewDatagramHeaderSkip) {
807 			if (sb1000_debug > 1)
808 				printk(KERN_WARNING "%s: new datagram header skip error: "
809 					"got %02x expecting %02x\n", dev->name, buffer[0],
810 					NewDatagramHeaderSkip);
811 			stats->rx_length_errors++;
812 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
813 			goto bad_frame_next;
814 		}
815 		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
816 			buffer[NewDatagramHeaderSkip + 4]) - 17;
817 		if (dlen > SB1000_MRU) {
818 			if (sb1000_debug > 1)
819 				printk(KERN_WARNING "%s: datagram length (%d) greater "
820 					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
821 			stats->rx_length_errors++;
822 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
823 			goto bad_frame_next;
824 		}
825 		lp->rx_dlen[ns] = dlen;
826 		/* compute size to allocate for datagram */
827 		skbsize = dlen + FrameSize;
828 		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
829 			if (sb1000_debug > 1)
830 				printk(KERN_WARNING "%s: can't allocate %d bytes long "
831 					"skbuff\n", dev->name, skbsize);
832 			stats->rx_dropped++;
833 			insw(ioaddr, buffer, NewDatagramDataSize / 2);
834 			goto dropped_frame;
835 		}
836 		skb->dev = dev;
837 		skb_reset_mac_header(skb);
838 		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
839 		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
840 			NewDatagramDataSize / 2);
841 		lp->rx_skb[ns] = skb;
842 	} else {
843 		/* continuation of previous datagram */
844 		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
845 		if (buffer[0] != ContDatagramHeaderSkip) {
846 			if (sb1000_debug > 1)
847 				printk(KERN_WARNING "%s: cont datagram header skip error: "
848 					"got %02x expecting %02x\n", dev->name, buffer[0],
849 					ContDatagramHeaderSkip);
850 			stats->rx_length_errors++;
851 			insw(ioaddr, buffer, ContDatagramDataSize / 2);
852 			goto bad_frame_next;
853 		}
854 		skb = lp->rx_skb[ns];
855 		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
856 			ContDatagramDataSize / 2);
857 		dlen = lp->rx_dlen[ns];
858 	}
859 	if (skb->len < dlen + TrailerSize) {
860 		lp->rx_session_id[ns] &= ~0x40;
861 		return 0;
862 	}
863 
864 	/* datagram completed: send to upper level */
865 	skb_trim(skb, dlen);
866 	netif_rx(skb);
867 	dev->last_rx = jiffies;
868 	stats->rx_bytes+=dlen;
869 	stats->rx_packets++;
870 	lp->rx_skb[ns] = NULL;
871 	lp->rx_session_id[ns] |= 0x40;
872 	return 0;
873 
874 bad_frame:
875 	insw(ioaddr, buffer, FrameSize / 2);
876 	if (sb1000_debug > 1)
877 		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
878 			dev->name, st[0], st[1]);
879 	stats->rx_frame_errors++;
880 bad_frame_next:
881 	if (sb1000_debug > 2)
882 		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
883 dropped_frame:
884 	stats->rx_errors++;
885 	if (ns < NPIDS) {
886 		if ((skb = lp->rx_skb[ns])) {
887 			dev_kfree_skb(skb);
888 			lp->rx_skb[ns] = NULL;
889 		}
890 		lp->rx_session_id[ns] |= 0x40;
891 	}
892 	return -1;
893 }
894 
895 static inline void
896 sb1000_error_dpc(struct net_device *dev)
897 {
898 	char *name;
899 	unsigned char st[5];
900 	int ioaddr[2];
901 	struct sb1000_private *lp = netdev_priv(dev);
902 	const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
903 	const int ErrorDpcCounterInitialize = 200;
904 
905 	ioaddr[0] = dev->base_addr;
906 	/* mem_start holds the second I/O address */
907 	ioaddr[1] = dev->mem_start;
908 	name = dev->name;
909 
910 	sb1000_wait_for_ready_clear(ioaddr, name);
911 	sb1000_send_command(ioaddr, name, Command0);
912 	sb1000_wait_for_ready(ioaddr, name);
913 	sb1000_read_status(ioaddr, st);
914 	if (st[1] & 0x10)
915 		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
916 	return;
917 }
918 
919 
920 /*
921  * Linux interface functions
922  */
923 static int
924 sb1000_open(struct net_device *dev)
925 {
926 	char *name;
927 	int ioaddr[2], status;
928 	struct sb1000_private *lp = netdev_priv(dev);
929 	const unsigned short FirmwareVersion[] = {0x01, 0x01};
930 
931 	ioaddr[0] = dev->base_addr;
932 	/* mem_start holds the second I/O address */
933 	ioaddr[1] = dev->mem_start;
934 	name = dev->name;
935 
936 	/* initialize sb1000 */
937 	if ((status = sb1000_reset(ioaddr, name)))
938 		return status;
939 	ssleep(1);
940 	if ((status = sb1000_check_CRC(ioaddr, name)))
941 		return status;
942 
943 	/* initialize private data before board can catch interrupts */
944 	lp->rx_skb[0] = NULL;
945 	lp->rx_skb[1] = NULL;
946 	lp->rx_skb[2] = NULL;
947 	lp->rx_skb[3] = NULL;
948 	lp->rx_dlen[0] = 0;
949 	lp->rx_dlen[1] = 0;
950 	lp->rx_dlen[2] = 0;
951 	lp->rx_dlen[3] = 0;
952 	lp->rx_frames = 0;
953 	lp->rx_error_count = 0;
954 	lp->rx_error_dpc_count = 0;
955 	lp->rx_session_id[0] = 0x50;
956 	lp->rx_session_id[0] = 0x48;
957 	lp->rx_session_id[0] = 0x44;
958 	lp->rx_session_id[0] = 0x42;
959 	lp->rx_frame_id[0] = 0;
960 	lp->rx_frame_id[1] = 0;
961 	lp->rx_frame_id[2] = 0;
962 	lp->rx_frame_id[3] = 0;
963 	if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) {
964 		return -EAGAIN;
965 	}
966 
967 	if (sb1000_debug > 2)
968 		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
969 
970 	/* Activate board and check firmware version */
971 	udelay(1000);
972 	if ((status = sb1000_activate(ioaddr, name)))
973 		return status;
974 	udelay(0);
975 	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
976 		return status;
977 	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
978 		printk(KERN_WARNING "%s: found firmware version %x.%02x "
979 			"(should be %x.%02x)\n", name, version[0], version[1],
980 			FirmwareVersion[0], FirmwareVersion[1]);
981 
982 
983 	netif_start_queue(dev);
984 	return 0;					/* Always succeed */
985 }
986 
987 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
988 {
989 	char* name;
990 	unsigned char version[2];
991 	short PID[4];
992 	int ioaddr[2], status, frequency;
993 	unsigned int stats[5];
994 	struct sb1000_private *lp = netdev_priv(dev);
995 
996 	if (!(dev && dev->flags & IFF_UP))
997 		return -ENODEV;
998 
999 	ioaddr[0] = dev->base_addr;
1000 	/* mem_start holds the second I/O address */
1001 	ioaddr[1] = dev->mem_start;
1002 	name = dev->name;
1003 
1004 	switch (cmd) {
1005 	case SIOCGCMSTATS:		/* get statistics */
1006 		stats[0] = lp->stats.rx_bytes;
1007 		stats[1] = lp->rx_frames;
1008 		stats[2] = lp->stats.rx_packets;
1009 		stats[3] = lp->stats.rx_errors;
1010 		stats[4] = lp->stats.rx_dropped;
1011 		if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1012 			return -EFAULT;
1013 		status = 0;
1014 		break;
1015 
1016 	case SIOCGCMFIRMWARE:		/* get firmware version */
1017 		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1018 			return status;
1019 		if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1020 			return -EFAULT;
1021 		break;
1022 
1023 	case SIOCGCMFREQUENCY:		/* get frequency */
1024 		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1025 			return status;
1026 		if(put_user(frequency, (int __user *) ifr->ifr_data))
1027 			return -EFAULT;
1028 		break;
1029 
1030 	case SIOCSCMFREQUENCY:		/* set frequency */
1031 		if (!capable(CAP_NET_ADMIN))
1032 			return -EPERM;
1033 		if(get_user(frequency, (int __user *) ifr->ifr_data))
1034 			return -EFAULT;
1035 		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1036 			return status;
1037 		break;
1038 
1039 	case SIOCGCMPIDS:			/* get PIDs */
1040 		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1041 			return status;
1042 		if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1043 			return -EFAULT;
1044 		break;
1045 
1046 	case SIOCSCMPIDS:			/* set PIDs */
1047 		if (!capable(CAP_NET_ADMIN))
1048 			return -EPERM;
1049 		if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1050 			return -EFAULT;
1051 		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1052 			return status;
1053 		/* set session_id, frame_id and pkt_type too */
1054 		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1055 		lp->rx_session_id[1] = 0x48;
1056 		lp->rx_session_id[2] = 0x44;
1057 		lp->rx_session_id[3] = 0x42;
1058 		lp->rx_frame_id[0] = 0;
1059 		lp->rx_frame_id[1] = 0;
1060 		lp->rx_frame_id[2] = 0;
1061 		lp->rx_frame_id[3] = 0;
1062 		break;
1063 
1064 	default:
1065 		status = -EINVAL;
1066 		break;
1067 	}
1068 	return status;
1069 }
1070 
1071 /* transmit function: do nothing since SB1000 can't send anything out */
1072 static int
1073 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1074 {
1075 	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1076 	/* sb1000 can't xmit datagrams */
1077 	dev_kfree_skb(skb);
1078 	return 0;
1079 }
1080 
1081 /* SB1000 interrupt handler. */
1082 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1083 {
1084 	char *name;
1085 	unsigned char st;
1086 	int ioaddr[2];
1087 	struct net_device *dev = dev_id;
1088 	struct sb1000_private *lp = netdev_priv(dev);
1089 
1090 	const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1091 	const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1092 	const int MaxRxErrorCount = 6;
1093 
1094 	ioaddr[0] = dev->base_addr;
1095 	/* mem_start holds the second I/O address */
1096 	ioaddr[1] = dev->mem_start;
1097 	name = dev->name;
1098 
1099 	/* is it a good interrupt? */
1100 	st = inb(ioaddr[1] + 6);
1101 	if (!(st & 0x08 && st & 0x20)) {
1102 		return IRQ_NONE;
1103 	}
1104 
1105 	if (sb1000_debug > 3)
1106 		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1107 
1108 	st = inb(ioaddr[0] + 7);
1109 	if (sb1000_rx(dev))
1110 		lp->rx_error_count++;
1111 #ifdef SB1000_DELAY
1112 	udelay(SB1000_DELAY);
1113 #endif /* SB1000_DELAY */
1114 	sb1000_issue_read_command(ioaddr, name);
1115 	if (st & 0x01) {
1116 		sb1000_error_dpc(dev);
1117 		sb1000_issue_read_command(ioaddr, name);
1118 	}
1119 	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1120 		sb1000_wait_for_ready_clear(ioaddr, name);
1121 		sb1000_send_command(ioaddr, name, Command0);
1122 		sb1000_wait_for_ready(ioaddr, name);
1123 		sb1000_issue_read_command(ioaddr, name);
1124 	}
1125 	if (lp->rx_error_count >= MaxRxErrorCount) {
1126 		sb1000_wait_for_ready_clear(ioaddr, name);
1127 		sb1000_send_command(ioaddr, name, Command1);
1128 		sb1000_wait_for_ready(ioaddr, name);
1129 		sb1000_issue_read_command(ioaddr, name);
1130 		lp->rx_error_count = 0;
1131 	}
1132 
1133 	return IRQ_HANDLED;
1134 }
1135 
1136 static struct net_device_stats *sb1000_stats(struct net_device *dev)
1137 {
1138 	struct sb1000_private *lp = netdev_priv(dev);
1139 	return &lp->stats;
1140 }
1141 
1142 static int sb1000_close(struct net_device *dev)
1143 {
1144 	int i;
1145 	int ioaddr[2];
1146 	struct sb1000_private *lp = netdev_priv(dev);
1147 
1148 	if (sb1000_debug > 2)
1149 		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1150 
1151 	netif_stop_queue(dev);
1152 
1153 	ioaddr[0] = dev->base_addr;
1154 	/* mem_start holds the second I/O address */
1155 	ioaddr[1] = dev->mem_start;
1156 
1157 	free_irq(dev->irq, dev);
1158 	/* If we don't do this, we can't re-insmod it later. */
1159 	release_region(ioaddr[1], SB1000_IO_EXTENT);
1160 	release_region(ioaddr[0], SB1000_IO_EXTENT);
1161 
1162 	/* free rx_skb's if needed */
1163 	for (i=0; i<4; i++) {
1164 		if (lp->rx_skb[i]) {
1165 			dev_kfree_skb(lp->rx_skb[i]);
1166 		}
1167 	}
1168 	return 0;
1169 }
1170 
1171 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1172 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1173 MODULE_LICENSE("GPL");
1174 
1175 static int __init
1176 sb1000_init(void)
1177 {
1178 	return pnp_register_driver(&sb1000_driver);
1179 }
1180 
1181 static void __exit
1182 sb1000_exit(void)
1183 {
1184 	pnp_unregister_driver(&sb1000_driver);
1185 }
1186 
1187 module_init(sb1000_init);
1188 module_exit(sb1000_exit);
1189