xref: /openbmc/linux/drivers/net/ppp/ppp_generic.c (revision f220d3eb)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched/signal.h>
28 #include <linux/kmod.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/idr.h>
32 #include <linux/netdevice.h>
33 #include <linux/poll.h>
34 #include <linux/ppp_defs.h>
35 #include <linux/filter.h>
36 #include <linux/ppp-ioctl.h>
37 #include <linux/ppp_channel.h>
38 #include <linux/ppp-comp.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/if_arp.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/spinlock.h>
45 #include <linux/rwsem.h>
46 #include <linux/stddef.h>
47 #include <linux/device.h>
48 #include <linux/mutex.h>
49 #include <linux/slab.h>
50 #include <linux/file.h>
51 #include <asm/unaligned.h>
52 #include <net/slhc_vj.h>
53 #include <linux/atomic.h>
54 #include <linux/refcount.h>
55 
56 #include <linux/nsproxy.h>
57 #include <net/net_namespace.h>
58 #include <net/netns/generic.h>
59 
60 #define PPP_VERSION	"2.4.2"
61 
62 /*
63  * Network protocols we support.
64  */
65 #define NP_IP	0		/* Internet Protocol V4 */
66 #define NP_IPV6	1		/* Internet Protocol V6 */
67 #define NP_IPX	2		/* IPX protocol */
68 #define NP_AT	3		/* Appletalk protocol */
69 #define NP_MPLS_UC 4		/* MPLS unicast */
70 #define NP_MPLS_MC 5		/* MPLS multicast */
71 #define NUM_NP	6		/* Number of NPs. */
72 
73 #define MPHDRLEN	6	/* multilink protocol header length */
74 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
75 
76 /*
77  * An instance of /dev/ppp can be associated with either a ppp
78  * interface unit or a ppp channel.  In both cases, file->private_data
79  * points to one of these.
80  */
81 struct ppp_file {
82 	enum {
83 		INTERFACE=1, CHANNEL
84 	}		kind;
85 	struct sk_buff_head xq;		/* pppd transmit queue */
86 	struct sk_buff_head rq;		/* receive queue for pppd */
87 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
88 	refcount_t	refcnt;		/* # refs (incl /dev/ppp attached) */
89 	int		hdrlen;		/* space to leave for headers */
90 	int		index;		/* interface unit / channel number */
91 	int		dead;		/* unit/channel has been shut down */
92 };
93 
94 #define PF_TO_X(pf, X)		container_of(pf, X, file)
95 
96 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
97 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
98 
99 /*
100  * Data structure to hold primary network stats for which
101  * we want to use 64 bit storage.  Other network stats
102  * are stored in dev->stats of the ppp strucute.
103  */
104 struct ppp_link_stats {
105 	u64 rx_packets;
106 	u64 tx_packets;
107 	u64 rx_bytes;
108 	u64 tx_bytes;
109 };
110 
111 /*
112  * Data structure describing one ppp unit.
113  * A ppp unit corresponds to a ppp network interface device
114  * and represents a multilink bundle.
115  * It can have 0 or more ppp channels connected to it.
116  */
117 struct ppp {
118 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
119 	struct file	*owner;		/* file that owns this unit 48 */
120 	struct list_head channels;	/* list of attached channels 4c */
121 	int		n_channels;	/* how many channels are attached 54 */
122 	spinlock_t	rlock;		/* lock for receive side 58 */
123 	spinlock_t	wlock;		/* lock for transmit side 5c */
124 	int __percpu	*xmit_recursion; /* xmit recursion detect */
125 	int		mru;		/* max receive unit 60 */
126 	unsigned int	flags;		/* control bits 64 */
127 	unsigned int	xstate;		/* transmit state bits 68 */
128 	unsigned int	rstate;		/* receive state bits 6c */
129 	int		debug;		/* debug flags 70 */
130 	struct slcompress *vj;		/* state for VJ header compression */
131 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
132 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
133 	struct compressor *xcomp;	/* transmit packet compressor 8c */
134 	void		*xc_state;	/* its internal state 90 */
135 	struct compressor *rcomp;	/* receive decompressor 94 */
136 	void		*rc_state;	/* its internal state 98 */
137 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
138 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
139 	struct net_device *dev;		/* network interface device a4 */
140 	int		closing;	/* is device closing down? a8 */
141 #ifdef CONFIG_PPP_MULTILINK
142 	int		nxchan;		/* next channel to send something on */
143 	u32		nxseq;		/* next sequence number to send */
144 	int		mrru;		/* MP: max reconst. receive unit */
145 	u32		nextseq;	/* MP: seq no of next packet */
146 	u32		minseq;		/* MP: min of most recent seqnos */
147 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
148 #endif /* CONFIG_PPP_MULTILINK */
149 #ifdef CONFIG_PPP_FILTER
150 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
151 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
152 #endif /* CONFIG_PPP_FILTER */
153 	struct net	*ppp_net;	/* the net we belong to */
154 	struct ppp_link_stats stats64;	/* 64 bit network stats */
155 };
156 
157 /*
158  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
159  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
160  * SC_MUST_COMP
161  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
162  * Bits in xstate: SC_COMP_RUN
163  */
164 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
165 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
166 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
167 
168 /*
169  * Private data structure for each channel.
170  * This includes the data structure used for multilink.
171  */
172 struct channel {
173 	struct ppp_file	file;		/* stuff for read/write/poll */
174 	struct list_head list;		/* link in all/new_channels list */
175 	struct ppp_channel *chan;	/* public channel data structure */
176 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
177 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
178 	struct ppp	*ppp;		/* ppp unit we're connected to */
179 	struct net	*chan_net;	/* the net channel belongs to */
180 	struct list_head clist;		/* link in list of channels per unit */
181 	rwlock_t	upl;		/* protects `ppp' */
182 #ifdef CONFIG_PPP_MULTILINK
183 	u8		avail;		/* flag used in multilink stuff */
184 	u8		had_frag;	/* >= 1 fragments have been sent */
185 	u32		lastseq;	/* MP: last sequence # received */
186 	int		speed;		/* speed of the corresponding ppp channel*/
187 #endif /* CONFIG_PPP_MULTILINK */
188 };
189 
190 struct ppp_config {
191 	struct file *file;
192 	s32 unit;
193 	bool ifname_is_set;
194 };
195 
196 /*
197  * SMP locking issues:
198  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
199  * list and the ppp.n_channels field, you need to take both locks
200  * before you modify them.
201  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
202  * channel.downl.
203  */
204 
205 static DEFINE_MUTEX(ppp_mutex);
206 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
207 static atomic_t channel_count = ATOMIC_INIT(0);
208 
209 /* per-net private data for this module */
210 static unsigned int ppp_net_id __read_mostly;
211 struct ppp_net {
212 	/* units to ppp mapping */
213 	struct idr units_idr;
214 
215 	/*
216 	 * all_ppp_mutex protects the units_idr mapping.
217 	 * It also ensures that finding a ppp unit in the units_idr
218 	 * map and updating its file.refcnt field is atomic.
219 	 */
220 	struct mutex all_ppp_mutex;
221 
222 	/* channels */
223 	struct list_head all_channels;
224 	struct list_head new_channels;
225 	int last_channel_index;
226 
227 	/*
228 	 * all_channels_lock protects all_channels and
229 	 * last_channel_index, and the atomicity of find
230 	 * a channel and updating its file.refcnt field.
231 	 */
232 	spinlock_t all_channels_lock;
233 };
234 
235 /* Get the PPP protocol number from a skb */
236 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
237 
238 /* We limit the length of ppp->file.rq to this (arbitrary) value */
239 #define PPP_MAX_RQLEN	32
240 
241 /*
242  * Maximum number of multilink fragments queued up.
243  * This has to be large enough to cope with the maximum latency of
244  * the slowest channel relative to the others.  Strictly it should
245  * depend on the number of channels and their characteristics.
246  */
247 #define PPP_MP_MAX_QLEN	128
248 
249 /* Multilink header bits. */
250 #define B	0x80		/* this fragment begins a packet */
251 #define E	0x40		/* this fragment ends a packet */
252 
253 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
254 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
255 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
256 
257 /* Prototypes. */
258 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
259 			struct file *file, unsigned int cmd, unsigned long arg);
260 static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb);
261 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
262 static void ppp_push(struct ppp *ppp);
263 static void ppp_channel_push(struct channel *pch);
264 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
265 			      struct channel *pch);
266 static void ppp_receive_error(struct ppp *ppp);
267 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
268 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
269 					    struct sk_buff *skb);
270 #ifdef CONFIG_PPP_MULTILINK
271 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
272 				struct channel *pch);
273 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
274 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
275 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
276 #endif /* CONFIG_PPP_MULTILINK */
277 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
278 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
279 static void ppp_ccp_closed(struct ppp *ppp);
280 static struct compressor *find_compressor(int type);
281 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
282 static int ppp_create_interface(struct net *net, struct file *file, int *unit);
283 static void init_ppp_file(struct ppp_file *pf, int kind);
284 static void ppp_destroy_interface(struct ppp *ppp);
285 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
286 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
287 static int ppp_connect_channel(struct channel *pch, int unit);
288 static int ppp_disconnect_channel(struct channel *pch);
289 static void ppp_destroy_channel(struct channel *pch);
290 static int unit_get(struct idr *p, void *ptr);
291 static int unit_set(struct idr *p, void *ptr, int n);
292 static void unit_put(struct idr *p, int n);
293 static void *unit_find(struct idr *p, int n);
294 static void ppp_setup(struct net_device *dev);
295 
296 static const struct net_device_ops ppp_netdev_ops;
297 
298 static struct class *ppp_class;
299 
300 /* per net-namespace data */
301 static inline struct ppp_net *ppp_pernet(struct net *net)
302 {
303 	BUG_ON(!net);
304 
305 	return net_generic(net, ppp_net_id);
306 }
307 
308 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
309 static inline int proto_to_npindex(int proto)
310 {
311 	switch (proto) {
312 	case PPP_IP:
313 		return NP_IP;
314 	case PPP_IPV6:
315 		return NP_IPV6;
316 	case PPP_IPX:
317 		return NP_IPX;
318 	case PPP_AT:
319 		return NP_AT;
320 	case PPP_MPLS_UC:
321 		return NP_MPLS_UC;
322 	case PPP_MPLS_MC:
323 		return NP_MPLS_MC;
324 	}
325 	return -EINVAL;
326 }
327 
328 /* Translates an NP index into a PPP protocol number */
329 static const int npindex_to_proto[NUM_NP] = {
330 	PPP_IP,
331 	PPP_IPV6,
332 	PPP_IPX,
333 	PPP_AT,
334 	PPP_MPLS_UC,
335 	PPP_MPLS_MC,
336 };
337 
338 /* Translates an ethertype into an NP index */
339 static inline int ethertype_to_npindex(int ethertype)
340 {
341 	switch (ethertype) {
342 	case ETH_P_IP:
343 		return NP_IP;
344 	case ETH_P_IPV6:
345 		return NP_IPV6;
346 	case ETH_P_IPX:
347 		return NP_IPX;
348 	case ETH_P_PPPTALK:
349 	case ETH_P_ATALK:
350 		return NP_AT;
351 	case ETH_P_MPLS_UC:
352 		return NP_MPLS_UC;
353 	case ETH_P_MPLS_MC:
354 		return NP_MPLS_MC;
355 	}
356 	return -1;
357 }
358 
359 /* Translates an NP index into an ethertype */
360 static const int npindex_to_ethertype[NUM_NP] = {
361 	ETH_P_IP,
362 	ETH_P_IPV6,
363 	ETH_P_IPX,
364 	ETH_P_PPPTALK,
365 	ETH_P_MPLS_UC,
366 	ETH_P_MPLS_MC,
367 };
368 
369 /*
370  * Locking shorthand.
371  */
372 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
373 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
374 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
375 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
376 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
377 				     ppp_recv_lock(ppp); } while (0)
378 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
379 				     ppp_xmit_unlock(ppp); } while (0)
380 
381 /*
382  * /dev/ppp device routines.
383  * The /dev/ppp device is used by pppd to control the ppp unit.
384  * It supports the read, write, ioctl and poll functions.
385  * Open instances of /dev/ppp can be in one of three states:
386  * unattached, attached to a ppp unit, or attached to a ppp channel.
387  */
388 static int ppp_open(struct inode *inode, struct file *file)
389 {
390 	/*
391 	 * This could (should?) be enforced by the permissions on /dev/ppp.
392 	 */
393 	if (!ns_capable(file->f_cred->user_ns, CAP_NET_ADMIN))
394 		return -EPERM;
395 	return 0;
396 }
397 
398 static int ppp_release(struct inode *unused, struct file *file)
399 {
400 	struct ppp_file *pf = file->private_data;
401 	struct ppp *ppp;
402 
403 	if (pf) {
404 		file->private_data = NULL;
405 		if (pf->kind == INTERFACE) {
406 			ppp = PF_TO_PPP(pf);
407 			rtnl_lock();
408 			if (file == ppp->owner)
409 				unregister_netdevice(ppp->dev);
410 			rtnl_unlock();
411 		}
412 		if (refcount_dec_and_test(&pf->refcnt)) {
413 			switch (pf->kind) {
414 			case INTERFACE:
415 				ppp_destroy_interface(PF_TO_PPP(pf));
416 				break;
417 			case CHANNEL:
418 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
419 				break;
420 			}
421 		}
422 	}
423 	return 0;
424 }
425 
426 static ssize_t ppp_read(struct file *file, char __user *buf,
427 			size_t count, loff_t *ppos)
428 {
429 	struct ppp_file *pf = file->private_data;
430 	DECLARE_WAITQUEUE(wait, current);
431 	ssize_t ret;
432 	struct sk_buff *skb = NULL;
433 	struct iovec iov;
434 	struct iov_iter to;
435 
436 	ret = count;
437 
438 	if (!pf)
439 		return -ENXIO;
440 	add_wait_queue(&pf->rwait, &wait);
441 	for (;;) {
442 		set_current_state(TASK_INTERRUPTIBLE);
443 		skb = skb_dequeue(&pf->rq);
444 		if (skb)
445 			break;
446 		ret = 0;
447 		if (pf->dead)
448 			break;
449 		if (pf->kind == INTERFACE) {
450 			/*
451 			 * Return 0 (EOF) on an interface that has no
452 			 * channels connected, unless it is looping
453 			 * network traffic (demand mode).
454 			 */
455 			struct ppp *ppp = PF_TO_PPP(pf);
456 
457 			ppp_recv_lock(ppp);
458 			if (ppp->n_channels == 0 &&
459 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
460 				ppp_recv_unlock(ppp);
461 				break;
462 			}
463 			ppp_recv_unlock(ppp);
464 		}
465 		ret = -EAGAIN;
466 		if (file->f_flags & O_NONBLOCK)
467 			break;
468 		ret = -ERESTARTSYS;
469 		if (signal_pending(current))
470 			break;
471 		schedule();
472 	}
473 	set_current_state(TASK_RUNNING);
474 	remove_wait_queue(&pf->rwait, &wait);
475 
476 	if (!skb)
477 		goto out;
478 
479 	ret = -EOVERFLOW;
480 	if (skb->len > count)
481 		goto outf;
482 	ret = -EFAULT;
483 	iov.iov_base = buf;
484 	iov.iov_len = count;
485 	iov_iter_init(&to, READ, &iov, 1, count);
486 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
487 		goto outf;
488 	ret = skb->len;
489 
490  outf:
491 	kfree_skb(skb);
492  out:
493 	return ret;
494 }
495 
496 static ssize_t ppp_write(struct file *file, const char __user *buf,
497 			 size_t count, loff_t *ppos)
498 {
499 	struct ppp_file *pf = file->private_data;
500 	struct sk_buff *skb;
501 	ssize_t ret;
502 
503 	if (!pf)
504 		return -ENXIO;
505 	ret = -ENOMEM;
506 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
507 	if (!skb)
508 		goto out;
509 	skb_reserve(skb, pf->hdrlen);
510 	ret = -EFAULT;
511 	if (copy_from_user(skb_put(skb, count), buf, count)) {
512 		kfree_skb(skb);
513 		goto out;
514 	}
515 
516 	switch (pf->kind) {
517 	case INTERFACE:
518 		ppp_xmit_process(PF_TO_PPP(pf), skb);
519 		break;
520 	case CHANNEL:
521 		skb_queue_tail(&pf->xq, skb);
522 		ppp_channel_push(PF_TO_CHANNEL(pf));
523 		break;
524 	}
525 
526 	ret = count;
527 
528  out:
529 	return ret;
530 }
531 
532 /* No kernel lock - fine */
533 static __poll_t ppp_poll(struct file *file, poll_table *wait)
534 {
535 	struct ppp_file *pf = file->private_data;
536 	__poll_t mask;
537 
538 	if (!pf)
539 		return 0;
540 	poll_wait(file, &pf->rwait, wait);
541 	mask = EPOLLOUT | EPOLLWRNORM;
542 	if (skb_peek(&pf->rq))
543 		mask |= EPOLLIN | EPOLLRDNORM;
544 	if (pf->dead)
545 		mask |= EPOLLHUP;
546 	else if (pf->kind == INTERFACE) {
547 		/* see comment in ppp_read */
548 		struct ppp *ppp = PF_TO_PPP(pf);
549 
550 		ppp_recv_lock(ppp);
551 		if (ppp->n_channels == 0 &&
552 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
553 			mask |= EPOLLIN | EPOLLRDNORM;
554 		ppp_recv_unlock(ppp);
555 	}
556 
557 	return mask;
558 }
559 
560 #ifdef CONFIG_PPP_FILTER
561 static int get_filter(void __user *arg, struct sock_filter **p)
562 {
563 	struct sock_fprog uprog;
564 	struct sock_filter *code = NULL;
565 	int len;
566 
567 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
568 		return -EFAULT;
569 
570 	if (!uprog.len) {
571 		*p = NULL;
572 		return 0;
573 	}
574 
575 	len = uprog.len * sizeof(struct sock_filter);
576 	code = memdup_user(uprog.filter, len);
577 	if (IS_ERR(code))
578 		return PTR_ERR(code);
579 
580 	*p = code;
581 	return uprog.len;
582 }
583 #endif /* CONFIG_PPP_FILTER */
584 
585 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
586 {
587 	struct ppp_file *pf;
588 	struct ppp *ppp;
589 	int err = -EFAULT, val, val2, i;
590 	struct ppp_idle idle;
591 	struct npioctl npi;
592 	int unit, cflags;
593 	struct slcompress *vj;
594 	void __user *argp = (void __user *)arg;
595 	int __user *p = argp;
596 
597 	mutex_lock(&ppp_mutex);
598 
599 	pf = file->private_data;
600 	if (!pf) {
601 		err = ppp_unattached_ioctl(current->nsproxy->net_ns,
602 					   pf, file, cmd, arg);
603 		goto out;
604 	}
605 
606 	if (cmd == PPPIOCDETACH) {
607 		/*
608 		 * PPPIOCDETACH is no longer supported as it was heavily broken,
609 		 * and is only known to have been used by pppd older than
610 		 * ppp-2.4.2 (released November 2003).
611 		 */
612 		pr_warn_once("%s (%d) used obsolete PPPIOCDETACH ioctl\n",
613 			     current->comm, current->pid);
614 		err = -EINVAL;
615 		goto out;
616 	}
617 
618 	if (pf->kind == CHANNEL) {
619 		struct channel *pch;
620 		struct ppp_channel *chan;
621 
622 		pch = PF_TO_CHANNEL(pf);
623 
624 		switch (cmd) {
625 		case PPPIOCCONNECT:
626 			if (get_user(unit, p))
627 				break;
628 			err = ppp_connect_channel(pch, unit);
629 			break;
630 
631 		case PPPIOCDISCONN:
632 			err = ppp_disconnect_channel(pch);
633 			break;
634 
635 		default:
636 			down_read(&pch->chan_sem);
637 			chan = pch->chan;
638 			err = -ENOTTY;
639 			if (chan && chan->ops->ioctl)
640 				err = chan->ops->ioctl(chan, cmd, arg);
641 			up_read(&pch->chan_sem);
642 		}
643 		goto out;
644 	}
645 
646 	if (pf->kind != INTERFACE) {
647 		/* can't happen */
648 		pr_err("PPP: not interface or channel??\n");
649 		err = -EINVAL;
650 		goto out;
651 	}
652 
653 	ppp = PF_TO_PPP(pf);
654 	switch (cmd) {
655 	case PPPIOCSMRU:
656 		if (get_user(val, p))
657 			break;
658 		ppp->mru = val;
659 		err = 0;
660 		break;
661 
662 	case PPPIOCSFLAGS:
663 		if (get_user(val, p))
664 			break;
665 		ppp_lock(ppp);
666 		cflags = ppp->flags & ~val;
667 #ifdef CONFIG_PPP_MULTILINK
668 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
669 			ppp->nextseq = 0;
670 #endif
671 		ppp->flags = val & SC_FLAG_BITS;
672 		ppp_unlock(ppp);
673 		if (cflags & SC_CCP_OPEN)
674 			ppp_ccp_closed(ppp);
675 		err = 0;
676 		break;
677 
678 	case PPPIOCGFLAGS:
679 		val = ppp->flags | ppp->xstate | ppp->rstate;
680 		if (put_user(val, p))
681 			break;
682 		err = 0;
683 		break;
684 
685 	case PPPIOCSCOMPRESS:
686 		err = ppp_set_compress(ppp, arg);
687 		break;
688 
689 	case PPPIOCGUNIT:
690 		if (put_user(ppp->file.index, p))
691 			break;
692 		err = 0;
693 		break;
694 
695 	case PPPIOCSDEBUG:
696 		if (get_user(val, p))
697 			break;
698 		ppp->debug = val;
699 		err = 0;
700 		break;
701 
702 	case PPPIOCGDEBUG:
703 		if (put_user(ppp->debug, p))
704 			break;
705 		err = 0;
706 		break;
707 
708 	case PPPIOCGIDLE:
709 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
710 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
711 		if (copy_to_user(argp, &idle, sizeof(idle)))
712 			break;
713 		err = 0;
714 		break;
715 
716 	case PPPIOCSMAXCID:
717 		if (get_user(val, p))
718 			break;
719 		val2 = 15;
720 		if ((val >> 16) != 0) {
721 			val2 = val >> 16;
722 			val &= 0xffff;
723 		}
724 		vj = slhc_init(val2+1, val+1);
725 		if (IS_ERR(vj)) {
726 			err = PTR_ERR(vj);
727 			break;
728 		}
729 		ppp_lock(ppp);
730 		if (ppp->vj)
731 			slhc_free(ppp->vj);
732 		ppp->vj = vj;
733 		ppp_unlock(ppp);
734 		err = 0;
735 		break;
736 
737 	case PPPIOCGNPMODE:
738 	case PPPIOCSNPMODE:
739 		if (copy_from_user(&npi, argp, sizeof(npi)))
740 			break;
741 		err = proto_to_npindex(npi.protocol);
742 		if (err < 0)
743 			break;
744 		i = err;
745 		if (cmd == PPPIOCGNPMODE) {
746 			err = -EFAULT;
747 			npi.mode = ppp->npmode[i];
748 			if (copy_to_user(argp, &npi, sizeof(npi)))
749 				break;
750 		} else {
751 			ppp->npmode[i] = npi.mode;
752 			/* we may be able to transmit more packets now (??) */
753 			netif_wake_queue(ppp->dev);
754 		}
755 		err = 0;
756 		break;
757 
758 #ifdef CONFIG_PPP_FILTER
759 	case PPPIOCSPASS:
760 	{
761 		struct sock_filter *code;
762 
763 		err = get_filter(argp, &code);
764 		if (err >= 0) {
765 			struct bpf_prog *pass_filter = NULL;
766 			struct sock_fprog_kern fprog = {
767 				.len = err,
768 				.filter = code,
769 			};
770 
771 			err = 0;
772 			if (fprog.filter)
773 				err = bpf_prog_create(&pass_filter, &fprog);
774 			if (!err) {
775 				ppp_lock(ppp);
776 				if (ppp->pass_filter)
777 					bpf_prog_destroy(ppp->pass_filter);
778 				ppp->pass_filter = pass_filter;
779 				ppp_unlock(ppp);
780 			}
781 			kfree(code);
782 		}
783 		break;
784 	}
785 	case PPPIOCSACTIVE:
786 	{
787 		struct sock_filter *code;
788 
789 		err = get_filter(argp, &code);
790 		if (err >= 0) {
791 			struct bpf_prog *active_filter = NULL;
792 			struct sock_fprog_kern fprog = {
793 				.len = err,
794 				.filter = code,
795 			};
796 
797 			err = 0;
798 			if (fprog.filter)
799 				err = bpf_prog_create(&active_filter, &fprog);
800 			if (!err) {
801 				ppp_lock(ppp);
802 				if (ppp->active_filter)
803 					bpf_prog_destroy(ppp->active_filter);
804 				ppp->active_filter = active_filter;
805 				ppp_unlock(ppp);
806 			}
807 			kfree(code);
808 		}
809 		break;
810 	}
811 #endif /* CONFIG_PPP_FILTER */
812 
813 #ifdef CONFIG_PPP_MULTILINK
814 	case PPPIOCSMRRU:
815 		if (get_user(val, p))
816 			break;
817 		ppp_recv_lock(ppp);
818 		ppp->mrru = val;
819 		ppp_recv_unlock(ppp);
820 		err = 0;
821 		break;
822 #endif /* CONFIG_PPP_MULTILINK */
823 
824 	default:
825 		err = -ENOTTY;
826 	}
827 
828 out:
829 	mutex_unlock(&ppp_mutex);
830 
831 	return err;
832 }
833 
834 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
835 			struct file *file, unsigned int cmd, unsigned long arg)
836 {
837 	int unit, err = -EFAULT;
838 	struct ppp *ppp;
839 	struct channel *chan;
840 	struct ppp_net *pn;
841 	int __user *p = (int __user *)arg;
842 
843 	switch (cmd) {
844 	case PPPIOCNEWUNIT:
845 		/* Create a new ppp unit */
846 		if (get_user(unit, p))
847 			break;
848 		err = ppp_create_interface(net, file, &unit);
849 		if (err < 0)
850 			break;
851 
852 		err = -EFAULT;
853 		if (put_user(unit, p))
854 			break;
855 		err = 0;
856 		break;
857 
858 	case PPPIOCATTACH:
859 		/* Attach to an existing ppp unit */
860 		if (get_user(unit, p))
861 			break;
862 		err = -ENXIO;
863 		pn = ppp_pernet(net);
864 		mutex_lock(&pn->all_ppp_mutex);
865 		ppp = ppp_find_unit(pn, unit);
866 		if (ppp) {
867 			refcount_inc(&ppp->file.refcnt);
868 			file->private_data = &ppp->file;
869 			err = 0;
870 		}
871 		mutex_unlock(&pn->all_ppp_mutex);
872 		break;
873 
874 	case PPPIOCATTCHAN:
875 		if (get_user(unit, p))
876 			break;
877 		err = -ENXIO;
878 		pn = ppp_pernet(net);
879 		spin_lock_bh(&pn->all_channels_lock);
880 		chan = ppp_find_channel(pn, unit);
881 		if (chan) {
882 			refcount_inc(&chan->file.refcnt);
883 			file->private_data = &chan->file;
884 			err = 0;
885 		}
886 		spin_unlock_bh(&pn->all_channels_lock);
887 		break;
888 
889 	default:
890 		err = -ENOTTY;
891 	}
892 
893 	return err;
894 }
895 
896 static const struct file_operations ppp_device_fops = {
897 	.owner		= THIS_MODULE,
898 	.read		= ppp_read,
899 	.write		= ppp_write,
900 	.poll		= ppp_poll,
901 	.unlocked_ioctl	= ppp_ioctl,
902 	.open		= ppp_open,
903 	.release	= ppp_release,
904 	.llseek		= noop_llseek,
905 };
906 
907 static __net_init int ppp_init_net(struct net *net)
908 {
909 	struct ppp_net *pn = net_generic(net, ppp_net_id);
910 
911 	idr_init(&pn->units_idr);
912 	mutex_init(&pn->all_ppp_mutex);
913 
914 	INIT_LIST_HEAD(&pn->all_channels);
915 	INIT_LIST_HEAD(&pn->new_channels);
916 
917 	spin_lock_init(&pn->all_channels_lock);
918 
919 	return 0;
920 }
921 
922 static __net_exit void ppp_exit_net(struct net *net)
923 {
924 	struct ppp_net *pn = net_generic(net, ppp_net_id);
925 	struct net_device *dev;
926 	struct net_device *aux;
927 	struct ppp *ppp;
928 	LIST_HEAD(list);
929 	int id;
930 
931 	rtnl_lock();
932 	for_each_netdev_safe(net, dev, aux) {
933 		if (dev->netdev_ops == &ppp_netdev_ops)
934 			unregister_netdevice_queue(dev, &list);
935 	}
936 
937 	idr_for_each_entry(&pn->units_idr, ppp, id)
938 		/* Skip devices already unregistered by previous loop */
939 		if (!net_eq(dev_net(ppp->dev), net))
940 			unregister_netdevice_queue(ppp->dev, &list);
941 
942 	unregister_netdevice_many(&list);
943 	rtnl_unlock();
944 
945 	mutex_destroy(&pn->all_ppp_mutex);
946 	idr_destroy(&pn->units_idr);
947 	WARN_ON_ONCE(!list_empty(&pn->all_channels));
948 	WARN_ON_ONCE(!list_empty(&pn->new_channels));
949 }
950 
951 static struct pernet_operations ppp_net_ops = {
952 	.init = ppp_init_net,
953 	.exit = ppp_exit_net,
954 	.id   = &ppp_net_id,
955 	.size = sizeof(struct ppp_net),
956 };
957 
958 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set)
959 {
960 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
961 	int ret;
962 
963 	mutex_lock(&pn->all_ppp_mutex);
964 
965 	if (unit < 0) {
966 		ret = unit_get(&pn->units_idr, ppp);
967 		if (ret < 0)
968 			goto err;
969 	} else {
970 		/* Caller asked for a specific unit number. Fail with -EEXIST
971 		 * if unavailable. For backward compatibility, return -EEXIST
972 		 * too if idr allocation fails; this makes pppd retry without
973 		 * requesting a specific unit number.
974 		 */
975 		if (unit_find(&pn->units_idr, unit)) {
976 			ret = -EEXIST;
977 			goto err;
978 		}
979 		ret = unit_set(&pn->units_idr, ppp, unit);
980 		if (ret < 0) {
981 			/* Rewrite error for backward compatibility */
982 			ret = -EEXIST;
983 			goto err;
984 		}
985 	}
986 	ppp->file.index = ret;
987 
988 	if (!ifname_is_set)
989 		snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index);
990 
991 	mutex_unlock(&pn->all_ppp_mutex);
992 
993 	ret = register_netdevice(ppp->dev);
994 	if (ret < 0)
995 		goto err_unit;
996 
997 	atomic_inc(&ppp_unit_count);
998 
999 	return 0;
1000 
1001 err_unit:
1002 	mutex_lock(&pn->all_ppp_mutex);
1003 	unit_put(&pn->units_idr, ppp->file.index);
1004 err:
1005 	mutex_unlock(&pn->all_ppp_mutex);
1006 
1007 	return ret;
1008 }
1009 
1010 static int ppp_dev_configure(struct net *src_net, struct net_device *dev,
1011 			     const struct ppp_config *conf)
1012 {
1013 	struct ppp *ppp = netdev_priv(dev);
1014 	int indx;
1015 	int err;
1016 	int cpu;
1017 
1018 	ppp->dev = dev;
1019 	ppp->ppp_net = src_net;
1020 	ppp->mru = PPP_MRU;
1021 	ppp->owner = conf->file;
1022 
1023 	init_ppp_file(&ppp->file, INTERFACE);
1024 	ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
1025 
1026 	for (indx = 0; indx < NUM_NP; ++indx)
1027 		ppp->npmode[indx] = NPMODE_PASS;
1028 	INIT_LIST_HEAD(&ppp->channels);
1029 	spin_lock_init(&ppp->rlock);
1030 	spin_lock_init(&ppp->wlock);
1031 
1032 	ppp->xmit_recursion = alloc_percpu(int);
1033 	if (!ppp->xmit_recursion) {
1034 		err = -ENOMEM;
1035 		goto err1;
1036 	}
1037 	for_each_possible_cpu(cpu)
1038 		(*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0;
1039 
1040 #ifdef CONFIG_PPP_MULTILINK
1041 	ppp->minseq = -1;
1042 	skb_queue_head_init(&ppp->mrq);
1043 #endif /* CONFIG_PPP_MULTILINK */
1044 #ifdef CONFIG_PPP_FILTER
1045 	ppp->pass_filter = NULL;
1046 	ppp->active_filter = NULL;
1047 #endif /* CONFIG_PPP_FILTER */
1048 
1049 	err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set);
1050 	if (err < 0)
1051 		goto err2;
1052 
1053 	conf->file->private_data = &ppp->file;
1054 
1055 	return 0;
1056 err2:
1057 	free_percpu(ppp->xmit_recursion);
1058 err1:
1059 	return err;
1060 }
1061 
1062 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = {
1063 	[IFLA_PPP_DEV_FD]	= { .type = NLA_S32 },
1064 };
1065 
1066 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[],
1067 			   struct netlink_ext_ack *extack)
1068 {
1069 	if (!data)
1070 		return -EINVAL;
1071 
1072 	if (!data[IFLA_PPP_DEV_FD])
1073 		return -EINVAL;
1074 	if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0)
1075 		return -EBADF;
1076 
1077 	return 0;
1078 }
1079 
1080 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev,
1081 			  struct nlattr *tb[], struct nlattr *data[],
1082 			  struct netlink_ext_ack *extack)
1083 {
1084 	struct ppp_config conf = {
1085 		.unit = -1,
1086 		.ifname_is_set = true,
1087 	};
1088 	struct file *file;
1089 	int err;
1090 
1091 	file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD]));
1092 	if (!file)
1093 		return -EBADF;
1094 
1095 	/* rtnl_lock is already held here, but ppp_create_interface() locks
1096 	 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids
1097 	 * possible deadlock due to lock order inversion, at the cost of
1098 	 * pushing the problem back to userspace.
1099 	 */
1100 	if (!mutex_trylock(&ppp_mutex)) {
1101 		err = -EBUSY;
1102 		goto out;
1103 	}
1104 
1105 	if (file->f_op != &ppp_device_fops || file->private_data) {
1106 		err = -EBADF;
1107 		goto out_unlock;
1108 	}
1109 
1110 	conf.file = file;
1111 
1112 	/* Don't use device name generated by the rtnetlink layer when ifname
1113 	 * isn't specified. Let ppp_dev_configure() set the device name using
1114 	 * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows
1115 	 * userspace to infer the device name using to the PPPIOCGUNIT ioctl.
1116 	 */
1117 	if (!tb[IFLA_IFNAME])
1118 		conf.ifname_is_set = false;
1119 
1120 	err = ppp_dev_configure(src_net, dev, &conf);
1121 
1122 out_unlock:
1123 	mutex_unlock(&ppp_mutex);
1124 out:
1125 	fput(file);
1126 
1127 	return err;
1128 }
1129 
1130 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head)
1131 {
1132 	unregister_netdevice_queue(dev, head);
1133 }
1134 
1135 static size_t ppp_nl_get_size(const struct net_device *dev)
1136 {
1137 	return 0;
1138 }
1139 
1140 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev)
1141 {
1142 	return 0;
1143 }
1144 
1145 static struct net *ppp_nl_get_link_net(const struct net_device *dev)
1146 {
1147 	struct ppp *ppp = netdev_priv(dev);
1148 
1149 	return ppp->ppp_net;
1150 }
1151 
1152 static struct rtnl_link_ops ppp_link_ops __read_mostly = {
1153 	.kind		= "ppp",
1154 	.maxtype	= IFLA_PPP_MAX,
1155 	.policy		= ppp_nl_policy,
1156 	.priv_size	= sizeof(struct ppp),
1157 	.setup		= ppp_setup,
1158 	.validate	= ppp_nl_validate,
1159 	.newlink	= ppp_nl_newlink,
1160 	.dellink	= ppp_nl_dellink,
1161 	.get_size	= ppp_nl_get_size,
1162 	.fill_info	= ppp_nl_fill_info,
1163 	.get_link_net	= ppp_nl_get_link_net,
1164 };
1165 
1166 #define PPP_MAJOR	108
1167 
1168 /* Called at boot time if ppp is compiled into the kernel,
1169    or at module load time (from init_module) if compiled as a module. */
1170 static int __init ppp_init(void)
1171 {
1172 	int err;
1173 
1174 	pr_info("PPP generic driver version " PPP_VERSION "\n");
1175 
1176 	err = register_pernet_device(&ppp_net_ops);
1177 	if (err) {
1178 		pr_err("failed to register PPP pernet device (%d)\n", err);
1179 		goto out;
1180 	}
1181 
1182 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
1183 	if (err) {
1184 		pr_err("failed to register PPP device (%d)\n", err);
1185 		goto out_net;
1186 	}
1187 
1188 	ppp_class = class_create(THIS_MODULE, "ppp");
1189 	if (IS_ERR(ppp_class)) {
1190 		err = PTR_ERR(ppp_class);
1191 		goto out_chrdev;
1192 	}
1193 
1194 	err = rtnl_link_register(&ppp_link_ops);
1195 	if (err) {
1196 		pr_err("failed to register rtnetlink PPP handler\n");
1197 		goto out_class;
1198 	}
1199 
1200 	/* not a big deal if we fail here :-) */
1201 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
1202 
1203 	return 0;
1204 
1205 out_class:
1206 	class_destroy(ppp_class);
1207 out_chrdev:
1208 	unregister_chrdev(PPP_MAJOR, "ppp");
1209 out_net:
1210 	unregister_pernet_device(&ppp_net_ops);
1211 out:
1212 	return err;
1213 }
1214 
1215 /*
1216  * Network interface unit routines.
1217  */
1218 static netdev_tx_t
1219 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1220 {
1221 	struct ppp *ppp = netdev_priv(dev);
1222 	int npi, proto;
1223 	unsigned char *pp;
1224 
1225 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1226 	if (npi < 0)
1227 		goto outf;
1228 
1229 	/* Drop, accept or reject the packet */
1230 	switch (ppp->npmode[npi]) {
1231 	case NPMODE_PASS:
1232 		break;
1233 	case NPMODE_QUEUE:
1234 		/* it would be nice to have a way to tell the network
1235 		   system to queue this one up for later. */
1236 		goto outf;
1237 	case NPMODE_DROP:
1238 	case NPMODE_ERROR:
1239 		goto outf;
1240 	}
1241 
1242 	/* Put the 2-byte PPP protocol number on the front,
1243 	   making sure there is room for the address and control fields. */
1244 	if (skb_cow_head(skb, PPP_HDRLEN))
1245 		goto outf;
1246 
1247 	pp = skb_push(skb, 2);
1248 	proto = npindex_to_proto[npi];
1249 	put_unaligned_be16(proto, pp);
1250 
1251 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1252 	ppp_xmit_process(ppp, skb);
1253 
1254 	return NETDEV_TX_OK;
1255 
1256  outf:
1257 	kfree_skb(skb);
1258 	++dev->stats.tx_dropped;
1259 	return NETDEV_TX_OK;
1260 }
1261 
1262 static int
1263 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1264 {
1265 	struct ppp *ppp = netdev_priv(dev);
1266 	int err = -EFAULT;
1267 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1268 	struct ppp_stats stats;
1269 	struct ppp_comp_stats cstats;
1270 	char *vers;
1271 
1272 	switch (cmd) {
1273 	case SIOCGPPPSTATS:
1274 		ppp_get_stats(ppp, &stats);
1275 		if (copy_to_user(addr, &stats, sizeof(stats)))
1276 			break;
1277 		err = 0;
1278 		break;
1279 
1280 	case SIOCGPPPCSTATS:
1281 		memset(&cstats, 0, sizeof(cstats));
1282 		if (ppp->xc_state)
1283 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1284 		if (ppp->rc_state)
1285 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1286 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1287 			break;
1288 		err = 0;
1289 		break;
1290 
1291 	case SIOCGPPPVER:
1292 		vers = PPP_VERSION;
1293 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1294 			break;
1295 		err = 0;
1296 		break;
1297 
1298 	default:
1299 		err = -EINVAL;
1300 	}
1301 
1302 	return err;
1303 }
1304 
1305 static void
1306 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1307 {
1308 	struct ppp *ppp = netdev_priv(dev);
1309 
1310 	ppp_recv_lock(ppp);
1311 	stats64->rx_packets = ppp->stats64.rx_packets;
1312 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1313 	ppp_recv_unlock(ppp);
1314 
1315 	ppp_xmit_lock(ppp);
1316 	stats64->tx_packets = ppp->stats64.tx_packets;
1317 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1318 	ppp_xmit_unlock(ppp);
1319 
1320 	stats64->rx_errors        = dev->stats.rx_errors;
1321 	stats64->tx_errors        = dev->stats.tx_errors;
1322 	stats64->rx_dropped       = dev->stats.rx_dropped;
1323 	stats64->tx_dropped       = dev->stats.tx_dropped;
1324 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1325 }
1326 
1327 static int ppp_dev_init(struct net_device *dev)
1328 {
1329 	struct ppp *ppp;
1330 
1331 	netdev_lockdep_set_classes(dev);
1332 
1333 	ppp = netdev_priv(dev);
1334 	/* Let the netdevice take a reference on the ppp file. This ensures
1335 	 * that ppp_destroy_interface() won't run before the device gets
1336 	 * unregistered.
1337 	 */
1338 	refcount_inc(&ppp->file.refcnt);
1339 
1340 	return 0;
1341 }
1342 
1343 static void ppp_dev_uninit(struct net_device *dev)
1344 {
1345 	struct ppp *ppp = netdev_priv(dev);
1346 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1347 
1348 	ppp_lock(ppp);
1349 	ppp->closing = 1;
1350 	ppp_unlock(ppp);
1351 
1352 	mutex_lock(&pn->all_ppp_mutex);
1353 	unit_put(&pn->units_idr, ppp->file.index);
1354 	mutex_unlock(&pn->all_ppp_mutex);
1355 
1356 	ppp->owner = NULL;
1357 
1358 	ppp->file.dead = 1;
1359 	wake_up_interruptible(&ppp->file.rwait);
1360 }
1361 
1362 static void ppp_dev_priv_destructor(struct net_device *dev)
1363 {
1364 	struct ppp *ppp;
1365 
1366 	ppp = netdev_priv(dev);
1367 	if (refcount_dec_and_test(&ppp->file.refcnt))
1368 		ppp_destroy_interface(ppp);
1369 }
1370 
1371 static const struct net_device_ops ppp_netdev_ops = {
1372 	.ndo_init	 = ppp_dev_init,
1373 	.ndo_uninit      = ppp_dev_uninit,
1374 	.ndo_start_xmit  = ppp_start_xmit,
1375 	.ndo_do_ioctl    = ppp_net_ioctl,
1376 	.ndo_get_stats64 = ppp_get_stats64,
1377 };
1378 
1379 static struct device_type ppp_type = {
1380 	.name = "ppp",
1381 };
1382 
1383 static void ppp_setup(struct net_device *dev)
1384 {
1385 	dev->netdev_ops = &ppp_netdev_ops;
1386 	SET_NETDEV_DEVTYPE(dev, &ppp_type);
1387 
1388 	dev->features |= NETIF_F_LLTX;
1389 
1390 	dev->hard_header_len = PPP_HDRLEN;
1391 	dev->mtu = PPP_MRU;
1392 	dev->addr_len = 0;
1393 	dev->tx_queue_len = 3;
1394 	dev->type = ARPHRD_PPP;
1395 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1396 	dev->priv_destructor = ppp_dev_priv_destructor;
1397 	netif_keep_dst(dev);
1398 }
1399 
1400 /*
1401  * Transmit-side routines.
1402  */
1403 
1404 /* Called to do any work queued up on the transmit side that can now be done */
1405 static void __ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb)
1406 {
1407 	ppp_xmit_lock(ppp);
1408 	if (!ppp->closing) {
1409 		ppp_push(ppp);
1410 
1411 		if (skb)
1412 			skb_queue_tail(&ppp->file.xq, skb);
1413 		while (!ppp->xmit_pending &&
1414 		       (skb = skb_dequeue(&ppp->file.xq)))
1415 			ppp_send_frame(ppp, skb);
1416 		/* If there's no work left to do, tell the core net
1417 		   code that we can accept some more. */
1418 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1419 			netif_wake_queue(ppp->dev);
1420 		else
1421 			netif_stop_queue(ppp->dev);
1422 	}
1423 	ppp_xmit_unlock(ppp);
1424 }
1425 
1426 static void ppp_xmit_process(struct ppp *ppp, struct sk_buff *skb)
1427 {
1428 	local_bh_disable();
1429 
1430 	if (unlikely(*this_cpu_ptr(ppp->xmit_recursion)))
1431 		goto err;
1432 
1433 	(*this_cpu_ptr(ppp->xmit_recursion))++;
1434 	__ppp_xmit_process(ppp, skb);
1435 	(*this_cpu_ptr(ppp->xmit_recursion))--;
1436 
1437 	local_bh_enable();
1438 
1439 	return;
1440 
1441 err:
1442 	local_bh_enable();
1443 
1444 	kfree_skb(skb);
1445 
1446 	if (net_ratelimit())
1447 		netdev_err(ppp->dev, "recursion detected\n");
1448 }
1449 
1450 static inline struct sk_buff *
1451 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1452 {
1453 	struct sk_buff *new_skb;
1454 	int len;
1455 	int new_skb_size = ppp->dev->mtu +
1456 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1457 	int compressor_skb_size = ppp->dev->mtu +
1458 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1459 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1460 	if (!new_skb) {
1461 		if (net_ratelimit())
1462 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1463 		return NULL;
1464 	}
1465 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1466 		skb_reserve(new_skb,
1467 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1468 
1469 	/* compressor still expects A/C bytes in hdr */
1470 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1471 				   new_skb->data, skb->len + 2,
1472 				   compressor_skb_size);
1473 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1474 		consume_skb(skb);
1475 		skb = new_skb;
1476 		skb_put(skb, len);
1477 		skb_pull(skb, 2);	/* pull off A/C bytes */
1478 	} else if (len == 0) {
1479 		/* didn't compress, or CCP not up yet */
1480 		consume_skb(new_skb);
1481 		new_skb = skb;
1482 	} else {
1483 		/*
1484 		 * (len < 0)
1485 		 * MPPE requires that we do not send unencrypted
1486 		 * frames.  The compressor will return -1 if we
1487 		 * should drop the frame.  We cannot simply test
1488 		 * the compress_proto because MPPE and MPPC share
1489 		 * the same number.
1490 		 */
1491 		if (net_ratelimit())
1492 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1493 		kfree_skb(skb);
1494 		consume_skb(new_skb);
1495 		new_skb = NULL;
1496 	}
1497 	return new_skb;
1498 }
1499 
1500 /*
1501  * Compress and send a frame.
1502  * The caller should have locked the xmit path,
1503  * and xmit_pending should be 0.
1504  */
1505 static void
1506 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1507 {
1508 	int proto = PPP_PROTO(skb);
1509 	struct sk_buff *new_skb;
1510 	int len;
1511 	unsigned char *cp;
1512 
1513 	if (proto < 0x8000) {
1514 #ifdef CONFIG_PPP_FILTER
1515 		/* check if we should pass this packet */
1516 		/* the filter instructions are constructed assuming
1517 		   a four-byte PPP header on each packet */
1518 		*(u8 *)skb_push(skb, 2) = 1;
1519 		if (ppp->pass_filter &&
1520 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1521 			if (ppp->debug & 1)
1522 				netdev_printk(KERN_DEBUG, ppp->dev,
1523 					      "PPP: outbound frame "
1524 					      "not passed\n");
1525 			kfree_skb(skb);
1526 			return;
1527 		}
1528 		/* if this packet passes the active filter, record the time */
1529 		if (!(ppp->active_filter &&
1530 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1531 			ppp->last_xmit = jiffies;
1532 		skb_pull(skb, 2);
1533 #else
1534 		/* for data packets, record the time */
1535 		ppp->last_xmit = jiffies;
1536 #endif /* CONFIG_PPP_FILTER */
1537 	}
1538 
1539 	++ppp->stats64.tx_packets;
1540 	ppp->stats64.tx_bytes += skb->len - 2;
1541 
1542 	switch (proto) {
1543 	case PPP_IP:
1544 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1545 			break;
1546 		/* try to do VJ TCP header compression */
1547 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1548 				    GFP_ATOMIC);
1549 		if (!new_skb) {
1550 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1551 			goto drop;
1552 		}
1553 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1554 		cp = skb->data + 2;
1555 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1556 				    new_skb->data + 2, &cp,
1557 				    !(ppp->flags & SC_NO_TCP_CCID));
1558 		if (cp == skb->data + 2) {
1559 			/* didn't compress */
1560 			consume_skb(new_skb);
1561 		} else {
1562 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1563 				proto = PPP_VJC_COMP;
1564 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1565 			} else {
1566 				proto = PPP_VJC_UNCOMP;
1567 				cp[0] = skb->data[2];
1568 			}
1569 			consume_skb(skb);
1570 			skb = new_skb;
1571 			cp = skb_put(skb, len + 2);
1572 			cp[0] = 0;
1573 			cp[1] = proto;
1574 		}
1575 		break;
1576 
1577 	case PPP_CCP:
1578 		/* peek at outbound CCP frames */
1579 		ppp_ccp_peek(ppp, skb, 0);
1580 		break;
1581 	}
1582 
1583 	/* try to do packet compression */
1584 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1585 	    proto != PPP_LCP && proto != PPP_CCP) {
1586 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1587 			if (net_ratelimit())
1588 				netdev_err(ppp->dev,
1589 					   "ppp: compression required but "
1590 					   "down - pkt dropped.\n");
1591 			goto drop;
1592 		}
1593 		skb = pad_compress_skb(ppp, skb);
1594 		if (!skb)
1595 			goto drop;
1596 	}
1597 
1598 	/*
1599 	 * If we are waiting for traffic (demand dialling),
1600 	 * queue it up for pppd to receive.
1601 	 */
1602 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1603 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1604 			goto drop;
1605 		skb_queue_tail(&ppp->file.rq, skb);
1606 		wake_up_interruptible(&ppp->file.rwait);
1607 		return;
1608 	}
1609 
1610 	ppp->xmit_pending = skb;
1611 	ppp_push(ppp);
1612 	return;
1613 
1614  drop:
1615 	kfree_skb(skb);
1616 	++ppp->dev->stats.tx_errors;
1617 }
1618 
1619 /*
1620  * Try to send the frame in xmit_pending.
1621  * The caller should have the xmit path locked.
1622  */
1623 static void
1624 ppp_push(struct ppp *ppp)
1625 {
1626 	struct list_head *list;
1627 	struct channel *pch;
1628 	struct sk_buff *skb = ppp->xmit_pending;
1629 
1630 	if (!skb)
1631 		return;
1632 
1633 	list = &ppp->channels;
1634 	if (list_empty(list)) {
1635 		/* nowhere to send the packet, just drop it */
1636 		ppp->xmit_pending = NULL;
1637 		kfree_skb(skb);
1638 		return;
1639 	}
1640 
1641 	if ((ppp->flags & SC_MULTILINK) == 0) {
1642 		/* not doing multilink: send it down the first channel */
1643 		list = list->next;
1644 		pch = list_entry(list, struct channel, clist);
1645 
1646 		spin_lock(&pch->downl);
1647 		if (pch->chan) {
1648 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1649 				ppp->xmit_pending = NULL;
1650 		} else {
1651 			/* channel got unregistered */
1652 			kfree_skb(skb);
1653 			ppp->xmit_pending = NULL;
1654 		}
1655 		spin_unlock(&pch->downl);
1656 		return;
1657 	}
1658 
1659 #ifdef CONFIG_PPP_MULTILINK
1660 	/* Multilink: fragment the packet over as many links
1661 	   as can take the packet at the moment. */
1662 	if (!ppp_mp_explode(ppp, skb))
1663 		return;
1664 #endif /* CONFIG_PPP_MULTILINK */
1665 
1666 	ppp->xmit_pending = NULL;
1667 	kfree_skb(skb);
1668 }
1669 
1670 #ifdef CONFIG_PPP_MULTILINK
1671 static bool mp_protocol_compress __read_mostly = true;
1672 module_param(mp_protocol_compress, bool, 0644);
1673 MODULE_PARM_DESC(mp_protocol_compress,
1674 		 "compress protocol id in multilink fragments");
1675 
1676 /*
1677  * Divide a packet to be transmitted into fragments and
1678  * send them out the individual links.
1679  */
1680 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1681 {
1682 	int len, totlen;
1683 	int i, bits, hdrlen, mtu;
1684 	int flen;
1685 	int navail, nfree, nzero;
1686 	int nbigger;
1687 	int totspeed;
1688 	int totfree;
1689 	unsigned char *p, *q;
1690 	struct list_head *list;
1691 	struct channel *pch;
1692 	struct sk_buff *frag;
1693 	struct ppp_channel *chan;
1694 
1695 	totspeed = 0; /*total bitrate of the bundle*/
1696 	nfree = 0; /* # channels which have no packet already queued */
1697 	navail = 0; /* total # of usable channels (not deregistered) */
1698 	nzero = 0; /* number of channels with zero speed associated*/
1699 	totfree = 0; /*total # of channels available and
1700 				  *having no queued packets before
1701 				  *starting the fragmentation*/
1702 
1703 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1704 	i = 0;
1705 	list_for_each_entry(pch, &ppp->channels, clist) {
1706 		if (pch->chan) {
1707 			pch->avail = 1;
1708 			navail++;
1709 			pch->speed = pch->chan->speed;
1710 		} else {
1711 			pch->avail = 0;
1712 		}
1713 		if (pch->avail) {
1714 			if (skb_queue_empty(&pch->file.xq) ||
1715 				!pch->had_frag) {
1716 					if (pch->speed == 0)
1717 						nzero++;
1718 					else
1719 						totspeed += pch->speed;
1720 
1721 					pch->avail = 2;
1722 					++nfree;
1723 					++totfree;
1724 				}
1725 			if (!pch->had_frag && i < ppp->nxchan)
1726 				ppp->nxchan = i;
1727 		}
1728 		++i;
1729 	}
1730 	/*
1731 	 * Don't start sending this packet unless at least half of
1732 	 * the channels are free.  This gives much better TCP
1733 	 * performance if we have a lot of channels.
1734 	 */
1735 	if (nfree == 0 || nfree < navail / 2)
1736 		return 0; /* can't take now, leave it in xmit_pending */
1737 
1738 	/* Do protocol field compression */
1739 	p = skb->data;
1740 	len = skb->len;
1741 	if (*p == 0 && mp_protocol_compress) {
1742 		++p;
1743 		--len;
1744 	}
1745 
1746 	totlen = len;
1747 	nbigger = len % nfree;
1748 
1749 	/* skip to the channel after the one we last used
1750 	   and start at that one */
1751 	list = &ppp->channels;
1752 	for (i = 0; i < ppp->nxchan; ++i) {
1753 		list = list->next;
1754 		if (list == &ppp->channels) {
1755 			i = 0;
1756 			break;
1757 		}
1758 	}
1759 
1760 	/* create a fragment for each channel */
1761 	bits = B;
1762 	while (len > 0) {
1763 		list = list->next;
1764 		if (list == &ppp->channels) {
1765 			i = 0;
1766 			continue;
1767 		}
1768 		pch = list_entry(list, struct channel, clist);
1769 		++i;
1770 		if (!pch->avail)
1771 			continue;
1772 
1773 		/*
1774 		 * Skip this channel if it has a fragment pending already and
1775 		 * we haven't given a fragment to all of the free channels.
1776 		 */
1777 		if (pch->avail == 1) {
1778 			if (nfree > 0)
1779 				continue;
1780 		} else {
1781 			pch->avail = 1;
1782 		}
1783 
1784 		/* check the channel's mtu and whether it is still attached. */
1785 		spin_lock(&pch->downl);
1786 		if (pch->chan == NULL) {
1787 			/* can't use this channel, it's being deregistered */
1788 			if (pch->speed == 0)
1789 				nzero--;
1790 			else
1791 				totspeed -= pch->speed;
1792 
1793 			spin_unlock(&pch->downl);
1794 			pch->avail = 0;
1795 			totlen = len;
1796 			totfree--;
1797 			nfree--;
1798 			if (--navail == 0)
1799 				break;
1800 			continue;
1801 		}
1802 
1803 		/*
1804 		*if the channel speed is not set divide
1805 		*the packet evenly among the free channels;
1806 		*otherwise divide it according to the speed
1807 		*of the channel we are going to transmit on
1808 		*/
1809 		flen = len;
1810 		if (nfree > 0) {
1811 			if (pch->speed == 0) {
1812 				flen = len/nfree;
1813 				if (nbigger > 0) {
1814 					flen++;
1815 					nbigger--;
1816 				}
1817 			} else {
1818 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1819 					((totspeed*totfree)/pch->speed)) - hdrlen;
1820 				if (nbigger > 0) {
1821 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1822 					nbigger -= ((totfree - nzero)*pch->speed)/
1823 							totspeed;
1824 				}
1825 			}
1826 			nfree--;
1827 		}
1828 
1829 		/*
1830 		 *check if we are on the last channel or
1831 		 *we exceded the length of the data to
1832 		 *fragment
1833 		 */
1834 		if ((nfree <= 0) || (flen > len))
1835 			flen = len;
1836 		/*
1837 		 *it is not worth to tx on slow channels:
1838 		 *in that case from the resulting flen according to the
1839 		 *above formula will be equal or less than zero.
1840 		 *Skip the channel in this case
1841 		 */
1842 		if (flen <= 0) {
1843 			pch->avail = 2;
1844 			spin_unlock(&pch->downl);
1845 			continue;
1846 		}
1847 
1848 		/*
1849 		 * hdrlen includes the 2-byte PPP protocol field, but the
1850 		 * MTU counts only the payload excluding the protocol field.
1851 		 * (RFC1661 Section 2)
1852 		 */
1853 		mtu = pch->chan->mtu - (hdrlen - 2);
1854 		if (mtu < 4)
1855 			mtu = 4;
1856 		if (flen > mtu)
1857 			flen = mtu;
1858 		if (flen == len)
1859 			bits |= E;
1860 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1861 		if (!frag)
1862 			goto noskb;
1863 		q = skb_put(frag, flen + hdrlen);
1864 
1865 		/* make the MP header */
1866 		put_unaligned_be16(PPP_MP, q);
1867 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1868 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1869 			q[3] = ppp->nxseq;
1870 		} else {
1871 			q[2] = bits;
1872 			q[3] = ppp->nxseq >> 16;
1873 			q[4] = ppp->nxseq >> 8;
1874 			q[5] = ppp->nxseq;
1875 		}
1876 
1877 		memcpy(q + hdrlen, p, flen);
1878 
1879 		/* try to send it down the channel */
1880 		chan = pch->chan;
1881 		if (!skb_queue_empty(&pch->file.xq) ||
1882 			!chan->ops->start_xmit(chan, frag))
1883 			skb_queue_tail(&pch->file.xq, frag);
1884 		pch->had_frag = 1;
1885 		p += flen;
1886 		len -= flen;
1887 		++ppp->nxseq;
1888 		bits = 0;
1889 		spin_unlock(&pch->downl);
1890 	}
1891 	ppp->nxchan = i;
1892 
1893 	return 1;
1894 
1895  noskb:
1896 	spin_unlock(&pch->downl);
1897 	if (ppp->debug & 1)
1898 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1899 	++ppp->dev->stats.tx_errors;
1900 	++ppp->nxseq;
1901 	return 1;	/* abandon the frame */
1902 }
1903 #endif /* CONFIG_PPP_MULTILINK */
1904 
1905 /* Try to send data out on a channel */
1906 static void __ppp_channel_push(struct channel *pch)
1907 {
1908 	struct sk_buff *skb;
1909 	struct ppp *ppp;
1910 
1911 	spin_lock(&pch->downl);
1912 	if (pch->chan) {
1913 		while (!skb_queue_empty(&pch->file.xq)) {
1914 			skb = skb_dequeue(&pch->file.xq);
1915 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1916 				/* put the packet back and try again later */
1917 				skb_queue_head(&pch->file.xq, skb);
1918 				break;
1919 			}
1920 		}
1921 	} else {
1922 		/* channel got deregistered */
1923 		skb_queue_purge(&pch->file.xq);
1924 	}
1925 	spin_unlock(&pch->downl);
1926 	/* see if there is anything from the attached unit to be sent */
1927 	if (skb_queue_empty(&pch->file.xq)) {
1928 		ppp = pch->ppp;
1929 		if (ppp)
1930 			__ppp_xmit_process(ppp, NULL);
1931 	}
1932 }
1933 
1934 static void ppp_channel_push(struct channel *pch)
1935 {
1936 	read_lock_bh(&pch->upl);
1937 	if (pch->ppp) {
1938 		(*this_cpu_ptr(pch->ppp->xmit_recursion))++;
1939 		__ppp_channel_push(pch);
1940 		(*this_cpu_ptr(pch->ppp->xmit_recursion))--;
1941 	} else {
1942 		__ppp_channel_push(pch);
1943 	}
1944 	read_unlock_bh(&pch->upl);
1945 }
1946 
1947 /*
1948  * Receive-side routines.
1949  */
1950 
1951 struct ppp_mp_skb_parm {
1952 	u32		sequence;
1953 	u8		BEbits;
1954 };
1955 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1956 
1957 static inline void
1958 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1959 {
1960 	ppp_recv_lock(ppp);
1961 	if (!ppp->closing)
1962 		ppp_receive_frame(ppp, skb, pch);
1963 	else
1964 		kfree_skb(skb);
1965 	ppp_recv_unlock(ppp);
1966 }
1967 
1968 void
1969 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1970 {
1971 	struct channel *pch = chan->ppp;
1972 	int proto;
1973 
1974 	if (!pch) {
1975 		kfree_skb(skb);
1976 		return;
1977 	}
1978 
1979 	read_lock_bh(&pch->upl);
1980 	if (!pskb_may_pull(skb, 2)) {
1981 		kfree_skb(skb);
1982 		if (pch->ppp) {
1983 			++pch->ppp->dev->stats.rx_length_errors;
1984 			ppp_receive_error(pch->ppp);
1985 		}
1986 		goto done;
1987 	}
1988 
1989 	proto = PPP_PROTO(skb);
1990 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1991 		/* put it on the channel queue */
1992 		skb_queue_tail(&pch->file.rq, skb);
1993 		/* drop old frames if queue too long */
1994 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1995 		       (skb = skb_dequeue(&pch->file.rq)))
1996 			kfree_skb(skb);
1997 		wake_up_interruptible(&pch->file.rwait);
1998 	} else {
1999 		ppp_do_recv(pch->ppp, skb, pch);
2000 	}
2001 
2002 done:
2003 	read_unlock_bh(&pch->upl);
2004 }
2005 
2006 /* Put a 0-length skb in the receive queue as an error indication */
2007 void
2008 ppp_input_error(struct ppp_channel *chan, int code)
2009 {
2010 	struct channel *pch = chan->ppp;
2011 	struct sk_buff *skb;
2012 
2013 	if (!pch)
2014 		return;
2015 
2016 	read_lock_bh(&pch->upl);
2017 	if (pch->ppp) {
2018 		skb = alloc_skb(0, GFP_ATOMIC);
2019 		if (skb) {
2020 			skb->len = 0;		/* probably unnecessary */
2021 			skb->cb[0] = code;
2022 			ppp_do_recv(pch->ppp, skb, pch);
2023 		}
2024 	}
2025 	read_unlock_bh(&pch->upl);
2026 }
2027 
2028 /*
2029  * We come in here to process a received frame.
2030  * The receive side of the ppp unit is locked.
2031  */
2032 static void
2033 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2034 {
2035 	/* note: a 0-length skb is used as an error indication */
2036 	if (skb->len > 0) {
2037 		skb_checksum_complete_unset(skb);
2038 #ifdef CONFIG_PPP_MULTILINK
2039 		/* XXX do channel-level decompression here */
2040 		if (PPP_PROTO(skb) == PPP_MP)
2041 			ppp_receive_mp_frame(ppp, skb, pch);
2042 		else
2043 #endif /* CONFIG_PPP_MULTILINK */
2044 			ppp_receive_nonmp_frame(ppp, skb);
2045 	} else {
2046 		kfree_skb(skb);
2047 		ppp_receive_error(ppp);
2048 	}
2049 }
2050 
2051 static void
2052 ppp_receive_error(struct ppp *ppp)
2053 {
2054 	++ppp->dev->stats.rx_errors;
2055 	if (ppp->vj)
2056 		slhc_toss(ppp->vj);
2057 }
2058 
2059 static void
2060 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
2061 {
2062 	struct sk_buff *ns;
2063 	int proto, len, npi;
2064 
2065 	/*
2066 	 * Decompress the frame, if compressed.
2067 	 * Note that some decompressors need to see uncompressed frames
2068 	 * that come in as well as compressed frames.
2069 	 */
2070 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
2071 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
2072 		skb = ppp_decompress_frame(ppp, skb);
2073 
2074 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
2075 		goto err;
2076 
2077 	proto = PPP_PROTO(skb);
2078 	switch (proto) {
2079 	case PPP_VJC_COMP:
2080 		/* decompress VJ compressed packets */
2081 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2082 			goto err;
2083 
2084 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
2085 			/* copy to a new sk_buff with more tailroom */
2086 			ns = dev_alloc_skb(skb->len + 128);
2087 			if (!ns) {
2088 				netdev_err(ppp->dev, "PPP: no memory "
2089 					   "(VJ decomp)\n");
2090 				goto err;
2091 			}
2092 			skb_reserve(ns, 2);
2093 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
2094 			consume_skb(skb);
2095 			skb = ns;
2096 		}
2097 		else
2098 			skb->ip_summed = CHECKSUM_NONE;
2099 
2100 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
2101 		if (len <= 0) {
2102 			netdev_printk(KERN_DEBUG, ppp->dev,
2103 				      "PPP: VJ decompression error\n");
2104 			goto err;
2105 		}
2106 		len += 2;
2107 		if (len > skb->len)
2108 			skb_put(skb, len - skb->len);
2109 		else if (len < skb->len)
2110 			skb_trim(skb, len);
2111 		proto = PPP_IP;
2112 		break;
2113 
2114 	case PPP_VJC_UNCOMP:
2115 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2116 			goto err;
2117 
2118 		/* Until we fix the decompressor need to make sure
2119 		 * data portion is linear.
2120 		 */
2121 		if (!pskb_may_pull(skb, skb->len))
2122 			goto err;
2123 
2124 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
2125 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
2126 			goto err;
2127 		}
2128 		proto = PPP_IP;
2129 		break;
2130 
2131 	case PPP_CCP:
2132 		ppp_ccp_peek(ppp, skb, 1);
2133 		break;
2134 	}
2135 
2136 	++ppp->stats64.rx_packets;
2137 	ppp->stats64.rx_bytes += skb->len - 2;
2138 
2139 	npi = proto_to_npindex(proto);
2140 	if (npi < 0) {
2141 		/* control or unknown frame - pass it to pppd */
2142 		skb_queue_tail(&ppp->file.rq, skb);
2143 		/* limit queue length by dropping old frames */
2144 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
2145 		       (skb = skb_dequeue(&ppp->file.rq)))
2146 			kfree_skb(skb);
2147 		/* wake up any process polling or blocking on read */
2148 		wake_up_interruptible(&ppp->file.rwait);
2149 
2150 	} else {
2151 		/* network protocol frame - give it to the kernel */
2152 
2153 #ifdef CONFIG_PPP_FILTER
2154 		/* check if the packet passes the pass and active filters */
2155 		/* the filter instructions are constructed assuming
2156 		   a four-byte PPP header on each packet */
2157 		if (ppp->pass_filter || ppp->active_filter) {
2158 			if (skb_unclone(skb, GFP_ATOMIC))
2159 				goto err;
2160 
2161 			*(u8 *)skb_push(skb, 2) = 0;
2162 			if (ppp->pass_filter &&
2163 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
2164 				if (ppp->debug & 1)
2165 					netdev_printk(KERN_DEBUG, ppp->dev,
2166 						      "PPP: inbound frame "
2167 						      "not passed\n");
2168 				kfree_skb(skb);
2169 				return;
2170 			}
2171 			if (!(ppp->active_filter &&
2172 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
2173 				ppp->last_recv = jiffies;
2174 			__skb_pull(skb, 2);
2175 		} else
2176 #endif /* CONFIG_PPP_FILTER */
2177 			ppp->last_recv = jiffies;
2178 
2179 		if ((ppp->dev->flags & IFF_UP) == 0 ||
2180 		    ppp->npmode[npi] != NPMODE_PASS) {
2181 			kfree_skb(skb);
2182 		} else {
2183 			/* chop off protocol */
2184 			skb_pull_rcsum(skb, 2);
2185 			skb->dev = ppp->dev;
2186 			skb->protocol = htons(npindex_to_ethertype[npi]);
2187 			skb_reset_mac_header(skb);
2188 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
2189 						      dev_net(ppp->dev)));
2190 			netif_rx(skb);
2191 		}
2192 	}
2193 	return;
2194 
2195  err:
2196 	kfree_skb(skb);
2197 	ppp_receive_error(ppp);
2198 }
2199 
2200 static struct sk_buff *
2201 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
2202 {
2203 	int proto = PPP_PROTO(skb);
2204 	struct sk_buff *ns;
2205 	int len;
2206 
2207 	/* Until we fix all the decompressor's need to make sure
2208 	 * data portion is linear.
2209 	 */
2210 	if (!pskb_may_pull(skb, skb->len))
2211 		goto err;
2212 
2213 	if (proto == PPP_COMP) {
2214 		int obuff_size;
2215 
2216 		switch(ppp->rcomp->compress_proto) {
2217 		case CI_MPPE:
2218 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
2219 			break;
2220 		default:
2221 			obuff_size = ppp->mru + PPP_HDRLEN;
2222 			break;
2223 		}
2224 
2225 		ns = dev_alloc_skb(obuff_size);
2226 		if (!ns) {
2227 			netdev_err(ppp->dev, "ppp_decompress_frame: "
2228 				   "no memory\n");
2229 			goto err;
2230 		}
2231 		/* the decompressor still expects the A/C bytes in the hdr */
2232 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
2233 				skb->len + 2, ns->data, obuff_size);
2234 		if (len < 0) {
2235 			/* Pass the compressed frame to pppd as an
2236 			   error indication. */
2237 			if (len == DECOMP_FATALERROR)
2238 				ppp->rstate |= SC_DC_FERROR;
2239 			kfree_skb(ns);
2240 			goto err;
2241 		}
2242 
2243 		consume_skb(skb);
2244 		skb = ns;
2245 		skb_put(skb, len);
2246 		skb_pull(skb, 2);	/* pull off the A/C bytes */
2247 
2248 	} else {
2249 		/* Uncompressed frame - pass to decompressor so it
2250 		   can update its dictionary if necessary. */
2251 		if (ppp->rcomp->incomp)
2252 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
2253 					   skb->len + 2);
2254 	}
2255 
2256 	return skb;
2257 
2258  err:
2259 	ppp->rstate |= SC_DC_ERROR;
2260 	ppp_receive_error(ppp);
2261 	return skb;
2262 }
2263 
2264 #ifdef CONFIG_PPP_MULTILINK
2265 /*
2266  * Receive a multilink frame.
2267  * We put it on the reconstruction queue and then pull off
2268  * as many completed frames as we can.
2269  */
2270 static void
2271 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2272 {
2273 	u32 mask, seq;
2274 	struct channel *ch;
2275 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2276 
2277 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2278 		goto err;		/* no good, throw it away */
2279 
2280 	/* Decode sequence number and begin/end bits */
2281 	if (ppp->flags & SC_MP_SHORTSEQ) {
2282 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2283 		mask = 0xfff;
2284 	} else {
2285 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2286 		mask = 0xffffff;
2287 	}
2288 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2289 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2290 
2291 	/*
2292 	 * Do protocol ID decompression on the first fragment of each packet.
2293 	 */
2294 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2295 		*(u8 *)skb_push(skb, 1) = 0;
2296 
2297 	/*
2298 	 * Expand sequence number to 32 bits, making it as close
2299 	 * as possible to ppp->minseq.
2300 	 */
2301 	seq |= ppp->minseq & ~mask;
2302 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2303 		seq += mask + 1;
2304 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2305 		seq -= mask + 1;	/* should never happen */
2306 	PPP_MP_CB(skb)->sequence = seq;
2307 	pch->lastseq = seq;
2308 
2309 	/*
2310 	 * If this packet comes before the next one we were expecting,
2311 	 * drop it.
2312 	 */
2313 	if (seq_before(seq, ppp->nextseq)) {
2314 		kfree_skb(skb);
2315 		++ppp->dev->stats.rx_dropped;
2316 		ppp_receive_error(ppp);
2317 		return;
2318 	}
2319 
2320 	/*
2321 	 * Reevaluate minseq, the minimum over all channels of the
2322 	 * last sequence number received on each channel.  Because of
2323 	 * the increasing sequence number rule, we know that any fragment
2324 	 * before `minseq' which hasn't arrived is never going to arrive.
2325 	 * The list of channels can't change because we have the receive
2326 	 * side of the ppp unit locked.
2327 	 */
2328 	list_for_each_entry(ch, &ppp->channels, clist) {
2329 		if (seq_before(ch->lastseq, seq))
2330 			seq = ch->lastseq;
2331 	}
2332 	if (seq_before(ppp->minseq, seq))
2333 		ppp->minseq = seq;
2334 
2335 	/* Put the fragment on the reconstruction queue */
2336 	ppp_mp_insert(ppp, skb);
2337 
2338 	/* If the queue is getting long, don't wait any longer for packets
2339 	   before the start of the queue. */
2340 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2341 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2342 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2343 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2344 	}
2345 
2346 	/* Pull completed packets off the queue and receive them. */
2347 	while ((skb = ppp_mp_reconstruct(ppp))) {
2348 		if (pskb_may_pull(skb, 2))
2349 			ppp_receive_nonmp_frame(ppp, skb);
2350 		else {
2351 			++ppp->dev->stats.rx_length_errors;
2352 			kfree_skb(skb);
2353 			ppp_receive_error(ppp);
2354 		}
2355 	}
2356 
2357 	return;
2358 
2359  err:
2360 	kfree_skb(skb);
2361 	ppp_receive_error(ppp);
2362 }
2363 
2364 /*
2365  * Insert a fragment on the MP reconstruction queue.
2366  * The queue is ordered by increasing sequence number.
2367  */
2368 static void
2369 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2370 {
2371 	struct sk_buff *p;
2372 	struct sk_buff_head *list = &ppp->mrq;
2373 	u32 seq = PPP_MP_CB(skb)->sequence;
2374 
2375 	/* N.B. we don't need to lock the list lock because we have the
2376 	   ppp unit receive-side lock. */
2377 	skb_queue_walk(list, p) {
2378 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2379 			break;
2380 	}
2381 	__skb_queue_before(list, p, skb);
2382 }
2383 
2384 /*
2385  * Reconstruct a packet from the MP fragment queue.
2386  * We go through increasing sequence numbers until we find a
2387  * complete packet, or we get to the sequence number for a fragment
2388  * which hasn't arrived but might still do so.
2389  */
2390 static struct sk_buff *
2391 ppp_mp_reconstruct(struct ppp *ppp)
2392 {
2393 	u32 seq = ppp->nextseq;
2394 	u32 minseq = ppp->minseq;
2395 	struct sk_buff_head *list = &ppp->mrq;
2396 	struct sk_buff *p, *tmp;
2397 	struct sk_buff *head, *tail;
2398 	struct sk_buff *skb = NULL;
2399 	int lost = 0, len = 0;
2400 
2401 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2402 		return NULL;
2403 	head = list->next;
2404 	tail = NULL;
2405 	skb_queue_walk_safe(list, p, tmp) {
2406 	again:
2407 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2408 			/* this can't happen, anyway ignore the skb */
2409 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2410 				   "seq %u < %u\n",
2411 				   PPP_MP_CB(p)->sequence, seq);
2412 			__skb_unlink(p, list);
2413 			kfree_skb(p);
2414 			continue;
2415 		}
2416 		if (PPP_MP_CB(p)->sequence != seq) {
2417 			u32 oldseq;
2418 			/* Fragment `seq' is missing.  If it is after
2419 			   minseq, it might arrive later, so stop here. */
2420 			if (seq_after(seq, minseq))
2421 				break;
2422 			/* Fragment `seq' is lost, keep going. */
2423 			lost = 1;
2424 			oldseq = seq;
2425 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2426 				minseq + 1: PPP_MP_CB(p)->sequence;
2427 
2428 			if (ppp->debug & 1)
2429 				netdev_printk(KERN_DEBUG, ppp->dev,
2430 					      "lost frag %u..%u\n",
2431 					      oldseq, seq-1);
2432 
2433 			goto again;
2434 		}
2435 
2436 		/*
2437 		 * At this point we know that all the fragments from
2438 		 * ppp->nextseq to seq are either present or lost.
2439 		 * Also, there are no complete packets in the queue
2440 		 * that have no missing fragments and end before this
2441 		 * fragment.
2442 		 */
2443 
2444 		/* B bit set indicates this fragment starts a packet */
2445 		if (PPP_MP_CB(p)->BEbits & B) {
2446 			head = p;
2447 			lost = 0;
2448 			len = 0;
2449 		}
2450 
2451 		len += p->len;
2452 
2453 		/* Got a complete packet yet? */
2454 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2455 		    (PPP_MP_CB(head)->BEbits & B)) {
2456 			if (len > ppp->mrru + 2) {
2457 				++ppp->dev->stats.rx_length_errors;
2458 				netdev_printk(KERN_DEBUG, ppp->dev,
2459 					      "PPP: reconstructed packet"
2460 					      " is too long (%d)\n", len);
2461 			} else {
2462 				tail = p;
2463 				break;
2464 			}
2465 			ppp->nextseq = seq + 1;
2466 		}
2467 
2468 		/*
2469 		 * If this is the ending fragment of a packet,
2470 		 * and we haven't found a complete valid packet yet,
2471 		 * we can discard up to and including this fragment.
2472 		 */
2473 		if (PPP_MP_CB(p)->BEbits & E) {
2474 			struct sk_buff *tmp2;
2475 
2476 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2477 				if (ppp->debug & 1)
2478 					netdev_printk(KERN_DEBUG, ppp->dev,
2479 						      "discarding frag %u\n",
2480 						      PPP_MP_CB(p)->sequence);
2481 				__skb_unlink(p, list);
2482 				kfree_skb(p);
2483 			}
2484 			head = skb_peek(list);
2485 			if (!head)
2486 				break;
2487 		}
2488 		++seq;
2489 	}
2490 
2491 	/* If we have a complete packet, copy it all into one skb. */
2492 	if (tail != NULL) {
2493 		/* If we have discarded any fragments,
2494 		   signal a receive error. */
2495 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2496 			skb_queue_walk_safe(list, p, tmp) {
2497 				if (p == head)
2498 					break;
2499 				if (ppp->debug & 1)
2500 					netdev_printk(KERN_DEBUG, ppp->dev,
2501 						      "discarding frag %u\n",
2502 						      PPP_MP_CB(p)->sequence);
2503 				__skb_unlink(p, list);
2504 				kfree_skb(p);
2505 			}
2506 
2507 			if (ppp->debug & 1)
2508 				netdev_printk(KERN_DEBUG, ppp->dev,
2509 					      "  missed pkts %u..%u\n",
2510 					      ppp->nextseq,
2511 					      PPP_MP_CB(head)->sequence-1);
2512 			++ppp->dev->stats.rx_dropped;
2513 			ppp_receive_error(ppp);
2514 		}
2515 
2516 		skb = head;
2517 		if (head != tail) {
2518 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2519 			p = skb_queue_next(list, head);
2520 			__skb_unlink(skb, list);
2521 			skb_queue_walk_from_safe(list, p, tmp) {
2522 				__skb_unlink(p, list);
2523 				*fragpp = p;
2524 				p->next = NULL;
2525 				fragpp = &p->next;
2526 
2527 				skb->len += p->len;
2528 				skb->data_len += p->len;
2529 				skb->truesize += p->truesize;
2530 
2531 				if (p == tail)
2532 					break;
2533 			}
2534 		} else {
2535 			__skb_unlink(skb, list);
2536 		}
2537 
2538 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2539 	}
2540 
2541 	return skb;
2542 }
2543 #endif /* CONFIG_PPP_MULTILINK */
2544 
2545 /*
2546  * Channel interface.
2547  */
2548 
2549 /* Create a new, unattached ppp channel. */
2550 int ppp_register_channel(struct ppp_channel *chan)
2551 {
2552 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2553 }
2554 
2555 /* Create a new, unattached ppp channel for specified net. */
2556 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2557 {
2558 	struct channel *pch;
2559 	struct ppp_net *pn;
2560 
2561 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2562 	if (!pch)
2563 		return -ENOMEM;
2564 
2565 	pn = ppp_pernet(net);
2566 
2567 	pch->ppp = NULL;
2568 	pch->chan = chan;
2569 	pch->chan_net = get_net(net);
2570 	chan->ppp = pch;
2571 	init_ppp_file(&pch->file, CHANNEL);
2572 	pch->file.hdrlen = chan->hdrlen;
2573 #ifdef CONFIG_PPP_MULTILINK
2574 	pch->lastseq = -1;
2575 #endif /* CONFIG_PPP_MULTILINK */
2576 	init_rwsem(&pch->chan_sem);
2577 	spin_lock_init(&pch->downl);
2578 	rwlock_init(&pch->upl);
2579 
2580 	spin_lock_bh(&pn->all_channels_lock);
2581 	pch->file.index = ++pn->last_channel_index;
2582 	list_add(&pch->list, &pn->new_channels);
2583 	atomic_inc(&channel_count);
2584 	spin_unlock_bh(&pn->all_channels_lock);
2585 
2586 	return 0;
2587 }
2588 
2589 /*
2590  * Return the index of a channel.
2591  */
2592 int ppp_channel_index(struct ppp_channel *chan)
2593 {
2594 	struct channel *pch = chan->ppp;
2595 
2596 	if (pch)
2597 		return pch->file.index;
2598 	return -1;
2599 }
2600 
2601 /*
2602  * Return the PPP unit number to which a channel is connected.
2603  */
2604 int ppp_unit_number(struct ppp_channel *chan)
2605 {
2606 	struct channel *pch = chan->ppp;
2607 	int unit = -1;
2608 
2609 	if (pch) {
2610 		read_lock_bh(&pch->upl);
2611 		if (pch->ppp)
2612 			unit = pch->ppp->file.index;
2613 		read_unlock_bh(&pch->upl);
2614 	}
2615 	return unit;
2616 }
2617 
2618 /*
2619  * Return the PPP device interface name of a channel.
2620  */
2621 char *ppp_dev_name(struct ppp_channel *chan)
2622 {
2623 	struct channel *pch = chan->ppp;
2624 	char *name = NULL;
2625 
2626 	if (pch) {
2627 		read_lock_bh(&pch->upl);
2628 		if (pch->ppp && pch->ppp->dev)
2629 			name = pch->ppp->dev->name;
2630 		read_unlock_bh(&pch->upl);
2631 	}
2632 	return name;
2633 }
2634 
2635 
2636 /*
2637  * Disconnect a channel from the generic layer.
2638  * This must be called in process context.
2639  */
2640 void
2641 ppp_unregister_channel(struct ppp_channel *chan)
2642 {
2643 	struct channel *pch = chan->ppp;
2644 	struct ppp_net *pn;
2645 
2646 	if (!pch)
2647 		return;		/* should never happen */
2648 
2649 	chan->ppp = NULL;
2650 
2651 	/*
2652 	 * This ensures that we have returned from any calls into the
2653 	 * the channel's start_xmit or ioctl routine before we proceed.
2654 	 */
2655 	down_write(&pch->chan_sem);
2656 	spin_lock_bh(&pch->downl);
2657 	pch->chan = NULL;
2658 	spin_unlock_bh(&pch->downl);
2659 	up_write(&pch->chan_sem);
2660 	ppp_disconnect_channel(pch);
2661 
2662 	pn = ppp_pernet(pch->chan_net);
2663 	spin_lock_bh(&pn->all_channels_lock);
2664 	list_del(&pch->list);
2665 	spin_unlock_bh(&pn->all_channels_lock);
2666 
2667 	pch->file.dead = 1;
2668 	wake_up_interruptible(&pch->file.rwait);
2669 	if (refcount_dec_and_test(&pch->file.refcnt))
2670 		ppp_destroy_channel(pch);
2671 }
2672 
2673 /*
2674  * Callback from a channel when it can accept more to transmit.
2675  * This should be called at BH/softirq level, not interrupt level.
2676  */
2677 void
2678 ppp_output_wakeup(struct ppp_channel *chan)
2679 {
2680 	struct channel *pch = chan->ppp;
2681 
2682 	if (!pch)
2683 		return;
2684 	ppp_channel_push(pch);
2685 }
2686 
2687 /*
2688  * Compression control.
2689  */
2690 
2691 /* Process the PPPIOCSCOMPRESS ioctl. */
2692 static int
2693 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2694 {
2695 	int err;
2696 	struct compressor *cp, *ocomp;
2697 	struct ppp_option_data data;
2698 	void *state, *ostate;
2699 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2700 
2701 	err = -EFAULT;
2702 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2703 		goto out;
2704 	if (data.length > CCP_MAX_OPTION_LENGTH)
2705 		goto out;
2706 	if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2707 		goto out;
2708 
2709 	err = -EINVAL;
2710 	if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2711 		goto out;
2712 
2713 	cp = try_then_request_module(
2714 		find_compressor(ccp_option[0]),
2715 		"ppp-compress-%d", ccp_option[0]);
2716 	if (!cp)
2717 		goto out;
2718 
2719 	err = -ENOBUFS;
2720 	if (data.transmit) {
2721 		state = cp->comp_alloc(ccp_option, data.length);
2722 		if (state) {
2723 			ppp_xmit_lock(ppp);
2724 			ppp->xstate &= ~SC_COMP_RUN;
2725 			ocomp = ppp->xcomp;
2726 			ostate = ppp->xc_state;
2727 			ppp->xcomp = cp;
2728 			ppp->xc_state = state;
2729 			ppp_xmit_unlock(ppp);
2730 			if (ostate) {
2731 				ocomp->comp_free(ostate);
2732 				module_put(ocomp->owner);
2733 			}
2734 			err = 0;
2735 		} else
2736 			module_put(cp->owner);
2737 
2738 	} else {
2739 		state = cp->decomp_alloc(ccp_option, data.length);
2740 		if (state) {
2741 			ppp_recv_lock(ppp);
2742 			ppp->rstate &= ~SC_DECOMP_RUN;
2743 			ocomp = ppp->rcomp;
2744 			ostate = ppp->rc_state;
2745 			ppp->rcomp = cp;
2746 			ppp->rc_state = state;
2747 			ppp_recv_unlock(ppp);
2748 			if (ostate) {
2749 				ocomp->decomp_free(ostate);
2750 				module_put(ocomp->owner);
2751 			}
2752 			err = 0;
2753 		} else
2754 			module_put(cp->owner);
2755 	}
2756 
2757  out:
2758 	return err;
2759 }
2760 
2761 /*
2762  * Look at a CCP packet and update our state accordingly.
2763  * We assume the caller has the xmit or recv path locked.
2764  */
2765 static void
2766 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2767 {
2768 	unsigned char *dp;
2769 	int len;
2770 
2771 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2772 		return;	/* no header */
2773 	dp = skb->data + 2;
2774 
2775 	switch (CCP_CODE(dp)) {
2776 	case CCP_CONFREQ:
2777 
2778 		/* A ConfReq starts negotiation of compression
2779 		 * in one direction of transmission,
2780 		 * and hence brings it down...but which way?
2781 		 *
2782 		 * Remember:
2783 		 * A ConfReq indicates what the sender would like to receive
2784 		 */
2785 		if(inbound)
2786 			/* He is proposing what I should send */
2787 			ppp->xstate &= ~SC_COMP_RUN;
2788 		else
2789 			/* I am proposing to what he should send */
2790 			ppp->rstate &= ~SC_DECOMP_RUN;
2791 
2792 		break;
2793 
2794 	case CCP_TERMREQ:
2795 	case CCP_TERMACK:
2796 		/*
2797 		 * CCP is going down, both directions of transmission
2798 		 */
2799 		ppp->rstate &= ~SC_DECOMP_RUN;
2800 		ppp->xstate &= ~SC_COMP_RUN;
2801 		break;
2802 
2803 	case CCP_CONFACK:
2804 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2805 			break;
2806 		len = CCP_LENGTH(dp);
2807 		if (!pskb_may_pull(skb, len + 2))
2808 			return;		/* too short */
2809 		dp += CCP_HDRLEN;
2810 		len -= CCP_HDRLEN;
2811 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2812 			break;
2813 		if (inbound) {
2814 			/* we will start receiving compressed packets */
2815 			if (!ppp->rc_state)
2816 				break;
2817 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2818 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2819 				ppp->rstate |= SC_DECOMP_RUN;
2820 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2821 			}
2822 		} else {
2823 			/* we will soon start sending compressed packets */
2824 			if (!ppp->xc_state)
2825 				break;
2826 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2827 					ppp->file.index, 0, ppp->debug))
2828 				ppp->xstate |= SC_COMP_RUN;
2829 		}
2830 		break;
2831 
2832 	case CCP_RESETACK:
2833 		/* reset the [de]compressor */
2834 		if ((ppp->flags & SC_CCP_UP) == 0)
2835 			break;
2836 		if (inbound) {
2837 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2838 				ppp->rcomp->decomp_reset(ppp->rc_state);
2839 				ppp->rstate &= ~SC_DC_ERROR;
2840 			}
2841 		} else {
2842 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2843 				ppp->xcomp->comp_reset(ppp->xc_state);
2844 		}
2845 		break;
2846 	}
2847 }
2848 
2849 /* Free up compression resources. */
2850 static void
2851 ppp_ccp_closed(struct ppp *ppp)
2852 {
2853 	void *xstate, *rstate;
2854 	struct compressor *xcomp, *rcomp;
2855 
2856 	ppp_lock(ppp);
2857 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2858 	ppp->xstate = 0;
2859 	xcomp = ppp->xcomp;
2860 	xstate = ppp->xc_state;
2861 	ppp->xc_state = NULL;
2862 	ppp->rstate = 0;
2863 	rcomp = ppp->rcomp;
2864 	rstate = ppp->rc_state;
2865 	ppp->rc_state = NULL;
2866 	ppp_unlock(ppp);
2867 
2868 	if (xstate) {
2869 		xcomp->comp_free(xstate);
2870 		module_put(xcomp->owner);
2871 	}
2872 	if (rstate) {
2873 		rcomp->decomp_free(rstate);
2874 		module_put(rcomp->owner);
2875 	}
2876 }
2877 
2878 /* List of compressors. */
2879 static LIST_HEAD(compressor_list);
2880 static DEFINE_SPINLOCK(compressor_list_lock);
2881 
2882 struct compressor_entry {
2883 	struct list_head list;
2884 	struct compressor *comp;
2885 };
2886 
2887 static struct compressor_entry *
2888 find_comp_entry(int proto)
2889 {
2890 	struct compressor_entry *ce;
2891 
2892 	list_for_each_entry(ce, &compressor_list, list) {
2893 		if (ce->comp->compress_proto == proto)
2894 			return ce;
2895 	}
2896 	return NULL;
2897 }
2898 
2899 /* Register a compressor */
2900 int
2901 ppp_register_compressor(struct compressor *cp)
2902 {
2903 	struct compressor_entry *ce;
2904 	int ret;
2905 	spin_lock(&compressor_list_lock);
2906 	ret = -EEXIST;
2907 	if (find_comp_entry(cp->compress_proto))
2908 		goto out;
2909 	ret = -ENOMEM;
2910 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2911 	if (!ce)
2912 		goto out;
2913 	ret = 0;
2914 	ce->comp = cp;
2915 	list_add(&ce->list, &compressor_list);
2916  out:
2917 	spin_unlock(&compressor_list_lock);
2918 	return ret;
2919 }
2920 
2921 /* Unregister a compressor */
2922 void
2923 ppp_unregister_compressor(struct compressor *cp)
2924 {
2925 	struct compressor_entry *ce;
2926 
2927 	spin_lock(&compressor_list_lock);
2928 	ce = find_comp_entry(cp->compress_proto);
2929 	if (ce && ce->comp == cp) {
2930 		list_del(&ce->list);
2931 		kfree(ce);
2932 	}
2933 	spin_unlock(&compressor_list_lock);
2934 }
2935 
2936 /* Find a compressor. */
2937 static struct compressor *
2938 find_compressor(int type)
2939 {
2940 	struct compressor_entry *ce;
2941 	struct compressor *cp = NULL;
2942 
2943 	spin_lock(&compressor_list_lock);
2944 	ce = find_comp_entry(type);
2945 	if (ce) {
2946 		cp = ce->comp;
2947 		if (!try_module_get(cp->owner))
2948 			cp = NULL;
2949 	}
2950 	spin_unlock(&compressor_list_lock);
2951 	return cp;
2952 }
2953 
2954 /*
2955  * Miscelleneous stuff.
2956  */
2957 
2958 static void
2959 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2960 {
2961 	struct slcompress *vj = ppp->vj;
2962 
2963 	memset(st, 0, sizeof(*st));
2964 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2965 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2966 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2967 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2968 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2969 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2970 	if (!vj)
2971 		return;
2972 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2973 	st->vj.vjs_compressed = vj->sls_o_compressed;
2974 	st->vj.vjs_searches = vj->sls_o_searches;
2975 	st->vj.vjs_misses = vj->sls_o_misses;
2976 	st->vj.vjs_errorin = vj->sls_i_error;
2977 	st->vj.vjs_tossed = vj->sls_i_tossed;
2978 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2979 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2980 }
2981 
2982 /*
2983  * Stuff for handling the lists of ppp units and channels
2984  * and for initialization.
2985  */
2986 
2987 /*
2988  * Create a new ppp interface unit.  Fails if it can't allocate memory
2989  * or if there is already a unit with the requested number.
2990  * unit == -1 means allocate a new number.
2991  */
2992 static int ppp_create_interface(struct net *net, struct file *file, int *unit)
2993 {
2994 	struct ppp_config conf = {
2995 		.file = file,
2996 		.unit = *unit,
2997 		.ifname_is_set = false,
2998 	};
2999 	struct net_device *dev;
3000 	struct ppp *ppp;
3001 	int err;
3002 
3003 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
3004 	if (!dev) {
3005 		err = -ENOMEM;
3006 		goto err;
3007 	}
3008 	dev_net_set(dev, net);
3009 	dev->rtnl_link_ops = &ppp_link_ops;
3010 
3011 	rtnl_lock();
3012 
3013 	err = ppp_dev_configure(net, dev, &conf);
3014 	if (err < 0)
3015 		goto err_dev;
3016 	ppp = netdev_priv(dev);
3017 	*unit = ppp->file.index;
3018 
3019 	rtnl_unlock();
3020 
3021 	return 0;
3022 
3023 err_dev:
3024 	rtnl_unlock();
3025 	free_netdev(dev);
3026 err:
3027 	return err;
3028 }
3029 
3030 /*
3031  * Initialize a ppp_file structure.
3032  */
3033 static void
3034 init_ppp_file(struct ppp_file *pf, int kind)
3035 {
3036 	pf->kind = kind;
3037 	skb_queue_head_init(&pf->xq);
3038 	skb_queue_head_init(&pf->rq);
3039 	refcount_set(&pf->refcnt, 1);
3040 	init_waitqueue_head(&pf->rwait);
3041 }
3042 
3043 /*
3044  * Free the memory used by a ppp unit.  This is only called once
3045  * there are no channels connected to the unit and no file structs
3046  * that reference the unit.
3047  */
3048 static void ppp_destroy_interface(struct ppp *ppp)
3049 {
3050 	atomic_dec(&ppp_unit_count);
3051 
3052 	if (!ppp->file.dead || ppp->n_channels) {
3053 		/* "can't happen" */
3054 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
3055 			   "but dead=%d n_channels=%d !\n",
3056 			   ppp, ppp->file.dead, ppp->n_channels);
3057 		return;
3058 	}
3059 
3060 	ppp_ccp_closed(ppp);
3061 	if (ppp->vj) {
3062 		slhc_free(ppp->vj);
3063 		ppp->vj = NULL;
3064 	}
3065 	skb_queue_purge(&ppp->file.xq);
3066 	skb_queue_purge(&ppp->file.rq);
3067 #ifdef CONFIG_PPP_MULTILINK
3068 	skb_queue_purge(&ppp->mrq);
3069 #endif /* CONFIG_PPP_MULTILINK */
3070 #ifdef CONFIG_PPP_FILTER
3071 	if (ppp->pass_filter) {
3072 		bpf_prog_destroy(ppp->pass_filter);
3073 		ppp->pass_filter = NULL;
3074 	}
3075 
3076 	if (ppp->active_filter) {
3077 		bpf_prog_destroy(ppp->active_filter);
3078 		ppp->active_filter = NULL;
3079 	}
3080 #endif /* CONFIG_PPP_FILTER */
3081 
3082 	kfree_skb(ppp->xmit_pending);
3083 	free_percpu(ppp->xmit_recursion);
3084 
3085 	free_netdev(ppp->dev);
3086 }
3087 
3088 /*
3089  * Locate an existing ppp unit.
3090  * The caller should have locked the all_ppp_mutex.
3091  */
3092 static struct ppp *
3093 ppp_find_unit(struct ppp_net *pn, int unit)
3094 {
3095 	return unit_find(&pn->units_idr, unit);
3096 }
3097 
3098 /*
3099  * Locate an existing ppp channel.
3100  * The caller should have locked the all_channels_lock.
3101  * First we look in the new_channels list, then in the
3102  * all_channels list.  If found in the new_channels list,
3103  * we move it to the all_channels list.  This is for speed
3104  * when we have a lot of channels in use.
3105  */
3106 static struct channel *
3107 ppp_find_channel(struct ppp_net *pn, int unit)
3108 {
3109 	struct channel *pch;
3110 
3111 	list_for_each_entry(pch, &pn->new_channels, list) {
3112 		if (pch->file.index == unit) {
3113 			list_move(&pch->list, &pn->all_channels);
3114 			return pch;
3115 		}
3116 	}
3117 
3118 	list_for_each_entry(pch, &pn->all_channels, list) {
3119 		if (pch->file.index == unit)
3120 			return pch;
3121 	}
3122 
3123 	return NULL;
3124 }
3125 
3126 /*
3127  * Connect a PPP channel to a PPP interface unit.
3128  */
3129 static int
3130 ppp_connect_channel(struct channel *pch, int unit)
3131 {
3132 	struct ppp *ppp;
3133 	struct ppp_net *pn;
3134 	int ret = -ENXIO;
3135 	int hdrlen;
3136 
3137 	pn = ppp_pernet(pch->chan_net);
3138 
3139 	mutex_lock(&pn->all_ppp_mutex);
3140 	ppp = ppp_find_unit(pn, unit);
3141 	if (!ppp)
3142 		goto out;
3143 	write_lock_bh(&pch->upl);
3144 	ret = -EINVAL;
3145 	if (pch->ppp)
3146 		goto outl;
3147 
3148 	ppp_lock(ppp);
3149 	spin_lock_bh(&pch->downl);
3150 	if (!pch->chan) {
3151 		/* Don't connect unregistered channels */
3152 		spin_unlock_bh(&pch->downl);
3153 		ppp_unlock(ppp);
3154 		ret = -ENOTCONN;
3155 		goto outl;
3156 	}
3157 	spin_unlock_bh(&pch->downl);
3158 	if (pch->file.hdrlen > ppp->file.hdrlen)
3159 		ppp->file.hdrlen = pch->file.hdrlen;
3160 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
3161 	if (hdrlen > ppp->dev->hard_header_len)
3162 		ppp->dev->hard_header_len = hdrlen;
3163 	list_add_tail(&pch->clist, &ppp->channels);
3164 	++ppp->n_channels;
3165 	pch->ppp = ppp;
3166 	refcount_inc(&ppp->file.refcnt);
3167 	ppp_unlock(ppp);
3168 	ret = 0;
3169 
3170  outl:
3171 	write_unlock_bh(&pch->upl);
3172  out:
3173 	mutex_unlock(&pn->all_ppp_mutex);
3174 	return ret;
3175 }
3176 
3177 /*
3178  * Disconnect a channel from its ppp unit.
3179  */
3180 static int
3181 ppp_disconnect_channel(struct channel *pch)
3182 {
3183 	struct ppp *ppp;
3184 	int err = -EINVAL;
3185 
3186 	write_lock_bh(&pch->upl);
3187 	ppp = pch->ppp;
3188 	pch->ppp = NULL;
3189 	write_unlock_bh(&pch->upl);
3190 	if (ppp) {
3191 		/* remove it from the ppp unit's list */
3192 		ppp_lock(ppp);
3193 		list_del(&pch->clist);
3194 		if (--ppp->n_channels == 0)
3195 			wake_up_interruptible(&ppp->file.rwait);
3196 		ppp_unlock(ppp);
3197 		if (refcount_dec_and_test(&ppp->file.refcnt))
3198 			ppp_destroy_interface(ppp);
3199 		err = 0;
3200 	}
3201 	return err;
3202 }
3203 
3204 /*
3205  * Free up the resources used by a ppp channel.
3206  */
3207 static void ppp_destroy_channel(struct channel *pch)
3208 {
3209 	put_net(pch->chan_net);
3210 	pch->chan_net = NULL;
3211 
3212 	atomic_dec(&channel_count);
3213 
3214 	if (!pch->file.dead) {
3215 		/* "can't happen" */
3216 		pr_err("ppp: destroying undead channel %p !\n", pch);
3217 		return;
3218 	}
3219 	skb_queue_purge(&pch->file.xq);
3220 	skb_queue_purge(&pch->file.rq);
3221 	kfree(pch);
3222 }
3223 
3224 static void __exit ppp_cleanup(void)
3225 {
3226 	/* should never happen */
3227 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3228 		pr_err("PPP: removing module but units remain!\n");
3229 	rtnl_link_unregister(&ppp_link_ops);
3230 	unregister_chrdev(PPP_MAJOR, "ppp");
3231 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3232 	class_destroy(ppp_class);
3233 	unregister_pernet_device(&ppp_net_ops);
3234 }
3235 
3236 /*
3237  * Units handling. Caller must protect concurrent access
3238  * by holding all_ppp_mutex
3239  */
3240 
3241 /* associate pointer with specified number */
3242 static int unit_set(struct idr *p, void *ptr, int n)
3243 {
3244 	int unit;
3245 
3246 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3247 	if (unit == -ENOSPC)
3248 		unit = -EINVAL;
3249 	return unit;
3250 }
3251 
3252 /* get new free unit number and associate pointer with it */
3253 static int unit_get(struct idr *p, void *ptr)
3254 {
3255 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3256 }
3257 
3258 /* put unit number back to a pool */
3259 static void unit_put(struct idr *p, int n)
3260 {
3261 	idr_remove(p, n);
3262 }
3263 
3264 /* get pointer associated with the number */
3265 static void *unit_find(struct idr *p, int n)
3266 {
3267 	return idr_find(p, n);
3268 }
3269 
3270 /* Module/initialization stuff */
3271 
3272 module_init(ppp_init);
3273 module_exit(ppp_cleanup);
3274 
3275 EXPORT_SYMBOL(ppp_register_net_channel);
3276 EXPORT_SYMBOL(ppp_register_channel);
3277 EXPORT_SYMBOL(ppp_unregister_channel);
3278 EXPORT_SYMBOL(ppp_channel_index);
3279 EXPORT_SYMBOL(ppp_unit_number);
3280 EXPORT_SYMBOL(ppp_dev_name);
3281 EXPORT_SYMBOL(ppp_input);
3282 EXPORT_SYMBOL(ppp_input_error);
3283 EXPORT_SYMBOL(ppp_output_wakeup);
3284 EXPORT_SYMBOL(ppp_register_compressor);
3285 EXPORT_SYMBOL(ppp_unregister_compressor);
3286 MODULE_LICENSE("GPL");
3287 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3288 MODULE_ALIAS_RTNL_LINK("ppp");
3289 MODULE_ALIAS("devname:ppp");
3290